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Abstract

While large language models (LLMs) have
gained significant attention for mathematical
problem-solving, many existing benchmarks re-
quire only shallow reasoning and have limited
scope, hindering rigorous evaluation of their
understanding of mathematical logic. To ad-
dress this gap, we evaluate several LLMSs on the
more challenging CONIC10K dataset, which
focuses on conic section problems. Using code
prompts, fine-tuning, and decoding strategies,
we improve performance, boosting Qwen-72B
from 20.2% to 34.3%. Notably, DeepSeek-
R1 achieves a new state-of-the-art accuracy of
97.3% with code prompting, up from 92.7%,
demonstrating that even high-performing mod-
els benefit from symbolic input when properly
aligned. We also develop an automated veri-
fication system that independently processes
41.9% of results, reducing human evaluation
cost. Our results underscore the importance
of structured symbolic prompting in enhanc-
ing mathematical reasoning and highlight the
potential of code-based methods as a general
framework for improving LLM performance
on complex math tasks.

1 Introduction

Recent advances in large language models (LLMs)
have improved their mathematical reasoning capa-
bilities. For instance, Claude 3.5 Sonnet (Budagam
et al., 2024) reached 97.72% on GSM8k (Cobbe
et al., 2021), while GPT-4 (Tan et al., 2025)
reached 93.9% on SVAMP (Zhao et al., 2023) , and
scored 94.3% on MATH23k (Zhou et al., 2023).
However, these datasets have notable limitations:
1) many problems require only a few reasoning
steps, allowing models to succeed using shallow
heuristics (Hendrycks et al., 2021); and 2) their lim-
ited knowledge scope hinders evaluation on logic-
intensive tasks and comprehensive assessment of
mathematical understanding.
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Figure 1: Our verification process and test results. In
CoNIC10K, LLMs generate answers to questions (A)
via code prompts and fine-tuning (C). An automated ver-
ification system checks the answers, while unresolved
cases are reviewed by humans, and the combined eval-
uation yields the final accuracy (D). Box plots show
accuracy by model (E) and question type (F). Figure (B)
shows our question categories.

Despite advances in enhancing LLMs’ mathe-
matical reasoning through diverse methods (Gao
et al., 2023; Gou et al., 2024; Jiang et al., 2023),
current approaches still face limitations in fully
evaluating and improving their capabilities. While
natural language aids abstract reasoning, it strug-
gles with precise computation and symbolic manip-
ulation. In contrast, code excels at exact operations
and can leverage external tools, but it remains un-
clear whether these methods truly help LLMs grasp
complex concepts and reasoning tasks.



To address these challenges, we selected the
more complex CONIC10K dataset (Wu et al.,
2023), which focuses on Chinese conic section
problems. We first evaluated several LLMs on this
dataset, then enhanced their capabilities through
code-based prompts and fine-tuning. Simultane-
ously, the answer format of LLMs tends to be very
unstable. Comparing accuracy is difficult due to
the conic curve dataset’s complex answer forms
(equations, sets, text). Therefore, we developed an
Automated Verification System using RegEx and
SymPy to measure the model’s performance more
accurately and efficiently.

Our contributions include: (1) Code-based
prompting significantly enhances underperforming
models (e.g., Qwen-7B improves from 20.2% to
34.3%); (2) DeepSeek-R1 improves from 92.7% to
97.3% with code prompting, achieving a new state-
of-the-art, which demonstrates that strong mod-
els can further benefit from symbolic input when
aligned with structured reasoning tasks; (3) The
Automated Verification System we designed can
independently process up to 866 records (out of
2069), greatly saving labor costs.

2 Related Work

For elementary-level problems, datasets such as
GSMB8K (Cobbe et al., 2021), SVAMP (Zhao
et al., 2023), FineMath (Liu et al., 2024b), and
CMATH (Wei et al., 2023) include both English
and Chinese primary school problems. For more
advanced tasks, datasets like MATH (Hendrycks
et al., 2021), GAOKAO-Bench (Zhang et al.,
2023), and MathBench (Liu et al., 2024a) cover
algebra, geometry, etc. Beyond traditional datasets,
emerging resources incorporate follow-up question-
ing (Mishra et al., 2024), fuzzy reasoning (Li
etal., 2024b), multimodal understanding (Shi et al.,
2024; Cherian et al., 2024), error detection (Singh
et al., 2024; Sonkar et al., 2024; Zhang et al., 2024),
and detailed evaluation (Qiao et al., 2024) to pro-
vide a more comprehensive evaluation of LLMs.
With the support of diverse mathematical
datasets, researchers have explored various ap-
proaches to enhance the mathematical reasoning
capabilities of LLMs. Yu et al. (2024) introduced
model ensemble methods, Wang et al. (2024b);
Mishra et al. (2024); Wang et al. (2024d) utilized
reinforcement learning and Direct Preference Opti-
mization. Wang et al. (2022, 2023) applied chain-
of-thought techniques, Yao et al. (2023); Wang

