
Neural Combinatorial Optimization for Robust
Routing Problem with Uncertain Travel Times

Pei Xiao1, Zizhen Zhang1∗, Jinbiao Chen1, Jiahai Wang1, Zhenzhen Zhang2
School of Computer Science and Engineering, Sun Yat-sen University, P.R. China 1

School of Economics and Management, Tongji University, P.R. China 2

xiaop39@mail2.sysu.edu.cn, zhangzzh7@mail.sysu.edu.cn
chenjb69@mail2.sysu.edu.cn, wangjiah@mail.sysu.edu.cn

zhenzhenzhang@tongji.edu.cn

Abstract

We consider the robust routing problem with uncertain travel times under the
min-max regret criterion, which represents an extended and robust version of the
classic traveling salesman problem (TSP) and vehicle routing problem (VRP).
The general budget uncertainty set is employed to capture the uncertainty, which
provides the capability to control the conservatism of obtained solutions and covers
the commonly used interval uncertainty set as a special case. The goal is to obtain
a robust solution that minimizes the maximum deviation from the optimal routing
time in the worst-case scenario. Given the significant advancements and broad
applications of neural combinatorial optimization methods in recent years, we
present our initial attempt to combine neural approaches for solving this problem.
We propose a dual multi-head cross attention mechanism to extract problem features
represented by the inputted uncertainty sets. To tackle the built-in maximization
problem, we derive the regret value by invoking a pre-trained model, subsequently
utilizing it as the reward during the model training. Our experimental results on
the robust TSP and VRP demonstrate the efficacy of our neural combinatorial
optimization method, showcasing its ability to efficiently handle the robust routing
problem of various sizes within a shorter time compared with alternative heuristic
approaches.

1 Introduction

The classic Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) represent
fundamental NP-hard combinatorial optimization challenges. In these routing problems, an agent
commences from a designated node and fulfills specific task requisites. The primary objective
is to minimize the total travel time or cost of access. However, the classic routing problem is
mathematically simplified and idealized, lacking the necessary robustness to handle the complexities
of the real world. In actual scenarios, the existence of various uncertain factors may significantly
impact the final outcome. For example, considering the travel time between two nodes, it is not
only affected by objective factors such as traffic conditions, road quality, and weather, but also
by subjective factors such as the traveler’s status and mood. When planning a trip and estimating
travel time, uncertainty about the actual travel conditions may arise. To ensure a satisfactory travel
experience, it is sensible to adopt a robust approach, which involves seeking a solution that is less
vulnerable to adverse conditions, even in the worst-case scenario.

While there are several robust routing formulations in the literature, this study primarily focuses on
classic robust routing problems featuring a budget uncertainty set. The underlying idea is that the
uncertainty support set is represented by a set of interval data, but usually not all arcs are affected to

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

achieve their worst values simultaneously in one realistic scenario. More concretely, the travel time
between two nodes is given by a range with upper and lower values, and a parameter Γ is used to
specify the number of affected arcs. In addition, the min-max regret criterion (also known as robust
deviation criterion [1]) is generally considered, which avoids overconservatism while considering
certain degree of robustness. It aims to minimize the maximum deviation from the optimal route over
the realization of edge costs in all scenarios. Detailed definition of such criterion will be provided in
Section 3.

To tackle the robust routing problem, traditional robust optimization methods have been employed,
including both exact and heuristic approaches. These methods treat the problem instances individually
and aim to generate optimal or near-optimal robust solutions within a reasonable computation time.
However, their efficiency diminishes when dealing with a large set of instances that exhibit similar
interval uncertainty structures. Specifically, the uncertain travel time of edges in different instances
may share comparable upper and lower limits, following certain hourly or daily patterns. To overcome
these limitations, we can leverage advanced neural techniques to exploit the underlying patterns and
similarities in the data, thus enabling the derivation of more efficient solutions.

In summary, this paper attempts to explore the neural combination optimization methods to address
the robust routing problem with uncertain travel times characterized by budget uncertainty set. The
contributions of our work can be highlighted as follows.

• We introduce the robust routing problem with the general budget uncertainty set, which
covers the interval uncertainty set as a special case, and treat the problem from the perspective
of deep reinforcement learning.

• We propose an end-to-end neural model to capture the features of robust routing problem,
and use a pre-trained neural model to efficiently calculate the reward with respect to the
worst-case scenario during training.

• We conduct extensive experiments on Robust Traveling Salesman Problem (RTSP) and
Robust Capacitated Vehicle Routing Problem (RVCRP) instances. The results substantiate
the efficacy of our approach in efficiently handling robust routing problems across diverse
scales within shorter computation time.

The remainder of the paper is structured as follows. In Section 2, we provide an overview of existing
works related to robust optimization and neural combinatorial optimization, respectively. In Section
3, taking the Robust Traveling problem as an example, we describe the problem definition of RTSP
in detail. In Section 4, we elaborate the proposed neural combinatorial optimization method. In
Section 5, we provide experimental results for different RTSP and RCVRP instances. In Section 6,
we conclude our work with possible future directions. 1

2 Related Work

Robust Optimization. As early as the 1950s, Bellman and Zadeh [2] initiated research on uncer-
tainty optimization. Robust optimization, as introduced by Ben-Tal et al. [3], adopts a conservative
approach based on worst-case optimization, ensuring that the obtained solution remains feasible for
any possible realization of uncertain parameters. The formulation of robust optimization models
varies significantly depending on the choice of uncertainty sets and robustness standards. Uncertainty
sets encompass various types, including interval sets [3], ellipsoid sets [4, 3], polyhedron sets [5],
budget sets [6], and more. Robustness standards encompass criteria such as the normal min-max
standard, min-max-regret standard [1], adjustable robustness [7], etc. Considering the literature of
RTSP, Montemanni et al. [8] proposed exact algorithms for RTSP with interval uncertainty sets,
employing the robust deviation criterion. Chassein and Goerigk [9] introduced a recoverable robust
model that allows a tour to modify a limited number of edges once a scenario becomes known. Lu
et al. [10] proposed a heuristic method based on simulated annealing and the LKH algorithm to solve
RTSP with the min-max regret criterion and interval uncertainty sets. Additionally, Hasegawa and
Wu [11] presented an intriguing heuristic edge generation algorithm to tackle this problem. On the
issue of Robust VRP, Sungur et al. [12] applied the MTZ model to the traditional CVRP problem and

1https://github.com/xchihiro/Robust-VRP

2

https://github.com/xchihiro/Robust-VRP

robustly modeled demand uncertainty. Subsequently, Solano-Charris et al. [13] introduced a meta-
heuristic algorithm based on local search to address the lexicographic min-max criterion. Eufinger
et al. [14] proposed a heuristic algorithm for solving the k-adaptability min-max-min criterion.

Neural Combinatorial Optimization. Neural combinatorial optimization methods for end-to-end
solving of the Vehicle Routing Problem (VRP) can be broadly categorized into supervised learning
(SL) and deep reinforcement learning (DRL) approaches [15]. While SL requires high-quality
solutions to the VRP as training labels [16–18], DRL methods are divided into value-based [19–
21] and policy-based techniques. Given the complexity of routing policies, policy-based DRL
approaches have become the mainstream choice, achieving notable success in various combinatorial
optimization problems [22–24], including routing [25–28]. In recent years, advancements have
continued. For example, Zhang et al. [29] introduced a DRL method employing an edge-based
graph attention network for solving the practical Vehicle Routing Problem with Time Windows
(VRPTW). Additionally, Kwon et al. [30] designed a neural model utilizing cross attention to handle
matrix inputs, while Zhou et al. [31] presented a general meta-learning framework that considers
the generalization of size and distribution in vehicle routing problems. These studies collectively
contribute to the advancement of neural combinatorial optimization methods, showcasing their ability
to tackle various types of routing problems.

