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ABSTRACT

Transformer models have shown considerable success in modeling predictive
problems in diverse domains. Notably, they can efficiently learn in-context (ICL),
i.e. solve new tasks without any further training when provided some examples
in the prompt. While first observed in language, consequent studies explore this
phenomenon in controlled settings where the model is trained on a known distri-
bution of tasks. Transformer therefore have to jointly infer what the task is and
how to solve it; the essence of Bayesian posterior predictive inference. However
as this is done implicitly, there is no guarantee that the model explicitly represent
the task latent, which we argue could have a number of benefits (analog to those
of parametric methods over non-parametric ones). This begs a natural question:
is there any benefit in encouraging this explicit representation or are we better off
letting the model implicitly decide an appropriate solution space. We thoroughly
analyze a Transformer imbued with such inductive bias and show both its
potential and limitations. Although it gains in interpretability and controlability, it
doesn’t lead to the expected performance boost; we hypothesize that this is due to
a lack of capacity in using the extracted latent to perform conditional predictions.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have a remarkable ability to adapt at inference by leveraging
earlier tokens in their context to modulate their outputs for a given query. This ability, termed
In-Context Learning (ICL), is a primary driver of the impressive emergent abilities and out-of-
distribution (OOD) generalization in large language models (Lu et al., 2023). However, we still lack
an understanding of what architectural motifs are responsible for such abilities, and what design
choices might encourage it. To make progress, recent works concentrate on simplified tasks to un-
derstand the conditions under which ICL succeeds (Mueller et al., 2023) and how it can be improved.

As such, synthetic ICL consider latent variable models (LVM) p(y|x; z) and given a number of
demonstrations Dz = {(xi, yi)}i ∼ pz in context, asks the model to make a prediction about a new
x∗ and also generalize to new z at test time. A priori (Genewein et al., 2023), this pushes models
to learn the Bayesian posterior predictive (Equation 1); a perspective validated experimentally on
increasingly complex LVMs (Mikulik et al., 2020; Guo et al., 2023a; Akyürek et al., 2024) .

p(y | x∗,D) =

∫
z

p(y | x∗; z)p(z | D)dz (1)

While this process implicitly marginalizes over some unknown latent space, this space doesn’t
have to be explicitly represented in the model, which could result in a loss of controllability over
this space, make it hard to encode contraints or prior knowledge and potentially hinder systematic
generalization. In this paper, we analyze whether encouraging explicit inference as opposed to
implicit one through architectural biases can lead to benefits over a regular transformer.

Explicitly representing and inferring these task parameters z, similar to parametric inference meth-
ods typically used in Bayesian methodology, is attractive because it mirrors the way in which we
often believe underlying data-generating processes work (in and out of distribution). Some unob-
served factors remain constant within a given context (e.g. the layout of a room) and produce a
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Figure 1: We compare the benefits of the implicit (left) and the explicit (right) model. The latter
disentangles modeling context aggregation and prediction whereas the former models them jointly.
stream of observations that depend on those factors (e.g. the images on our retina as we move in-
side the room). Another advantage of this method is interpretability through the explicit z variable,
which allows us to interpret and discover the structure of the data and task. Some evidence shows
that LLMs are indeed able to do this in some context (Hendel et al., 2023; Todd et al., 2023).

In contrast, multiple studies show that induction heads (Olsson et al., 2022) and related mecha-
nisms (Hahn & Goyal, 2023; Han et al., 2023) emerge throughout learning, modeling the posterior
predictive implicitly. Akin to non-parametric methods (eg. kernel regression), implicit modeling
provides more freedom to the optimization procedure in finding the right solutions and does not
prescribe design choices like the dimensionality or structure of the latent, which may be beneficial
if we have a misinformed prior. However, these methods are less interpretable, require a lot of data,
and lead to over-fitting as their solutions are local and lack systematicity (Russell & Norvig, 2010).

Although both motifs (explicit or implicit) can be learned, transformers arguably learn non-
parametric mechanisms more easily (Zhou et al., 2023) since the attention mechanisms implement
kernel regression almost by definition (Tsai et al., 2019). We posit that if the query can directly at-
tend the context, non-parametric methods will probably be preferred by the optimizer. Yet, explicit
representations might afford marked advantages that do not arise naturally in standard architectures.

