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Abstract—In recent years, modern techniques in deep learn-
ing and large-scale data sets have led to impressive progress in
3D instance segmentation, grasp pose estimation, and robotics.
This allows for accurate detection directly in 3D scenes, object-
and environment-aware grasp prediction, as well as stable and
repeatable robotic manipulation. This work aims to integrate
these cutting-edge methods into a comprehensive framework for
robotic interaction in human-centric environments. Specifically,
we leverage high-resolution point clouds from a commodity
scanner for open-vocabulary instance segmentation, alongside
grasp pose estimation, to demonstrate dynamic picking of
objects and opening of drawers. We show the performance
and robustness of our model in two sets of real-world ex-
periments evaluating dynamic object retrieval and drawer
opening, reporting a 51% and 82% success rate respectively.
To encourage further development of and experimentation with
our framework, we make the code and videos available at
https://spot-compose.github.io/.

I. INTRODUCTION

One of the pinnacle achievements in the field of robotics is
to develop systems capable of understanding and navigating
spaces designed for humans. This task poses a significant
challenge due to the high variability and complexity of
human-centric environments, requiring good semantic under-
standing and precise manipulation. Nonetheless, achieving
this goal is considered a significant milestone in technolog-
ical evolution, bringing with it strong efficiency and acces-
sibility improvements. Recent works in high-resolution 3D
scanning technologies, sophisticated perception models, and
intricate manipulation algorithms have collectively facilitated
a leap in robotic abilities, enabling more nuanced and effec-
tive interactions within our daily spaces. This study intro-
duces a framework that aims to utilize these advancements,
leveraging modern models for instance segmentation and
grasp pose estimation on top of the potent Boston Dynamics
Spot robot. Key contributions of this paper include:

« Introduction of a modular framework on top of the Spot
SDK, providing a flexible platform for the integration
of cutting-edge machine perception techniques.

o The framework uses advanced models for perception
and grasp estimation, enabling versatile interactions
with diverse objects in human-centric environments.

« We demonstrate the practical applicability of our frame-
work through real-world experiments, including dy-
namic object retrieval and drawer manipulation tasks.
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Fig. 1. Overview of the Spot-Compose pipeline. Given a previously
acquired point cloud, we segment the scene and localize the wanted object
via a natural language query. For object retrieval (top), we isolate the object
to determine the most effective grasp. For drawer manipulation (bottom) we
use the cabinet position to point our camera for 2D drawer detection.

II. RELATED WORK

3D instance segmentation. Given point cloud inputs, 3D
instance segmentation assigns each point a class label, dis-
tinguishing between different instances [1]-[8]. Mask3D [3]
directly predicts instance masks from point clouds, learning
instance queries through iterative attention to multi-scale
features. Recently, much research has been done in the field
of open-set segmentation. [9]-[11]. Takmaz et al. [9] expand
on Mask3D and leverage class-agnostic 3D instance masks
and multi-view fusion of CLIP-based image embeddings to
segment objects. In this work, we rely on OpenMask3D for
the localization of based on natural language queries.

Grasp pose estimation in point clouds. Given an ob-
ject, robotic grasping determines the most effective ways
for robotic two-finger grippers to grasp objects in various
situations [12]-[17]. Early work by Ten Pas et al. [18] and
others [19], [20] proposed sampling-based grasp estimation,
usually with the consequence of long inference times. More
recently, approaches have experimented with end-to-end
learning to address this issue [21], [22]. With AnyGrasp [23],
Fang et al. predict two-finger grasps directly on 3D point
cloud representations. It utilizes a dense supervision strategy
combining real perception and analytic labels in the spatial-
temporal domain, including awareness of objects’ center-of-
mass for improved grasp stability. We utilize AnyGrasp due
to its high performance and built-in environment awareness,
which simplifies grasp estimation significantly.