Neural Methods for Robust Optimization. In recent studies, there have been initial attempts to
apply neural methods to the field of robust optimization. Jacobs et al. [32] employed reinforcement
learning to solve min-max robust optimization problems. They precisely solved the inner minimization
problem and utilized the DQN method to handle the outer problem. Dumouchelle et al. [33] proposed
an efficient machine-learning-driven instantiation of the column-and-constraint generation algorithm
for two-stage min-max-min robust optimization problems. Our approach differs in that we solely
train a neural model capable of rapidly constructing high-quality solutions through inference. By
focusing on training a neural model, we aim to provide a novel perspective on addressing the robust
routing problem.

3 Problem Description

In the subsequent discussion, we employ RTSP as a paradigmatic illustration of the robust routing
problem for comprehensive exposition. More detailed formulations of RTSP and RCVRP can be
referenced in Appendix 7.3.

3.1 Nominal TSP

The traveling salesman problem is a classic combinatorial optimization problem mathematically
defined as follows. Given a complete symmetric graph G = (V,E), where V = {1, 2..., n} is the
node set, tij , as a nominal value, denote the expected travel time of edge (i, j) ∈ E. Here, xij is a
binary variable that indicates whether the edge (i, j) is selected for the route, with 1 for selection and
0 for non-selection. The objective is to find a close route with the minimum total travel time.

For simplicity, we hereinafter use S to represent the solution space, which is the set of all feasible
TSP routes.

3.2 Robust TSP

Based on historical data, it is relatively straightforward to determine the fluctuation range [t−ij , t
+
ij]

of travel time for each edge (i, j), where t−ij and t+ij denote the lower and upper bounds of possible
values, respectively. The interval uncertainty set is defined as Uinterval = {t|tij ∈ [t−ij , t

+
ij],∀(i, j) ∈

E} = {t|tij = t−ij + t̂ijηij , 0 ≤ ηij ≤ 1,∀(i, j) ∈ E}, where t̂ij = t+ij − t−ij . To provide flexibility
to control the conservatism of obtained solutions, the budget uncertainty set is usually considered,
which is defined as Ubudget = {t|tij = t−ij + t̂ijηij , 0 ≤ ηij ≤ 1,∀(i, j) ∈ E;

∑
(i,j)∈E ηij ≤ Γ}.

Here, the parameter Γ controls the number of affected edges. It is apparent that the budget uncertainty
set simplifies to the interval uncertainty set when Γ ≥

(
n
2

)
and to the deterministic version when

Γ = 0. Hence, the budget uncertainty set demonstrates a certain level of generalization.

3

To specify the objective of RTSP, the min-max-regret criterion is adopted. For better understanding,
we first introduce the concept of regret.
Definition 3.1 (regret). Given a TSP solution x and a scenario u, the regret value denotes the
difference between the objective value of x and the optimal solution under u.

regret(x, u) =
∑

(i,j)∈E

tuijxij −min
y∈S

∑
(i,j)∈E

tuijyij , (1)

where tuij is the actual travel time of edge (i, j) under scenario u. y is the 0-1 decision variable of
nominal TSP under scenario u.
Definition 3.2 (min-max-regret criterion). It aims to find a TSP solution that minimizes the
maximum regret over all realizations of edge costs.

min
x∈S

max
u∈U

regret(x, u), (2)

where U is the uncertainty set including all possible scenarios.

From Equation (2), it is evident that RTSP is difficult to solve directly due to its triple optimality
judgment. However, it is worth mentioning that in Montemanni et al. [8], a theorem regarding the
derivation of the worst-case scenario in budget uncertainty set is proposed under the min-max-regret
criterion. By leveraging this theorem, the complexity of RTSP can be significantly reduced.
Theorem 1. Given a TSP solution x, the worst-case scenario in budget uncertainty set for solution x
(i.e., the scenario that maximizes the regret of solution x) is the one where exactly Γ edges with the
largest upper bound in x takes its upper bound (i.e., ηij = 1 and tij = t−ij + t̂ij), and the remaining
edges take its lower bound (i.e., ηij = 0 and tij = t−ij) .

Proof. See Appendix 7.1.

Given that the interval uncertainty set is a special case of the budget uncertainty set with Γ ≥
(
n
2

)
, a

corollary can be outlined as follows.
Corollary 1. Given a TSP solution x, the worst-case scenario in interval uncertainty set for solution
x (i.e., the scenario that maximizes the regret of solution x) is the one where all the traversed edges
of solution x reach their upper bound limit and the remaining edges reach their lower bound limit.

Taking the interval uncertainty for example, let wc(x) denote the worst-case scenario for solution x.
Its associated travel time twc(x)ij is given by:

t
wc(x)
ij = xijt

+
ij + (1− xij)t

−
ij , ∀(i, j) ∈ E (3)

Therefore, the formulation of RTSP can be simply expressed as:

min
x∈S

{
∑

(i,j)∈E

t+ijxij −min
y∈S

∑
(i,j)∈E

t
wc(x)
ij yij}. (4)

In Figure 1, we give a specific example to illustrate the solution process of RTSP with interval
uncertainty. There are 4 nodes and 6 edges. Each edge is associated with an uncertainty interval (see
Figure 1a). Assuming that a feasible solution x is “1 → 2 → 3 → 4 → 1” represented by the green
edges, its nominal total time is 5 + 9 + 4 + 4 = 22. According to Corollary 1, we can obtain the
worst-case scenario wc(x) with respect to x, as indicated by the edge values in Figure 1b. In this
case, we can determine the optimal solution under the scenario wc(x), represented by the red edges
in Figure 1c, with a total time 5 + 1 + 4 + 4 = 14. The max-regret value for x is then calculated as
22− 14 = 8. By obtaining the max-regret for every feasible solution, the final optimal solution is the
one with the minimum max-regret.

4 Methodology

The objective of the robust routing problem is to discover a robust route that minimizes the max-
regret. Only when a route is complete can we calculate its max-regret value. This observation bears
resemblance to the concept of delayed reward in deep reinforcement learning. We propose employing
the neural combinatorial optimization method to construct such route in an end-to-end manner. To
elaborate on our approach, we also employ RTSP with interval uncertainty for the study.

4

1 2

4 3

[3,4]

[2,5]

[3,9]

[1,4]

1 2

4 3

[4] [9]

[4]

[5]
1 2

4 3

[4] [9]

[4]

[5]

sol x: 1-2-3-4-1

wc(x) optimal sol y in wc(x)

(𝑎) (𝑏) (𝑐)

Figure 1: An instance of RTSP with interval uncertainty. (a) Interval support set. (b) Worst case
scenario wc(x) corresponding to route x. (c) Optimal TSP solution under scenario wc(x).

4.1 Solution Framework

ℎ𝜑1

ℎ𝜑𝟐

…

ℎ𝜑𝒏

ℎ𝜓1

ℎ𝜓𝟐

…

ℎ𝜓𝒏

ℎ𝜑1
+ ℎ𝜑2

+ ... ℎ𝜑n
+

ℎ𝜓1
+ ℎ𝜓2

+ ... ℎ𝜓𝑛
+

ℎ𝜑1
− ℎ𝜑2

− ... ℎ𝜑𝑛
−

ℎ𝜓1
− ℎ𝜓2

− ... ℎ𝜓𝑛
−

𝑃𝜓1⋯𝑃𝜓𝑛

𝑞

𝑘
𝑣

Up_Matrix

Low_Matrix

Input

Output

Encoder

Decoder

Masked
Multi-head
Attention

Single
Attention

&
Scale

softmax

context State

Action 𝑎

PretrainedTsp

Done? 𝑟 = 𝟎

𝑤𝑐(𝜋)

𝑐𝑜𝑠𝑡(𝜋)

𝜋

𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑤𝑐 𝜋)𝑟 = ⊝

No

Y
e

s

Reward 𝑟Update
MatNet

MatNet

Figure 2: The complete solution framework of our method. Variable a represents the action of
selecting the next node according to the probability distribution. The reward r is a sparse variable
that takes its max-regret value only in the complete sequence, while being set to zero for all other
time steps.

