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Abstract
While several feature embedding models have
been developed in the literature, comparisons of
these embeddings have largely focused on their
numerical performance in classification-related
downstream applications. However, an inter-
pretable comparison of different embeddings re-
quires identifying and analyzing mismatches be-
tween sample groups clustered within the embed-
ding spaces. In this work, we propose the Spec-
tral Pairwise Embedding Comparison (SPEC)
framework to compare embeddings and iden-
tify their differences in clustering a reference
dataset. Our approach examines the kernel ma-
trices derived from two embeddings and lever-
ages the eigendecomposition of the difference
kernel matrix to detect sample clusters that are
captured differently by the two embeddings. We
present a scalable implementation of this kernel-
based approach, with computational complexity
that grows linearly with the sample size. Fur-
thermore, we introduce an optimization prob-
lem using this framework to align two embed-
dings, ensuring that clusters identified in one
embedding are also captured in the other model.
We provide numerical results demonstrating the
SPEC’s application to compare and align em-
beddings on large-scale datasets such as Ima-
geNet and MS-COCO. The code is available at
github.com/mjalali/embedding-comparison.

1. Introduction
Several mainstream frameworks in computer vision and nat-
ural language processing rely on embedding models to map
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raw image and text inputs into spaces with semantically
meaningful features (Radford et al., 2021; Liu et al., 2023;
Alayrac et al., 2022; Li et al., 2023). The application of pre-
trained embeddings has enabled scalable solutions for many
downstream tasks, particularly in scenarios where the avail-
able sample size and compute resources are significantly
limited. In such cases, the embedded data can be used to
train simple models, such as linear or k-nearest neighbors
(KNN) classifiers, to achieve satisfactory results. Addition-
ally, features extracted by standard embedding models are
widely employed for the automated evaluation of generative
models (Heusel et al., 2017; Kynkäänniemi et al., 2023;
Stein et al., 2023), providing accurate rankings of genera-
tive modeling architectures without requiring time-intensive
human assessments.

While recent advancements in the machine learning commu-
nity have introduced various embedding models that achieve
remarkable results on standard image, text, and video do-
mains, comparisons of these embeddings have primarily
focused on evaluating their performance in standard down-
stream tasks, such as classification accuracy on benchmark
datasets (e.g. ImageNet). However, such comparisons often
lack interpretability and do not reveal how differently the
embeddings behave in recognizing various sample types
(Boggust et al., 2022). A more fine-grained comparison
is necessary to disclose explainable differences between
embedding models, particularly in identifying which sam-
ples are clustered differently according to the models. Un-
derstanding these differences can aid in interpreting and
debugging embeddings and can also be leveraged to align
multiple embeddings (Simhi & Markovitch, 2023; Dar et al.,
2023). Furthermore, interpreting the discrepancies between
embeddings can be utilized to select representation mod-
els for downstream applications such as generative model
evaluation (Stein et al., 2023; Kynkäänniemi et al., 2023).

In this work, we propose a spectral approach called Spec-
tral Pairwise Embedding Comparison (SPEC) for the fine-
grained comparison of two embeddings. The SPEC frame-
work detects differences in sample clusters assigned by two
embeddings, identifying major data groups that are clustered
differently by one embedding compared to the other one. To
achieve this, we adopt standard spectral clustering, which
leverages the eigendecomposition of the kernel similarity
matrix, and propose analyzing the principal eigenvectors of
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Figure 1. Overview of the Spectral Pairwise Embedding Comparison (SPEC) framework: The SPEC performs an eigendecomposition
of the difference of kernel matrices following the two compared embeddings (e.g., DINOv2 and CLIP image embeddings) on a given
reference dataset. Every eigenvector can be interpreted as a differently captured sample cluster by the embeddings, and the corresponding
eigenvalue quantifies the difference between the cluster frequencies in the embedding spaces.

the difference of embeddings’ kernel matrices to interpret
the differences in cluster assignments. Our analysis sug-
gests that the SPEC framework can effectively detect cluster
differences between two embeddings.