et al. (2024a); Feng et al. (2023) developed tree-
based methods to reduce computational costs and
Wang et al. (2024c) integrated LL.Ms with Lean4
for theorem proving and (Li et al., 2024a) achieved
strong results via code-assisted training.

3 Methods

3.1 Dataset

An example of the CONIC10K dataset is presented
in Appendix Figure 1(A), and details are shown in
Appendix A. We only use question texts and an-
swers. To facilitate a more detailed analysis from
the perspectives of numerical computation, expres-
sion parsing, and structural modeling, we divide the
answers into 10 categories as shown in Appendix
Table 2 of Appendix A.

3.2 Tasks

We used the following tasks to evaluate several pop-
ular pretrained models’ ability on CONIC10K. The
whole workflow is shown in Appendix Figure 1(B).
MathQA zero-shot. We applied zero-shot in-
ference for all models. The prompts we used in
this task are designed to instruct the models to an-
swer together with a rationale, confirm the answer,
and output it separately to facilitate verification.
Appendix Table 4 shows the prompts we used.
MathQA with code. Previous studies (Gao
et al., 2020; Austin et al., 2021) have demonstrated
that utilizing code in problem-solving can signifi-
cantly improve the mathematical reasoning capa-
bilities of models. Motivated by these findings,
we prompt the model to generate code to solve
the problem. If models fail to generate executable
code, additional prompts are used iteratively, up
to a predefined maximum number of attempts, to
help them refine their output. If all attempts fail,
models are then prompted to directly provide an
answer, following the MathQA zero-shot strategy.
Appendix Table 4 shows the prompts we used.
MathQA with fine-tuning and decoding
strategies. Due to limited computational resources,
we applied fine-tuning using LoRA (Hu et al.,,
2022) and evaluated model performance via the
MathQA zero-shot task. Additionally, to exam-
ine the impact of decoding randomness on mathe-
matical reasoning, we tested two temperature set-
tings (0.95 and 0.01), as prior studies (Brown
et al., 2020; Holtzman et al., 2020) have shown
that higher temperatures may impair precision by
increasing variability in next-token prediction.



Model Sign Eq Set Inte Simp Deg Typ Para Mul All
Atom (Llama-Chinese)
Atom-7B 00 05 00 39 8.0 75 286 194 00 6.1
Baichuan2-chat (Yang et al., 2023)
Baichuan2-chat-7B 00 21 00 12 27 125 286 9.7 154 26
GPT-3.5 (OpenAl)

GPT-3.5-turbo
GPT-3.5-turbo with code

130 84 75
13.0 84 75

7.8 8.4 0.0 0.0 32 77 84
10.1 9.1 0.0 0.0 32 7.7 9.1

Llama 3-Chinese (Grattafiori et al., 2024)

Llama 3-Chinese-7B 0.9 1.0 0.0
Llama 3-Chinese-7B with code 0.9 1.3 0.0

1.6 39 0.0
1.6 39 0.0

28.6 0.0 00 27
28.6 0.0 00 28

Llama 3-Chinese-7B ft with0.95 96 92 7.5 132 81 125 0.0 6.5 38 89
Llama 3-Chinese-7B ft with 0.01 96 92 75 128 9.8 375 00 32 7.7 10.0
ChatGLM-4 (GLM et al., 2024)

ChatGLM-4-9B 183 192 175 195 176 125 0.0 16.1 231 18.1
ChatGLM-4-9B with code 183 194 175 195 179 125 00 16.1 231 183
Qwen (Bai et al., 2023)

Qwen-72B 23,5 278 150 160 176 500 57.1 320 323 202
Qwen-72B with code 417 475 375 401 279 250 429 323 356 343
Qwen-7B ft with 0.95 33.0 362 200 29.6 88 625 286 258 30.8 189
Qwen-7B ft with 0.01 409 339 20.0 284 75 625 429 355 462 184
DeepSeek-R1 (Guo et al., 2025)

