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Abstract001

While large language models (LLMs) have002
gained significant attention for mathematical003
problem-solving, many existing benchmarks re-004
quire only shallow reasoning and have limited005
scope, hindering rigorous evaluation of their006
understanding of mathematical logic. To ad-007
dress this gap, we evaluate several LLMs on the008
more challenging CONIC10K dataset, which009
focuses on conic section problems. Using code010
prompts, fine-tuning, and decoding strategies,011
we improve performance, boosting Qwen-72B012
from 20.2% to 34.3%. Notably, DeepSeek-013
R1 achieves a new state-of-the-art accuracy of014
97.3% with code prompting, up from 92.7%,015
demonstrating that even high-performing mod-016
els benefit from symbolic input when properly017
aligned. We also develop an automated veri-018
fication system that independently processes019
41.9% of results, reducing human evaluation020
cost. Our results underscore the importance021
of structured symbolic prompting in enhanc-022
ing mathematical reasoning and highlight the023
potential of code-based methods as a general024
framework for improving LLM performance025
on complex math tasks.026

1 Introduction027

Recent advances in large language models (LLMs)028

have improved their mathematical reasoning capa-029

bilities. For instance, Claude 3.5 Sonnet (Budagam030

et al., 2024) reached 97.72% on GSM8k (Cobbe031

et al., 2021), while GPT-4 (Tan et al., 2025)032

reached 93.9% on SVAMP (Zhao et al., 2023) , and033

scored 94.3% on MATH23k (Zhou et al., 2023).034

However, these datasets have notable limitations:035

1) many problems require only a few reasoning036

steps, allowing models to succeed using shallow037

heuristics (Hendrycks et al., 2021); and 2) their lim-038

ited knowledge scope hinders evaluation on logic-039

intensive tasks and comprehensive assessment of040

mathematical understanding.041
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Figure 1: Our verification process and test results. In
CONIC10K, LLMs generate answers to questions (A)
via code prompts and fine-tuning (C). An automated ver-
ification system checks the answers, while unresolved
cases are reviewed by humans, and the combined eval-
uation yields the final accuracy (D). Box plots show
accuracy by model (E) and question type (F). Figure (B)
shows our question categories.

Despite advances in enhancing LLMs’ mathe- 042

matical reasoning through diverse methods (Gao 043

et al., 2023; Gou et al., 2024; Jiang et al., 2023), 044

current approaches still face limitations in fully 045

evaluating and improving their capabilities. While 046

natural language aids abstract reasoning, it strug- 047

gles with precise computation and symbolic manip- 048

ulation. In contrast, code excels at exact operations 049

and can leverage external tools, but it remains un- 050

clear whether these methods truly help LLMs grasp 051

complex concepts and reasoning tasks. 052
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To address these challenges, we selected the053

