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Abstract. Unsupervised visible-infrared person re-identification (USL-VI-ReID)
is a promising yet highly challenging retrieval task. The key challenges in USL-
VI-ReID are to accurately generate pseudo-labels and establish pseudo-label cor-
respondences across modalities without relying on any prior annotations. Re-
cently, clustered pseudo-label methods have gained more attention in USL-VI-
ReID. However, most existing methods don’t fully exploit the intra-class nu-
ances, as they simply utilize a single memory that represents an identity to es-
tablish cross-modality correspondences, resulting in noisy cross-modality cor-
respondences. To address the problem, we propose a Multi-Memory Matching
(MMM) framework for USL-VI-ReID. We first design a simple yet effective
Cross-Modality Clustering (CMC) module to generate the pseudo-labels through
clustering together both two modality samples. To associate cross-modality clus-
tered pseudo-labels, we design a Multi-Memory Learning and Matching (MMLM)
module, ensuring that optimization explicitly focuses on the nuances of individ-
ual perspectives and establishes reliable cross-modality correspondences. Finally,
we design a Soft Cluster-level Alignment (SCA) loss to narrow the modality
gap while mitigating the effect of noisy pseudo-labels through a soft many-to-
many alignment strategy. Extensive experiments on the public SYSU-MM01 and
RegDB datasets demonstrate the reliability of the established cross-modality cor-
respondences and the effectiveness of MMM.

Keywords: USL-VI-ReID · Multi-Memory Matching · Noisy Correspondence

1 Introduction

Person re-identification (ReID) is a retrieval task, which aims to match the same person
across different cameras, serving critical roles in video surveillance applications like
intelligent security [10, 11] and human analysis [21, 22]. However, in low-light condi-
tions, the images captured by visible cameras are far from satisfactory, which renders
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Fig. 1: Comparision with different methods on ARI. The ARI indicates the Adjusted Rand Index,
which is a similarity measure between two clusterings. The ALL category represents the ARI
values of overall pseudo-labels, composed of visible and infrared pseudo-labels, and serves as a
metric for evaluating the reliability of cross-modality correspondences.

methods [32, 33, 55, 60] that primarily focus on matching visible images less effective.
Fortunately, smart surveillance cameras that can switch from visible to infrared modes
in poor lighting environments have become widespread, driving the development of
visible-infrared person re-identification (VI-ReID) for the 24-hour surveillance system.

VI-ReID aims at retrieving infrared images of the same person when provided with a
visible person image, and vice versa [13,39,48]. Many VI-ReID methods [19,49,56,57]
have shown promising progress. However, these methods are based on well-annotated
cross-modality data, which is time-consuming and labor-intensive, thereby limiting the
practical application of supervised VI-ReID methods in real-world scenarios.

To free the toilsome label process and speed the automation of VI-ReID, several
unsupervised VI-ReID (USL-VI-ReID) methods [16, 45, 46, 53] have been proposed,
which try to establish cross-modality correspondences by clustering pseudo-labels and
have achieved fairly good performance. However, the reliability of pseudo-labels and
cross-modality correspondences in USL-VI-ReID still is untouched. We argue the prob-
lem is critical to the credibility of USL-VI-ReID. To measure the reliability, we intro-
duce the Adjusted Rand Index (ARI) metric [17], which is a widely recognized metric
for clustering evaluation. The larger the ARI value, the better it reflects the degree of
overlap between the clustered results and the ground-truth labels. More detailed expla-
nations are presented in supplementary materials. In Fig. 1, RGB and IR categories
denote the ARI values of visible and infrared pseudo-labels, which can measure the
quality of visible and infrared pseudo-labels. Interestingly, we unveil a paradoxical
phenomenon: the reliability of cross-modality correspondences in previous methods
stands questioned, notwithstanding their demonstrated efficacy, as depicted in Fig. 1
and Tab. 1. This conundrum may arise from the reality that individuals, despite bearing
unique identities, manifest overlapping attributes, which tend to merge more closely
due to noisy correspondences. Although this amalgamation of similar characteristics
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can inadvertently heighten the similarity across cross-modality features, which may
lead to increased significant challenges in the precise retrieval of specific persons from
a densely populated gallery.