DeepSeek-R1 86.3 89.2 60.0 84.0 939 100.0 857 935 923 927
DeepSeek-R1 with code 915 96.1 875 868 97.7 100.0 857 935 96.1 973

Table 1: Comparison of different models. Number in the table is the accurate rate in this Category ’Sign’: Sign
Number, ’Eq’: Equation, ’Set’, Set Text, *Inte’: Interval Text, ’Simp’ Simple number, 'Deg’: Degree, "Typ’: Type
Analysis, "Para’: Parameter Expression, "Mul’: Multiple Answers, *All’: Overall Accuracy. For specific examples

of each category, please see Appendix 2

Automated verification system. As noted in
(Wu et al., 2023), evaluating differently formatted
answers is challenging and often requires human
judgment. To address this, we design an automated
verification system using regular expressions and
SymPy to determine equivalence when the standard
answer is a single number, including simple and
complex forms (e.g., v/2).

Specifically, we first clean the model’s output
using RegEx to remove Chinese characters and
standardize number formats. If the output contains
letters excluding ’sqrt’ and ’frac’, it is marked in-
correct. Then, the prediction and the reference
answer are converted to floats using SymPy for
comparison. If conversion fails, human judgment
is required. The evaluation workflow is shown in
Figure 1(D). The Automated Verification System
we designed can independently process up to 866
records and has an average of 756.43 out of 2069,
which greatly saves labor costs.

4 Experiments

4.1 Models

We evaluated the performance of several LLMs on
MathQA tasks introduced in Methods, including
MathQA zero-shot, MathQA with code, MathQA
with Fine-tuning, and Decoding Strategies. The
models used for evaluation are as listed in Ap-
pendix Table 3.

When fine-tuning Qwen-7B and Llama 3, we
use AdamW with a 5e-5 learning rate and cosine
scheduling. Training is done with batch size 32
per GPU, gradient accumulation over 8 steps, and
gradient clipping at a max norm of 1.0. LoRA rank
is set to 16 with a scaling factor of 8. We use the
original training set and test set, with a max input
length of 1024, and limit samples to 10,000.

4.2 Answer Evaluation

For problems with single-number answers, we
apply the automated verification system de-
scribed earlier. For other problems with di-



verse answer formats (e.g. sqrt(2)x+5y-1=0,
y=\frac{\sqrt{2}}{5}...), we rely on human evalu-
ation. Since over half the dataset involves single-
number answers, manual workload is greatly re-
duced.

4.3 Results

Results are shown in the Table 1 and Figure 1 (E-F).
Most baseline LL.Ms perform poorly. Among
all base models, most perform poorly in the
MathQA Zero-shot task. Atom-7B and Baichuan2-
chat-7B, for example, achieve overall accuracies
of only 6.1% and 2.6%, respectively. Even widely
used models such as GPT-3.5-turbo reach just 8.4%
accuracy, indicating severe limitations in solving
structured math problems out-of-the-box.

Code prompting brings gains. Code-based
prompting consistently improves performance
across multiple models. For instance, GPT-3.5-
turbo increases from 8.4% to 9.1%, and ChatGLM-
4-9B achieves a boost from 18.1% to 18.3%.
While the improvements may appear modest in
lower-performing models, the trend is consistent.
In higher-capacity models such as Qwen-72B,
code prompting increases accuracy from 20.2%
to 34.3%, a substantial gain of 14.1 percentage
points. Code prompts guide models to translate
natural language problems into explicit mathemat-
ical programs, mitigating instability in numerical
and symbolic processing (See an example in Ap-
pendix E).

DeepSeek-R1 achieves state-of-the-art accu-
racy. DeepSeek-R1 demonstrates exceptional per-
formance, achieving 92.7% in the base setting and
further improving to 97.3% with code prompts.
It leads across almost all categories. Notably, al-
though DeepSeek-R1 has already been extensively
trained on reasoning-intensive tasks, our code-
based prompting strategy still yields measurable
gains. This suggests that even for highly capable
models, introducing structured symbolic input can
further enhance precision, serving as a complemen-
tary enhancement.

Task-wise difficulty distribution. Categories
like Degree, Equation, and Set Text are challenging
for most models, especially those lacking explicit
symbolic reasoning. Conversely, Simple Number
and Type Analysis sees relatively higher accuracy
even among weaker models, suggesting that numer-
ical lookup or pattern recognition may suffice in
these categories.