more complex CONIC10K dataset (Wu et al.,054

2023), which focuses on Chinese conic section055

problems. We first evaluated several LLMs on this056

dataset, then enhanced their capabilities through057

code-based prompts and fine-tuning. Simultane-058

ously, the answer format of LLMs tends to be very059

unstable. Comparing accuracy is difficult due to060

the conic curve dataset’s complex answer forms061

(equations, sets, text). Therefore, we developed an062

Automated Verification System using RegEx and063

SymPy to measure the model’s performance more064

accurately and efficiently.065

Our contributions include: (1) Code-based066

prompting significantly enhances underperforming067

models (e.g., Qwen-7B improves from 20.2% to068

34.3%); (2) DeepSeek-R1 improves from 92.7% to069

97.3% with code prompting, achieving a new state-070

of-the-art, which demonstrates that strong mod-071

els can further benefit from symbolic input when072

aligned with structured reasoning tasks; (3) The073

Automated Verification System we designed can074

independently process up to 866 records (out of075

2069), greatly saving labor costs.076

2 Related Work077

For elementary-level problems, datasets such as078

GSM8K (Cobbe et al., 2021), SVAMP (Zhao079

et al., 2023), FineMath (Liu et al., 2024b), and080

CMATH (Wei et al., 2023) include both English081

and Chinese primary school problems. For more082

advanced tasks, datasets like MATH (Hendrycks083

et al., 2021), GAOKAO-Bench (Zhang et al.,084

2023), and MathBench (Liu et al., 2024a) cover085

algebra, geometry, etc. Beyond traditional datasets,086

emerging resources incorporate follow-up question-087

ing (Mishra et al., 2024), fuzzy reasoning (Li088

et al., 2024b), multimodal understanding (Shi et al.,089

2024; Cherian et al., 2024), error detection (Singh090

et al., 2024; Sonkar et al., 2024; Zhang et al., 2024),091

and detailed evaluation (Qiao et al., 2024) to pro-092

vide a more comprehensive evaluation of LLMs.093

With the support of diverse mathematical094

datasets, researchers have explored various ap-095

proaches to enhance the mathematical reasoning096

capabilities of LLMs. Yu et al. (2024) introduced097

model ensemble methods, Wang et al. (2024b);098

Mishra et al. (2024); Wang et al. (2024d) utilized099

reinforcement learning and Direct Preference Opti-100

mization. Wang et al. (2022, 2023) applied chain-101

of-thought techniques, Yao et al. (2023); Wang102

et al. (2024a); Feng et al. (2023) developed tree- 103

based methods to reduce computational costs and 104

Wang et al. (2024c) integrated LLMs with Lean4 105

for theorem proving and (Li et al., 2024a) achieved 106

strong results via code-assisted training. 107

3 Methods 108

3.1 Dataset 109

An example of the CONIC10K dataset is presented 110

in Appendix Figure 1(A), and details are shown in 111

Appendix A. We only use question texts and an- 112

swers. To facilitate a more detailed analysis from 113

the perspectives of numerical computation, expres- 114

sion parsing, and structural modeling, we divide the 115

answers into 10 categories as shown in Appendix 116

Table 2 of Appendix A. 117

3.2 Tasks 118

We used the following tasks to evaluate several pop- 119

ular pretrained models’ ability on CONIC10K. The 120

whole workflow is shown in Appendix Figure 1(B). 121

MathQA zero-shot. We applied zero-shot in- 122

ference for all models. The prompts we used in 123

this task are designed to instruct the models to an- 124

swer together with a rationale, confirm the answer, 125

and output it separately to facilitate verification. 126

Appendix Table 4 shows the prompts we used. 127

MathQA with code. Previous studies (Gao 128

et al., 2020; Austin et al., 2021) have demonstrated 129

that utilizing code in problem-solving can signifi- 130

cantly improve the mathematical reasoning capa- 131

bilities of models. Motivated by these findings, 132

we prompt the model to generate code to solve 133

the problem. If models fail to generate executable 134

code, additional prompts are used iteratively, up 135

to a predefined maximum number of attempts, to 136

help them refine their output. If all attempts fail, 137

models are then prompted to directly provide an 138

answer, following the MathQA zero-shot strategy. 139

Appendix Table 4 shows the prompts we used. 140

MathQA with fine-tuning and decoding 141

strategies. Due to limited computational resources, 142

we applied fine-tuning using LoRA (Hu et al., 143

2022) and evaluated model performance via the 144

MathQA zero-shot task. Additionally, to exam- 145

ine the impact of decoding randomness on mathe- 146

matical reasoning, we tested two temperature set- 147

tings (0.95 and 0.01), as prior studies (Brown 148

et al., 2020; Holtzman et al., 2020) have shown 149

that higher temperatures may impair precision by 150

increasing variability in next-token prediction. 151
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Model Sign Eq Set Inte Simp Deg Typ Para Mul All

Atom (Llama-Chinese)
Atom-7B 0.0 0.5 0.0 3.9 8.0 75 28.6 19.4 0.0 6.1

Baichuan2-chat (Yang et al., 2023)
Baichuan2-chat-7B 0.0 2.1 0.0 1.2 2.7 12.5 28.6 9.7 15.4 2.6

GPT-3.5 (OpenAI)
GPT-3.5-turbo 13.0 8.4 7.5 7.8 8.4 0.0 0.0 3.2 7.7 8.4
GPT-3.5-turbo with code 13.0 8.4 7.5 10.1 9.1 0.0 0.0 3.2 7.7 9.1