In this work, we perform a thorough comparison between a regular transformer (implicit) and its
variant with a latent bottleneck (explicit) in ICL settings. Importantly, unlike implicit model, the
explicit one disentangles the two processes of latent variable inference and prediction into two sep-
arate modules. We find that results are varied, and depend on the task. We could not find unilateral
advantages of the explicit model in terms of OOD generalization, and we identify the prediction part
of the model (which combines z and x∗ to make the prediction) as a potential cause. Nevertheless,
we show that the explicit model has key benefits in some cases, and are always more interpretable.
This is especially valuable in situations when contextual interventions on the model are needed.

2 IMPLICIT VS EXPLICIT INFERENCE

We look at ICL in the context of algorithmic problems where the task is to predict the target y∗ from
a query point x∗ when provided with some context examples D = {(xi, yi)}i. During training, dif-
ferent draws of context sets (D1,D2, ...) share the same underlying functional mapping g : x, z → y
but different latents z′s; for example g could be a linear function but D1 could be generated from
z1 whereas D2 from z2, similar to Von Oswald et al. (2023). Thus, the model not only has to learn
the prediction function g but also efficiently aggregate information about z from the context D to
make predictions for x∗. Thus, this general framework can be decomposed into two parts

CONTEXT AGGREGATION. This component deals with inferring some notion of task-dependent
sufficient statistics of the context or latent variables of interest such that the prediction becomes
conditionally independent of the context, i.e. p(y∗ | x∗,D, z) = p(y∗ | x∗, z). In the above
working example, it can be seen as inferring z conditioned on the context D.

PREDICTIVE MODELING. This aspect is associated with how the aggregated context is further used
to drive predictions. In the above example, it refers to learning the functional mapping g.

As discussed, transformers don’t have a clear incentive to make this explicit separation. Thus, in
order to enforce explicit representation of z, we consider an architectural modification where the
query x∗ cannot directly attend to the context. Formally, we compare the following two models

IMPLICIT MODEL. This refers to the traditional in-context learning computation afforded by
transformer models. In this setup, given the set of observations D (context) and a query point x∗,
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Figure 2: Investigation of model performances across a wide variety of tasks − synthetic regression
and classification problems as well as more complex reasoning and gene targeting problems.
the prediction y∗ for this query is modeled directly as pφ(y∗|x∗,D), where pφ is defined using a
transformer. Here, pφ is tasked with modeling both context aggregation and predictive modeling.

EXPLICIT MODEL. This represents the architectural variation which disentangles context aggre-
gation and predictive modeling by first constructing a task representation zψ(D) using the set of
observations (context aggregation) and then leverages another network pφ to make the prediction
for a new point x∗ (predictive modelling) as pφ(y∗|x∗, zψ(D)). A key insight is that the task
statistics are invariant to the queries when modeling prediction. We use a transformer for the
context model and experiment with different models for the prediction function.

IMPLICIT VS EXPLICIT. We first hypothesize when would each setup perform better. If the data is
generated with a linear model (i.e. y = wTx), the right predictor can be precisely described using
the weight vector w, making the explicit model better suited. In contrast, when the data is generated
with a Gaussian Process (GP), the implicit model should be superior since by construction query
prediction relies on computing its similarities with all points in the context. In this case, the sufficient
statistics of GP-based data with RBF kernel is infinite dimensional (i.e. a point in function space),
which can’t be captured by the explicit model. In general, we hypothesize that the explicit model
would be superior when the underlying true model is parametric and low-dimensional but in case of
a non-parametric or very high dimensional parametric model, the implicit model would outperform.

3 EXPERIMENTS

SETUP We conduct experiments across a wide variety of tasks to highlight the differences be-
tween the implicit and explicit models. In each task, the models get a set of observations as input
D = {(xi, yi)}Ni=1 and have to make predictions about x∗, where the functional form of the true
mapping g : x → y changes across different tasks (eg. linear regression, sinusoidal regression, etc).
Evaluation is done based on mean-squared error or accuracy. The out-of-distribution (OOD) settings
correspond to when x∗ is taken outside the distribution used in D. See §B for task details.