To reduce the noisy cross-modality correspondences in USL-VI-ReID, we develop
a novel Multi-Memory Matching (MMM) framework. Multi-memory can store a wider
array of distinct characteristics for an identity. For example, Memory 1 can retain front-
facing attributes, Memory 2 can capture rear-facing attributes. In short, multi-memory
supports a more diverse representation, which is beneficial for the establishment of
cross-modality correspondences. Specifically, we propose a Cross-Modality Clustering
(CMC) module to generate pseudo-labels. Unlike previous methods, we not only clus-
ter intra-modality samples but also cluster inter-modality samples to learn modality-
invariant features. We note that the existing methods typically rely on a single memory
to represent individual characteristics and establish cross-modality correspondences.
However, a single memory may not capture all individual nuances, including perspec-
tive, attire, and other factors, which naturally leads to poor cross-modality correspon-
dences. Therefore, we design a Multi-Memory Learning and Matching (MMLM) mod-
ule to obtain reliable cross-modality correspondences. We subdivide single memory
into multi-memory for a single identity by sub-cluster and compute a cost matrix for
multi-memory. To reduce the discrepancy between the two modalities, we propose
the Soft Cluster-level Alignment (SCA) loss to narrow the modality gap through soft
cluster-level intra- and inter-modality alignment. MMM can achieve fairly good quality
of pseudo-labels and cross-modality correspondences compared with several USL-VI-
ReID methods, as shown in Fig. 1.

The main contributions are summarized as follows:

– We introduce the ARI metric to evaluate the quality of pseudo-labels and cross-
modality correspondences. We observe a curious phenomenon: the cross-modality
correspondences of previous methods are not reliable, though they achieve good
performance.

– We design a novel Multi-Memory Matching (MMM) framework for unsupervised
VI-ReID, which exploits the individual nuances to effectively establish reliable
cross-modality correspondences.

– We introduce two effective modules and one loss: Cross-Modality Clustering (CMC),
Multi-Memory Learning and Matching (MMLM), and Soft Cluster-level Align-
ment (SCA). They facilitate the generation of pseudo-labels, establish reliable cross-
modality correspondences, and narrow the discrepancy between two modalities
while mitigating the influence of noisy pseudo-labels.

2 Related Work

2.1 Supervised Visible-Infrared Person ReID

Visible-infrared person ReID is a challenging cross-modality image retrieval prob-
lem [34, 35]. Many works have been proposed to alleviate the large cross-modality gap
for VI-ReID, which can be broadly categorized into two classes: image-level alignment
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and feature-level alignment. The image-level alignment methods [37, 39] try to gener-
ate cross-modal images to excavate modality-invariant information. Moreover, several
methods [28, 40, 59] introduce an auxiliary modality to assist the cross-modality re-
trieval task. The feature-level alignment methods [14, 31, 48, 50, 62] mainly map cross-
modal features into a shared feature space to reduce cross-modal differences. For ex-
ample, SGIEL [9] separates shape-related features from shape-erasure features through
orthogonal decomposition to improve the diversity and identification of the learned
representations for VI-ReID. However, the above methods heavily rely on large-scale
cross-modality data annotation, which is quite expensive and time-consuming.

2.2 Unsupervised Single-Modality Person ReID

Existing unsupervised single-modality person ReID (USL-ReID) methods can be roughly
categorized into domain translation-based methods and clustering-based methods. The
domain translation-based methods [10–12,26,54] try to transfer the knowledge from the
labeled source domain to the unlabeled target domain for USL-ReID. Compared with
the former, the clustering-based methods [2,23,36,55] are more challenging, which are
trained directly on the unlabeled target domain. The common idea of clustering-based
methods is using clustering algorithms [8] to generate pseudo-labels to train a ReID
model. Pseudo-labels inevitably contain noise, so it is challenging to assign the cor-
rect label to each unlabeled image. Recently, Cluster-Contrast [7] performs contrastive
learning at the cluster level with a uni-centroid. However, a uni-centroid cannot repre-
sent a cluster well. Therefore, MCRN [42] and DCMIP [61] store multi-centroid repre-
sentations to completely represent a cluster. Their multi-centroids are obtained through
initialization, but these divisions do not accurately represent the real distribution. Al-
though the above methods perform well on USL-ReID, they are not suitable for solving
the USL-VI-ReID due to the large cross-modality gap.