5 Discussions

We argue that LLMs face challenges in math due
to the gap between probabilistic generation and
deterministic reasoning.

First, LLMs generate text by predicting the most
probable next word based on learned probability
distributions. This mechanism contrasts with the
strict, deterministic logic required in mathemati-
cal reasoning. Math problems typically require a
single correct answer and unambiguous deductive
steps. In contrast, LLMs allow multiple plausible
outputs, introducing uncertainty that compromises
the consistency of multi-step reasoning.

Meanwhile, LLMs primarily rely on statistical
correlations and pattern matching, making it diffi-
cult to verify whether they truly understand mathe-
matical concepts. The poor performance of some
smaller models on complex tasks may indicate a
lack of genuine understanding.

These limitations highlight a fundamental gap
between probabilistic language modeling and the
deterministic nature of mathematical reasoning,
suggesting that additional structures or specialized
training may be necessary for reliable performance
in mathematical tasks.

6 Conclusion

We benchmark popular LLMs on the CONIC10K
dataset. Our experiments show that most baseline
models—except for DeepSeek-R1 (92.7%)—per-
form significantly below expectations, with accura-
cies below 20%, highlighting the challenge that
structured math tasks pose for general-purpose
LLMs. To address this, we explore three enhance-
ment strategies—code prompting, fine-tuning, and
decoding control—which substantially improve
weaker models (e.g., Qwen-7B from 20.2% to
34.3%). Notably, even DeepSeek-R1, which al-
ready achieves state-of-the-art performance among
all models, benefits further from our methods,
reaching 97.3% with code prompts. This demon-
strates that, when properly aligned, symbolic
prompting can reinforce the reasoning capabili-
ties of even the strongest models. Our work pro-
vides timely and practical insights into the current
strengths and limitations of LLLMs in mathematical
domains, serving as a valuable reference for future
benchmark design and model adaptation. Addition-
ally, we develop an automated verification system
that independently handles 41.9% of examples, sig-
nificantly reducing human evaluation workload.



Limitations

Our current approach executes code outputs di-
rectly from LLMs, but the actual execution re-
sults may deviate from the model’s intended logic
due to syntax errors, undefined variables, or se-
mantic inconsistencies. To ensure stability and
correctness, future work should incorporate an
external code interpreter or compiler to validate
and refine execution outputs through a feedback
loop driven by runtime errors or mismatch signals.
Additionally, decoding temperature shows incon-
sistent effects—Ilower temperatures benefit some
models (e.g., Llama 3-Chinese-7B), while others
(e.g., Qwen-7B) perform better with higher val-
ues. Given that our current experiments cover only
a limited range of models and tasks, conclusions
regarding decoding strategies remain preliminary,
calling for broader future exploration. Moreover,
existing models are not trained on formal mathe-
matical corpora (e.g., Lean), limiting their exposure
to rigorous proofs and confining their reasoning to
informal natural language. Finally, our pipeline
lacks intermediate verification mechanisms; if an
early reasoning step is flawed, subsequent steps
propagate the error, reflecting a common challenge
in multi-step LLM-based reasoning where outputs
are not self-validated during generation.
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A Data Description

We employ the CONIC10K benchmark dataset,
a publicly available resource distributed under
the permissive MIT License (Copyright © 2023
Alessandro Ristori), permitting unrestricted aca-
demic use. The CONIC10K dataset is constructed
from open-sourced conic section questions col-
lected from two Chinese high school education
websites, originally presented in image format.
Each question image contains the question text,
rationale, and answer. The text in each image has
been extracted by the dataset authors to construct
a structured, text-based dataset. The dataset com-
prises 9,826 questions in total, with 7,757 allocated
to the training set and 2,069 to the test set. To en-
able more fine-grained analysis in terms of numeri-
cal computation, expression parsing, and structural
modeling, we divide the answers into 10 categories
as shown in Appendix Table 2. The distribution of
different categories is shown in Appendix Figure 2.

Category Examples Description
Sign Number y = pm x Contains a
T,pm * 2 positive and

negative sign

Equation x> +y?>=1  Equations

Set Text {0,1} Contains mul-
tiple answers

Interval Text  [—1,1],(1,0) Intervals and
coordinate

Simple Num- 1/3,4/5—1  Numerical

ber values

Degree ’ApplyUnit(120, An angle val-

degree)’ ues

Type Analysis ’ellipse’ Curve classifi-
cation

Void Answer Data without
answers

Parameter Ex- a/3 Contains pa-

pression rameters

Multiple An- ’-1; [-1,2] Text contains

swers multiple ques-

tions

Table 2: Answer categories with examples and descrip-
tion.