The overall solution framework, as illustrated in Figure 2, is based on the encoder-decoder model. In
this model, the encoder component receives the input data and exploits a series of neural networks to
extract embeddings that represent the problem features. These embeddings are then utilized by the
decoder component to compute probabilities for node selection and construct a complete solution
in an autoregressive manner. Specifically, the model trains a stochastic policy p(π|s) to generate a
solution x, or a permutation π equivalently, for an instance s. It is parameterized by θ as:

pθ(π|s) =
n∏
t=1

pθ(πt|s, π1:t−1). (5)

Note that the input data consists of a dual-weighted graph, where each edge is associated with an
upper value and a lower value. Taking inspiration from MatNet [30], we treat the input as two
matrices: one composed of the upper range values (“Up_Matrix”), and the other composed of the
lower range values (“Low_Matrix”). These matrices are then fed into the encoder.

Furthermore, the model requires a reward signal for adjusting the network weight parameters. Once
all the decoding steps are complete, we obtain a nominal solution π for the instance s. The loss
function is defined as:

L(θ|s) = Epθ(π|s)[R(π)], (6)

where R(π) is the expectation of the robustness of π, or its (negative) reward, given by

R(π) = t+(π)− TSP ∗(wc(π)). (7)

Equation (7) is originated from Equation (4), where t+(π) is the total travel time of solution π using
the upper range value. TSP ∗(wc(π)) calculates the optimal TSP route under the worst-case scenario

5

with respect to solution π. Because a large number of samples has to be generated to train the model,
we need to find a solver to tackle TSP efficiently. In fact, it is not necessary to exactly solve TSP in
the training stage due to the expectation of R(π) and high complexity of TSP. We turn to approximate
optimal solutions by using a pre-trained TSP model detailed in Section 4.3.

4.2 Model Architecture

4.2.1 Encoder

The encoder takes two matrices (“Up_Matrix" and “Low_Matrix") as the input. Each matrix can
be regarded as a bipartite graph G = (Φ,Ψ, D), where Φ = (ϕ1, . . . , ϕn) is the set of nodes with
outgoing edges, Ψ = (ψ1, . . . , ψn) is the set of nodes with incoming edges, and D = [dij]n×n gives
the edge values by the corresponding matrix.

We extract the feature embeddings of Φ and Ψ, denoted as hΦ and hΨ, using MatNet [30] (detailed
architecture can be found in Appendix 7.7). To achieve this, we initialize the initial embedding h0ϕi

for
each ϕi ∈ Φ as a zero vector, enabling the model to support variable-sized inputs. For each ψj ∈ Ψ,
the initial embedding h0ψj

is initialized as a one-hot vector to obtain discriminative first attention
layer representations. Next, these initial embeddings are combined with the corresponding matrix D
and passed through L attention layers to iteratively update the embeddings. It should be noted that
the encoding process for sets Φ and Ψ is performed mutually. Specifically, for the encoding process
of set Φ, hΦ serves as the query vector, hψ acts as the key-value vector, and the matrix D is utilized
for weighted fusion. Therefore, we obtain the updated embedding h′Φ as the output of the MatNet:
h′Φ = MatNet(hΦ, hΨ, D). Conversely, for the encoding process of set Ψ, we swap the roles of hΦ
and hΨ and employ the transpose of matrix D. Consequently, we have h′Ψ = MatNet(hΨ, hΦ, DT).

Since there are two matrices involved, we use h+Φ and h+Ψ to denote the output embeddings for
“Up_Matrix”. Similarly, we use h−Φ and h−Ψ to denote the output embeddings for “Low_Matrix”.
Finally, the graph embeddings, denoted as a pair (hΦ, hΨ), are obtained by fusing the features
of “Up_Matrix” and “Low_Matrix”. We simply perform the summation on their embeddings:
hΦ = h+Φ + h−Φ , hΨ = h+Ψ + h−Ψ.

4.2.2 Decoder

The decoder module generates a complete solution in an autoregressive manner based on the graph
embeddings (hΦ, hΨ) obtained from the encoder.

The key component of the decoder is the masked multi-head cross attention mechanism. At each
decoding step t, it utilizes hψj

(j = 1, . . . , n) as the key/value vector (k/v for short), and a context
vector hc as the query vector (q for short), which is formed by concatenating hΦ with the first and
last nodes of the current solution, i.e., hc = [hϕ1 , hϕπt

]. The multi-head cross attention operation is
then performed and mask nodes that have already been visited.

After calculating the compatibilities u(c)j (c symbolizes the current context node), the decoder pro-
ceeds to compute the probabilities for the remaining unmasked nodes. This probability computation
is accomplished using a single-head attention mechanism. To scale the compatibility results within
the range of [−ζ, ζ] (ζ = 10), the tanh function is applied. Subsequently, a softmax function is
utilized to calculate the final output probability vector.

u(c)j =

{
ζ ∗ tanh(q(c)k

T
j√

dk
), if j not masked;

−∞, otherwise.
(8)

pj = pθ(πt = j|s, π1:t−1) =
eu(c)j∑n

j′=1 e
u(c)j′

. (9)

At last, the decoder selects a node according to the probability vector and proceeds to the next
decoding step.

4.3 Training

6

Algorithm 1 Training process for the RTSP model
Input: Sample set S, number of epochs E, number of
steps per epoch T , batch size B, total number of starting
nodes per instance n
Initialization: policy network parameter θ
1: for epoch← 1 to E do
2: for step← 1 to T do
3: si ← SampleInstance(S) ∀i ∈ {1, ..., B}.
4: {st1i , st2i , ..., stni } ← StartNodes(si)

∀i ∈ {1, ..., B}.
5: πj

i ← SampleRollout(stji , si, pθ)
∀i ∈ {1, ..., B}, ∀j ∈ {1, ..., n}.

6: wcji ←WorstCaseTSP(πj
i)

∀i ∈ {1, ..., B}, ∀j ∈ {1, ..., n}.
7: R(πj

i)←
∑

wcjiπ
j
i - PretrainedTSP(wcji)

∀i ∈ {1, ..., B}, ∀j ∈ {1, ..., n}.
8: bi ← 1

n

∑n
j=1 R(πj

i) ∀i ∈ {1, ..., B}.
9: ∇θJ(θ)←

1
Bn

∑B
i=1

∑n
j=1(R(πj

i)− bi)∇θ log pθ(π
j
i).

10: θ ← θ + α∇θJ(θ).
11: end for
12: end for

To train the model for RTSP, we adopt a combi-
nation of the classic REINFORCE [34] policy
gradient algorithm and the POMO training ap-
proach [27], which primarily exploits the solu-
tion symmetry. We utilize Monte Carlo meth-
ods to sample n solution trajectories for each
instance, with each trajectory using a different
starting node. The reward is computed for each
of these n trajectories, and the average reward
of the n trajectories is used as a shared baseline
within a mini-batch. To maximize the expected
return J , we employ gradient ascent to approx-
imate J , and the Adam optimizer [35] is used to
optimize the policy network parameters.

In the following equations, πi represents the
generated solution in the i-th sampled trajectory,
and R(π) denotes the reward of the solution as
defined in Equation (7).

To efficiently calculate the reward R(π), a pre-
trained “MatNet” is used as a TSP solver. Since
a TSP instance can also be represented by a
bipartite graph, it is inputted into the MatNet
to construct a TSP route. Multiple greedy trajectories with different starting nodes and instance
augmentation are utilized to generate TSP solutions.

∇θJ(θ) ≈
1

n

n∑
i=1

(R(πi)− b(s))∇θ logpθ (πi|s), b(s) =
1

n

n∑
i=1

R(πi). (10)

Finally, Algorithm 1 outlines the training process for RTSP. In line 7, we feed the worst-case scenario
corresponding to the current solution into the pre-trained TSP model, which provides us with a
near-optimal TSP solution as feedback.

4.4 Inference

Once the RTSP model is trained, it can be used to make fast inference on a batch of instances.
Algorithm 2 presents the overall inference process.