To address the computational challenges of performing
eigendecomposition on large-scale datasets, we develop a
scalable implementation of SPEC. A direct eigendecompo-
sition of the n× n difference kernel matrix requires O(n3)
computations for a dataset with n samples, which is compu-
tationally expensive for large datasets. Assuming a bounded
feature dimension d for the applied kernel function, we
prove that the eigenspace of the difference kernel matrix can
be computed using O(max{d3, n}) operations, resulting in
a scalable algorithm under a moderate dimension d value.
Furthermore, we extend this scalable computation method
to shift-invariant kernel functions, e.g. the Gaussian kernel,
by employing the framework of random Fourier features
(RFF) (Rahimi & Recht, 2007a), where the size of RFF
proxy-feature map can be controlled for a more efficient
application of SPEC.

We also explore the application of the SPEC framework to
define a distance measure between two embeddings. We
define the SPEC-diff distance as the spectral radius of the
kernel difference matrix, which aims to quantify the weight

of the most differently captured cluster in one embedding
that is not strongly clustered by the other model. We dis-
cuss scalable computations of this distance and its gradient
with respect to the embedding parameters. Using the power
method and the calculated left and right eigenvectors of the
differential covariance matrix, we enable gradient-based op-
timization of the distance measure for aligning embedding
models. This gradient-based approach leads to a method
we call SPEC-align, aligning embedding models by min-
imizing their differences in clustering a reference dataset.
SPEC-align is particularly useful for aligning cross-modality
embeddings, such as CLIP (Radford et al., 2021), with a
state-of-the-art single-modality embedding. Such a spectral
alignment can improve the performance of cross-modality
embeddings in capturing concepts specific to individual
modalities.

Finally, we present numerical experiments on several stan-
dard image and text embeddings using benchmark datasets.
Our results demonstrate the scalability of the SPEC frame-
work in revealing differences in sample clusters across em-
beddings over large-scale datasets. In our experiments, we
tested the SPEC algorithm’s application with both cosine
similarity and shift-invariant Gaussian kernels, where we
leverage random Fourier features for the latter case. Addi-
tionally, we discuss the application of SPEC-align to align
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the CLIP model with single-modality embeddings. The em-
pirical results highlight the effectiveness of SPEC-align in
reducing the differences between CLIP’s image embeddings
and specialized image-domain embeddings. The following
is a summary of our work’s main contributions:

• Proposing the SPEC framework for explainable compari-
son of two embeddings,

• Providing a scalable SPEC implementation with linearly
growing computational cost to the sample size,

• Developing the gradient-based SPEC-align method to
align two embeddings and matching their sample clusters,

• Demonstrating the successful application of SPEC in com-
paring and aligning embeddings on benchmark datasets.

2. Related Work
Spectral Clustering, Kernel PCA, and Random Fourier
Features. Kernel PCA (Schölkopf et al., 1998) is a widely
recognized technique for dimensionality reduction that re-
lies on the eigendecomposition of the kernel matrix. Several
studies (Bengio et al., 2003b;a) have explored the relation-
ship between kernel PCA and spectral clustering. Also,
the analysis of random Fourier features (Rahimi & Recht,
2007b) for performing scalable kernel PCA has been stud-
ied by Chitta et al. (2012); Ghashami et al. (2016); Ullah
et al. (2018); Sriperumbudur & Sterge (2022); Gedon et al.
(2023). In this paper, we introduce a spectral approach for
comparing two embeddings, leveraging the random Fourier
features framework to address computational challenges.
Unlike Laplacian spectral clustering (Ng et al., 2001) that
uses the graph Laplacian, our method uses the kernel matrix
similar to Kernel PCA.

Evaluation and Comparison of Embeddings. Embedding
evaluation is typically conducted using a limited set of down-
stream tasks (Chen et al., 2013; Santos et al., 2020; Perone
et al., 2018; Choi et al., 2021). Existing NLP benchmarks
(Gao et al., 2021; Reimers & Gurevych, 2019) focus on
limited tasks. Muennighoff et al. (2023) introduces MTEB,
standardizing text embedder evaluation across diverse NLP
tasks. In Image embeddings, Kynkäänniemi et al. (2023);
Stein et al. (2023) compared different image embeddings
and showed how they can influence different tasks, specif-
ically the evaluation of generative models. Another line
of research is probing methods (Belinkov, 2022; Pimentel
et al., 2020; Adi et al., 2017; Rogers et al., 2021), which an-
alyze model embeddings by training small models on them
to understand what information is encoded. These methods
help assess how well embeddings capture specific features,
although they are not focused on embedding comparison.