Robot task planning. Robot task planning refers to the
process of creating and organizing a series of actions for
a robot to achieve specific goals [14], [24]-[26]. In “ASC:
Adaptive Skill Coordination for Robotic Mobile Manipula-
tion” [27] presents a method for performing long-horizon
tasks like mobile pick-and-place using three key components:
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Fig. 2. Adaptive grasping and drawer interaction pipeline. On the left, we illustrate the grasping sequence initiated by the successful localization of
the watering can through 3D instance segmentation. Following this, an optimal robot positioning is computed by the navigation planner and the object is
grasped. The right side of the figure details the drawer detection and manipulation process. Multiple images are captured for robust detection. Subsequently,
the robot is maneuvered into position to facilitate drawer opening. This dual-phase approach demonstrates the integration of object detection, navigation
planning, and execution within a dynamic scene. On the respective sides we illustrate example objects and handles in various levels of difficulty.

a library of basic visuomotor skills, a skill coordination
policy, and a corrective policy for adapting skills in novel
situations. OK-Robot [28] presents an Open Knowledge-
based robotics framework integrating Vision-Language Mod-
els with navigation and grasping primitives for efficient pick-
and-drop operations in home environments. In contrast to
OK-Robot, we employ modern segmentation techniques and
directly rely on the 3D scene representation. We further
demonstrate interaction with articulated objects.

ITII. TECHNICAL COMPONENTS AND METHOD

Our objective is twofold: firstly, to enable the picking
of objects across a wide range of shapes and sizes; and
secondly, to facilitate access to concealed spaces, defined as
areas that become accessible only by manipulating elements
such as drawers or doors, and are otherwise inaccessible or
hidden from view. To do this, we require a variety of capa-
bilities. These are (A) semantic point cloud segmentation to
identify objects that can be interacted with, (B) point cloud-
dependent grasp pose estimation, (C) adaptive navigation,
and (D) dynamic drawer detection and subsequent estimation
of the axis of motion. Finally, in (E) we will provide a
brief overview of additional functionalities that can be readily
implemented with the aforementioned skills.

We utilize Boston Dynamics Spot [29].The framework is
built upon the associated SDK [30]. We wish to highlight the
modular nature of our approach, which would allow for the
integration of more advanced models as the field progresses.

A. Object localization via 3D instance segmentation

One integral element of our approach is an open-
vocabulary instance segmentation model, which we employ
to map our environment and then pinpoint any object of
interest specified through a natural language query.

Acquisition of 3D environmental data. We assume
the availability of a pre-scanned 3D representation of the
environment. These representations can be obtained through
various methods, including the use of modern smartphones
equipped with LiDAR scanners and an associated scanning

apps. We conduct all of our environment scans using an
iPhone 13 Pro Max [31] using the 3D Scanner App [32].
Open-vocabulary 3D Instance Segmentation. Contrary
to previous approaches, recent developments in 3D instance
segmentation enable the localization of any specified object
directly from the 3D point cloud data. This represents a
significant advancement over traditional 2D instance seg-
mentation by facilitating the extraction of a detailed, object-
specific mask at the point level. We propose, that utilizing
this mask should aid in subsequent planning and picking
processes, allowing for more precise object manipulation.
In this paper, we deploy OpenMask3D [9], which on top
of instance segmentation, allows querying of segmentation
masks based on natural language input. This enhances the
robot by allowing intuitive command input in natural lan-
guage, broadening accessibility and user-friendliness.

B. Adaptive grasping

The crucial stage in robotic object manipulation lies in the
grasp pose estimation. We implement the AnyGrasp system
[23] for this purpose. Fang et al. describe AnyGrasp as a
“unified system for fast, accurate, 7-DoF and temporally-
continuous grasp pose detection, using a parallel gripper”.
This method is notably aware of the object’s center of
gravity and and its environment, filtering grasps that would
be rendered impossible by surrounding obstacles.

Inference. By default, AnyGrasp is tuned to identify grasp
poses based on the frontal view of the given point cloud. To
expand our grasp detection capabilities and encompass all
potential grasp poses, we run multiple detection iterations,
each with distinct initial rotations of the object. For each
perspective, we obtain the top k grasps for post-processing.
Subsequently, we filter the poses based on a set of criteria,
namely (1) have a positive confidence score and (2) be
located on the object point cloud.

C. Adaptive navigation and joint optimization

Before grasping, we need to decide where to position the
robot, such that it has a good vantage point. For this, we



sample a set of positions radiating outward from the grasp
item. For each position, we check whether it (1) lies within
the scene and (2) has a direct line of sight to the object. Over
the remaining body and grasp poses we now decide on the
best combination via joint optimization.