Algorithm 2 Inference with the pre-trained TSP
model
Input: instance s, augmentation factor K, policy pθ ,
total number of starting nodes per instance n
Output: target solution π∗, target objective value obj∗

1: {s1, ..., sK} ← Augment_Onehot_Embeddings(s).
2: {st1k, ..., stnk} ← StartNodes(sk)
∀k ∈ {1, ...,K}.

3: πj
k ← GreedyRollout(stjk, s, pθ)
∀j ∈ {1, ..., n},∀k ∈ {1, ...,K}.

4: wcjk ←WorstCaseTSP(πj
k)

∀j ∈ {1, ..., n},∀k ∈ {1, ...,K}.
5: R(πj

k)←
∑

wcjkπ
j
k - PretrainedTSP(wcjk)

∀j ∈ {1, ..., n},∀k ∈ {1, ...,K}.
6: kmax, jmax← argmaxk,jR(πj

k).
7: π∗← πjmax

kmax
.

8: obj∗←
∑

wc(π∗)π∗ −Gurobi(wc(π∗)).
9: return π∗, obj∗.

We use the POMO inference approach to sam-
ple multi-start solutions. Instance augmentation
[30] during inference can also be adjusted to
improve the solution quality. Concretely, we
employ multiple independent randomizations
on the initial one-hot node embeddings h0ψj

for
each instance to explore various paths towards
the optimal solution. Since two matrices are
inputted to our model, they share the same ran-
domized one-hot vector. Ultimately, the best
solution is selected from the multiple generated
solutions.

Recall that our proposed method is still an ap-
proximate approach. To ensure a fair and accu-
rate comparison of the final results during the
experimental sessions, we adopt a consistent ap-
proach by utilizing an exact TSP solver, namely
Gurobi2 , to determine the target value achieved
through different methods (line 8).

2https://pypi.org/project/gurobipy

7

https://pypi.org/project/gurobipy

5 Experiments

Our proposed approach was programmed with Pytorch. All the experiments were conducted on a
workstation with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz, 8.0 GB RAM and TITAN Xp GPU.

5.1 Experimental Setup of RTSP

Experimental Data. The experimental data in this study was generated following the work of
Montemanni et al. [8]. The data generation process follows a specific rule: a “R-N -M” type problem
is considered, where N represents the number of nodes, and M is a range threshold (for the upper
bounds). The control parameter is set to Γ ≥

(
n
2

)
. In this case, the upper bound travel time for each

pair of nodes, denoted as t+ij , is randomly selected from set {0, 1, 2, ...,M}. The lower bound travel
time, denoted as t−ij , is randomly chosen from set {0, 1, ..., t+ij}. To maintain consistency, the distance
values of the upper and lower bounds are then normalized using a scale factor of M . In addition, we
ensure the upper and lower bound values to satisfy the triangle inequality, respectively.

Hyper-parameters. During the training process, we follow specific configurations based on the
scale of the problem. For small-scale instances with 20 and 30 nodes, training is conducted on a single
GPU. The batch size is set to 200 and 100, respectively. We use the Adam optimizer with a learning
rate α = 4 × 10−4. Each epoch consists of training on 1000 instances. For larger-scale instances
with 40 and 50 nodes, training is performed on two and three GPUs, respectively. The batch size
is adjusted to 64 and 32, respectively, to accommodate the GPU memory limitations. The learning
rate for the Adam optimizer is set to α = 2× 10−4. Each GPU handles 400 training instances per
epoch. For the built-in TSP models, they are trained for 2000 epochs to ensure their effectiveness and
convergence.

Baselines. We have collected typical algorithms for solving RTSP as our baselines. These algo-
rithms can be further categorized into exact and heuristic approaches.

• Exact approaches: Branch-and-Cut (BC) and Benders Decomposition (BD) are exact
algorithms proposed by Montemanni et al. [8] for solving RTSP. We have implemented
these algorithms using the Python programming language and the Gurobi optimizer. For
small-scale problems, such as those with 20 nodes, these two algorithms exhibit fast solution
speeds. However, as the problem size increases, for example, with 50 nodes, the computation
time required to obtain a solution is significantly increased.

• Heuristic approaches: There are three heuristic baselines introduced for comparisons:
heuristic algorithms based on simulated annealing (SA-based) [10], iterated dual substitution
method (iDS) [36], and edge generation algorithm (EGA) [11]. To ensure fairness, we utilize
the source codes provided by the authors, with the exception of SA-based, which we re-
implemented ourselves. Furthermore, we maintain most of the original settings of these
algorithms.

The time limit of all above algorithms are set to 3600 seconds for every instance, except that the
SA-based method has a time limit of 15n due to the limitation of repeated calls of the LKH algorithm.
Nevertheless, some algorithms may stop earlier when reaching their termination criteria.

For the experimental setting of RCVRP, please refer to Appendix 7.5.

5.2 Results and Discussions

In the following reported tables, “Obj” represents the average objective value accurately computed
using Gurobi to solve the worst-case routing scenario. “Gap” indicates the relative difference between
the objective value obtained by each algorithm and the best-known optimal value, expressed as a
percentage: Gap = Obj−Objbest

Objbest
× 100%. “Time” represents the average solving time per instance.

Comparison Results of RTSP. Table 1 presents the main results of our trained model and other
methods on randomly generated instances. The methods are categorized into three groups: exact
methods, heuristic methods, and our proposed methods. The results of our methods are reported

8

Table 1: Computational results on generated RTSP instances.
Method Obj Gap Time(s) Obj Gap Time(s) Obj Gap Time(s) Obj Gap Time(s)

R-20-10 R-30-10 R-40-10 R-50-10

BC 4.79 0.00% 2.3 7.23 0.00% 10.3 9.14 0.00% 12.1 11.36 0.00% 135.9
BD 4.79 0.00% 26.9 7.23 0.00% 71.3 9.14 0.00% 107.7 11.36 0.00% 626.5

SA-based 4.88 1.88% 300.1 7.45 3.04% 450.2 9.69 6.02% 600.4 12.11 6.60% 750.5
iDS 4,79 0.00% 3600.0 7.23 0.00% 3600.0 9.14 0.00% 3600.1 11.37 0.09% 3600.1
EGA 4.79 0.00% 1682.7 7.23 0.00% 3037.9 9.14 0.00% 3452.3 11.36 0.00% 3617.0

ours. 4.80 0.21% 0.3 7.35 1.66% 0.4 9.30 1.75% 0.5 11.65 2.55% 0.9
ours,×8. 4.79 0.00% 0.7 7.32 1.24% 1.5 9.21 0.77% 2.8 11.52 1.41% 5.5
ours,×128.(n=50,×64) 4.79 0.00% 9.5 7.26 0.41% 23.2 9.16 0.22% 49.3 11.44 0.70% 45.8

R-20-100 R-30-100 R-40-100 R-50-100

BC 4.078 0.00% 11.1 6.008 0.00% 553.8 7.824 0.06% 2978.2 9.717 0.64% 1466.7
BD 4.078 0.00% 392.9 6.047 0.65% 3448.9 7.883 0.82% 3600.1 9.693 0.39% 3600.2

SA-based 4.142 1.57% 300.0 6.234 3.76% 450.1 8.288 5.14% 600.2 10.546 9.23% 750.3
iDS 4.078 0.00% 3600.0 6.020 0.20% 3600.1 7.849 0.38% 3600.3 9.670 0.16% 3601.4
EGA 4.078 0.00% 1407.0 6.008 0.00% 3605.9 7.819 0.00% 3623.3 9.655 0.00% 3636.4

ours. 4.100 0.54% 0.3 6.116 1.80% 0.4 7.915 1.23% 0.6 9.847 1.99% 0.8
ours,×8. 4.079 0.02% 0.7 6.039 0.52% 1.5 7.871 0.67% 2.9 9.767 1.16% 5.3
ours,×128.(n=50,×64) 4.079 0.02% 9.6 6.017 0.15% 23.7 7.828 0.12% 50.1 9.707 0.54% 45.6