2.3 Unsupervised Visible-Infrared Person ReID

The challenge of unsupervised VI-ReID (USL-VI-ReID) is establishing reliable cross-
modality correspondence. H2H [20] and OTLA [38] use a well-annotated labeled source
domain for pre-training to solve the USL-VI-ReID. Inspired by Cluster-Contrast [7] for
USL-ReID, some clustering-based methods [5, 6, 16, 43, 45] are proposed for USL-VI-
ReID, they try to establish cross-modality correspondence by clustering pseudo-labels.
Recently, it has been shown that the Large-scale Vision-Language Pre-training model,
naturally excels in producing textual descriptions for images. To this end, CCLNet [4]
leverages the text information from CLIP to improve the USL-VI-ReID task. However,
none of the above methods evaluate the reliability of cross-modality correspondence,
indeed, their cross-modality correspondence is not reliable. Our method aims to inves-
tigate how to establish more reliable cross-modality correspondence for USL-VI-ReID.

3 Methodology

The framework of MMM is illustrated in Fig. 2. We begin by employing the Cross-
Modality Clustering (CMC) module to generate pseudo-labels. Building upon CMC,



Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification 5

Hybrid features 

Intra-modality Alignment Inter-modality Alignment 

Pull
GMM

Features

Features

Pull

M
atching

DBSCAN

DBSCAN

Multi-memory Learning
Multi-memory

Cost Matrix

Multi-memory

RGB images

IR images

Soft Cluster-level Alignment 

Cross-Modality Clustering Multi-memory Matching

DBSCAN

CConcat

Hybrid features 

Fig. 2: The pipeline of MMM. Different colors indicate different persons, ⃝ and △ indicate vis-
ible and infrared features. It contains the Cross-Modality Clustering module (Baseline, described
in Sec. 3.2) and two key novel components: Multi-Memory Learning and Matching (MMLM,
described in Sec. 3.3) and Soft Cluster-level Alignment (SCA, described in Sec. 3.4).

we propose a novel Multi-Memory Learning and Matching (MMLM) module to effec-
tively establish cross-modality correspondences. Finally, we propose the Soft Cluster-
level Alignment (SCA) loss to narrow the gap between two modalities while mitigating
the impact of noisy pseudo-labels through soft cluster-level intra- and inter-modality
alignment.

3.1 Notation Definition

Suppose we have a USL-VI-ReID dataset denoted as D = {V,R}. Here, V = {vi}Ni=1

represents the visible images with N samples, and R = {ri}Mi=1 denotes the infrared
images with M samples. We initialize their pseudo-labels as Y t, where t ∈ {v, r}.
Let Np and Mp represent the number of visible and infrared samples with ID p, where
p ∈ {1, 2, ..., P t} and P t is the total number of person identities for modality t. The re-
spective feature sets of these images are denoted as F v = {fv

1 , f
v
2 , . . . , f

v
N} for visible

samples and F r = {fr
1 , f

r
2 , . . . , f

r
M} for infrared samples, respectively. Our goal is to

develop a cross-modality person ReID model without utilizing any labels.

3.2 Cross-Modality Clustering

Most USL-VI-ReID methods typically use clustering algorithms to generate pseudo-
labels. Following this paradigm, we employ the DBSCAN algorithm [8] to generate
pseudo-labels for all images, as described:

Y t = DBSCAN(F t). (1)
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Unlike previous methods, we not only cluster intra-modality samples (t = v or t =
r) but also cluster inter-modality samples (t = {v, r}) to indirectly build cross-modality
correspondence.