SYNTHETIC REGRESSION TASKS. We first consider regression problems, i.e. y ∈ R, and exper-
iment with multiple functions: linear, MLP-based, sinusoidal with multiple frequencies, temporal
as a Hodgkin Huxley ordinary differential equation and Gaussian Process based non-parametric
distribution (§B.1 for details). Our experiments in Fig. 2 (a) show that across most settings, both
implicit and explicit models perform similarly, with no clear trend between the Explicit-MLP and
Explicit-Transformer. We also see that in the case of a non-parametric g, the right prediction is to
compare the query to the whole context, and thus an implicit model does consistently better.

SYNTHETIC CLASSIFICATION TASKS. We next look at classification tasks, i.e. y can only take
finite values. We again consider linear and MLP-based functional mappings. Additionally, we also
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Figure 3: (Top) Suboptimality in Predictive Modeling. Known prediction function leads to signifi-
cantly better OOD performance (a), but known context z doesn’t (b). (Bottom) Explicit models are
interpretable as the bottleneck allows us to decode the latent (c) and intervene on it (d).
look at the Alchemy task, consisting of compositional symbolic transformations governed by latent
rules (§B.2 for details). Fig. 2 (b) highlights consistent benefits in using the implicit model.

REAL WORLD TASKS. Lastly we look at two more natural tasks − Raven’s Progressive Matrices
and Gene Targeting. The first is a reasoning task used in IQ tests which requires completing a
sequence of 9 objects based on simple variations in high-level attributes (e.g. shape, size, etc.). The
second requires predicting genetic expression of cells following a CRISPR gene intervention (§B.3
for details). Fig. 2 (c) shows there is no significant difference between the two models.

SUBOPTIMALITY IN PREDICTIVE MODELING. It is surprising to see that the explicit model does
not outperform the implicit one on tasks where parameters are low-dimensional; as it is better aligned
with the data generating process. Importantly, we observed that endowing the explicit model with
the known decoder lead to drastic improvement (Fig. 3 (a)), whereas endowing it with the known
latent didn’t (Fig. 3 (b)); this suggests that the lack of capacity of the decoder is responsible for the
underwhelming performance of the explicit model. Extending this reasoning to the implicit model,
this might be the reason why regular transformer can difficultly perform parametric inference.

INTERPRETABILITY. Fig. 3 (c) shows that we can often decode task-specific parameters from the
aggregated context in explicit model, thereby providing a mechanism to understand when the model
could be attaching to spurious correlations through readouts on the bottleneck.

INTERVENTIONAL ABILITY. Owing to the interpretable nature of the explicit model, we are able
to find subspaces of the bottleneck that causally encodes different parts of the latent z using the
Distributed Alignment Search (DAS) method from Geiger et al. 2023. Fig. 3 (d) shows a baseline-
adjusted Interchange Intervention Accuracy (IIA) for each latent − how ofter intervening on the
identified subspace is consistent with the counterfactual (ground-truth) prediction. For the implicit
model, we try DAS on every layer of the residual stream and report the best IIA. See §C.1 for details.

4 CONCLUSION

We propose explicit factorization of knowledge into context aggregation and prediction modeling,
showing that while it does comparably to the implicit model in downstream performance, it provides
benefits of interpretability of latent variables and interventional ability. This finding might differ for
more complex tasks and with more scale, but it suggests that for simple computations, implicit latent
modeling emerges with naturally accurate and generalizable solutions. Nevertheless, we note that
explicitly promoting parametric-like latent embedding might still yield advantages if a downstream
decoder can make optimal use of them (i.e. learns the right parametric model). Our experiments in-
dicate this is not currently the case when training transformers with bottlenecks end-to-end. Indeed,
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we demonstrate that the failure mode of explicit models is that they often do not learn the right pre-
diction model to leverage explicit latent variables. This points to a line of future work that could seek
to incorporate inductive biases in the prediction model to better leverage the inferred latent variables.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the computing resources provided by the Mila cluster to
enable the experiments outlined in this work. SM acknowledges the support of UNIQUE’s schol-
arship. GL and DS acknowledge the support of CIFAR. The authors also thank NVIDIA for the
computing resources.

5



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

REFERENCES
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Tim Genewein, Grégoire Delétang, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Vincent Dutordoir,
Jordi Grau-Moya, Laurent Orseau, Marcus Hutter, and Joel Veness. Memory-based meta-learning
on non-stationary distributions, 2023.