Darrin et al. (2024) propose a new metric for comparing
embeddings without labeled data and propose the concept

of information sufficiency (IS) to quantify the required infor-
mation to simulate one embedding from another. Our work
offers a complementary, explainable method for comparing
embeddings by detecting different sample clusters assigned
by embeddings and providing a method for aligning them.

A different yet related line of work is the evaluation of gen-
erative models. (Bińkowski et al., 2018; Jalali et al., 2023;
Ospanov et al., 2024; Jalali et al., 2024; Ospanov & Farnia,
2024) leverage the eigenspectrum of kernel matrices to quan-
tify diversity. The papers (Jiralerspong et al., 2023; Zhang
et al., 2024) explore novelty evaluation, analyzing how gen-
erated samples differ from those of a reference distribution.
In particular, (Zhang et al., 2024; 2025) propose a spectral
method for measuring the entropy of the novel modes of a
generative model with respect to a reference model, relying
on the eigendecomposition of kernel similarity matrices.

Embeddings Alignment. There are many works on embed-
ding alignment for multimodal models (Bellagente et al.,
2023; Lu et al., 2024; Han et al., 2024; Wang et al., 2023b;
Girdhar et al., 2023; Grave et al., 2019). Salman et al.
(2024); Eslami & de Melo (2025) introduced a method,
which demonstrates that adversarial perturbations can force
text embeddings to align with any image in multimodal
models, exposing security vulnerabilities in vision-language
learning. Ye et al. (2024) proposed ModalChorus, an in-
teractive system that visualizes and corrects misalignments
in multi-modal embeddings, improving interpretability and
optimization. Focusing on fine-grained alignment, Yin et al.
(2024) introduced a method for explicitly aligning individual
word embeddings with corresponding visual features, lever-
aging cross-modal attention to refine token-image associa-
tions. In contrast, our work focuses on aligning embeddings
in a kernel setting specifically to match their sample clusters,
leading to a different approach to embedding comparison.

3. Preliminaries
3.1. Embedding maps and spaces

Consider a data vector x ∈ X in the space X . An em-
bedding map ψ : X → S maps an input x to the em-
bedding space S, which is supposed to provide a more
meaningful representation of the input data vector. Through-
out this work, we focus on the problem of characterizing
and interpreting the differences of two embedding maps
ψ1 : X → S1 and ψ2 : X → S2, which can map the input
x ∈ X to different embedding spaces S1,S2.

3.2. Kernel Functions and Covariance Matrix

A kernel function k : X×X → R maps two inputs x, x′ to a
similarity score k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ ∈ [0, 1] that is the
inner product of the representation of x, x′ characterized by
ϕ : X → Rd. This definition implies that for every sequence
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of data points x1, . . . , xn ∈ X , the following kernel matrix
is positive semi-definite (PSD):

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 ⪰ 0 (1)

Well-known examples of kernel functions include the cosine-
similarity kernel kcosine(x, y) =

x⊤y
∥x∥2∥y∥2

and the Gaussian
(RBF) kernel defined for bandwidth σ as:

k(x, y) = exp

(
−∥x− y∥22

2σ2

)
Both these examples are normalized kernels where
k(x, x) = 1 holds for every x ∈ X . Note that the kernel
matrix in (1) can be written as K = ΦΦ⊤ where Φ ∈ Rn×d
contains ϕ(xi) as its ith row for i ∈ {1, . . . , n}. Then, the
kernel covariance matrix CX ∈ Rd×d can be defined by
reversing the matrix multiplication order as:

CX :=
1

n
Φ⊤Φ =

1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤ (2)

Therefore,CX = 1
nΦ

⊤Φ and 1
nK = 1

nΦΦ
⊤ share the same

non-zero eigenvalues, since they represent the products of
matrices with flipped multiplication orders.

4. SPEC: A Spectral Identification of
Embeddings’ Mismatches

Consider a set of n data points x1, . . . , xn ∈ X and two
embedding maps ψ1 : X → S1 and ψ2 : X → S2. Also,
suppose k1 : S1 × S1 → R and k2 : S2 × S2 → R are
kernel functions to be applied to the embedding spaces for
ψ1, ψ2, respectively.