R-20-1000 R-30-1000 R-40-1000 R-50-1000

BC 3.8366 0.00% 7.9 6.1996 0.00% 835.8 7.8578 0.40% 2941.8 9.9995 1.79% 3600.3
BD 3.8366 0.00% 270.8 6.2582 0.95% 3329.9 7.8859 0.76% 3600.1 9.9017 0.80% 3600.1

SA-based 3.8679 0.82% 300.0 6.4963 4.79% 450.1 8.3930 6.43% 600.2 10.6223 8.13% 752.2
iDS 3.8386 0.05% 3600.0 6.2153 0.25% 3600.1 7.8568 0.38% 3600.3 9.8737 0.51% 3669.6
EGA 3.8366 0.00% 1406.6 6.1996 0.00% 3604.8 7.8268 0.00% 3618.1 9.8234 0.00% 3658.2

ours. 3.8608 0.63% 0.3 6.2740 1.20% 0.4 7.9697 1.80% 0.6 9.9870 1.67% 0.8
ours,×8. 3.8366 0.00% 0.7 6.2229 0.38% 1.5 7.9084 1.04% 2.9 9.8948 0.73% 5.4
ours,×128.(n=50,×64) 3.8366 0.00% 9.7 6.2021 0.04% 23.9 7.8516 0.32% 49.7 9.8536 0.31% 45.3

for three versions: no augmentation, augmentation with 8 instances, and augmentation with 128
instances (except 64 instances for 50 nodes due to memory limitations).

From Table 1, it is evident that our approach consistently achieves high-quality solutions in signifi-
cantly small time. Without instance augmentation, the gaps obtained by our method are consistently
below 2.6%. When utilizing instance augmentation, our method can obtain approximately accurate or
even exact solutions for small scales (such as 20 nodes). For larger scales, our method also produces
solutions with gaps less than 0.7%. In terms of runtime, under both scenarios with and without
instance augmentation, our approach has a large and significant advantage over exact methods and
heuristics, taking only a fraction of a second. The results verify the effectiveness of our approach.

N=20 N=30 N=40 N=50

Test instance size

0

10

20

30

40

50

60

70

80

90

100

G
ap

 o
f a

ve
ra

ge
 O

bj
 o

ve
r

20
 in

st
an

ce
s

(%
)

trained with N=20
trained with N=30
trained with N=40
trained with N=50

Figure 3: Performance on varying-scale problems. Gap
is relative to the test results of the models trained on the
consistent scales.

Generalization Results of RTSP.
We conduct experiments to evaluate
the generalization ability of our model,
specifically its performance on test in-
stances that are outside the training
distribution. To illustrate this, we con-
sider an example whereM = 100 and
the augmentation involves 8 instances.
We evaluate our models, trained with
varying numbers of nodes, on test data
with different node sizes. The results
are depicted in Figure 3. As expected,
the model trained on the correspond-
ing node size achieves the best per-
formance on the test data. Moreover,
the model trained on 50 nodes demon-
strates competitive results when tested on the other three scales (N = 20, 30, 40), suggesting a

9

Table 2: Results of different encoding methods for the uncertainty sets’ upper and lower bounds on
R-40-100.

No augmentation Augmentation (×8) Augmentation (×128)

Method Obj Gap Obj Gap Obj Gap

ours 7.9610 1.55% 7.8985 0.75% 7.8600 0.26%
blended 8.0640 2.86% 7.9095 0.89% 7.8760 0.47%
fusion 8.0080 2.15% 7.9045 0.83% 7.8645 0.32%

Table 3: Computational results for RCVRP.
Method Obj Gap Time(s) Obj Gap Time(s) Obj Gap Time(s) Obj Gap Time(s)

R-20-100 R-20-1000 R-50-100 R-50-1000

BC 5.2855 0.46% 3605.5 4.87385 1.75% 3607.8 20.6335 73.35% 3804.4 20.30060 77.13% 3856.6
BD 5.2130 0.99% 3663.1 4.86765 1.62% 3662.9 12.3385 3.66% 3961.1 12.17785 6.26% 3960.9

ours. 5.3130 2.93% 0.3 4.96790 3.72% 0.3 12.2270 2.72% 0.9 11.95765 4.33% 1.0
ours,×8. 5.1810 0.37% 0.8 4.81545 0.53% 0.8 11.9395 0.31% 6.3 11.62230 1.41% 6.2
ours,×32. 5.1620 0.00% 2.7 4.78990 0.00% 2.8 11.9030 0.00% 25.6 11.46090 0.00% 25.9

strong generalization capability. Conversely, the models trained on smaller scales exhibit weaker
generalization capability.

Ablation Studies of RTSP. We investigate the impact of different designs for feature encoding of
the uncertainty support set. We explore three encoding methods, namely “ours", “blended"(a blended
matrix is computed by the weighted sum of the upper and lower bound matrices, which is then
encoded by MatNet) and “fusion"(two distance matrices and attention scores are fused through an
MLP in the multi-head mixed score attention layer of the encoder), with their architectures depicted
in Figure 5 in Appendix 7.4.

We compare these encoding methods on R-40-100 with 20 random instances. As shown in Table
2, our method outperforms both “blended” and “fusion” methods in all cases, including scenarios
without instance augmentation, as well as those with ×8 and ×128 instance augmentation.

Comparison Results of RCVRP. Table 3 shows the comparison results between our method and
the exact algorithm. The results are all obtained using the Gurobi solver in a uniform manner. To
our knowledge, this specific type of RCVRP has never been discussed before. The results show that
our algorithm still achieves high solution quality and has a clear advantage in the solution time of
RCVRP. On a 20-node scale, our gap is around 0.5%. On a 50-node scale, our gap is below 4.5%. In
terms of time consumption, we only need a few tenths of a second to dozens of seconds.

6 Conclusions

This paper focuses on addressing the robust routing problem with uncertain travel times, relevant
to real-world scenarios. We introduce a neural combinatorial optimization approach, employing an
end-to-end model with attention mechanism for automatic policy learning. Leveraging a pre-trained
model, experimental results demonstrate that our method can generate near-optimal solutions much
faster than exact and heuristic approaches. However, due to hardware memory limitations and
constraints of the POMO algorithm used in training, our method is currently limited in scale and to
problems satisfying the max-regret theorem. Moving forward, we aim to expand our approach to
handle larger-scale problems and tackle a broader range of robust optimization problems.

Acknowledgements and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China (62072483) and
Guangdong Natural Science Funds (2024A1515010871).

10

References
[1] Panos Kouvelis and Gang Yu. Robust discrete optimization and its applications, volume 14.

Springer Science & Business Media, 2013.

[2] Richard E Bellman and Lotfi Asker Zadeh. Decision-making in a fuzzy environment. Manage-
ment science, 17(4):B–141, 1970.

[3] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

[4] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[5] Dimitris Bertsimas and Aurélie Thiele. Robust and data-driven optimization: modern decision
making under uncertainty. In Models, methods, and applications for innovative decision making,
pages 95–122. INFORMS, 2006.

[6] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research, 52(1):
35–53, 2004.

[7] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski. Adjustable
robust solutions of uncertain linear programs. Mathematical programming, 99(2):351–376,
2004.

[8] Roberto Montemanni, János Barta, Monaldo Mastrolilli, and Luca Maria Gambardella. The
robust traveling salesman problem with interval data. Transportation Science, 41(3):366–381,
2007.

[9] André Chassein and Marc Goerigk. On the recoverable robust traveling salesman problem.
Optimization Letters, 10:1479–1492, 2016.

[10] Chung-Cheng Lu, Shih-Wei Lin, and Kuo-Ching Ying. Minimizing worst-case regret of
makespan on a single machine with uncertain processing and setup times. Applied Soft Comput-
ing, 23:144–151, 2014.

[11] K Hasegawa and W Wu. A heuristic approach for the robust traveling salesman problem. In
2022 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM), pages 0561–0565. IEEE, 2022.

[12] Ilgaz Sungur, Fernando Ordónez, and Maged Dessouky. A robust optimization approach for the
capacitated vehicle routing problem with demand uncertainty. Iie Transactions, 40(5):509–523,
2008.