B Model setting

Appendix Table 3 summarizes the models used
in our experiments, detailing key attributes such

4460 ;
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Figure 2: Log-scaled distribution of the train and text
data on answer categories.

as model size, multilingual capability, primary
language orientation (e.g., Chinese-oriented or
English-oriented), and the types of tasks (e.g., zero-
shot, code-based, or fine-tuned). Appendix Table 4
presents our prompt designs for the MathQA tasks,
covering both zero-shot and code-based settings,
and outlines the instructions provided at each inter-
action step.

C Hardware and Software Environment

All experiments were conducted on a system
equipped with NVIDIA RTX 4090 GPUs and 24
GB of RAM for fine-tuning. Model evaluation on
the test set was performed using the CPU only. The
computational workflow comprised two phases: (1)
Fine-tuning was performed for Llama and Qwen-
7B (32 total GPU-hours at 8 hours per experiment),
and (2) Model evaluation was conducted on CPU
nodes (approximately 60 compute-hours).

The implementation was based on PyTorch, with
support from additional libraries such as Hugging
Face Transformers and the OpenAl API for model
evaluation.

D Error Analysis

During our evaluation on the CONIC10K dataset,
manual inspection reveals that LLMs make a wide
range of errors, reflecting not only deficiencies in
mathematical reasoning but also in fundamental
understanding. These errors can be broadly catego-
rized as follows:

(1) Code-to-math translation errors — failures in
converting between programming syntax and alge-
braic expressions, such as misusing variable names,



Model Size Multi-language Chinese-Oriented Tasks
GPT-3.5-turbo Unknown v X zlc
Baichuan2-chat 7B 4 4 z
ChatGLM 9B X 4 zlc
Llama 3-Chinese 7B 4 4 z/c/f
Qwen 7B 4 v f/t
Qwen 72B v v z/c
Atom 7B 4 4 z
DeepSeek-R1 660B 4 4 zlc

Table 3: Models used in our experiments. Chinese-oriented refers to whether methods such as increasing the
proportion of Chinese data and designing a tokenizer specifically for Chinese are employed to enhance performance
on Chinese tasks. Task describes the specific tasks for which the model is used, where z stands for MathQA
zero-shot, ¢ stands for MathQA with code, f stands for fine-tuning with CONIC10K, and t stands for MathQA with

low temperature.

Table 4: Prompts used in different MathQA tasks

Task Type Step Prompt Content
System You are a talented mathematician
MathQA zero-shot Question "Math problem from CONIC10K"

Organize Answersg

Please provide your final answer and ensure that this
answer is in its simplest form, without any additional
content; just output the answer itself.

MathQA with code

System

You are a programmer, you use python, sympy to
solve problems, set variables, set an Interval to
calculate the range of questions, expressions, and
use solve() function to calculate. Only give a python

code. (code cannot have external inputs and
graphical outputs)

Question
No Code

"Math problem from CON1C10K"
Please try to solve the problem using code, "math

problem from CONIC10K"

Run Time Error

"Error information", Please check the code carefully.

misinterpreting math functions, or misunderstand-
ing abstract formulations. (2) Common-sense mis-
takes — incorrect application of known mathemat-
ical rules or misuse of standard terminology. (3)
Case analysis failures — Omission of necessary
conditional reasoning, such as neglecting domain
restrictions or failing to consider sign-based cases.
(4) Boundary-related errors — misjudging open or
closed intervals, or incorrectly handling endpoint
inclusion.

In the following subsections, we present repre-
sentative examples of several error types to illus-
trate common failure patterns in LLM-generated
solutions.

D.1 Code-to-math translation errors

The problem of transformation between program-
ming languages and algebraic languages exists,
such as the following math problem:

It is known that O is the origin of the co-
ordinates, the focus of the parabola C:y? =
2px(p > 0) is F, and the P is a point above C,
PF is perpendicular to the x axis, () is a point
on the z axis, and PQ L OP. If |[FQ| = 6,
then the alignment equation for C' is?

