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Abstract Large Language Models (LLMs) have sparked significant interest in their generative capa-
bilities, leading to the development of various commercial applications. The high cost of
using the models drives application builders to maximize the value of generation under a
limited inference budget. This paper presents a study of optimizing inference hyperparam-
eters such as the number of responses, temperature and max tokens, which significantly
affects the utility/cost of text generation. We design a framework named EcoOptiGen which
leverages economical hyperparameter optimization and cost-based pruning. Experiments
with the GPT-3.5/GPT-4 models on a variety of tasks verify its effectiveness. EcoOptiGen is
implemented in the "autogen" package of the FLAML library: https://aka.ms/autogen.

1 Introduction

Large language models (LLMs) like GPT-3.5 and GPT-4 (Brown et al., 2020; Ouyang et al., 2022;
OpenAI, 2023) have demonstrated impressive capabilities in a wide range of generative tasks,
including story telling (Lucy and Bamman, 2021; Chen, 2022), code generation (Trummer, 2022;
Poesia et al., 2022), math problem solving (Cobbe et al., 2021; Zong and Krishnamachari, 2022), and
many others (Wang et al., 2022). Even though the LLMs do not always generate perfect answers,
they have initiated a trend of building powerful user experiences such as coding assistants and
chat-enabled search engines. As the interest of building LLM-enabled applications keeps growing,
the demand for technologies for getting the best value out of generation inference will also grow.

The research community has recently studied the effect of individual hyperparameters on the
inference performance, such as the prompt (Liu et al., 2021; Mishra et al., 2021; Shieh, 2022) and
temperature (Branwen, 2020; Nadeem et al., 2020). However, little is known about how to optimize
the different hyperparameters collectively and systematically. Moreover, the monetary cost is a
concern for most application builders. High costs and implications on energy consumption and
environmental impact (Schwartz et al., 2020) provide a strong incentive to systematically optimize
the hyperparameters towards maximal utility and minimal cost.

In this paper, we present the first study on the systematic hyperparameter optimization for text
generation inference using LLMs. Given the cost concern, we adopt an economical hyperparameter
optimization method (Wang et al., 2021), and propose a cost-based pruning strategy to improve the
optimization efficiency under budget constraints. We apply our optimization framework, named
EcoOptiGen, to tune multiple hyperparameters jointly, including the number of responses, max
tokens, temperature, probability mass, and prompts.

To study the effectiveness of EcoOptiGen, we evaluate it on the following datasets:
APPS (Hendrycks et al., 2021a), HumanEval (Chen et al., 2021) (for code generation);
MATH (Hendrycks et al., 2021b) (for math problem solving); and XSum (Narayan et al., 2018)
(for text summarization). On all the four datasets, we observe that EcoOptiGen can find higher
quality hyperparameter settings than the default settings suggested by a recent LLM benchmark
HELM (Liang et al., 2022) or simple modifications for the same budget. Our pruning technique is
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Figure 1: A code generation example using GPT-4, and a few examples of hyperparameters users can
set for the inference, such as prompt, temperature, and max tokens.

shown to be effective in increasing the tuning performance significantly. We further find that the
holistic hyperparameter optimization can mitigate idiosyncrasies to prevent suboptimal results.

2 Background

2.1 Text Generation with LLMs

The Input and Output of LLM Text Generation. Figure 1 shows one example of the input prompt
to LLM. Upon receiving the prompt, LLM performs inference to generate one or more output
responses. The input prompt can further include multiple examples to demonstrate what kind of
responses are desirable. The output can be consumed or validated by an application in various
ways, e.g., code executor (Hendrycks et al., 2021a) or math expression checker (Hendrycks et al.,
2021b). It is often helpful for the inference to generate multiple responses and search for the best
one, e.g., in code generation (Chen et al., 2021) and machine translation (Wullach and Chazan,
2022). The utility of the generated text is determined by the application consuming it. For example,
when a predefined programmatic test is provided before generation, the code generation can be
considered as successful if one of the generated responses can pass the test.

The Cost of Text Generation with LLMs. The cost of using LLMs for a text generation request
is proportional to the amount of computations required to generate the output. The amount of
computations is determined by the number of tokens in both the input and output. LLMs are
often used as a service and charged based on the usage. From the perspective of an application
builder using LLMs, the goal is to maximize the utility of the generated text under an inference
budget constraint (e.g., measured by the average dollar cost needed to solve a coding problem).
This can be achieved by optimizing the hyperparameters of the inference, which can significantly
affect both the utility and the cost of the generated text. In the next section, we will discuss how
hyperparameters affect the utility and the cost.