[13] Elyn Solano-Charris, Christian Prins, and Andréa Cynthia Santos. Local search based meta-
heuristics for the robust vehicle routing problem with discrete scenarios. Applied Soft Computing,
32:518–531, 2015.

[14] Lars Eufinger, Jannis Kurtz, Christoph Buchheim, and Uwe Clausen. A robust approach to the
capacitated vehicle routing problem with uncertain costs. INFORMS Journal on Optimization,
2(2):79–95, 2020.

[15] Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Daulet-
bayev. Machine learning to solve vehicle routing problems: A survey. IEEE Transactions on
Intelligent Transportation Systems, 2024.

[16] Marijn Van Knippenberg, Mike Holenderski, and Vlado Menkovski. Complex vehicle routing
with memory augmented neural networks. In 2020 IEEE Conference on Industrial Cyberphysical
Systems (ICPS), volume 1, pages 303–308. IEEE, 2020.

[17] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

11

[18] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, 27(1):70–98,
2022.

[19] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[21] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In Machine learning: ECML 2005: 16th European conference
on machine learning, Porto, Portugal, October 3-7, 2005. proceedings 16, pages 317–328.
Springer, 2005.

[22] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural
Information Processing Systems, 28, 2015.

[23] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[24] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

[25] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[27] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33:21188–21198, 2020.

[28] Zizhen Zhang, Hong Liu, MengChu Zhou, and Jiahai Wang. Solving dynamic traveling
salesman problems with deep reinforcement learning. IEEE Transactions on Neural Networks
and Learning Systems, 34(4):2119–2132, 2021.

[29] Yongxin Zhang, Jiahai Wang, and Zizhen Zhang. Edge-based formulation with graph attention
network for practical vehicle routing problem with time windows. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 01–08. IEEE, 2022.

[30] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34:5138–5149, 2021.

[31] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. arXiv preprint arXiv:2305.19587, 2023.

[32] Tobias Jacobs, Francesco Alesiani, and Gülcin Ermis. Reinforcement learning for route
optimization with robustness guarantees. In IJCAI, pages 2592–2598, 2021.

[33] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. Neur2ro: Neural two-stage
robust optimization. arXiv preprint arXiv:2310.04345, 2023.

[34] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

[36] Wei Wu, Manuel Iori, Silvano Martello, and Mutsunori Yagiura. An iterated dual substitu-
tion approach for binary integer programming problems under the min-max regret criterion.
INFORMS Journal on Computing, 34(5):2523–2539, 2022.

[37] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

[38] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

[39] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

13

7 Appendix

7.1 Proof of Theorem 1

Proof. To provide a coherent description of the proof process, we first introduce a shorthand notation
for certain equations.

1. The optimal tour under scenario u is denoted as y∗(u).

2. The worst case scenario obtained by solution x according to the theorem is denoted as
wc(x).

3. The tour length of solution x under scenario u is denoted as C(u, x). By the definition of
regret, the value of regret for solution x under scenario u has the equation: regret(u, x) =
C(u, x)− C(u, y∗(u)) .

We then outline a concise proof procedure. Assume that we have a solution x, our goal is to prove
that the regret value under scenario wc(x) is greater than or equal to the regret value under any other
scenario, i.e., regret(u, x) ≤ regret(wc(x), x). Here,

regret(u, x) = C(u, x)− C(u, y∗(u))

=
∑

(i,j)∈x

tuij −
∑

(i,j)∈y∗(u)

tuij

=
∑

(i,j)∈x\y∗(u)

tuij −
∑

(i,j)∈y∗(u)\x

tuij . (11)

Based on the definition of wc(x), it is evident that when (i, j) ∈ x \ y∗(u), twc(x)ij ≥ tuij . Similarly,

when (i, j) ∈ y∗(u) \ x, twc(x)ij ≤ tuij . We have:

regret(u, x) = C(u, x)− C(u, y∗(u))

≤
∑

(i,j)∈x\y∗(u)

t
wc(x)
ij −

∑
(i,j)∈y∗(u)\x

t
wc(x)
ij

=
∑

(i,j)∈x

t
wc(x)
ij −

∑
(i,j)∈x∩y∗(u)

t
wc(x)
ij −

∑
(i,j)∈y∗(u)\x

t
wc(x)
ij

=
∑

(i,j)∈x

t
wc(x)
ij − (

∑
(i,j)∈x∩y∗(u)

t
wc(x)
ij +

∑
(i,j)∈y∗(u)\x

t
wc(x)
ij)

=
∑

(i,j)∈x

t
wc(x)
ij − (

∑
(i,j)∈y∗(u)

t
wc(x)
ij)

= C(wc(x), x)− C(wc(x), y∗(u))

≤ C(wc(x), x)− C(wc(x), y∗(wc(x)))

= regret(wc(x), x), (12)

Therefore, the proof of Theorem 1 is concluded.

7.2 RTSP Example with budget uncertainty

In Figure 4, we provide a specific example to illustrate the solution process of RTSP with budget

uncertainty while Γ =

⌊
(n2)
4

⌋
. Recall that the budget uncertainty set is defined as Ubudget = {t|tij =

t−ij + t̂ijηij , 0 ≤ ηij ≤ 1,∀(i, j) ∈ E;
∑

(i,j)∈E ηij ≤ Γ}. where t̂ij = t+ij − t−ij . Figure 4 depicts
a graph with 4 nodes and 6 edges. Suppose the values of t−ij of each edge are as shown in Figure
4a. For simplicity, let’s assume that all t̂ij values are set to the same value 2, though in a real

14

1 2

4 3

[4]

[1]

[2]

[3]

1 2

4 3

[6] [2]

[3]

[1]
1 2

4 3

[6] [2]

[3]

[1]

sol x: 1-2-3-4-1

wc(x) optimal sol y in wc(x)

𝛤 = 𝐶 𝑛, 2 /4 Ƹ𝑡𝑖𝑗 = 2

𝑎 𝑏 𝑐

Figure 4: An instance of RTSP with budget uncertainty and Γ =

⌊
(n2)
4

⌋
. (a) t−ij . (b) Worst case

scenario wc(x) corresponding to route x. (c) Optimal TSP solution under scenario wc(x).

implementation, these values would differ. Consider a feasible solution “1 → 2 → 3 → 4 → 1”
highlighted by the green edges in Figure 4b, under the given Γ ,the worst scenario corresponding to
this solution is also shown in Figure 4b, with a nominal total time is 1+ 2+3+6 = 12. The optimal
solution in this scenario, highlighted in red in Figure 4c, is either the route 1 → 2 → 4 → 3 → 1 or
1 → 3 → 4 → 2 → 1, both of which have a total cost of 10. The max-regret value for the original
solution is calculated as 12− 10 = 2. By evaluating the max-regret for each feasible solution, the
final optimal solution is identified as the one with the smallest max-regret value.

7.3 Formulations of Robust Routing Problems

RTSP Formulation Based on the TSP formulation and Corollary 1, we present the following
mathematical model for RTSP with the min-max-regret criterion. This modeling serves as the
foundation for both exact algorithms and heuristic algorithms in this field.

The mathematical scenario for RTSP is defined as follows. Given a complete symmetric graph
G = (V,E), where V = {1, 2, ..., n} is the set of nodes. The travel time (cost) of an edge (i, j) is
defined by an interval uncertainty set [t−ij , t

+
ij], where t−ij and t+ij denote the lower and upper bounds

of possible values, respectively.

min
∑

(i,j)∈E

t+ijxij − r (13)

s.t. r ≤
∑

(i,j)∈E

yijt
−
ij +

∑
(i,j)∈E

yij(t
+
ij − t−ij)xij , ∀y ∈ S (14)

x ∈ S (15)
r ∈ R (16)

In the above model, xij are the decision variables for the RTSP solution, while yij serves as temporary
auxiliary decision variables representing the decision variable for TSP in the worst-case scenario
corresponding to each x. To establish the nonlinear interaction between xij and yij , a free variable r
is introduced.