At the beginning of every training iteration, we calculate and store the memory for
each cluster as follows:

CV p =
1

Np

Np∑
i=1

f(V p
i ), (2)

CRp =
1

Mp

Mp∑
i=1

f(Rp
i ), (3)

CV Rp =
1

Ap

Ap∑
i=1

f(V Rp
i ), (4)

where f(·) is a function designated for extracting features from images across diverse
modalities. We use superscripts to denote specified identity, V p and Rp denote the visi-
ble and infrared modality of the same identity sample sets with ID p, respectively. V Rp

represents the combined set of both modalities with Ap samples of the same ID p.
Then, we optimize the feature extractor using ClusterNCE [7] loss, computed as:

LV = − log
exp

(
C+

V · F v/τ
)∑Pv

p=1 exp (CV p · F v/τ)
, (5)

LR = − log
exp

(
C+

R · F r/τ
)∑P r

p=1 exp (CRp · F r/τ)
, (6)

LV R = − log
exp

(
C+

V R · [F v, F r]/τ
)∑Pv,r

p=1 exp (CV Rp · [F v, F r]/τ)
, (7)

where C+ is the positive memory representation and the τ is a temperature hyper-
parameter.

The CMC loss is defined as:

LCMC = LV + LR + LV R. (8)

3.3 Multi-Memory Learning and Matching

The CMC optimizes the feature extractor using a single memory, but a single memory
may not fully capture individual nuances, such as perspective and attire. Moreover, the
CMC does not directly establish relations between the two modalities, thereby limiting
its effectiveness in cases with significant modality discrepancies. To more effectively
capture individual nuances and bridge the gap between the visible and infrared modal-
ities, we propose the Multi-Memory Learning and Matching (MMLM) module, which
mines a holistic representation and establishes reliable cross-modality correspondences.
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Specifically, we further subdivide single memory into multi-memory for a single iden-
tity, which can be formulated as a sub-cluster:

min
FC

V
p
i

{
n∑

i=1

{
∥∥∥fv −KCV

p
i

∥∥∥2
2
,∀fv ∈ FCV

p
i

}}, (9)

min
FC

R
p
i

{
n∑

i=1

{
∥∥∥fr −KCR

p
i

∥∥∥2
2
,∀fr ∈ FCR

p
i

}}, (10)

where FCV
p
i

and FCR
p
i

represent the i-th visible and infrared feature sets of ID p,
respectively. n is the number of memories for a single identity.

KCV
p
i

=
1

|FCV
p
i

|
∑

fv∈FC
V

p
i

fv, (11)

KCR
p
i

=
1

|FCR
p
i

|
∑

fr∈FC
R

p
i

fr, (12)

where KCV p and KCRp represent the visible and infrared multi-memory of ID p.
By employing the multi-memory learning strategy, we achieve more diverse mem-

ories for a single identity. However, these memories still exhibit a strong implicit corre-
lation with the modality, which negatively impacts the establishment of cross-modality
correspondences. Inspired by PGM [43], we transform the cross-modality multi-memory
matching problem into a weighted bipartite graph matching. The goal is to match each
visible cluster with the corresponding identity infrared cluster while minimizing the
cost, which is formulated as follows:

min
Q

MTQ

s.t. ∀p ∈ [P v],∀p′ ∈ [P r] : Qp′

p ∈ {0, 1},
∀p ∈ [P v] :

∑
p′∈[P r]

Qp′

p ≤ 1,

∀p′ ∈ [P r] :
∑

p∈[Pv]

Qp′

p = 1,

(13)

where Q =
{
Qp′

p

}
∈ RPv×P r×1 indicates whether KV p and KRp′ belong to

the same person
(
Qp′

p = 1
)

or not
(
Qp′

p = 0
)

. M and [P t] denote cost matrix and

{1, . . . , P t}, respectively. We design a simple yet effective cost expression for cross-
modality multi-memory matching as follows:

M(KCV p ,KC
Rp′ ) =

n∑
i=1

min
j∈{1,··· ,n}

∥KV p
i
,K

Rp′
j

∥2, (14)

Finally, we transfer the infrared pseudo-labels to the visible pseudo-labels, and the vis-
ible pseudo-labels are updated by:

Y v := QY r. (15)
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3.4 Soft Cluster-level Alignment

Pseudo-labels inherently contain noise, a problem that is not exempt even in human
annotations [48], leading to a reduction in performance. The method [1] illustrated that
deep neural networks initially learn from simple samples before accommodating noisy
labels. Building on this insight, we assess the confidence associated with each label. To
do so, we employ a two-component Gaussian Mixture Model (GMM) to model the loss
distribution:

Lv
ID = − log p (Y v | C (F v)), (16)

p(Lv
ID | θ) =

2∑
k=1

πkϕ(L
v
ID | k), (17)

where C(·) acts as an identity classifier. πk represents the mixture coefficient, while
ϕ(Lv

ID | k) denotes the probability density of the k-th component.
Subsequently, the confidence is determined by computing its posterior probability,

detailed as:
W v = p (k | Lv

ID) , (18)

where k refers to the Gaussian component with a smaller mean, while p (k | Lv
ID) indi-

cates the responsiveness of Lv
ID to the k-th component. In the same way, we can obtain

the confidence W r and W vr.
To penalize the noise during optimization, the memories in Eq. (2), (3), (4) are

updated by:

CV p :=
1

Np

Np∑
i=1

f(V p
i )WV p

i
, (19)

CRp :=
1

Mp

Mp∑
i=1

f(Rp
i )WRp

i
, (20)

CV Rp :=
1

Ap

Ap∑
i=1

f(V Rp
i )WV Rp

i
, (21)

where WV p
i

, WRp
i
, and WV Rp

i
denote the confidences of samples V p

i , Rp
i , and V Rp

i ,
respectively.

To reduce the intra-modality discrepancy, we employ the distilled CV p and CRp to
align every sample of ID p to its corresponding memory in each modality. The cluster-
level intra-modality alignment loss LIntra is proposed as:

LIntra = LV
Intra + LR

Intra

=

Pv∑
p=1

∑
fv∈Fv

p

∥fv − CV p∥22

+

P r∑
p=1

∑
fr∈F r

p

∥fr − CRp∥22 ,

(22)
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where F v
p , F r

p denote visible feature and infrared feature sets of ID p, respectively.
Since VI-ReID is a many-to-many matching problem, we propose cluster-level

inter-modality alignment loss, which forces the feature distribution of the samples from
the visible modality to be similar to the feature distribution of the samples from the
infrared modality and vice versa by:

LInter = LV
Inter + LR

Inter

=
1

P

P∑
p=1

(
1

2
D(F v

p , sg(F
r
p ))

+
1

2
D(F r

p , sg(F
v
p ))),

(23)

where sg(·) represents the stop-gradient operation, and D(i, j) represents the distance
between distributions i and j. P is min(P v, P r). In this paper, we employ the squared
Maximum Mean Discrepancy (MMD2) [15] to quantify the discrepancy between dis-
tributions. MMD2 is a commonly used non-parametric metric in domain adaptation and
has been observed to outperform other metrics, such as KL divergence in empirical
studies, MMD2 is constructed as:

MMD2(F r
p , F

v
p ) =

1

|F r
p |2

∑
fr
i ∈F r

p

∑
fr
j ∈F r

p

z(fr
i , f

r
j )

+
1

|F v
p |2

∑
fv
i ∈Fv

p

∑
fv
i ∈Fv

p

z(fv
i , f

v
j )

− 2

|F r
p ||F v

p |
∑

fr
i ∈F r

p

∑
fv
j ∈F r

p

z(fr
i , f

v
j ),

(24)

where z(s, s′) = exp(
−∥s−s′∥2

2

2σ2 ) is a Gaussian kernel.
The SCA loss is defined as:

LSCA = λIntraLIntra + λInterLInter, (25)

where λIntra and λInter are the balancing weights.
Overall Loss. The total loss for training the model is defined by the following equation:

Loverall = LCMC + LSCA. (26)

4 Experiments

In this section, we conduct comprehensive experiments to verify the effectiveness of
MMM. First, we compare MMM with several state-of-the-art methods under three set-
tings, i.e., supervised visible-infrared person ReID (SVI-ReID), semi-supervised visible-
infrared person ReID (SSVI-ReID) and unsupervised visible-infrared person ReID (USL-
VI-ReID). After that, we perform ablation studies to evaluate the effectiveness of each
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Table 1: Comparisons with state-of-the-art methods on SYSU-MM01 and RegDB, i.e., super-
vised visible-infrared person ReID (SVI-ReID), semi-supervised visible-infrared person ReID
(SSVI-ReID) and unsupervised visible-infrared person ReID (USL-VI-ReID). All methods are
measured by Rank-1 (%) and mAP (%). GUR* denotes the results without camera information.