Llama 3-Chinese (Grattafiori et al., 2024)
Llama 3-Chinese-7B 0.9 1.0 0.0 1.6 3.9 0.0 28.6 0.0 0.0 2.7
Llama 3-Chinese-7B with code 0.9 1.3 0.0 1.6 3.9 0.0 28.6 0.0 0.0 2.8
Llama 3-Chinese-7B ft with 0.95 9.6 9.2 7.5 13.2 8.1 12.5 0.0 6.5 3.8 8.9
Llama 3-Chinese-7B ft with 0.01 9.6 9.2 7.5 12.8 9.8 37.5 0.0 3.2 7.7 10.0

ChatGLM-4 (GLM et al., 2024)
ChatGLM-4-9B 18.3 19.2 17.5 19.5 17.6 12.5 0.0 16.1 23.1 18.1
ChatGLM-4-9B with code 18.3 19.4 17.5 19.5 17.9 12.5 0.0 16.1 23.1 18.3

Qwen (Bai et al., 2023)
Qwen-72B 23.5 27.8 15.0 16.0 17.6 50.0 57.1 32.0 32.3 20.2
Qwen-72B with code 41.7 47.5 37.5 40.1 27.9 25.0 42.9 32.3 35.6 34.3
Qwen-7B ft with 0.95 33.0 36.2 20.0 29.6 8.8 62.5 28.6 25.8 30.8 18.9
Qwen-7B ft with 0.01 40.9 33.9 20.0 28.4 7.5 62.5 42.9 35.5 46.2 18.4

DeepSeek-R1 (Guo et al., 2025)
DeepSeek-R1 86.3 89.2 60.0 84.0 93.9 100.0 85.7 93.5 92.3 92.7
DeepSeek-R1 with code 91.5 96.1 87.5 86.8 97.7 100.0 85.7 93.5 96.1 97.3

Table 1: Comparison of different models. Number in the table is the accurate rate in this Category ’Sign’: Sign
Number, ’Eq’: Equation, ’Set’, Set Text, ’Inte’: Interval Text, ’Simp’ Simple number, ’Deg’: Degree, ’Typ’: Type
Analysis, ’Para’: Parameter Expression, ’Mul’: Multiple Answers, ’All’: Overall Accuracy. For specific examples
of each category, please see Appendix 2

Automated verification system. As noted in152

(Wu et al., 2023), evaluating differently formatted153

answers is challenging and often requires human154

judgment. To address this, we design an automated155

verification system using regular expressions and156

SymPy to determine equivalence when the standard157

answer is a single number, including simple and158

complex forms (e.g.,
√
2).159

Specifically, we first clean the model’s output160

using RegEx to remove Chinese characters and161

standardize number formats. If the output contains162

letters excluding ’sqrt’ and ’frac’, it is marked in-163

correct. Then, the prediction and the reference164

answer are converted to floats using SymPy for165

comparison. If conversion fails, human judgment166

is required. The evaluation workflow is shown in167

Figure 1(D). The Automated Verification System168

we designed can independently process up to 866169

records and has an average of 756.43 out of 2069,170

which greatly saves labor costs.171

4 Experiments 172

4.1 Models 173

We evaluated the performance of several LLMs on 174

MathQA tasks introduced in Methods, including 175

MathQA zero-shot, MathQA with code, MathQA 176

with Fine-tuning, and Decoding Strategies. The 177

models used for evaluation are as listed in Ap- 178

pendix Table 3. 179

When fine-tuning Qwen-7B and Llama 3, we 180

use AdamW with a 5e-5 learning rate and cosine 181

scheduling. Training is done with batch size 32 182

per GPU, gradient accumulation over 8 steps, and 183

gradient clipping at a max norm of 1.0. LoRA rank 184

is set to 16 with a scaling factor of 8. We use the 185

original training set and test set, with a max input 186

length of 1024, and limit samples to 10,000. 187

4.2 Answer Evaluation 188

For problems with single-number answers, we 189

apply the automated verification system de- 190

scribed earlier. For other problems with di- 191
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verse answer formats (e.g. sqrt(2)x+5y-1=0,192