The objective function in Equation (13) aims to minimize the maximum regret value, while Constraint
(14) ensures the maximization of regret. We define the set of all feasible TSP solutions as S, which is

15

bounded by the following constraints.∑
i∈V,i ̸=j

xij = 1, ∀j ∈ V (17)

∑
j∈V,j ̸=i

xij = 1, ∀i ∈ V (18)

∑
i,j∈S

xij ≤ |S| − 1, ∀S ⊊ V, S ̸= ∅ (19)

xij ∈ {0, 1}, ∀(i, j) ∈ E (20)

Constraint (15) guarantee the feasibility of xij as a TSP solution. It is important to note that yij must
also be a feasible and valid TSP solution, and thus we have y ∈ S in Equation (14).

RCVRP Formulation CVRP is an extension of TSP that additionally considers vehicle capacity
constraints. Similar to RTSP, we can use the mathematical model of the nominal CVRP and Corollary
1 to extend the mathematical model of RCVRP.

The RCVRP scenario is defined as follows. We have a fleet of vehicles with a capacity of Q per
vehicle, and n customers distributed geographically. Each customer has its own demand di (where
i = 1, 2, ..., n). Each customer can only be served by one vehicle, and there is no limit on the number
of available vehicles. Let V be the set of n demand nodes and a single depot, represented as node 0.
The set E represents the edge connections between nodes. Similar to RTSP, we consider the robust
scenario where the travel time is subject to interval uncertainty. The travel time (cost) of an edge (i, j)
is within the interval [t−ij , t

+
ij], where t−ij and t+ij represent the lower and upper bounds of possible

values, respectively. Note that in our setting, we assume that tij = tji, meaning that the travel time
matrix is symmetric.

min
∑

(i,j)∈E

t+ijxij − r (21)

s.t. r ≤
∑

(i,j)∈E

yijt
−
ij +

∑
(i,j)∈E

yij(t
+
ij − t−ij)xij , ∀y ∈ S (22)

x ∈ S (23)
r ∈ R (24)

The model is the same as the one described in Section 7.3. It should be noted that S is defined as the
set of all feasible solutions for CVRP, subject to the following constraints.∑

i∈V,i̸=j

xij = 1, ∀j ∈ V \ {0} (25)

∑
j∈V,j ̸=i

xij = 1, ∀i ∈ V \ {0} (26)

uj − ui +Q(1− xij) ≥ dj , ∀i, j ∈ V \ {0}, i ̸= j (27)
di ≤ ui ≤ Q, ∀i ∈ V \ {0} (28)
xij ∈ {0, 1}, ∀(i, j) ∈ E (29)

The main difference between CVRP and TSP lies in the consideration of capacity constraints. In
CVRP, it is crucial to ensure that the total demand of customers served on each route does not exceed
the vehicle’s capacity. To address this, the Miller-Tucker-Zemlin (MTZ) constraint [37] introduces
continuous variables ui for every i ∈ V \ {0}, which represent the flow in the vehicle after it visits
customer i. Constraints (27)–(28) enforce both the capacity and connectivity requirements of feasible
routes.

7.4 Additional Results of RTSP

Generalization on the Threshold Value. In addition to considering the generalization on dimension
N , as depicted in Figure 3, we also test the generalization ability on dimension M . The models

16

Table 4: Performance on varying M-threshold problems among instances of N = 20, with ×8
instance augmentation.

Train threshold
Test threshold

M=10 M=100 M=1000

Trained with M=10 4.8100 4.0010 4.0762
Trained with M=100 4.9150 3.9895 4.0621
Trained with M=1000 4.8800 4.0105 4.0637

Table 5: Results of various built-in TSP solving algorithms on R-20-100. The training time refers to
the average training time per epoch.

Method ×1 ×8 ×128 Training timeObj Gap Obj Gap Obj Gap

ours 4.0140 0.63% 3.9895 0.01% 3.9895 0.01% ≈ 1 min / epoch
CMA-ES 4.0430 1.34% 3.9925 0.08% 3.9895 0.01% ≈ 6 min / epoch
LKH 4.0135 0.60% 3.9905 0.04% 3.9895 0.01% ≈ 7.5 min / epoch

trained with different ranges of M are respectively used to test the instances across all ranges of M .
As shown in the Table 4, it can be seen that a model trained within a specific threshold value can
achieve relatively ideal experimental results within other threshold values. This shows that under the
premise of fixed N , our model can achieve good generalization results for different M values.

Effects of the Encoding Approaches. In Figure 5(a) (labeled as "ours"), our proposed approach is
depicted. It involves encoding the upper and lower bound matrices separately using MatNet and then
adding the embeddings of the corresponding nodes. In Figure 5(b) (labeled as "blended"), a blended
matrix is computed by taking the weighted sum of the upper and lower bound matrices, represented
as D = w ∗Dup+(1.0−w) ∗Dlow. Here, w is initialized to 0.5 and serves as a learnable parameter.
The blended matrix is subsequently encoded using MatNet.Figure 5(c) (labeled as "fusion") illustrates
the third approach, which involves fusing the two matrices and attention scores through a multi-layer
perceptron (MLP) in the multi-head mixed-score attention layer within the MatNet encoder.

Effects of the Built-in TSP Solvers. We also explore different built-in TSP solvers under the
worst-case scenario. In addition to the pre-trained TSP model used in our method, we further consider
the well-known heuristic algorithms like LKH [38] and CMA-ES [39]. The optimality gap and
training time are reported in Table 5.

Even though LKH is the state-of-the-art TSP solver that can almost find the optimal solution in
small-size cases, it has no superiority with regard to solution quality for training an RTSP model and
even spends more training time. On the other hand, although CMA-ES evolutionary algorithm could
be accelerated through parallelization techniques in a large number of model training processes, it
faced a trade-off between solving speed and solution quality. As can be seen, the pre-trained TSP
model used in our method exhibits almost the smallest optimality gap and the shortest training time
compared with other methods.

Training Details. In Figure 6, we present the training progress curves that illustrate the loss and
objective values for “R-50-100” instances, serving as an illustrative example. The figure demonstrates
that the training loss steadily converges, and the training score is minimized after 1000 epochs. These
observations indicate that the model successfully learns the implicit features of RTSP during the
training process.

7.5 Experimental Setup of RCVRP

Data Generation We generate random instances of RCVRP for two different sizes: n = 20 and
n = 50. The control parameter is set to Γ ≥ N . The following settings are used.

• The vehicle capacity is fixed at Q = 1.0.

17

MatNet

MatNet

𝐷𝑢𝑝

𝐷low

embeddings
Sum

(a)

MatNet

𝐷𝑢𝑝

𝐷𝑙𝑜𝑤

embeddings𝐷Weighted

& Sum

(b)

MatNet

Multi-head mixed score cross

attention

𝐷𝑢𝑝 𝐷𝑙𝑜𝑤

MatMul

Softmax

MatMul

&Scale

MLP

Multi-head mixed score cross

attention

MatMul

Softmax

MatMul

&Scale

MLP

ℎ𝜑1 ℎ𝜑𝟐 ... ℎ𝜑𝐧ℎ𝜓1 ℎ𝜓𝟐 ... ℎ𝜓𝐧

Add & Norm

FF

Add & Norm

tran
sp
o
se𝑞 𝑘 𝑣 𝑣 𝑘 𝑞

Add & Norm

FF

Add & Norm

embeddings

(c)

Figure 5: Different encoding methods for the uncertainty set. (a) ours. (b) blended. (c) fusion.

• The demand di for each node i is determined by dividing a uniformly sampled value d̂i from
the set {1, 2, ..., 9} by a value D. For n = 20, D is set to 30, while for n = 50, D is set to
40.

• The uncertain variable tij represents the travel time between nodes i and j. The upper bound
travel time t+ij is randomly selected from the set {0, 1, 2, ...,M}, while the lower bound
travel time t−ij is randomly chosen from the set {0, 1, ..., t+ij}.

• To ensure consistency, the distance values of the upper and lower bounds are normalized
using a scale factor of M .