To compare the two embeddings, note that their correspond-
ing spaces S1 and S2 may have different dimensions, and
therefore a sample-specific comparison of the embedded
vectors ψ1(x), ψ2(x) for each individual data point x will
not provide a meaningful comparison of the embedding
maps. Therefore, a more relevant approach is to com-
pare the embeddings’ outputs over the entire set of data
{x1, . . . , xn} and investigate which structures are dissimilar
between the sets of embedded data following the embed-
dings. Here, we consider a spectral approach and partic-
ularly focus on the difference of kernel matrices between
the two embeddings. In the following, we discuss how the
eigenspace of the kernel difference matrix can help identify
the differently clustered points by the two embeddings.

To do this, consider the kernel matrix of the first
embedding Kψ1

=
[
k1(ψ1(xi), ψ1(xj))

](n,n)
(i,j)=(1,1)

and
the kernel matrix of the second embedding Kψ2

=[
k2(ψ2(xi), ψ2(xj))

](n,n)
(i,j)=(1,1)

.

Definition 1. We define the normalized kernel difference
matrix Λψ1,ψ2 ∈ Rn as follows:

Λψ1,ψ2
:=

1

n

(
Kψ1

−Kψ2

)
(3)

We propose the framework of Spectral Pairwise Embed-
ding Comparison (SPEC) where the two embeddings ψ1

and ψ2 are compared using the eigendirections of the differ-
ence kernel matrix Λψ1,ψ2

. As we will show, the principal
eigenvectors can be interpreted as the clusters of samples
assigned by embedding ψ1 that are less strongly grouped by
the second embedding ψ2. In what follows, we first show
a theoretical result supporting the mentioned property of
Λψ1,ψ2’s eigenvectors. Next, we provide a scalable compu-
tation method for computing the eigenspace of Λψ1,ψ2

that
linearly scales with the sample size n.

Theorem 1 proves that under the following two conditions
on the sample index set I ⊂ {1, . . . , n}, the eigndirections
of Λψ1,ψ2

can separate the clustered sample indices from
the rest of samples. Note that the notation Ic denotes the
complement index set of I, and K[I,J ] denotes the sub-
matrix of K with rows in I and columns in J .

• Condition 1: Suppose the sample set XI character-
ized by index set I are separated from the rest of sam-
ples by embedding ψ1, where the normalized block ker-
nel matrix 1

nKψ1
[I, Ic] has a bounded Frobenius norm∥∥ 1

nKψ1
[I, Ic]

∥∥
F
≤ ϵ1.

• Condition 2: Suppose the sample setXI characterized by
index set I are weakly grouped by embedding ψ2, where
the normalized block kernel matrix 1

nKψ2 [I, Ic] has a
bounded ℓ2-operator norm (or maximum eigenvalue for
this PSD matrix)

∥∥ 1
nKψ2

[I, I]
∥∥
2
≤ ϵ2.

Theorem 1. Consider the difference kernel matrix Λψ1,ψ2

in (3). Suppose Conditions 1 and 2 hold. Let v1, . . . ,vn
be the unit-norm eigenvectors of Λψ1,ψ2

corresponding to
eigenvalues λ1, . . . , λn. For every i ∈ {1, . . . , n}, we de-
fine λIi and λI

c

i to be the closest eigenvalue of Λψ1,ψ2 [I, I]
and Λψ1,ψ2

[Ic, Ic] to λi. Then, the following holds for
ξ = 4(ϵ21 + ϵ2):

n∑
i=1

(
λi − λIi

)2∥∥vi[I]∥∥22 + (
λi − λI

c

i

)2∥∥vi[Ic]∥∥22 ≤ ξ
Proof. We defer the proof of the theoretical statements to
the Appendix A.1.