Luke A Gilbert, Max A Horlbeck, Britt Adamson, Jacqueline E Villalta, Yuwen Chen, Evan H
Whitehead, Carla Guimaraes, Barbara Panning, Hidde L Ploegh, Michael C Bassik, et al.
Genome-scale crispr-mediated control of gene repression and activation. Cell, 159(3):647–661,
2014.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning, 2023.

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Grégoire Delétang, Elliot Catt,
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Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan Martic, Shane Legg,
and Pedro A. Ortega. Meta-trained agents implement bayes-optimal agents, 2020.

Aaron Mueller, Albert Webson, Jackson Petty, and Tal Linzen. In-context learning generalizes, but
not always robustly: The case of syntax, 2023.

Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
via sequence modeling, 2023.

Thomas M Norman, Max A Horlbeck, Joseph M Replogle, Alex Y Ge, Albert Xu, Marco Jost,
Luke A Gilbert, and Jonathan S Weissman. Exploring genetic interaction manifolds constructed
from rich single-cell phenotypes. Science, 365(6455):786–793, 2019.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Stuart J Russell and Peter Norvig. Artificial intelligence a modern approach. London, 2010. pages
737 and 757.

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pe-
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APPENDIX

A RELATED WORK

IN-CONTEXT LEARNING. ICL was first coined in the context of large language models, where
it was observed that such models can generalize to unseen tasks with only a few context examples
(hence in-context) without any additional training Brown et al. (2020). This definition was sub-
sequently expanded to more controlled settings, where transformer models were explicitly trained
on known latent variable model like linear regression (Von Oswald et al., 2023; Garg et al., 2023),
hidden Markov models (Xie et al., 2022), compositional grammars (Hahn & Goyal, 2023), regular
languages (Akyürek et al., 2024) and turing machines (Grau-Moya et al., 2024) over multiple differ-
ent datasets (defined by the task latent), with the expectation that they would generalize to unseen
datasets. Recent works highlight that when trained over a wide variety of datasets, these models do
indeed generalize.

To understand ICL better, researchers have explored both empirical and theoretical frameworks to
understand which architectures lead to this phenomena and how can it be explained. A convincing
argument for its workings can be seen through the lens of Bayesian Inference, where the transformer
implicitly models the posterior predictive distribution directly, given by:

pθ(y∗|x∗,D) (2)

where x∗ denotes the query point and D represents the set of context examples / dataset in algorith-
mic tasks, and θ represents the parameters of the transformer. Such a system is simply trained using
maximum likelihood, which is formalized as:

argmax
θ

Ex∗,,y∗,D log pθ(y∗|x∗,D) (3)

NEURAL PROCESSES. The problem of solving new tasks in a zero-shot manner directly at in-
ference is also closely tied to meta-learning (Hospedales et al., 2020). Neural Processes (Garnelo
et al., 2018b) provide a framework of performing probabilistic meta learning, where they model the
problem as a latent-variable system. Given a dataset D and a query point x∗, prediction of the label
y according to this latent variable model can be compactly described as

pθ(y|x∗,D) =

∫
pθ(y|x, z)pθ(z|D)dz (4)

which looks akin to Variational Autoencoders (Kingma & Welling, 2019), with the sole difference
being the amortization on the whole dataset D as opposed to single images, where z represents the
latent variable and θ the parameters of the likelihood model (eg. the decoder in VAEs). The model
is trained via the Evidence Lower-Bound (ELBO) with the amortized variational approximation
qφ(·|D). Once trained, predictions for new datasets can be made by simply performing inference
over the encoder qφ to obtain z, and then leveraging this latent variable to eventually give the
predictions via pθ(y|x∗, z).

Another direction of research, called Conditional Neural Process (Garnelo et al., 2018a), by-passes
latent variable modeling by directly learning the posterior predictive distribution via the maximum
likelihood objective, i.e.

pθ(y|x∗,D) = pθ(y|x∗, zθ(D)) (5)

where zθ now just represents the output of a Neural Network without any probabilistic interpreta-
tion, and the parameters θ are just trained via MLE.

This leads to essentially the same objective as ICL, with the difference coming in from how zθ is
parameterized. Both CNPs and NPs employ a DeepSets architecture to model zθ or the variational
distribution qφ, to respect the permutation symmetries of the iid observations in D. However, recent
research generalizes this setting to use transformers Nguyen & Grover (2023) and other architectural
backbones as well (Kim et al., 2019). In particular, ICL can be seen as an extension of CNPs which
doesn’t necessarily require the iid nature of the observations in modeling the predictions, and relies
on the transformer architecture.