In the data generation process, we also consider the triangle inequality. This inequality is indepen-
dently applied to both the upper bound and lower bound. For example, for each triplet (i, j, k) in the
upper bound, we check if t+ik + t+kj > t+ij is violated. If the inequality is violated, we replace t+ij with
t+ik + t+kj to ensure that the triangle inequality holds.

Hyper-parameters During the training process, we adopt specific configurations based on the
problem scale. For small-scale instances with 20 nodes, training is conducted on a single GPU. The
batch size is set to 200. We utilize the Adam optimizer with a learning rate of α = 4× 10−4. Each
epoch involves training on 1000 instances.

18

(a) (b)

Figure 6: The training loss and score curves for R-50-100 instances. The horizontal axis represents
epochs, while the vertical axis represents the values of loss or score (i.e. the objective value). (a)
Training loss. (b) Training score.

For larger-scale instances with 50 nodes, training is performed on three GPUs. The batch size
is adjusted to 25 to accommodate the GPU memory limitations. The learning rate for the Adam
optimizer is set to α = 2× 10−4. Each GPU handles 400 training instances per epoch. The models
are uniformly trained for 4000 epochs.

As for the built-in CVRP models, they are trained for 5000 epochs to ensure their effectiveness and
convergence.

7.6 Effectiveness of Budget Uncertainty Set

The hyperparameter Γ can be leveraged to adjust the robustness of the budget uncertainty set.
Nevertheless, we conducted supplementary experiments to validate the effectiveness of our approach
under general budget uncertainty conditions. Table 6 presents the comparative results for different
values. Our method shows highly promising outcomes within a remarkably short time, especially
when compared to the leading solver, EGA.

Table 6: Comparison result of different Γ on N = 20.
Method Obj Time(s) Obj Time(s) Obj Time(s)

Γ = ⌊C(N,2)
2 ⌋ Γ = ⌊C(N,2)

4 ⌋ Γ = 0

EGA 0.7870 55.9 0.3175 56.7 0.0000 38.4
ours*128 0.7870 11.2 0.3180 10.9 0.0005 11.3
ours*8 0.7945 0.8 0.3305 0.79 0.0365 0.8

7.7 Architecture of MatNet

MatNet [30] is a graph attention network model designed for data objects that can be partitioned into
two sets of nodes in a bipartite graph. To facilitate the description, we refer to the set of nodes acting
as the heads of edges as Φ, and the set of nodes acting as the tails of edges as Ψ. The framework
diagram of MatNet is depicted in Figure 7. MatNet consists of a stack of L attention layers. Each
attention layer comprises two sub-layers: the multi-head mixed-score cross-attention layer and the
fully connected feed-forward (FF) layer. Both sub-layers incorporate skip connections and batch
normalization. In the FF sub-layer, a hidden layer dimension of 512 and a ReLU activation function
are employed. The multi-head mixed-score cross-attention sub-layer calculates attention scores
between each node in one set and all nodes in the other set. This mechanism enables the learning of
association features between the two sets of nodes.

The update of two node sets Φ and Ψ is performed in a dual manner, where the roles of queries and
keys/values are exchanged, accompanied by the transposition of the matrix. Taking the update of
hlϕi as an example, where l denotes the current encoder layer being updated, and hϕi represents the
embedding representation of node i in the node set Φ. We define the query qi for each node i in the
set Φ by projecting the embedding hl−1

ϕi . Simultaneously, we obtain the key kj and value vj from the
embedding hl−1

ψj .

19

qi =WQhl−1
ϕi , kj =WKhl−1

ψj , vj =WV hl−1
ψj , (30)

The compatibility uij is calculated using qi and kj :

uij =
qik

T
j√
dk
, (31)

where dk is the dimensions of the attention vector k and v.

During the feature update process of the nodes in the attention layer, edge weight information
represented by a matrix is added with a multi-layer perceptron (MLP) in addition to the network
output of the previous layer.

weights = softmax((ws2(ReLu(ws1scores
T + bs1)) + bs2)

T), (32)

where scoresij = uij∥dij , and dij denotes the corresponding distance matrix element.

Next, update the corresponding node embedding.

hl−1
′

ϕi =
∑
j

weightsijvj , (33)

Then, proceed through the multi-head sub-layer and the feed-forward sub-layer sequentially to obtain
the updated embedding representation for the next layer.

MHAlϕi(h
l−1
ϕi , {h

l−1
ψ1 , .., h

l−1
ψN}) =

M∑
m=1

WO
mh

l−1
′

ϕim , (34)

ĥlϕi = BN l
ϕi(h

l−1
ϕi +MHAlϕi(h

l−1
ϕi , {h

l−1
ψ1 .., h

l−1
ψN})), (35)

hlϕi = BN l
ϕi(ĥ

l
ϕi + FF lϕi(ĥ

l
ϕi)), (36)

As depicted in Figure 7, the final node feature embedding representation for the two node sets can be
obtained y repeating the above process L times.

ℎ𝜑1 ℎ𝜑𝟐
... ℎ𝜑𝑵1 ℎ𝜓1 ℎ𝜓𝟐

... ℎ𝜓𝐍𝐷 𝐷𝑇

Multi-head mixed score

cross attention

MLP

MatMul
& Scale

Softmax

MatMul

Multi-head mixed score

cross attention

MLP

MatMul
& Scale

Softmax

MatMul

𝑞 𝑘 𝑣 𝑞𝑘𝑣

FF

Add & Norm

Add & Norm

FF

Add & Norm

Add & Norm

× L

Figure 7: The schematic of MatNet for a single bipartite graph. D is the corresponding matrix
representation of the bipartite graph.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe our problem scenario in the abstract and also describe our
outstanding contributions to this problem. We consider the robust routing problem with
uncertain travel times under the min-max regret criterion. The contributions of our work can
be highlighted as follows: We introduce Robust routing problem with the general budget
uncertainty set which covers the interval uncertainty set as a special case, and treat the
problem from the perspective of deep reinforcement learning. We propose an end-to-end
neural model to capture the features of Robust routing problem, and use a pre-trained routing
model to efficiently calculate the reward with respect to the worst-case scenario during
training. We conduct extensive experiments on RTSP and RCVRP instances. The results
substantiate the efficacy of our approach in efficiently handling robust routing problems
across diverse scales within shorter computation time.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Due to the limitations of hardware memory and the limitations of the POMO
algorithm used in the training process, our method can currently only be solved within the
range of 20 for small scale and 50 for large scale. Our method is theoretically applicable to
all problems that satisfy the max-regret theorem, but it is also limited to solving problems
that satisfy this theorem.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

21

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our question is based on an important theorem assumption1, for which we
have also given a complete proof, which can be found in the appendix 7.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experimental settings in the subsection 5.1 and 7.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

22

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will make the relevant code and data public on GitHub after we organize
them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental settings in the subsection 5.1 and 7.5. The
training and test details is described in the subsection 4.3 and 4.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the main experiment results in table1 and 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our proposed approach was programmed with Pytorch. All the experiments
were conducted on a246 workstation with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz, 8.0
GB RAM and TITAN Xp GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: our reasearch conducted follow the NeuIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

24

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not explicitly discuss both potential positive and negative
societal impacts of the work performed. This could be due to a primary focus on the technical
aspects of addressing the robust routing problem using neural combinatorial optimization,
without delving into the broader societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

25

Answer: [Yes]

Justification: For previous existing works, we have cited relevant references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

26

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Related Work
	Problem Description
	Nominal TSP
	Robust TSP

	Methodology
	Solution Framework
	Model Architecture
	Encoder
	Decoder

	Training
	Inference

	Experiments
	Experimental Setup of RTSP
	Results and Discussions

	Conclusions
	Appendix
	Proof of Theorem 1
	RTSP Example with budget uncertainty
	Formulations of Robust Routing Problems
	Additional Results of RTSP
	Experimental Setup of RCVRP
	Effectiveness of Budget Uncertainty Set
	Architecture of MatNet