2.2 How Do Hyperparameters Affect Text Generation Performance?

The Impact of Individual Hyperparameters. We take a representative API from OpenAI, i.e., the
completions API (ope, 2023), to analyze the tunable hyperparameters and their impact on the cost
and the utility (e.g., accuracy, success rate): (1) model - this is a required input, specifying the
model ID to use. (2) prompt - the input prompt to the model, which provides the context for the
text generation task. (3) max_tokens - the maximum number of tokens (words or word pieces) to
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generate in the output. (4) temperature - a value between 0 and 1 that controls the randomness
of the generated text. A higher temperature will result in more random and diverse text, while a
lower temperature will result in more predictable text. (5) top_p - a value between 0 and 1 that
controls the sampling probability mass for each token generation. A lower top_p value will make it
more likely to generate text based on the most likely tokens, while a higher value will allow the
model to explore a wider range of possible tokens. (6) n - the number of responses to generate for
a given prompt. Generating multiple responses can provide more diverse and potentially more
useful output, but it also increases the cost of the request. (7) stop - a list of strings that, when
encountered in the generated text, will cause the generation to stop. This can be used to control
the length or the validity of the output. (8) presence_penalty and frequency_penalty - values that
control the relative importance of the presence and frequency of certain words or phrases in the
generated text. These hyperparameters can be useful for controlling the focus and balance of the
generated text. (9) best_of - the number of responses to generate server-side when selecting the
"best" (the one with the highest log probability per token) response for a given prompt.

The Joint Impact of Multiple Hyperparameters. It can be seen that the cost and utility of text
generation are intertwined with the joint effect of these hyperparameters. There are also complex
interactions among subsets of the hyperparameters. For example, the temperature and top_p are
not recommended to be altered from their default values together because they both control the
randomness of the generated text, and changing both at the same time can result in conflicting
effects (ope, 2023); n and best_of are rarely tuned together because if the application can process
multiple outputs, filtering on the server side causes unnecessary information loss; both n and
max_tokens will affect the total number of tokens generated, which in turn will affect the cost of
the request. These interactions and trade-offs make it difficult to manually determine the optimal
hyperparameter settings for a given text generation task.

3 EcoOptiGen

We first introduce the following notations and definitions for EcoOptiGen:
Tuning Data 𝐷 , a small set of examples which can be used to measure the goodness of each

hyperparameter configuration. Each data example contains a few text fields. For example, the
HumanEval (Chen et al., 2021) dataset contains an input field which is the concatenation of the
Python function signature and the doc string, and a test field of the test code.

Utility Function𝑈 , a function that represents the utility (a real-valued score) of the generated
text. For example, for code generation, the utility is the success rate of passing the test; for text
summarization, the utility is the effectiveness of summarization such as the rouge score. The utility
of multiple verifiable responses (i.e., the best response can be selected from them by the application)
is defined as the best utility score in all responses.

Budget Constraints 𝐵 = (𝐵.𝑖, 𝐵.𝑜), a tuple of two values: 𝐵.𝑖 is the average inference budget
per example in the tuning data 𝐷 and 𝐵.𝑜 is the total optimization budget. Generally, they are
measured as the dollar cost which is proportional to the number of tokens in the input and output
(ref. Section 2). When the price per token is a constant for both input and output, the dollar cost
can be converted to the number of tokens in the input and output. For simplicity of illustration,
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we use the number of tokens as the notion of budget in this section: 𝐵.𝑖 is the allowed average
number of token consumptions per request, such as 1K, and 𝐵.𝑜 is the the total number of tokens
allowed to consume in the tuning process, such as 1M. When 𝐵 = (1𝐾, 1𝑀), |𝐷 | = 20, if each request
consumes exactly 1K tokens, the number of allowed hyperparameter configurations to try during
the optimization is equal to 1𝑀/1𝐾/20 = 50.

Search Space 𝑆 , a dictionary where the key is each hyperparameter’s name and the value is
the range of values to search for the corresponding hyperparameter. Following the analysis in
Section 2.2, we design a default search space as shown in Table 1, if users do not provide this input.
The necessity of tuning certain hyperparameters depends on the application.

Table 1: Default search space for the optimization framework. Some hyperparameters are fixed as
constants by default but users can override all of them according to domain knowledge.

Hyperparameter Default search range Note
model [“text-ada-001", “text-babbage-

001", “text-davinci-003", “gpt-3.5-
turbo", “gpt-4"]

GPT models with diverse cost-quality trade-off

prompt [“{𝑝𝑟𝑜𝑚𝑝𝑡 }"] A list of prompt templates. “{𝑝𝑟𝑜𝑚𝑝𝑡 }" will be replaced by
a input field named "prompt" in each instance to produce
the actual prompt per instance. Typically overridden by
users based on domain knowledge. Users can also use this
list to choose among different prompting strategies, such
as whether to use chain-of-thought or in-context-learning
examples.

max_tokens lograndint(100, 1000) Random integers, logarithm distributed
temperature_or_top_p [{“temperature": uniform(0, 1)},

{“top_p": uniform(0, 1)}]
Hierarchical search space: one configuration will either
choose a temperature or a top_p

n randint(1, 100) Random integers between 1 and 100
stop None Users can specify application-dependent stop choices

presence_penalty 0 Users can specify a float range within [-2, 2] if needed
frequency_penalty 0 Users can specify a float range within [-2, 2] if needed

best_of 1 Users can specify an int range lower bounded by 1 and fix
n to 1

Average Utility and Cost Consumptions for Configuration 𝑥 over Instances in 𝐷 : 𝑈𝑥 (𝐷) and
𝐶𝑥 (𝐷). A configuration 𝑥 is invalid if 𝐶𝑥 (𝐷) > 𝐵.𝑖 .