y=\frac{\sqrt{2}}{5}...), we rely on human evalu-193

ation. Since over half the dataset involves single-194

number answers, manual workload is greatly re-195

duced.196

4.3 Results197

Results are shown in the Table 1 and Figure 1 (E-F).198

Most baseline LLMs perform poorly. Among199

all base models, most perform poorly in the200

MathQA Zero-shot task. Atom-7B and Baichuan2-201

chat-7B, for example, achieve overall accuracies202

of only 6.1% and 2.6%, respectively. Even widely203

used models such as GPT-3.5-turbo reach just 8.4%204

accuracy, indicating severe limitations in solving205

structured math problems out-of-the-box.206

Code prompting brings gains. Code-based207

prompting consistently improves performance208

across multiple models. For instance, GPT-3.5-209

turbo increases from 8.4% to 9.1%, and ChatGLM-210

4-9B achieves a boost from 18.1% to 18.3%.211

While the improvements may appear modest in212

lower-performing models, the trend is consistent.213

In higher-capacity models such as Qwen-72B,214

code prompting increases accuracy from 20.2%215

to 34.3%, a substantial gain of 14.1 percentage216

points. Code prompts guide models to translate217

natural language problems into explicit mathemat-218

ical programs, mitigating instability in numerical219

and symbolic processing (See an example in Ap-220

pendix E).221

DeepSeek-R1 achieves state-of-the-art accu-222

racy. DeepSeek-R1 demonstrates exceptional per-223

formance, achieving 92.7% in the base setting and224

further improving to 97.3% with code prompts.225

It leads across almost all categories. Notably, al-226

though DeepSeek-R1 has already been extensively227

trained on reasoning-intensive tasks, our code-228

based prompting strategy still yields measurable229

gains. This suggests that even for highly capable230

models, introducing structured symbolic input can231

further enhance precision, serving as a complemen-232

tary enhancement.233

Task-wise difficulty distribution. Categories234

like Degree, Equation, and Set Text are challenging235

for most models, especially those lacking explicit236

symbolic reasoning. Conversely, Simple Number237

and Type Analysis sees relatively higher accuracy238

even among weaker models, suggesting that numer-239

ical lookup or pattern recognition may suffice in240

these categories.241

5 Discussions 242

We argue that LLMs face challenges in math due 243

to the gap between probabilistic generation and 244

deterministic reasoning. 245

First, LLMs generate text by predicting the most 246

probable next word based on learned probability 247

distributions. This mechanism contrasts with the 248

strict, deterministic logic required in mathemati- 249

cal reasoning. Math problems typically require a 250

single correct answer and unambiguous deductive 251

steps. In contrast, LLMs allow multiple plausible 252

outputs, introducing uncertainty that compromises 253

the consistency of multi-step reasoning. 254

Meanwhile, LLMs primarily rely on statistical 255

correlations and pattern matching, making it diffi- 256

cult to verify whether they truly understand mathe- 257

matical concepts. The poor performance of some 258

smaller models on complex tasks may indicate a 259

lack of genuine understanding. 260

These limitations highlight a fundamental gap 261

between probabilistic language modeling and the 262

deterministic nature of mathematical reasoning, 263

suggesting that additional structures or specialized 264

training may be necessary for reliable performance 265

in mathematical tasks. 266

6 Conclusion 267

We benchmark popular LLMs on the CONIC10K 268

dataset. Our experiments show that most baseline 269

models—except for DeepSeek-R1 (92.7%)—per- 270

form significantly below expectations, with accura- 271

cies below 20%, highlighting the challenge that 272

structured math tasks pose for general-purpose 273

LLMs. To address this, we explore three enhance- 274

ment strategies—code prompting, fine-tuning, and 275

decoding control—which substantially improve 276

weaker models (e.g., Qwen-7B from 20.2% to 277

34.3%). Notably, even DeepSeek-R1, which al- 278

ready achieves state-of-the-art performance among 279

all models, benefits further from our methods, 280

reaching 97.3% with code prompts. This demon- 281

strates that, when properly aligned, symbolic 282

prompting can reinforce the reasoning capabili- 283

ties of even the strongest models. Our work pro- 284

vides timely and practical insights into the current 285

strengths and limitations of LLMs in mathematical 286

domains, serving as a valuable reference for future 287

benchmark design and model adaptation. Addition- 288

ally, we develop an automated verification system 289

that independently handles 41.9% of examples, sig- 290

nificantly reducing human evaluation workload. 291
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Limitations292