Settings
SYSU-MM01 RegDB

All Search Indoor Search Visible2Thermal Thermal2Visible
Type Method Venue Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

SVI-ReID

AGW [51] TRAMI’21 47.5 47.7 54.2 63.0 70.1 66.4 70.5 65.9
NFS [3] CVPR’21 56.9 55.5 62.8 69.8 80.5 72.1 78.0 69.8
LbA [27] ICCV’21 55.4 54.1 58.5 66.3 74.2 67.6 72.4 65.5
CAJ [50] ICCV’21 69.9 66.9 76.3 80.4 85.0 79.1 84.8 77.8

DART [48] CVPR’22 68.7 66.3 72.5 78.2 83.6 75.7 82.0 73.8
DEEN [58] CVPR’23 74.7 71.8 80.3 83.3 91.1 85.1 89.5 83.4

PartMix [18] CVPR’23 77.8 74.6 81.5 84.4 85.7 82.3 84.9 82.5

SSVI-ReID
OTLA [38] ECCV’22 48.2 43.9 47.4 56.8 49.9 41.8 49.6 42.8
TAA [44] TIP’23 48.8 42.3 50.1 56.0 62.2 56.0 63.8 56.5
DPIS [30] ICCV’23 58.4 55.6 63.0 70.0 62.3 53.2 61.5 52.7

USL-VI-ReID

OTLA [38] ECCV’22 29.9 27.1 29.8 38.8 32.9 29.7 32.1 28.6
ADCA [47] MM’22 45.5 42.7 50.6 59.1 67.2 64.1 68.5 63.8

ADCA+MMM - 49.7 44.7 56.2 62.5 77.8 70.9 76.5 69.1
NGLR [5] MM’23 50.4 47.4 53.5 61.7 85.6 76.7 82.9 75.0

MBCCM [16] MM’23 53.1 48.2 55.2 62.0 83.8 77.9 82.8 76.7
CCLNet [4] MM’23 54.0 50.2 56.7 65.1 69.9 65.5 70.2 66.7
PGM [43] CVPR’23 57.3 51.8 56.2 62.7 69.5 65.4 69.9 65.2

CHCR [25] TCSVT’23 59.5 59.1 - - 69.3 64.7 70.0 65.9
GUR* [45] ICCV’23 61.0 57.0 64.2 69.5 73.9 70.2 75.0 69.9

PCLHD [29] arXiv’24 64.4 58.7 69.5 74.4 84.3 80.7 82.7 78.4
MMM - 61.6 57.9 64.4 70.4 89.7 80.5 85.8 77.0

MMM+PCLHD - 65.9 61.8 70.3 74.9 89.6 83.7 87.0 80.9

module in MMM. Finally, we perform a discussion and analysis of the hyper-parameters
and visualization. If not specified, we conduct analysis experiments on SYSU-MM01
in the single-shot & all-search mode.

4.1 Experimental Setting

Dataset. We evaluate MMM on two benchmarks, i.e., SYSU-MM01 [41] and RegDB [24].
SYSU-MM01 is a large-scale visible-infrared person ReID dataset, which is collected
from four visible cameras and two infrared cameras in both indoor and outdoor scenes.
RegDB is a relatively small dataset, which is collected by one visible and one infrared
camera in a dual-camera system.
Evaluation Protocols. Cumulative Matching Characteristics [52] and mean Average
Precision (mAP) are adopted as the evaluation metrics on two datasets to evaluate the
performance of MMM quantitatively. For fair comparisons, we report the results of
all-search mode and indoor-search mode with the official code on SYSU-MM01. Fol-
lowing [50], We also report the results on RegDB by randomly splitting the training and
testing set 10 times in visible-to-thermal and thermal-to-visible modes.
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4.2 Implementation Details

We adopt ResNet50, which is initialized with the ImageNet pre-trained weights, as
the shared backbone to extract 2048d features. MMM is implemented in PyTorch. The
total number of training epochs is 80. At each training step, we randomly sample 8
IDs, of which 4 visible and 4 infrared images are chosen to formulate a batch. Training
images are resized to 288 × 144 and random horizontal flipping and random crop are
used for data augmentation [50]. SGD optimizer is adopted to train the model with
the momentum setting to 0.9 and weight decay setting to 5e − 4. The Intra module is
added from the 1st epoch and the Inter module is added from the 15th epoch. The loss
temperature τ is set to 0.05. The hyperparameters ‘eps’ and ‘min_samples’ in DBSCAN
are set to 0.6 and 4.