Within the specified optimization budget 𝐵.𝑜 , the framework iteratively tries different config-
urations in the given search space 𝑆 , and outputs a configuration 𝑥∗ with the maximal average
utility 𝑈𝑥∗ (𝐷) on the tuning data 𝐷 subject to the average inference budget 𝐶𝑥∗ (𝐷) ≤ 𝐵.𝑖 . The
architecture is depicted in Figure 2. A hyperparameter searcher proposes configurations, and it
invokes a configuration evaluator to assess the validity and utility of each configuration.

3.1 Hyperparameter Searcher

We opt for a blackbox optimization approach because we aim to make the framework generically
applicable to (1) LLMs as a service, (2) complex utility functions which potentially involve blackbox
evaluation of the output returned by LLMs. Our framework abstracts away from the internal
process of computing the utility for a configuration, which involves making requests to LLMs and
evaluating the responses with application-specific procedures.

There are a variety of blackbox optimization techniques, such as random search (Bergstra and
Bengio, 2012), Bayesian optimization (Bergstra et al., 2011), evolutionary search (Goldberg and Deb,
1991), and local search (Wu et al., 2021). We chose a method that combines Bayesian optimization
and local search, named BlendSearch, due to its cost efficiency (Wang et al., 2021). The local search
method in BlendSearch performs randomized direct search with a provable convergence rate and
cost bound. Bayesian optimization is used to generate starting points for the local search, and
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different local search threads are prioritized adaptively. The original BlendSearch is designed for
training hyperparameter optimization and used the training time as the measurement for cost. We
adapt it to optimize the inference hyperparameters, and generalize the cost metric.

3.2 Configuration Evaluator

A simple evaluator takes a configuration 𝑥 as the input and outputs the metric to optimize. It
loops over the data examples in 𝐷 . For each example 𝑑𝑖 ∈ 𝐷 , a request is made to the LLM service
using the configuration and the input fields 𝑑𝑖 .𝑖𝑛. The responses from the LLM service are then
used to compute the utility 𝑈 , and measure the cost consumption 𝐶 . When the loop is over, the
average cost 𝐶𝑥 (𝐷) is compared with the user-provided bound 𝐵.𝑖 . If 𝐶𝑥 (𝐷) ≤ 𝐵.𝑖 , the average
utility𝑈𝑥 (𝐷) for all the data in 𝐷 is returned, otherwise a zero value is returned to indicate that
the configuration is invalid. In the following, we present an improvement to the simple evaluator.

If a configuration 𝑥 is invalid, it is beneficial to terminate the trial early to save unnecessary
cost. We design a pruning strategy by judiciously varying two cost-related factors during a trial: the
number of tuning data examples, and the number of responses. A full evaluation of a configuration
𝑥 needs to send |𝐷 | LLM requests, each asking for 𝑥 .𝑛 responses, where 𝑥 .𝑛 is the setting of the
hyperparameter n in configuration 𝑥 (or the setting of best_of if best_of is searched instead of
n). Our goal is to spend a much smaller cost in invalid trials. The full procedure is detailed in
Algorithm 1 in the appendix.

Initial Validity Check. For a given configuration 𝑥 , before the expensive evaluation starts, we first
check whether we could prune the configuration directly (line 4-10 of Algorithm 1). This check is
based on an assumption specific to our optimization problem.

Assumption 3.1. Given two configurations 𝑥1 and 𝑥2 with the same setting of model, prompt, and
stop, if the number of responses and max_tokens in 𝑥1 are both equal or larger than those in 𝑥2,
then we expect 𝑥1 has an equal or higher average token consumption than 𝑥2.

A consequence of the assumption is that if 𝑥2 is invalid, then 𝑥1 is invalid too. If 𝑥1 is valid, then
𝑥2 is valid too. Our pruning leverages this assumption to find a max known valid 𝑛 and a min known
invalid 𝑛 for a configuration 𝑥 , using the valid and invalid sets of already tried configurations 𝑋valid
and 𝑋invalid which share the same setting of model, prompt and stop with 𝑥 .

max_valid_n = max
𝑥 ′∈𝑋valid,𝑥 ′ .max_tokens≥𝑥.max_tokens

𝑥 ′.𝑛 (1)

min_invalid_n = min
𝑥 ′∈𝑋invalid,𝑥 ′ .max_tokens≤𝑥.max_tokens

𝑥 ′.𝑛 (2)

Then, depending on the relation among max_valid_n, min_invalid_n, and 𝑥 .𝑛, we do the following:

1. If 𝑥 .𝑛 ≤ max_valid_n, we evaluate this trial as is. This corresponds to the case 𝑥 is expected to
be valid based on Assumption 3.1.

2. Otherwise (𝑥 .𝑛 > max_valid_n), if 𝑥 .𝑛 ≥ min_invalid_n, we prune this trial without any evalu-
ation. This corresponds to the case where 𝑥 is expected to be invalid based on Assumption 3.1.