S = Sgrasp + 2fbody * Sbody T )valign * Salign (1)
where, sgrasp 1S the confidence score of the grasp, while

Sbody = dobstacles — Aitemitem )

defines a metric on the body pose, such that dypstacles denotes

the distance to the nearest non-grasp item object in the

environment, while dje;, denotes the distance to the grasp

item. By adjusting Ajem, this metric strikes a good trade-

off between avoiding collisions with the environment, while

staying close enough to the object to allow for easy grasping.
Finally, s4jign represents
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i.e. the dot product between the normalized vectors X,
pointing from robot to target, and Xy, pointing in the grasp
direction, scaled by some temperature 7. This term encour-
ages body and grasp positions to be aligned with each other.
We add a tanh term to allow for slight misalignments .

We experimentally set Apogy = 0.01, Agiign = 0.02, Aiem =
0.5, and T = 1. Note that not all scores s have the same initial
magnitude. This configuration enables the model to focus on
the following aspects in order of importance: (1) finding the
best grasp, (2) choosing a body position best aligned with
that grasp, and (3) choosing a body position distanced from
any obstacles. We have found these parameters to work well
for our environment, however encourage experimentation
with these values for new locations.

D. Dynamic drawer detection and motion estimation

The second key capability we introduce involves the
dynamic detection and manipulation of drawers, comprising
three subtasks: drawer and handle detection, estimation of
the axis of motion, and actual grasp planning. This skill
is significant, enabling the robot to access spaces that are
typically concealed, such as when searching for lost objects.

Drawer and handle detection. To initially identify all
cabinets within the environment, we apply the method out-
lined in Section III-A. However, for the detection of individ-
ual drawers and associated handles, we find that 3D instance
segmentation falls short. The lack of distinct geometrical
features in drawers and the insufficient resolution of our point
cloud render it ineffective for accurately segmenting handles.
Instead, we opt to leverage the RGBD camera embedded
in the robot’s gripper to capture images of the cabinet
and localize handles in the RGB image using 2D object
detection techniques. The final handle pose is computed by
backprojecting into 3D using the associated depth value. For
2D handle detection, we finetune a YOLOvV8 model [33] on
the DoorDetect dataset [34]. To increase the robustness of

our detection, we capture multiple images, utilizing Iterative
Farthest Point Sampling (see Fig. 2).

Axis of motion estimation. A crucial aspect of the drawer
pulling action is determining the axis of motion, which
dictates the direction in which the drawer must be opened.
We find that this motion typically aligns with the normal of
the drawer front. To identify 3D points related to the drawer
front, one might consider selecting points within a specific
constant offset from the handle detection. However, this
approach fails to generalize effectively due to the variable
distance to the camera and the drawer’s shape. Instead, we
leverage the fact that our model successfully identifies both
drawers and handles, and employ Hungarian Matching [35]
to pair the two detections. The matching cost is defined as

Chiungarian (i, j) = — (K -IoA(h;,d;) + Conf(d;)),  (4)

where h; and d; denote the i" handle and the j® drawer
instance, respectively. Here, Conf(d j) is the confidence score
of the drawer prediction, and IoA(h;,d;) (“Intersection over
Area”), represents the proportion of the handle’s bounding
box that overlaps with the drawer’s bounding box,

Intersection(h;,d;)
Area(h;)

This cost function is prioritizes handle bounding boxes that
fall within the drawer bounding boxes, using the confidence
of the drawer detection as a secondary criterion. The constant
k = 10 balances the significance of these two factors.

To estimate the axis of motion, we project 3D depth
capture into the image, select all points that lie within the
drawer’s, but not the handle’s, bounding box, and employ
RanSAC [36] plane estimation [37].

Refinement and impedance-based pulling. After esti-
mating all the necessary components for the pulling motion,
the remaining step is execution. We position the robot at a
predetermined distance in front of the cabinet, aligning it
parallel to the axis of motion. Given that our predictions
are unlikely to be perfectly accurate, we implement two
additional refinements. The first involves capturing another
image in front of the drawer to refine both the coordinate
and the axis of motion from a closer proximity. Secondly,
an impedance-based pulling motion allows the robot some
flexibility in directions orthogonal to the axis of motion.

ToA (i, d;) = 5)

E. Expansion of capabilities

With the foundational framework established, extending
the system to incorporate additional functionalities becomes
a relatively straightforward task.

Playing fetch. Combining an appropriate detection model,
such as VitPose [38] with the object retrieval function
described in Section III-B, we can deliver objects to humans.