Corollary 1. In the setting of Theorem 1, suppose v is
an eigenvector of Λψ1,ψ2

for eigenvalue λ whose gap with
the maximum eigenvalue of the sub-matrix Λψ1,ψ2

[Ic, Ic]
satisfies λ− λmax(Λψ1,ψ2

[Ic, Ic]) ≥ γ > 0. Then,∥∥∥v[Ic]∥∥∥
2
≤ 2

√
ϵ21 + ϵ2
γ

.
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The above corollary proves that if an eigenvalue λ of the
kernel difference matrix Λψ1,ψ2 is sufficiently large, such
that its gap with the maximum eigenvalue of the block
Λψ1,ψ2

[Ic, Ic] (with the complement of samples in I clus-
tered by ψ1 yet not by ψ2) is higher than the threshold λ,
then the Ic-entries of the corresponding unit-norm eigen-
vector v will be bounded, reflecting the lack of Ic samples
in the differentially clustered samples by embedding ψ1

and ψ2. Based on the above theoretical results, we propose
considering the principal eigendirections of the difference
kernel matrix, and using their significant-value entries to
find the subset of samples clustered by embedding ψ1 but
not grouped by ψ2.

Since the difference kernel matrix is of size n×n, a standard
eigendecomposition will cost O(n3) computations. Propo-
sition 1 shows that the computation cost will be lower for
embeddings with bounded feature maps. In fact, this result
shows the computation of the eigenspace can be performed
using linearly growing computation cost O(n).

Proposition 1. Consider the difference kernel matrix
Λψ1,ψ2

in (3). This matrix shares the same non-zero eigen-
values with the following matrix:

Γψ1,ψ2 =

 C
ψ1

C
ψ1,ψ2

−C⊤
ψ1,ψ2

−C
ψ2

 ∈ R(d1+d2)×(d1+d2) (4)

where Cψ1 ∈ Rd1×d1 , Cψ2 ∈ Rd2×d2 are the kernel covari-
ance matrices of ψ1, ψ2, respectively, andCψ1,ψ2 ∈ Rd1×d2
is the cross-covariance matrix, defined as:

Cψ1 :=
1

n

n∑
i=1

ϕ1
(
ψ1(xi)

)
ϕ1

(
ψ1(xi)

)⊤
,

Cψ2 :=
1

n

n∑
i=1

ϕ2
(
ψ2(xi)

)
ϕ2

(
ψ2(xi)

)⊤
,

Cψ1,ψ2
:=

1

n

n∑
i=1

ϕ1
(
ψ1(xi)

)
ϕ2

(
ψ2(xi)

)⊤
.

We also note that for every eigenvector v ∈ Rd1+d2 of the
matrix Γψ1,ψ2

in (4), which we call the differential covari-
ance matrix, we can find the corresponding vector u of
difference kernel matrix Λψ1,ψ2

using the following:

u =

ϕ1(ψ1(x1)) ϕ2(ψ2(x1))
...

...
ϕ1(ψ1(xn)) ϕ2(ψ2(xn))

v

As can be seen, the computation of the matrix Γψ1,ψ2
can

be performed with O(n) computations, linearly growing in
sample size, and the eigendecomposition of Γψ1,ψ2

can be
handled viaO

(
(d1+d2)

3
)
, depending on the dimensions of

the kernel feature maps ϕ1, ϕ2, and finally the eigenvector

Algorithm 1 Spectral Pairwise Embedding Comparison
(SPEC)

1: Input: Sample set {x1, . . . ,xn}, embeddings ψ1 and
ψ2, kernel feature maps ϕ1 and ϕ2

2: Initialize Cψ1 = 0d1×d1 , Cψ2 = 0d2×d2 ,
Cψ1,ψ2

= 0d1×d2
3: for i ∈ {1, . . . , n} do
4: Update Cψ1

← Cψ1
+ 1

nϕ1(ψ1(xi))ϕ1(ψ1(xi))
⊤

5: Update Cψ2
← Cψ2

+ 1
nϕ2(ψ2(xi))ϕ2(ψ2(xi))

⊤

6: UpdateCψ1,ψ2
←Cψ1,ψ2

+1
nϕ1(ψ1(xi))ϕ2(ψ2(xi))

⊤

7: end for
8: Construct Γψ1,ψ2 as in Equation (4)
9: Compute eigendecomposition Γψ1,ψ2 = V diag(λ)V ⊤

10: for i ∈ {1, . . . , n} do
11: Map eigenvector ui =

[
ϕ1(ψ1(X)) ϕ2(ψ2(X))

]
vi

12: end for
13: Output: Eigenvalues λ1, . . . , λn, eigenvectors

u1, . . . ,un.

mapping from Γψ1,ψ2
to Λψ1,ψ2

will be O(n). Therefore,
the entire eigenvector computation of Λψ1,ψ2

can be handled
using O(n+ (d1 + d2)

3) computations. Algorithm 1 con-
tains the main steps of computing the SPEC-eigendirections
using the above approach. As detailed in this algorithm,
the computation of the differential kernel covariance matrix
can be run over samples in a cascade, avoiding the need for
storing a large dataset.