3. Otherwise (max_valid_n < 𝑥 .𝑛 < min_invalid_n), we start evaluating the trial from number of
responses equal to max_valid_n. This corresponds to the case where 𝑥 is expected to be either
valid or invalid, and max_valid_n is expected to be a valid number of responses to use for 𝑥 .

The order of our check takes into the consideration that Assumption 3.1 can be violated occasionally,
i.e., max_valid_n may be occasionally equal or larger than min_invalid_n. By checking condition 1
before condition 2, we keep the chance of evaluating a trial when the violation happens.
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The Outer Loop of Algorithm 1: Varying the Number of Responses. After the initial check is
passed (case 1 or 3), we evaluate the configuration by gradually doubling the number of responses
until it reaches 𝑥 .𝑛 (line 11-end). The starting point of 𝑛 is decided according to the rules above.
To evaluate a particular 𝑛, we temporarily modify 𝑥 .𝑛 as 𝑛 − 𝑛′, where 𝑛′ is the last evaluated
number of responses for the current configuration in 𝐷 (0 at the start point or when data skipping
happens, as explained in the next paragraph). That makes use of the results from requests made
for evaluating smaller 𝑛 for the current configuration and saves cost compared to requesting 𝑛
responses. Note that while the gradual increase of 𝑛 makes it possible to terminate a trial with a
smaller number of responses, it can also increase the total cost of evaluating a valid trial as the
input tokens occupy the consumption in every request repeatedly. That issue is mitigated by a
few choices in our design: (a) we start from the max known valid 𝑛 instead of 1; (b) the geometric
increase of 𝑛 reduces the number of times that 𝑛 is varied, to a logarithm factor, rather than a linear
factor in a linear schedule, and (c) the data skipping described next helps reducing the number of
requests for smaller 𝑛 if the trial is valid.

The Inner Loop of Algorithm 1: Varying the Number of Data Examples. For each fixed number
𝑛 of responses, we employ progressive subsampling (Provost et al., 1999) over the tuning data 𝐷
to prune a trial (line 12-32). After we get the responses for 𝑘 examples in 𝐷 , we can compute the
mean of their cost and utility. We denote the subset of the 𝑘 examples as 𝐷𝑘 . 𝐶𝑥 (𝐷𝑘 ) is an estimate
of 𝐶𝑥 (𝐷). Hoeffding-Serfling inequality (Bardenet and Maillard, 2015) can be used to compute
the upper (lower, resp.) bound for 𝐶𝑥 (𝐷𝑘 ) if 𝐶𝑥 (𝐷) is indeed below (above, resp.) 𝐵.𝑖 . If 𝐶𝑥 (𝐷𝑘 )
is larger than the upper bound, we terminate the trial, and update 𝑋invalid. If 𝐶𝑥 (𝐷𝑘 ) is smaller
than the lower bound and the current 𝑛 is smaller than the original 𝑥 .𝑛, we skip the remaining
data points in 𝐷 , reset 𝑛′ = 0, and update 𝑋valid. The number 𝑘 is doubled until it reaches |𝐷 |. The
geometric increase of 𝑘 limits the number of times this hypothesis test is conducted per trial to
reduce the chance of incorrect pruning.

4 Experiments

We are interested in investigating the following research questions: First, for text generation tasks,
how much gain can EcoOptiGen achieve by tuning the hyperparameter settings under a budget
constraint? Second, how does varying the inference budget affect the optimization result? Third,
how does varying the model affect the optimization result? In this section, first, we describe the
setting of our experiment in Section 4.1. Then, we investigate the three research questions in
Section 4.2 through 4.4. We discuss limitations and future work in Section 4.6.

4.1 Setup

Datasets. To evaluate the performance of EcoOptiGen, we select a diverse set of text genera-
tion tasks from the HELM benchmark (Liang et al., 2022) (v1.0): code generation, math problem
solving, and text summarization. For code generation, we evaluate EcoOptiGen on two datasets:
APPS (Hendrycks et al., 2021a) (a dataset for generating Python code for a coding problem given
the problem description) and HumanEval (Chen et al., 2021) (a dataset for generating Python
code based on the function name and docstring). For math problem solving, we use the MATH
dataset (Hendrycks et al., 2021b) (a dataset for math problems containing chain-of-thoughts, i.e., the
derivation steps for the solution). For text summarization, we evaluate EcoOptiGen’s performance
on the XSum dataset (Narayan et al., 2018) (a large dataset for summarizing news articles).

For tuning, we randomly sample 20 examples for tuning of all the datasets, except for 60 of
XSum since it contains more data. For each dataset, we randomly sample a few hundred examples
for testing. The test set selection procedure follows HELM. For MATH, we use "Level 1" problems
in Section 4.2 to 4.4 following HELM.
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Table 2: Results using ‘best’ GPT-3.5 model (among code-davinci-002, text-davinci-002, and text-
davinci-003) according to HELM.