Our current approach executes code outputs di-293

rectly from LLMs, but the actual execution re-294

sults may deviate from the model’s intended logic295

due to syntax errors, undefined variables, or se-296

mantic inconsistencies. To ensure stability and297

correctness, future work should incorporate an298

external code interpreter or compiler to validate299

and refine execution outputs through a feedback300

loop driven by runtime errors or mismatch signals.301

Additionally, decoding temperature shows incon-302

sistent effects—lower temperatures benefit some303

models (e.g., Llama 3-Chinese-7B), while others304

(e.g., Qwen-7B) perform better with higher val-305

ues. Given that our current experiments cover only306

a limited range of models and tasks, conclusions307

regarding decoding strategies remain preliminary,308

calling for broader future exploration. Moreover,309

existing models are not trained on formal mathe-310

matical corpora (e.g., Lean), limiting their exposure311

to rigorous proofs and confining their reasoning to312

informal natural language. Finally, our pipeline313

lacks intermediate verification mechanisms; if an314

early reasoning step is flawed, subsequent steps315

propagate the error, reflecting a common challenge316

in multi-step LLM-based reasoning where outputs317

are not self-validated during generation.318
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A Data Description528

We employ the CONIC10K benchmark dataset,529

a publicly available resource distributed under530

the permissive MIT License (Copyright © 2023531

Alessandro Ristori), permitting unrestricted aca-532

demic use. The CONIC10K dataset is constructed533

from open-sourced conic section questions col-534

lected from two Chinese high school education535

websites, originally presented in image format.536

Each question image contains the question text,537

rationale, and answer. The text in each image has538

been extracted by the dataset authors to construct539

a structured, text-based dataset. The dataset com-540

prises 9,826 questions in total, with 7,757 allocated541

to the training set and 2,069 to the test set. To en-542

able more fine-grained analysis in terms of numeri-543

cal computation, expression parsing, and structural544

modeling, we divide the answers into 10 categories545

as shown in Appendix Table 2. The distribution of546

different categories is shown in Appendix Figure 2.547

Category Examples Description

Sign Number y = pm ∗
x, pm ∗ 2

Contains a
positive and
negative sign

Equation x2 + y2 = 1 Equations
Set Text {0, 1} Contains mul-

tiple answers
Interval Text [−1, 1], (1, 0) Intervals and

coordinate
Simple Num-
ber

1/3,
√
5− 1 Numerical

values
Degree ’ApplyUnit(120,

degree)’
An angle val-
ues

Type Analysis ’ellipse’ Curve classifi-
cation

Void Answer ’ ’ Data without
answers

Parameter Ex-
pression

a/3 Contains pa-
rameters

Multiple An-
swers

’-1; [-1,2]’ Text contains
multiple ques-
tions

Table 2: Answer categories with examples and descrip-
tion.

B Model setting548

Appendix Table 3 summarizes the models used549

in our experiments, detailing key attributes such550

Sign Eq Set Inte Simp Deg Typ Para Mul All

101

102

103

Co
un

t (
lo

g 
sc

al
e)

459

1402

131

923

4460

26 25

133
109

89
115

381

40

257

1179

8 7

25
31

26

Train Data
Test Data

Figure 2: Log-scaled distribution of the train and text
data on answer categories.

as model size, multilingual capability, primary 551

language orientation (e.g., Chinese-oriented or 552

English-oriented), and the types of tasks (e.g., zero- 553

shot, code-based, or fine-tuned). Appendix Table 4 554

presents our prompt designs for the MathQA tasks, 555

covering both zero-shot and code-based settings, 556

and outlines the instructions provided at each inter- 557

action step. 558

C Hardware and Software Environment 559

All experiments were conducted on a system 560

equipped with NVIDIA RTX 4090 GPUs and 24 561

GB of RAM for fine-tuning. Model evaluation on 562

the test set was performed using the CPU only. The 563

computational workflow comprised two phases: (1) 564

Fine-tuning was performed for Llama and Qwen- 565

7B (32 total GPU-hours at 8 hours per experiment), 566

and (2) Model evaluation was conducted on CPU 567

nodes (approximately 60 compute-hours). 568

The implementation was based on PyTorch, with 569

support from additional libraries such as Hugging 570

Face Transformers and the OpenAI API for model 571

evaluation. 572

D Error Analysis 573

During our evaluation on the CONIC10K dataset, 574

manual inspection reveals that LLMs make a wide 575

range of errors, reflecting not only deficiencies in 576

mathematical reasoning but also in fundamental 577

understanding. These errors can be broadly catego- 578

rized as follows: 579

(1) Code-to-math translation errors — failures in 580

converting between programming syntax and alge- 581

braic expressions, such as misusing variable names, 582
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Model Size Multi-language Chinese-Oriented Tasks