INDUCTIVE BIASES FOR ICL Inductive biases are tendencies models have towards learning cer-
tain types of solution, which will generalize well on some data distributions and inevitably poorly

8



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

on some other (i.e. there is no free lunch, Goldblum et al. 2023). Olsson et al. (2022) have shown
that induction heads play in important role in ICL by predicting that the continuation of a token will
be the same as last time (i.e. [a][b] . . . [a] → [b]). As this can happen at any layer of transformer,
the basis of induction can be latent (Hahn & Goyal, 2023; Guo et al., 2023a); generally, this motif
can be seen as very similar to kernel regression (i.e. p(yq|xq, x1:n) ∝

∑
iK(xi, xq)yi, (Han et al.,

2023)). As shown by Von Oswald et al. (2023) this motif can be used to naturally do linear regres-
sion (potentially on non-linearly processed latents), making them generalize well on linear function
Garg et al. (2023). In contrast (Hendel et al., 2023; Todd et al., 2023) have concurrently shown that
in some cases transformers encode a ”task vector” that they infer from the context and then use to
do the prediction.

B TASKS

We consider the following tasks for our evaluations, specified by the function g : (x, z) → y is used
to generate the ICL dataset.

B.1 REGRESSION TASKS

For regression tasks, we use the mean-squarred-error loss to train the model.

B.1.1 LINEAR REGRESSION

y = g(x;w) = wTx+ ϵ where w ∈ Rn ∼ N (0, 1) and ϵ ∼ N (0, 0.1).

B.1.2 NONLINEAR REGRESSION USING MLPS

y = g(x, ψ) = fψ(x) + ϵ, where fψ is modeled as a Multi-Layer Perceptron (MLP) network with
weights ψ and ϵ ∼ N (0, 0.1). The MLP has a shape of [1, 64, 1] and ReLU non-linearities.

B.1.3 SINUSOID REGRESSION

y = g(x, α1:k, λ1:k) =
K∑
i=1

αi sin (2πλix), where the parameters are frequencies λ′i ∼ U(0, 5) and

amplitudes α′
i ∼ U(−1, 1) and K = 3.

B.1.4 GAUSSIAN PROCESS REGRESSION

Y = g(X) ∼ N (0,K(X,X)) where K(x,x′) = exp
(
−∥x−x′∥2

2σ2

)
is the RBF kernel and X,Y

are the matrices respectively containing all sampled points, both for context and queries. This has the
effect of sampling a function at random, with the only structure being that the covariance between
ys depends on K(x,x). Here the z can be seen as y itself and is thus very high dimensional and
weakly structured.

B.1.5 HUDGKIN-HOXLEY ODE PREDICTION

y = g(t, ḡNa, ḡK) is the solution of the following differential equation :

Cm
dV

dt
= g1 (E1 − V )+ḡNam

3h (ENa − V )+ḡKn
4 (EK − V )+ḡMp (EK − V )+Iinj+ση (t)

where all the other parameters are fixed to the same value as in Tejero-Cantero et al. 2020. We
solve it for 6,400 pairs (ḡNa, ḡK) ∈ [0, 40]2 from t = 0 to t = 120 with 1000 timesteps. The
Hodgkin-Huxley ODE describes how action potentials in neurons are initiated and propagated in
the brain.

B.2 CLASSIFICATION TASKS

For classification, we use a cross-entropy loss.

9
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B.2.1 LINEAR CLASSIFICATION

y = g(x;w, b) ∼ Categorical(Softmax(wTx + b)) where w ∈ R2 ∼ N (0, 1) and b ∈ R ∼
N (0, 1)

B.2.2 NONLINEAR CLASSIFICATION USING MLPS

y = g(x;ϕ) ∼ Categorical(Softmax(fψ(x))) where where fψ is modeled as a Multi-Layer Per-
ceptron (MLP) network with weights ψ and ϵ ∼ N (0, 0.1). The MLP has a shape of [1, 64, 1] and
ReLU non-linearities.