Method APPS HumanEval MATH XSum
HELM 0.03 0.465 0.378 0.140
EcoOptiGen (HELM budget) 0.05 0.521 0.414 0.144
Search 0 0.493 0.769 0.136
Search+PSR 0 0.493 0.739 -
EcoOptiGen 0.05 0.792 0.771 0.144
HELM (modified) 0.03 0.701 0.403 0.140

Evaluation Metric. For the two code generation tasks, test cases are already provided by the
datasets for verifying responses at inference time. For each code generation instance, as long as
any response passes the test cases, the score that EcoOptiGen receives for this instance is 1 and 0
otherwise. For MATH, we consider two ways of evaluation. In Section 4.2 to Section 4.4, we define
"success" as: if one of the returned chain-of-thought responses has an equivalent final answer with
the ground truth, EcoOptiGen receives 1 for this instance and 0 otherwise. In Section 4.5, we define
"success_vote" as: if the response based on majority voting has an equivalent final answer with the
ground truth, EcoOptiGen receives 1 for this instance and 0 otherwise. For XSum, we use ‘best_of’
to rerank the generated responses by their mean log probabilities and use the Rouge-2 score for the
top response (Lin, 2004).

Comparative Methods. We evaluate the following alternatives to compare with EcoOptiGen:
• HELM. We check the best score evaluated under the HELM benchmark. For each dataset, we

find the best performing GPT-3.5 model (code-davinci-002, text-davinci-002, and text-davinci-003)
reported by HELM, and then re-evaluate on our test data using the same model and hyperparameter
settings (with modified prompts on APPS and MATH as explained in the next paragraph) from
HELM. The complete details of these configurations are listed in Table 4 of the appendix. The
reason to use this baseline is that HELM has a broad coverage of the latest LLMs with a specific
hyperparameter setting per task, which is rare to find elsewhere.
• Search. This is a method that applies the same hyperparameter searcher as EcoOptiGen but

does not use pruning or alter the optimization metric.
• Search + PSR. This is the method that is the same as Search, but uses probabilistic success

rate instead of success rate as the optimization metric. Not relevant in the XSum dataset.
By default, the input to all the search-based methods is set to 𝐵.𝑖 = 1𝐾, 𝐵.𝑜 = 1𝑀 . The search

space follows Table 1, while “model" and “stop" are overriden by the HELM config. For HumanEval,
we search the prompts over four templates: “{definition}", “# Python 3{definition}", “Complete
the following Python function:{definition}", and “Complete the following Python function while
including necessary import statements inside the function:{definition}". For the purpose of saving
inference cost, we use zero-shot prompt rather than the two-shot used in HELM on APPS. For
MATH, we use only one fixed demonstration example for all categories in the prompt as opposed to
eight per category in HELM. For XSum, the same prompts, n and max_tokens from HELM are used,
while best_of is searched in the range of randint(1, 100); and the budget is set to 𝐵.𝑖 = 2𝐾, 𝐵.𝑜 = 4𝑀 .

4.2 EcoOptiGen’s Performance

The performance scores of EcoOptiGen are shown in Table 2 along with other comparative methods.
For all the 4 datasets, EcoOptiGen outperforms the best untuned GPT-3.5 model in the HELM
benchmark. To verify whether the performance gain is simply due to the increased number of
responses, we add a ‘HELM (modified)’ method in Table 2 which modifies the number of responses
to match the inference budget consumed by the best configuration from EcoOptiGen. We also add
‘EcoOptiGen (HELM budget)’ which is EcoOptiGen’s performance when using the same inference
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Table 3: Tuned results using different GPT-3.5 models for 𝐵.𝑖 = 2𝐾, 𝐵.𝑜 = 1𝑀 . * indicates the model is
the best for that dataset according to HELM.

Model APPS HumanEval MATH XSum
code-davinci-002 0.07* 0.819* 0.856 0.198
text-davinci-002 0.20 0.847 0.785 0.144*
text-davinci-003 0.21 0.861 0.863* 0.119

budget as HELM per task. The comparison between the first two rows or between the last two rows
of Table 2 suggests that the hyperparameters in the HELM benchmark are under-tuned, and jointly
tuning all the hyperparameters can be better than simply increasing the number of responses.

In Table 2, we also compare EcoOptiGen’s performance with the other methods using hy-
perparameter search. We can see that with pruning, EcoOptiGen consistently outperforms the
other non-pruning methods, and by a large margin on APPS and HumanEval. This confirms
the effectiveness of the pruning technique. We further compare the number of trials searched
by EcoOptiGen and the other search methods in Figure 5 of the appendix. We can observe that
EcoOptiGen searches for 2-27× more trials under the same optimization budget, which helps it
achieve the better result across all the tasks.

This study finds that, (a) compared to directly using the best evaluated configuration from
HELM, one can potentially find much better configurations for a particular application by tuning
the inference hyperparameters; and (b) pruning can vastly boost the optimization efficiency.