Table 2: Ablation studies on SYSU-MM01 in all search mode and indoor search mode. “Base-
line” means the model trained only with the CMC module. Rank-R accuracy(%) and mAP(%)
are reported.

Method All Search Indoor Search
Order Baseline MMLM Intra Inter Rank-1 Rank-5 Rank-10 Rank-20 mAP Rank-1 Rank-5 Rank-10 Rank-20 mAP

1 ✓ 51.74 78.67 87.87 94.76 49.81 56.34 84.66 92.77 96.98 64.46
2 ✓ ✓ 55.15 81.65 90.53 96.46 52.21 58.76 85.21 93.06 97.16 65.47
3 ✓ ✓ ✓ 58.48 83.69 91.79 97.15 55.05 62.19 86.95 93.60 97.64 68.09
4 ✓ ✓ ✓ 57.26 82.34 90.84 96.93 53.81 60.26 85.77 93.16 97.36 66.66
5 ✓ ✓ ✓ ✓ 61.56 85.66 93.33 98.03 57.92 64.37 88.80 95.01 98.20 70.40

4.3 Results and Analysis

To clearly demonstrate the effectiveness of MMM, we compare MMM with several
state-of-the-art methods under three settings, i.e., SVI-ReID, SSVI-ReID, and USL-VI-
ReID. The quantitative results on SYSU-MM01 and RegDB are shown in Tab. 1.
Comparison with SSVI-ReID Methods. We compared MMM with three state-of-the-
art SSVI-ReID methods. Notably, MMM not only outpaced these methods but did so
without relying on any form of annotations. This stands in stark contrast to the SSVI-
ReID methods, which rely on annotations of visible images to achieve their results.
Comparison with USL-VI-ReID Methods. Compared with eight state-of-the-art USVI-
ReID methods, MMM consistently performs better than existing USL-VI-ReID meth-
ods by a significant margin. PCLHD [29] is proposed to learn more discriminative
cross-modality features, and our method with PCLHD can achieve 65.9% in Rank-1
and 61.8% in mAP. ADCA [47] with MMM also achieve consistently improved per-
formance. Moreover, the results are surprising on RegDB, MMM improves the Rank-1
and mAP accuracy by a large margin of 15.8% and 10.3% compared to GUR under
visible to thermal mode.
Comparison with SVI-ReID Methods. Surprisingly, MMM performs better than sev-
eral supervised methods, including AGW [51], NFS [3], and LbA [27]. The results show
the effectiveness of MMM. However, we have to acknowledge that there is still a certain
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Fig. 3: The effect of hyper-parameter n, λIntra and λInter with different values on SYSU-
MM01.

gap between MMM and many SVI-ReID methods due to the absence of cross-modality
data annotations.

The above results clearly show that MMM is effective, which highlights the signif-
icant potential of MMM in addressing USL-VI-ReID challenges.