The code provided by LLM go to Appendix
Code 1:

Listing 1: Wrong transform(By QWEN 72B)



| from sympy import symbols, Eqg, solve

2# Define symbols

3p = symbols ('p’, positive=True)

4# Given |FQ]|

sFQ = 6

6 # For the parabola y*2 = 2px, focus F
is at (p/2, 0)

7# Since PF is perpendicular to the x-—
axis, P has coordinates (p/2, sqgrt
(2px(p/2))) = (p/2, P)

8§ # PQ is perpendicular to OP, so Q is

on the x—axis and has coordinates

(p, 0)
9# The distance from F to Q is given as
FQl = 6
10 # Thus, |FQ| = |p - p/2| = |p/2| = 6,
which gives us p = 12
11 # Calculate p
2 p_value = solve (Egq(p / 2, FQ), p)I[0]
13# The directrix or latus rectum of the

parabola is at x
4directrix -p_value / 2
15 # Equation of the directrix
16 print (directrix)

p/2

In this problem, the model is expected to derive
the algebraic equations for the conic sections. How-
ever, it instead outputs a numerical value. Specifi-
cally, the question asks to generate the linear equa-
tions for the parabola, but the model only computes
and outputs the value of the directrix (x = —p/2)
without expressing it symbolically.

This failure likely stems from the model’s confu-
sion between numerical computation and symbolic
expression generation. Although some intermedi-
ate reasoning steps are partially correct, the model
prematurely terminates the process at a numeric re-
sult. This behavior reflects a limited understanding
of task intent, particularly the distinction between
symbolic synthesis and numerical solving, when
symbolic reasoning and numerical evaluation are
interwoven.

D.2 Knowledge-based errors

Model: Qwen-72B

math problem: Knowing that any point P on
the parabola y? = 4z, the distance from the
point P to the y axis is d, and for a given point
A(4,5), then What is the minimum value of
|PA|4d?

answer:\/34 — 1

LLM answer: To solve this problem, we
can make use of the geometric properties of
parabolas and the methods of analytic geome-
try. The given parabolic equation is 32 = 4z,
which is a standard parabola with an opening
to the right with its focus at (1, 0) and a colli-
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mation of x = —1.

For any point on the parabola P(z,y), the dis-
tance d from the y axis is |x|. However, under
the up-and-down symmetry of the parabola, =
is always non-negative, so d = x.

Requires |PA|The minimum value of d,
where A(4,5), we can observe that accord-
ing to the definition of a parabola, the distance
from the point P to the focal point is equal
to the distance from the point P to the align-
ment. This means that if we are able to convert
| P A|d is converted to the sum of the distances
from the point P to a certain point, we can use
this property to simplify the problem.
Bearing in mind that the focal point of the
parabola is F'(1,0), then the distance from
point P to the focal point F' is equal to the dis-
tance from point P to the alignment z = —1.
Therefore, |PF| = x1.

Now, we’re looking for |[PA|d = |PA|, the
minimum value of z. Note, |PA|x can ac-
tually be seen as the sum of the horizontal
distances from the point A to the point P to
the alignment. This can be further explained
as the length of the path from A to the point
P on the parabola and from P in a direction
parallel to the alignment.

In order to make this path the shortest, accord-
ing to the "law of reflection” in geometry (the
light rays start from one point and are reflected
to another point and have the smallest path
length), we want this path to be like the light
rays that start from A and are reflected by the
alignment and reach the focal point F'. This is
because when the P point is in the direction
of the extension line from A to F', |PA|x has
the smallest value.

So, we calculate the distance from A to F', as
| P A|T heminimumuvalueo fx. The distance
from the point A(4, 5) to the focus F'(1,0) is

|AF| = /(4 —1)2(5 - 0)2 = V925 = /34
V34|

So, | P A| The minimum value of d is

The analysis is correct, but LLM ignores a fact:
the distance from the point on the parabola to the
alignment is |x| + 1, not |z|!

This is a representative example of a knowledge-
based reasoning error, where the model adopts a
valid high-level strategy but fails to apply a funda-
mental mathematical fact—in this case, the correct



expression for the distance from a point to a verti-
cal line (i.e., |z — (—1)| = = + 1). Unlike purely
logical failures, this type of error arises from in-
complete or imprecise recall of domain-specific
definitions.

Such mistakes are common in LLMs, whose
reasoning is built on surface-level statistical associ-
ations rather than grounded symbolic manipulation.
While the model may imitate expert-like problem-
solving patterns, it lacks persistent internal repre-
sentations of formal mathematical concepts. Con-
sequently, it often exhibits partially correct but
incomplete reasoning: structurally coherent, yet
factually flawed due to misapplied or omitted defi-
nitions.