4.3 Effect of Inference Budget

To understand how the performance of EcoOptiGen is affected by the inference budget, we further
vary the inference budget 𝐵.𝑖 from 500 tokens to 2000 tokens on APPS, HumanEval andMATH, while
fixing the total optimization budget 𝐵.𝑜 = 1𝑀 . Table 5 in the appendix displays the performance
scores and Figure 6 displays the number of trials finished within the optimization budget. On APPS,
the average number of input tokens is larger than 500, so no performance score is available in
that case. On HumanEval, the optimized performance score increases from 0.653 to 0.819 as the
inference budget increases from 500 to 2000. On MATH, the performance score increases from
0.398 to 0.863 as the inference budget increases from 500 to 2000. On APPS, the performance score
drops from 0.10 to 0.07 when the inference budget is increased from 1500 to 2000. Based on Figure 6,
we hypothesize that the performance drop is due to the decrease of the number of trials within
the total optimization budget as the average cost per trial increases. We perform an additional
experiment to test that hypothesis: we increase 𝐵.𝑜 to 2M for 𝐵.𝑖 = 2000 on APPS. The optimized
performance score then increases from 0.07 to 0.12, and the number of trials increases from 86 to
165. The result supports the hypothesis.

The takeaway message in this study is that EcoOptiGen is able to find significantly better
configurations with increased inference budget, unless the optimization budget is not enough.

4.4 Effect of Model

In previous experiments, we fixed the model on each dataset according to the HELM benchmark. In
this subsection, we first apply EcoOptiGen to other models in the GPT-3.5 family on each dataset,
using an inference budget 2K and a total optimization budget of 1M. At the time this experiment was
conducted, it was generally recommended by OpenAI to use “code-davinci-002” for code generation
and “text-davinci-003” for other text generation (Shieh, 2022).

Table 3 summarizes the results. On APPS, HumanEval and MATH, text-davinci-003 performs
the best after tuning. On XSum, code-davinci-002 performs the best after tuning. On three datasets,
the best models after tuning are different from the best models according to the HELM benchmark,
as seen by the mismatches of the asterisk (HELM) and bold (after tuning) in each column. On
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Figure 3: Results using GPT-3.5 models with varying inference budgets and a fixed optimization budget.

APPS and HumanEval, we find that text-davinci-003 excels in the two code generation tasks. On
MATH, code-davinci-002 can get close to text-davinci-003 after tuning. On XSum, we find that
code-davinci-002 surprisingly outperforms the text-davinci models by a large margin. These results
are quite contradictory with the common beliefs on model selection (Shieh, 2022).

We further plot the model performances with respect to each individual inference budget in
Figure 3. We find that for HumanEval, text-davinc-003 model performs the best consistently. On
MATH, although Table 3 shows that text-davinci-003 model slightly outperforms code-davinci-002,
Figure 3 shows the latter is actually superior in the low inference budget range.

The takeaway message of this study is that with EcoOptiGen, the best performing model is not
always the commonly recommended model. This reveals one of the benefits of hyperparameter
optimization in avoiding suboptimal choices due to idiosyncrasies. A newer model is not certain to
outperform an older one.

4.5 ChatGPT Models

Two chat-optimized models powering ChatGPT (gpt-3.5-turbo and gpt-4) are released after the
initial version of this paper. We evaluate EcoOptiGen’s performance on them in this section.

We use the MATH dataset for evaluation. The setup is different from the previous sections
to add diversity in the evaluated scenario. We use "success_vote" to compare the majority voting
result for each problem with ground truth, instead of "success" which checks whether at lease on
response is correct. We use the prompt template: "{problem} Solve the problem carefully. Simplify
your answer as much as possible. Put the final answer in \boxed{}." We use all the levels from level
2 to level 5 in the Algebra category. We perform tuning per level, with both gpt-3.5-turbo and gpt-4
in the search space of "model". The common belief is that gpt-4 vastly outperforms gpt-3.5-turbo in
math problems OpenAI (2023). We compare with gpt-4 using default inference hyperparameters.

Figure 4 shows the average accuracy and average inference cost of each configuration. On
Level 2, surprisingly, the tuned gpt-3.5-turbo model is selected as a better model and it vastly
outperforms untuned gpt-4 in accuracy (92% vs. 70%) with equal or 2.5 times higher inference
budget. The same observation can be obtained on Level 3. The selected model changes on Level
4 and 5. The tuned gpt-4 achieves much higher accuracy (56% vs. 44% on Level 4, 35% vs. 20%
on Level 5) and lower cost than the untuned gpt-4. These results additionally verify the robust
effectiveness of EcoOptiGen and reinforce the takeaways in the previous sections. The opportunity
for performance tuning still exists with the continual advancement of LLMs.

9



Figure 4: Tuning ChatGPT models for MATH.

4.6 Discussions and Future Work

For the summarization task the improvement by tuning is not as large as in code and math tasks.
One potential reason is the ranking criterion for selecting one response from the 𝑏𝑒𝑠𝑡_𝑜 𝑓 responses
is not aligned with the final evaluation metric.

It will be interesting future work to developmethods that help with understanding the optimized
hyperparameter choices (ref. Table 6 in the appendix). It is also possible to further automate the
tuning. For example, the current solution takes user-specified choices of prompts as the input
search space. Automatically searching for optimal numbers and choices of demonstration examples
can potentially result in more effective ways of using the inference budget.