Applying the standard linear and cosine-similarity kernels,
the kernel feature dimension will match that of the em-
bedding, which is usually bounded by 1000 for standard
image and text embeddings. In the case of shift-invariant
kernels, e.g. the Gaussian (RBF) kernel, whose feature di-
mension is infinite, we can leverage the random Fourier
features (RFFs) (Rahimi & Recht, 2007b) to reduce the
dimension of the kernel feature dimension for a proper
proxy kernel function characterized by the random Fourier
features. According to the RFF framework, given a ker-
nel function k(x, y) = κ(x − y) that is normalized i.e.
κ(0) = 1, we draw a number m independent Fourier fea-
tures ω1, . . . , ωm ∼ κ̂ from probability density function κ̂
which denotes the Fourier transform of κ defined as

κ̂(ω) =
1

(2π)d

∫
X
κ(x) exp(−i⟨ω, x⟩)dx

Then, the RFF method approximates the shift-invariant ker-
nel k(x, y) ≈ k̂(x, y) = ϕ̂(x)⊤ϕ̂(y) where

ϕ̂(x) =
1√
m

[
cos(ω⊤

1 x), sin(ω
⊤
1 x), ., cos(ω

⊤
mx), sin(ω

⊤
mx)

]
Theorem 2. Consider normalized shift-invariant kernel
k1(x, y) = κ1(x− y) and k2(x′, y′) = κ2(x

′ − y′). Then,
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drawing m Fourier features ω(1)
i ∼ κ̂1 and ω(2)

i ∼ κ̂2, we
form the RFF-proxy kernel functions k̂1, k̂2. Then, consid-
ering eigenvalues λ̂1, . . . , λ̂n and eigenvectors v̂1, . . . , v̂n
of proxy Λ̂ψ1,ψ2

, for every δ > 0, the following holds with
probability at least 1− δ:

n∑
i=1

∥∥Λψ1,ψ2
v̂i − λ̂iv̂i

∥∥2
2
≤ 128 log(2/δ)

m

Proof. We defer the proof to the Appendix A.3.

As the above theorem suggests, the eigenvectors of the RFF-
proxy difference kernel function Λ̂ψ1,ψ2 provide an approx-
imation of the eigenspace of the target difference kernel
function Λψ1,ψ2

. On the other hand, while forming the dif-
ferential covariance matrix for the proxy-RFF kernel, the
dimension of Γ̂ψ1,ψ2

will be 4m×4m, which is finite unlike
the target shift-invariant kernel. As a result, one can apply
the eigenspace equivalence in Proposition 1 to the proxy
kernel function to reduce the computational complexity to
O
(
m3 + n

)
computations with m features and n samples.

5. SPEC-based Quantification of Embedding
Differences

As discussed earlier, the eigenspace of the difference
kernel matrix Λψ1,ψ2 provides information on the differ-
ently clustered samples by the two embeddings. There-
fore, the SPEC approach motivates measuring the dif-
ference of two embeddings using the eigenspectrum of
Λψ1,ψ2

. Here, we specifically focus on the spectral ra-
dius of Λψ1,ψ2 , i.e., its maximum absolute eigenvalue
ρ(Λψ1,ψ2) = max1≤i≤n |λi(Λψ1,ψ2)| (ρ(A) denotes A’s
spectral radius). Note that Λψ1,ψ2

is by definition a symmet-
ric matrix with a zero trace, and therefore its eigenvalues
are all real and add up to 0. The following definition states
the difference measure, which we call SPEC-diff score:

SPEC-diff(ψ1, ψ2) := ρ(Λψ1,ψ2
). (5)

Since SPEC-diff is only a function of Λψ1,ψ2’s
non-zero eigenvalues, Proposition 1 shows that
SPEC-diff(ψ1, ψ2) = ρ(Γψ1,ψ2

) is equal to the spectral ra-
dius of the differential covariance matrix Γψ1,ψ2

, therefore,
it is a symmetric pseudo-distance whose computation cost
scales linearly with sample size n.