GPT-3.5-turbo Unknown " % z/c
Baichuan2-chat 7B " " z
ChatGLM 9B % " z/c
Llama 3-Chinese 7B " " z/c/f
Qwen 7B " " f/t
Qwen 72B " " z/c
Atom 7B " " z
DeepSeek-R1 660B " " z/c

Table 3: Models used in our experiments. Chinese-oriented refers to whether methods such as increasing the
proportion of Chinese data and designing a tokenizer specifically for Chinese are employed to enhance performance
on Chinese tasks. Task describes the specific tasks for which the model is used, where z stands for MathQA
zero-shot, c stands for MathQA with code, f stands for fine-tuning with CONIC10K, and t stands for MathQA with
low temperature.

Table 4: Prompts used in different MathQA tasks

Task Type Step Prompt Content

MathQA zero-shot
System You are a talented mathematician
Question "Math problem from CONIC10K"
Organize Answersg Please provide your final answer and ensure that this

answer is in its simplest form, without any additional
content; just output the answer itself.

MathQA with code

System You are a programmer, you use python, sympy to
solve problems, set variables, set an Interval to
calculate the range of questions, expressions, and
use solve() function to calculate. Only give a python
code. (code cannot have external inputs and
graphical outputs)

Question "Math problem from CONIC10K"
No Code Please try to solve the problem using code, "math

problem from CONIC10K"
Run Time Error "Error information", Please check the code carefully.

misinterpreting math functions, or misunderstand-583

ing abstract formulations. (2) Common-sense mis-584

takes — incorrect application of known mathemat-585

ical rules or misuse of standard terminology. (3)586

Case analysis failures — Omission of necessary587

conditional reasoning, such as neglecting domain588

restrictions or failing to consider sign-based cases.589

(4) Boundary-related errors — misjudging open or590

closed intervals, or incorrectly handling endpoint591

inclusion.592

In the following subsections, we present repre-593

sentative examples of several error types to illus-594

trate common failure patterns in LLM-generated595

solutions.596

D.1 Code-to-math translation errors 597

The problem of transformation between program- 598

ming languages and algebraic languages exists, 599

such as the following math problem: 600

It is known that O is the origin of the co-
ordinates, the focus of the parabola C:y2 =
2px(p > 0) is F , and the P is a point above C,
PF is perpendicular to the x axis, Q is a point
on the x axis, and PQ ⊥ OP . If |FQ| = 6,
then the alignment equation for C is?

The code provided by LLM go to Appendix 601

Code 1: 602

Listing 1: Wrong transform(By QWEN 72B)
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603
1 from sympy import symbols, Eq, solve604
2 # Define symbols605
3 p = symbols(’p’, positive=True)606
4 # Given |FQ|607
5 FQ = 6608
6 # For the parabola y^2 = 2px, focus F609

is at (p/2, 0)610
7 # Since PF is perpendicular to the x-611

axis, P has coordinates (p/2, sqrt612
(2p*(p/2))) = (p/2, p)613

8 # PQ is perpendicular to OP, so Q is614
on the x-axis and has coordinates615
(p, 0)616

9 # The distance from F to Q is given as617
|FQ| = 6618

10 # Thus, |FQ| = |p - p/2| = |p/2| = 6,619
which gives us p = 12620

11 # Calculate p621
12 p_value = solve(Eq(p / 2, FQ), p)[0]622
13 # The directrix or latus rectum of the623

parabola is at x = -p/2624
14 directrix = -p_value / 2625
15 # Equation of the directrix626
16 print(directrix)627628