Search. The ability to open and close drawers is only one
building block. When this functionality is integrated with the
camera located on the end-effector, alongside a contemporary
open-vocabulary object detection approach (such as OWLv2
[39]), it becomes straightforward to develop a mobile search
robot capable of exploring concealed areas.
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Grasping experiment results. To evaluate the grasping capability of our framework, we conduct 59 trial runs across six different scenes and

with 13 distinct objects. The test includes items and placements of varying difficulty. We observed an overall success rate of 51%, with the highest failure
rate occurring in detection and manipulation. Search experiment results. For this evaluation, we conduct 16 runs with six individual drawers. Moreover,
we explore combinations of 15 handles and 19 objects, experimenting with various pairings. We observe a 82% success rate, with the majority of failure
cases being connected to bad perception, especially an inaccurate Time-of-Flight depth sensor.

IV. EXPERIMENTS

We assess our framework on two separate experiments:
(1) grasping, and (2) search. The experiments are designed
to evaluate the high level functions of our model, while
highlighting multiple the facets of the framework.

Grasping. To test the dynamic grasping ability of our
model, we evaluate it on a set of 6 different scenes with
a varying difficulty levels of both object graspability and
placement. For an example of different object difficulties,
please refer to Fig. 2. The level of difficulty was decided
based on deformability of the object and amount of possible
grasps. All objects must be placed in a free-standing manner.
Each run is repeated once, to test for robustness and our
results are illustrated in Fig. 3 and Table I. We observe an
overall success rate of 51%, where the ease of grasping
a respective object is the main predictor of a successful
overall grasp. While we are able to manipulate even very
difficult objects, such as watering cans, and navigate difficult
locations, robustness in these cases tends to suffer.

TABLE 1
SUCCESS RATE BREAKDOWN: OBJECT VS. PLACEMENT DIFFICULTY.
WE ILLUSTRATE THE MANIPULATION SUCCESS RATE ACROSS
DIFFERENT DIFFICULTY LEVELS OF OBJECTS AND PLACEMENTS,
OBSERVING AN INVERSE CORRELATION WITH HIGHER DIFFICULTY.

Object Placement Easy | Medium | Hard
Easy 75% 100% 100%
Medium 90% 75% 50%
Hard 83% 25% 40%

Search. We aim to evaluate the drawer localization and
2D detection capabilities of our approach. The setup is
as follows: We initialize the robot with the position of
the two cabinets derived via instance segmentation of the
environment, as well as a natural language search term.
Subsequently, the robot is tasked with detecting all drawers
within the cabinets, opening them to inspect their contents,
and identifying any items within. Should the sought-after
object be found among the contents, the robot must record

the drawer in which the object was located in 3D space.
The results are illustrated in Fig 3. We report an 82% suc-
cess rate, with the majority of failure cases being related to
inaccurate depth sensing. By capturing multiple perspectives
of a given cabinet, we are able to robustly detect even small,
color-matching, or oddly-shaped handles in the vast majority
of cases. However, this is at the cost of additional inference
time, representing a trade-off for real-work applications.
Inference times. We list the expected inference times
for localization (0.221s), one-time 3D instance segmentation
(271s) grasp pose estimation (13.7s), navigation planning
(24.0s), joint optimization (0.3ms), drawer detection (0.84s)
and zero-shot object detection (2.85s). All times except for
localization and optimization include latency, as they are
executed on an external NVIDIA RTX 4090 GPU [40].

V. CONCLUSION

In this paper, we have presented a comprehensive frame-
work to efficiently build new functionality for the Spot robot,
increasing accessibility for researchers beyond the field of
robotics. We utilize it to enhance the capabilities of robots
to interact within human-centric environments, specifically
through dynamic object retrieval and drawer manipulation
tasks. Our work leverages state-of-the-art techniques in 3D
instance segmentation, grasp pose estimation, and object de-
tection to enable mobile manipulation in real-world settings.

The experiments underline the practical applicability of
our approach, showcasing the potential for robots to per-
form complex tasks in environments designed for humans.
Finally, the modular nature of our framework allows for the
seamless integration of future advancements in perception
and manipulation technologies.

Current limitations of our approach include long latencies
arising from 3D instance segmentation and 360° grasp pose
estimation. In future work we plan to focus on efficient grasp
trajectory planning and more sophisticated joint optimization
to enhance the robustness of our model. We encourage
everybody to build on top of our framework, enabling more
streamlined implementation and sophisticated actions.
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