4.4 Ablation Study

To further analyze the effectiveness of the Multi-Memory Learning and Matching (MMLM),
the Soft Cluster-level Alignment (SCA), we conduct ablation studies on SYSU-MM01
under both all-search and indoor-search modes. The results are reported in Tab. 2.
Baseline. Order 1 denotes that the model is trained only with the CMC module. Al-
though it achieves a promising performance on SYSU-MM01, it does not directly es-
tablish relations between the two modalities, which limits the performance.
Effective of MMLM. The effectiveness of the MMLM module is revealed by compar-
ing Order 1 and Order 2. The MMLM improves 3.41% in Rank-1 and 2.40% in mAP on
SYSU-MM01. The results, combined with Fig. 1, demonstrate that the MMLM can help
align visible and infrared pseudo-labels to establish cross-modality correspondences.
Effective of Intra in SCA. As shown in Order 3 of Tab. 2, the performance is improved
to 58.48% in Rank-1 and 55.05% in mAP when adding the cluster-level intra-modality
loss (Intra) in SCA, which shows the effectiveness of Intra in reducing the discrepancy
of intra-modality.
Effective of Inter in SCA. The cluster-level inter-modality alignment loss (Inter) is
proposed to reduce the discrepancy of inter-modality, MMM can reach 57.26% in Rank-
1 and 53.81% in mAP when adding it. Moreover, when combining Inter with Intra,
MMM achieves the best performance with 61.56% in Rank-1 and 57.92% in mAP,
which surpasses the baseline by a large margin of 9.82% in Rank-1 and 8.11% in mAP.

The above results show that cluster-level intra- and inter-modality alignment loss
can complement each other, which proves the effectiveness of the SCA loss.

4.5 Analysis of Hyper-parameters

We analyze the key hyper-parameters of MMM on SYSU-MM01, i.e., the number of
memories n, λIntra and λInter. In Fig. 3 (a), we vary the number of memories from 1
to 5 while keeping the λIntra and λInter fixed, which shows MMM achieves the best
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Fig. 4: The intra-identity and inter-identity distances on SYSU-MM01, where δi denotes the gap
between the intra-identity distance mean and the inter-identity distance mean.

performance with 61.56% in Rank-1 and 57.92% in mAP when n = 4. Moreover, to
balance the contribution between the cluster-level intra- and inter-modality alignment
loss in SCA, we study the effect of λIntra and λInter by fixing one and adjusting the
other. To be specific, we maintain the λInter = 0.05 and tune the value of λIntra in
[0.1, 0.5, 1.0, 1.5, 2.0] (Fig. 3 (b)), while fix the λIntra = 0.5 and explore the λInter

on different values which vary in [0.01, 0.025, 0.05, 0.075, 0.1] (Fig. 3 (c)). We can ob-
serve that MMM achieves high accuracy under different combinations with λIntra and
λInter, which shows the performance of MMM is not sensitive to λIntra and λInter,
and the best performance is achieved with λIntra = 0.5 and λInter = 0.05.

4.6 Qualitative Analysis

To further illustrate the effectiveness of MMM, we visualize the intra-identity and inter-
identity distances on SYSU-MM01 in Fig. 4. As shown in Fig. 4 (a)-(d), with the addi-
tion of the proposed methods, the means of intra-identity distances gradually decrease
while the means of inter-identity distances gradually increase, which makes the intra-
identity and inter-identity features distributions are pushed away (δ1 < δ2 < δ3 < δ4).
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Fig. 5: The Visualization of the pseudo-labels of the same identity with different modalities.

The results show that MMM can effectively reduce the cross-modality distances be-
tween the same identity samples and push the distance between different identity sam-
ples far away.

Moreover, we also visualize the pseudo-labels of the same identity with different
modalities, where we randomly choose 3 person identities, where each identity con-
sists of 4 visible images and infrared images. As shown in Fig. 5, persons of the same
identity in different modalities have the same pseudo-label in MMM (right) compared
with GUR (left), which shows that MMM can establish more reliable cross-modality
correspondences.

5 Conclusion

In this paper, we introduce a metric, the Adjusted Rand Index, to measure cross-modality
correspondences and clustered pseudo-labels, exploring the establishment of reliable
cross-modality correspondences for USL-VI-ReID. To this end, we propose a Multi-
Memory Matching (MMM) framework. Firstly, we design a Cross-Modality Cluster-
ing (CMC) module to generate pseudo-labels. Instead of previous methods, we em-
ploy multi-memory in the Multi-Memory Learning and Matching (MMLM) module
to capture individual nuances and establish reliable cross-modality correspondences.
Additionally, we present a Soft Cluster-level Alignment (SCA) loss to reduce the cross-
modality gap while mitigating the effect of noisy pseudo-labels. Comprehensive exper-
imental results show that MMM can establish reliable cross-modality correspondences
and outperforms existing USL-VI-ReID methods on SYSU-MM01 and RegDB.
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