In this problem, the model is expected to derive629

the algebraic equations for the conic sections. How-630

ever, it instead outputs a numerical value. Specifi-631

cally, the question asks to generate the linear equa-632

tions for the parabola, but the model only computes633

and outputs the value of the directrix (x = −p/2)634

without expressing it symbolically.635

This failure likely stems from the model’s confu-636

sion between numerical computation and symbolic637

expression generation. Although some intermedi-638

ate reasoning steps are partially correct, the model639

prematurely terminates the process at a numeric re-640

sult. This behavior reflects a limited understanding641

of task intent, particularly the distinction between642

symbolic synthesis and numerical solving, when643

symbolic reasoning and numerical evaluation are644

interwoven.645

D.2 Knowledge-based errors646

Model: Qwen-72B
math problem: Knowing that any point P on
the parabola y2 = 4x, the distance from the
point P to the y axis is d, and for a given point
A(4, 5), then What is the minimum value of
|PA|+d?
answer:

√
34− 1

LLM answer: To solve this problem, we
can make use of the geometric properties of
parabolas and the methods of analytic geome-
try. The given parabolic equation is y2 = 4x,
which is a standard parabola with an opening
to the right with its focus at (1, 0) and a colli-

647

mation of x = −1.
For any point on the parabola P (x, y), the dis-
tance d from the y axis is |x|. However, under
the up-and-down symmetry of the parabola, x
is always non-negative, so d = x.
Requires |PA|The minimum value of d,
where A(4, 5), we can observe that accord-
ing to the definition of a parabola, the distance
from the point P to the focal point is equal
to the distance from the point P to the align-
ment. This means that if we are able to convert
|PA|d is converted to the sum of the distances
from the point P to a certain point, we can use
this property to simplify the problem.
Bearing in mind that the focal point of the
parabola is F (1, 0), then the distance from
point P to the focal point F is equal to the dis-
tance from point P to the alignment x = −1.
Therefore, |PF | = x1.
Now, we’re looking for |PA|d = |PA|, the
minimum value of x. Note, |PA|x can ac-
tually be seen as the sum of the horizontal
distances from the point A to the point P to
the alignment. This can be further explained
as the length of the path from A to the point
P on the parabola and from P in a direction
parallel to the alignment.
In order to make this path the shortest, accord-
ing to the "law of reflection" in geometry (the
light rays start from one point and are reflected
to another point and have the smallest path
length), we want this path to be like the light
rays that start from A and are reflected by the
alignment and reach the focal point F . This is
because when the P point is in the direction
of the extension line from A to F , |PA|x has
the smallest value.
So, we calculate the distance from A to F , as
|PA|Theminimumvalueofx. The distance
from the point A(4, 5) to the focus F (1, 0) is

|AF | =
√
(4− 1)2(5− 0)2 =

√
925 =

√
34

So, |PA| The minimum value of d is
√
34 .

648

The analysis is correct, but LLM ignores a fact: 649

the distance from the point on the parabola to the 650

alignment is |x|+ 1, not |x|! 651

This is a representative example of a knowledge- 652

based reasoning error, where the model adopts a 653

valid high-level strategy but fails to apply a funda- 654

mental mathematical fact—in this case, the correct 655
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expression for the distance from a point to a verti-656

cal line (i.e., |x− (−1)| = x+ 1). Unlike purely657

logical failures, this type of error arises from in-658

complete or imprecise recall of domain-specific659

definitions.660

Such mistakes are common in LLMs, whose661

reasoning is built on surface-level statistical associ-662

ations rather than grounded symbolic manipulation.663

While the model may imitate expert-like problem-664

solving patterns, it lacks persistent internal repre-665

sentations of formal mathematical concepts. Con-666

sequently, it often exhibits partially correct but667

incomplete reasoning: structurally coherent, yet668

factually flawed due to misapplied or omitted defi-669

nitions.670

This case illustrates a broader challenge in LLM-671

based mathematical reasoning: even when global672

strategies are appropriate, success hinges on lo-673

cal factual precision. Minor definitional inaccu-674

racies—particularly in geometry or algebra—can675

lead to incorrect conclusions despite otherwise co-676

herent reasoning paths.677

D.3 Case analysis failures678

Model: Qwen-72B
math problem: The set point F1(0,−3),
F2(0, 3), and the point P satisfies the condi-
tion |PF1|+ |PF2| = t+ 9

t (t is constant, and
t > 0), then what is the trajectory of the point
P ?