5 Related Work
Hyperparameter optimization methods for generic machine learning models have been studied
for a decade (Feurer and Hutter, 2019; Bergstra et al., 2011). Since the training of deep neural
networks is very expensive, new HPO methods have been proposed to reduce the cost required.
Early stopping methods (Li et al., 2017) stop training with unpromising configurations at low
fidelity (e.g., number of epochs) by comparing with other configurations’ training performance at
the same fidelity. Later, cost effective hyperparameter optimization were proposed. For example,
in BlendSearch (Wang et al., 2021), an economical hybrid search strategy was proposed to handle
heterogeneous evaluation cost and its effectiveness is demonstrated in fine-tuning a transformer
model Turing-NLRv2. Automated hyperparameter optimization is also studied specifically for NLP
tasks, e.g., fine-tuning BERT-like language understanding models (Liu and Wang, 2021) and neural
machine translation systems (Zhang and Duh, 2020).
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6 Broader Impact Statement

Users of LLMs should take environmental impact into consideration when they determine inference
budget and optimization budget. Our work helps reduce the energy consumption by helping users
find deployable configurations with a budget cap, which is otherwise difficult to find and may result
in increased environmental impact. When the budget is not set carefully, the optimization process
could cause excessive energy consumption.
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Table 4: Configuration for the HELM baseline.

Dataset Config
APPS {‘model’: ‘code-davinci-002’, ‘prompt’: ‘{input}’, ‘max_tokens’: 600, ‘temperature’:

0.2, ‘stop’: [′′′,− − −,”””,\n\n\n]}
HumanEval {‘model’: ‘code-davinci-002’, ‘prompt’: ‘{definition}’, ‘max_tokens’: 600, ‘temperature’:

0.2, ‘stop’: [\nclass, \ndef, \nif, \nprint]}
MATH {‘model’: ‘text-davinci-003’, ‘prompt’: 1-shot chain-of-thought demonstration*,

‘max_tokens’: 400, ‘temperature’: 0, ‘stop’: [###]}
XSum {‘model’: ‘text-davinci-002’, ‘prompt’: 5-shot demonstration**, ‘max_tokens’: 400,

‘temperature’: 0.3, ‘stop’: [###]}

* 1-shot chain-of-thought demonstration in MATH:

Given a mathematics problem, determine the answer. Simplify your answer as much as possible.
###
Problem: What is the value of $\sqrt{3! \cdot 3!}$ expressed as a positive integer?
Answer: $\sqrt{3!\cdot3!}$ is equal to $\sqrt{(3!)^2}=3!=3\cdot2\cdot1=\boxed{6}$.
###
Problem: {problem}
Answer:

** 5-shot demonstration in XSum:

###
Article: Almost one million people visited the city during the six-week festival period
over Christmas and Hogmanay. Organisers said almost 890,000 people visited the Edinburgh's
Christmas events in 2014/15, contributing \u00a3199.5m to the local economy. The three-day
Hogmanay celebrations attracted more than 150,000 people, creating an economic impact of
\u00a341.8m. Charlie Wood, Edinburgh's Christmas festival director, said: "This is great
news for Edinburgh. The revenue generated does not go to the events themselves, the event
organisers or to Edinburgh city council. "This is money, which is going to the businesses
of Edinburgh, be it retail, accommodation, food, drink, shopping and entertainment."

Summarize the above article in 1 sentence.
Edinburgh's winter festivals generated more than \u00a3241m for the city, according to
organisers.

###
Article: A firm in north Wales wants to bring the PooPrints service from the United States
to the UK with up to 15 councils reportedly interested in the scheme. Councils could make
owners in problem areas register their dogs to a database which involves a mouth swab taken.
Then, DNA could be taken from mess left on a street, path or grass and used to find a match
on the database. Gary Downie, managing director of Streetkleen Bio in Ruthin, Denbighshire,
believes local authorities can use new powers granted by the Antisocial Behaviour and
Policing Act 2014 to force dog owners to comply. "The purpose of the system is to get
cleaner, safer open spaces," he said. Councils the company is in talks with include
Kingston-upon-Thames in south-west London, Aberdeen and Cheshire East.

Summarize the above article in 1 sentence.
DNA in dog mess could be used to catch owners who fail to clear up their pet's mess.
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Algorithm 1 Configuration evaluator with pruning
1: Inputs: configuration 𝑥 , tuning data 𝐷 , target average number of tokens 𝐵.𝑖 , valid and invalid

trials 𝑋valid and 𝑋invalid.
2: Outputs: utility𝑈𝑥 (𝐷) if cost 𝐶𝑥 (𝐷) ≤ 𝐵.𝑖; 0 otherwise.
3: Initialization: obtain max_valid_n and min_invalid_n based on Eq. (1) and (2). 𝑁 ← 𝑥 .𝑛, 𝑛′ ←