This case illustrates a broader challenge in LLM-
based mathematical reasoning: even when global
strategies are appropriate, success hinges on lo-
cal factual precision. Minor definitional inaccu-
racies—particularly in geometry or algebra—can
lead to incorrect conclusions despite otherwise co-
herent reasoning paths.

D.3 Case analysis failures

Model: Qwen-72B

math problem: The set point F;(0,—3),
F5(0,3), and the point P satisfies the condi-
tion | PFy|+ |PF,| = t+ 2 (¢is constant, and
t > 0), then what is the trajectory of the point
P?

answer: Line segment F1F2 or ellipse
LLM answer: Due to |PFy| + |PFy| =

t+ % is a constant (f > 0 is given by the ques-
tion), and the value is greater than F 5 = 6
(because according to the AM-GM inequality,
t+% > 24/t % = 6, and the equal sign holds
if and only if ¢ = 3). According to the defini-
tion of an ellipse, if the sum of the distances
from a point on a plane to two fixed points
(focal points) is constant, and this constant is
greater than the distance between the two fo-
cal points, then the trajectory of this point is
an ellipse. Thus, the trajectory of the point P
is an ellipse focused on F and F5.

We can see in the analysis that one of the answers
segment F1F2 is missing!

This error illustrates a common tendency of
LLMs: generalizing from dominant patterns, such
as associating a constant distance sum with ellipses,
without explicitly reasoning through conditional
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branches. In problems where the outcome depends
on parameter thresholds or equality constraints
(e.g., piecewise or boundary-sensitive definitions),
the model often defaults to the most prototypical
case. This pattern-matching behavior results in
incomplete reasoning, particularly when special
cases demand distinct logical treatment beyond
general rules.

E With Code, We Get Better Answer!

When we ask the large model to output the solution
code to the prompt, we find that there is model
analysis in Appendix Code 2, and the purpose of
asking the large model to give the code is to make
it more accurate in the operation.

Listing 2: Al combines code without losing analysis(By
QWEN 72B)

1 # Hyperbola asymptotes
om = 4/3
4# Since ¢ is the same for both conics,
we find a2 and b"2 for the
hyperbola
5# For a hyperbola, c"2 = a”2 + b"2,

and the slopes of the asymptotes
are b/a

6 # We know ¢ and m=b/a, so we can solve
for a”2 and b"2
8 # Set up equations based on the

relationship between a, and c
for the hyperbola
Eg(a*x*2 + bxx2,

Eq(b/a, m)

b,

9 eql
10 eq2

c_ellipsex*=*2)

Here is a complete example next.

math problem: For the problem D.2 that
LLM makes a mistake, the code helps it!

The code generated by LLM for this problem is
as follows 3:

Listing 3: code for Q1(By QWEN 72B)

| from sympy import symbols, solve
, sqrt, Abs

2 # Define the variable

diff,

3x = symbols (’x’, real=True, positive=
True)
+ # Given parabola equation y*2 = 4x, we
express y in terms of x
5y = 2%sqgrt (x)

6 # Distance from point P on the
parabola to point A(4,5)

7PA sgrt ((x — 4)*x2 + (y — 5)*%2)

8 # Distance d from point P to the y-
axis

od = Abs (x)
10 # The expression for |PA| + d
1l expression = PA + d




12 # Take the derivative of the
expression with respect to x

13derivative = diff (expression, x)

14# Solve the derivative equal to zero

to find critical points

15critical_points = solve(derivative, x)

16 # Check if there is a valid solution

that minimizes the expression
171f critical_points:

18 min_value = expression.subs(x,
critical_points[0])

19 else:

20 # If no critical point is found
within the domain, check the
boundary conditions

21 # For this problem, the boundary
condition would be that as x
approaches infinity,

22 # which is not applicable here
since we are looking for a
minimum.

23 # Thus, we assume there’s a typo or

misunderstanding in the
problem statement.

24 min_value = None

25 # Since we expect a numerical result
and our approach involves symbolic

computation,

26# We will attempt to find the minimum
value numerically by evaluating
the expression

27# at a point close to the critical
point obtained symbolically.

26 if min_value is not None:

29 min_value = min_value.evalf ()

30 else:

31 min_value = "Undefined under_given_
constraints"

32min_value
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