answer: Line segment F1F2 or ellipse
LLM answer: Due to |PF1| + |PF2| =

t+ 9
t is a constant (t > 0 is given by the ques-

tion), and the value is greater than F1F2 = 6
(because according to the AM-GM inequality,

t+ 9
t ≥ 2

√
t · 9

t = 6, and the equal sign holds
if and only if t = 3). According to the defini-
tion of an ellipse, if the sum of the distances
from a point on a plane to two fixed points
(focal points) is constant, and this constant is
greater than the distance between the two fo-
cal points, then the trajectory of this point is
an ellipse. Thus, the trajectory of the point P
is an ellipse focused on F1 and F2.

We can see in the analysis that one of the answers679

segment F1F2 is missing!680

This error illustrates a common tendency of681

LLMs: generalizing from dominant patterns, such682

as associating a constant distance sum with ellipses,683

without explicitly reasoning through conditional684

branches. In problems where the outcome depends 685

on parameter thresholds or equality constraints 686

(e.g., piecewise or boundary-sensitive definitions), 687

the model often defaults to the most prototypical 688

case. This pattern-matching behavior results in 689

incomplete reasoning, particularly when special 690

cases demand distinct logical treatment beyond 691

general rules. 692

E With Code, We Get Better Answer! 693

When we ask the large model to output the solution 694

code to the prompt, we find that there is model 695

analysis in Appendix Code 2, and the purpose of 696

asking the large model to give the code is to make 697

it more accurate in the operation. 698

Listing 2: AI combines code without losing analysis(By
QWEN 72B)

699
1 # Hyperbola asymptotes 700
2 m = 4/3 701
3 702
4 # Since c is the same for both conics, 703

we find a^2 and b^2 for the 704
hyperbola 705

5 # For a hyperbola, c^2 = a^2 + b^2, 706
and the slopes of the asymptotes 707
are b/a 708

6 # We know c and m=b/a, so we can solve 709
for a^2 and b^2 710

7 711
8 # Set up equations based on the 712

relationship between a, b, and c 713
for the hyperbola 714

9 eq1 = Eq(a**2 + b**2, c_ellipse**2) 715
10 eq2 = Eq(b/a, m) 716717

Here is a complete example next. 718

math problem: For the problem D.2 that
LLM makes a mistake, the code helps it!

The code generated by LLM for this problem is 719

as follows 3: 720

Listing 3: code for Q1(By QWEN 72B)
721

1 from sympy import symbols, diff, solve 722
, sqrt, Abs 723

2 # Define the variable 724
3 x = symbols(’x’, real=True, positive= 725

True) 726
4 # Given parabola equation y^2 = 4x, we 727

express y in terms of x 728
5 y = 2*sqrt(x) 729
6 # Distance from point P on the 730

parabola to point A(4,5) 731
7 PA = sqrt((x - 4)**2 + (y - 5)**2) 732
8 # Distance d from point P to the y- 733

axis 734
9 d = Abs(x) 735

10 # The expression for |PA| + d 736
11 expression = PA + d 737

11



12 # Take the derivative of the738
expression with respect to x739

13 derivative = diff(expression, x)740
14 # Solve the derivative equal to zero741

to find critical points742
15 critical_points = solve(derivative, x)743
16 # Check if there is a valid solution744

that minimizes the expression745
17 if critical_points:746
18 min_value = expression.subs(x,747

critical_points[0])748
19 else:749
20 # If no critical point is found750

within the domain, check the751
boundary conditions752

21 # For this problem, the boundary753
condition would be that as x754
approaches infinity,755

22 # which is not applicable here756
since we are looking for a757
minimum.758

23 # Thus, we assume there’s a typo or759
misunderstanding in the760

problem statement.761
24 min_value = None762
25 # Since we expect a numerical result763

and our approach involves symbolic764
computation,765

26 # We will attempt to find the minimum766
value numerically by evaluating767
the expression768

27 # at a point close to the critical769
point obtained symbolically.770

28 if min_value is not None:771
29 min_value = min_value.evalf()772
30 else:773
31 min_value = "Undefined under given774

constraints"775
32 min_value776777
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