0, 𝑅 ← []
4: if 𝑥 .𝑛 ≤ max_valid_n then
5: 𝑛 ← 𝑥 .𝑛

6: else if 𝑥 .𝑛 ≥ min_invalid_n then
7: return 0
8: else
9: 𝑛 ← max_valid_n
10: end if
11: while True do
12: 𝑥 .𝑛 ← 𝑛 − 𝑛′, 𝑘 ← 1, 𝑘 ′ ← 0
13: while True do
14: for 𝑖 ∈ [𝑘 ′, 𝑘) do
15: get responses from LLM for data point 𝑑𝑖 using configuration 𝑥 and append to 𝑅
16: end for

17: 𝜌 ←
{
(1 − 𝑘

|𝐷 | ) (1 +
1
𝑘
) 2𝑘 > |𝐷 |

1 − 𝑘−1
|𝐷 | 2𝑘 ≤ |𝐷 |

18: if 𝐶𝑥 (𝐷𝑘 ) > 𝐵.𝑖 (1 + .1
√︃

𝜌

𝑘
) then

19: update 𝑋invalid and return 0
20: end if
21: if 𝐶𝑥 (𝐷𝑘 ) ≤ 𝐵.𝑖 (1 − .1

√︃
𝜌

𝑘
) and (𝑛 < 𝑁 or 𝑘 = |𝐷 |) then

22: update 𝑋valid
23: if 𝑛 < 𝑁 then
24: 𝑅 ← [], 𝑛′ ← 0, break
25: end if
26: end if
27: if 𝑘 < |𝐷 | then
28: 𝑘 ← min(2𝑘, |𝐷 |)
29: else
30: break
31: end if
32: end while
33: if 𝑛 < 𝑁 then
34: if 𝑅 ≠ [] then
35: 𝑛′ ← 𝑛

36: end if
37: 𝑛 ← min(2𝑛, 𝑁 )
38: else
39: Return𝑈𝑥 (𝐷)
40: end if
41: end while
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###
Article: The works at Nottingham Castle include a chalk portrait of St Anne, sketches of
bodies and plants, plus some technical drawings. The artist made only around 20 paintings
during his lifetime, including the Mona Lisa and The Last Supper, but left many more
drawings. In total, there are almost 600 drawings by da Vinci in the Royal Collection. They
were originally bound into a single album, thought to have been acquired in the 17th Century
by Charles II. Experts believe Leonardo's drawings are the richest, most wide-ranging and
most technically brilliant of any artist. The exhibition is on show at Nottingham Castle
Museum and Art Gallery until 9 October.

Summarize the above article in 1 sentence.
Rare drawings by Leonardo da Vinci, which are part of the Queen's royal collection, have
gone on show.

###
Article: Distill Ventures, which is part of the Diageo group, said it was investing an
unspecified sum in Melbourne-based Starward Whisky. This marks the second whisky investment
for Distill, which was set up to back early-stage brands and help them grow. Last week, it
announced investment in Denmark-based Stauning Whisky. David Gates, Diageo's global head of
premium core spirits, said: "Australian whisky has rightly been gaining increasing global
recognition recently and Starward has developed a uniquely positioned whisky to capture this
opportunity." Frank Lampen, co-founder of Distill Ventures, added: "The Starward team are
exactly the types of entrepreneur we love working with. "Their vision for the future is
really exciting and this investment will enable increased production of their signature
single malts and continued development of their innovation pipeline." Last year Diageo had
a 37%% share of the Scotch whisky market in terms of volumes.

Summarize the above article in 1 sentence.
Diageo, the world's biggest Scotch whisky distiller, has invested in an Australian
distillery to help it expand into new export markets.

###
Article: It follows reports of dog fouling and damage at the Camperdown and Caird Park
courses. Dogs can still be walked across the courses but not if owners are playing a round
of the game at the time. A spokesman for Leisure and Culture Dundee said the rules were
changed on 20 April. He said: "This change reflects the concerns of many players and staff
about dog fouling and damage being caused to the courses, particularly greens and bunkers.
"The new management rules, which do not affect the Right to Roam legislation, are clearly
signed at the courses and on the Leisure and Culture Dundee website. "Most golf courses
in Scotland do not allow players to bring dogs with them."

Summarize the above article in 1 sentence.
Golfers at Dundee's public courses have been banned from bringing their dogs with them after
complaints from fellow players and staff.

###
Article: {input}

Summarize the above article in 1 sentence.
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Figure 5: Number of trials within the total optimization budget.

Table 5: Results using varying inference budgets (𝐵.𝑖), with a fixed total optimization budget (𝐵.𝑜).

𝐵.𝑖 (𝐵.𝑜 = 1𝑀) APPS HumanEval MATH
500 - 0.653 0.398
1000 0.05 0.792 0.771
1500 0.10 0.792 0.828
2000 0.07 0.819 0.863
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Figure 6: Number of trials with respect to varying inference budgets (𝐵.𝑖), with a fixed total optimization
budget (𝐵.𝑜).

Table 6: Optimized hyperparameter configurations for text-davinci-003 with 𝐵.𝑖 = 2𝐾, 𝐵.𝑜 = 1𝑀 .

Task max_tokens temperature_or_top_p n
APPS 176 top_p: 0.982 15
HumanEval 517 top_p: 0.682 18
MATH 193 temperature: 1 26
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