B.2.3 ALCHEMY

Alchemy is a meta-reinforcement learning benchmark Wang et al. (2021) where each environment is
defined by a set z = (GRAPH, POTION MAP, STONE MAP) of rules about how some set of potions
transforms some stones. We extracted from it an ICL classification dataset consisting of transforma-
tions x = (STONE, POTION) → y = STONE. The transformations are compositional and symbolic;
each potion affects only one of the three properties of stones (size, shape and color). An environ-
ment is specified by how observable stones and potions MAP to latent stones and potions, along with
a GRAPH over these latent stones which specify the result of the Transformations. In total there is
109 GRAPH, 48 POTION MAP and 32 STONE MAPS, making for 167424 environments. We reserve
100,000 environments for evaluation and train of the remaining ones.

B.3 REAL-WORLD TASKS

B.3.1 RAVEN’S PROGRESSIVE MATRICES

Raven’s Progressive Matrices (Raven’s PM) is a reasoning task used for IQ tests (John & Raven,
2003). It consists of a 3x3 grid where each cell contains simple objects varying in a small number
of attributes (e.g., shape, size, number), but the bottom right cell is left empty. Subjects must notice
a pattern in how the cells change from left to right in the first two rows of the grid, and then use
that same pattern to complete missing cell in the bottom row. This is done by selecting one answer
among N possible provided options for the missing cell. We use a symbolic version of the dataset
that addresses bias in the original version (Guo et al., 2023b). In our models, the context consists
of the first two rows of the grid, the query consists of the last row with a masked out final cell, and
the ground-truth latent variable is the underlying rule that generates a particular grid. Each rule is
composed of a set of sub-parts, and we evaluate on unseen compositions.

B.3.2 GENE TARGETING

We use Perturb-seq dataset collected by Norman et al. (2019) where researchers performed several
genetic intervention experiments using CRISPR (Gilbert et al., 2014). In each experiment, either one
or two genes were targeted and the resulting expressions across 5000 genes were observed across
several cells. Here, we consider each CRISPR intervention experiment as a different context, the
resulting cell genetic expressions as 5000-dimensional observations, and a left-out cell with half of
the genetic expressions randomly masked out as the query. The task is to predict the missing genetic
expressions for the queried cell. We evaluate on held on held out CRISPR experiments with novel
pairs of targeted genes.

C MODEL DETAILS

For our implicit model, we use a standard transformer with 8 layers. In the explicit model, for context
aggregation we parameterize zφ(D) using a standard transformer with 4 layers, 256 dimensions
latent, 512 dimensions MLP and 4 heads. For the predictor pθ, we consider two options: a ReLU
MLP with three hidden layers of size 512 and a transformer with the same configuration as zφ(D).

For the implicit model, we format the prompt for prediction as [x1, y1] . . . [xn, yn][xq, ∅], where
every [·] represents a token. We use a distinct mask token ∅ to represent the target (which is the thing
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being predicted). For the explicit model, we first compute [x1, y1] . . . [xn, yn] to zφ(D) with the
context transformer. Then we give [zφ(D)][xq] to predictor transformer or [zφ(D), xq] to the MLP.

C.1 DISTRIBUTED ALIGNMENT SEARCH DETAILS

To find subspace causally associated with a task latent in Alchemy, we use a method base on Dis-
tributed Alignment Search (DAS) by Geiger et al. (2023). This procedure is performed for a location
L = Rd (e.g. the bottleneck) and latent i ∈ {1, 2, 3} (GRAPH, STONE MAP, POTION MAP).

First, we run with the model on Dz and Dz̄ for every possible query x∗. We call z the base and
z̄ the source and only differ by the ith latent. For every run, we record the activity of the source
model at the location lz ∈ L̄. Then, we run the base model again but this time fixing the subspace
of l defined by the orthogonal projection Π ∈ Rd×10 to it’s value in lz . A single projection Π is
learned over all possible combination z, z̄ and x∗ with a cross-entropy loss between the prediction
of the base (intervened) model and the true counter-factual result of changing the latent zi to z̄i. See
Fig. 4 for an illustration of the process. A subspace is evaluated by looking at the accuracy of the
counterfactual interventions over a dataset of held-out z, z̄ pairs; giving the validation Interchange
Intervention Accuracy (IIA). In Figure Fig. 3 (c) we report the baseline-adjusted validation IIA
IIA−BASELINE
1−BASELINE

where BASELINE is the counterfactual accuracy if we don’t perform any intervention
(as often the intervention doesn’t change the prediction on a specific x∗).

Figure 4: Illustration of the DAS training procedure
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