While the SPEC-diff measure can be used to quantify the
mismatches of two embeddings, it can be further optimized
in the training or fine-tuning of an embedding map ψ1,θ’s
parameters θ in order to align the embedding’s clusters with
another reference embedding ψ2. The optimization problem
to be solved for such an alignment of the embeddings will
be the following, which we call the SPEC-align problem:

min
θ∈Θ

L(ψ1,θ) + β · SPEC-diff(ψ1,θ, ψ2) (6)

In the above, L(ψ1,θ) denotes the original loss function of
training embedding ψ1,θ and β denotes the coefficient of the
penalty function SPEC-diff(ψ1,θ, ψ2), penalizing the mis-
match with reference embedding ψ2. To apply a gradient-
based optimization algorithm to solve (6), one needs to effi-
ciently compute the gradient of SPEC-diff(ψ1,θ, ψ2) with
respect to parameter θ. The following proposition shows
that the gradient computation can be run in O(nB) over a
batch size nB .

Proposition 2. Consider the definitions in (3),(4),(5). Then,
assuming a unique top eigenvalue (in terms of absolute
value) for Γψ1,θ, ψ2

with the left and right eigenvectors
uleft,uright, we will have:

∇θSPEC-diff(ψ1,θ, ψ2) = ∇θ
(∣∣u⊤

leftΓψ1,θ,ψ2
uright

∣∣) (7)

Therefore, the above proposition suggests computing the
top left and right eigenvector of the (d1 + d2)× (d1 + d2)
difference kernel matrix, which can be computed using the
power method, and subsequently to take the gradient of
the scalar function

∣∣u⊤
leftΓψ1,θ,ψ2

uright
∣∣ which is the absolute

value of the mean of the function value for each individual
sample x1, . . . , xn. This property is especially suitable for
applying stochastic gradient methods.

6. Numerical Results
In this section, we first discuss the experimental settings and
then apply the SPEC algorithm to compare different image
and text embeddings across various large-scale datasets.
Finally, we explore the use of the SPEC-align method to
match the sample clusters of the embeddings.

Datasets. In our experiments on image data, we used four
datasets: AFHQ (Choi et al., 2020) (15K animal faces
in categories of cats, wildlife, and dogs), FFHQ (Karras
et al., 2019) (70K human-face images), ImageNet-1K (Deng
et al., 2009) (1.4 million images across 1,000 labels), and
MS-COCO 2017 (Lin et al., 2015) (≈110K samples of di-
verse scenes with multiple objects). Additionally, similar
to (Materzynska et al., 2022), we created a custom dataset
derived from 10 selected classes from ImageNet-1k, where
we overlaid text labels directly on images.

Embeddings. The feature embeddings tested in this study
include the image embeddings: CLIP (Radford et al., 2021),
DINOv2 (Oquab et al., 2024), Inception-V3 (Szegedy et al.,
2016), and SWAV (Caron et al., 2021), and the text embed-
dings: RoBERTa (Liu et al., 2020), CLIP (Radford et al.,
2021), and E5-V2 (Wang et al., 2023a). All embeddings
were extracted using pre-trained models, and standard pre-
processing was applied for uniformity across datasets.

Experimental settings. In our experiments, we computed
the SPEC differential kernel covariance matrix using m =

6
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Figure 2. Comparison of different embeddings on 15K samples from the AFHQ dataset, consisting of 5K cats, 5K wildlife, and 5K dogs.
The number at the top of each image represents the eigenvalue of the corresponding SPEC cluster. The last two images in each row show
the UMAP representation of the SPEC clusters for each embedding individually.

2000 independent random Fourier features for a Gaussian
kernel. To determine the Gaussian kernel bandwidth σ, we
followed the kernel-based evaluation of generative models
in (Jalali et al., 2023; Pasarkar & Dieng, 2024) and selected
the embeddings bandwidths such that the difference between
top eigenvalue is less than 0.01. We provide the detailed
SPEC algorithm in Algorithm 1. The experiments were
performed on two RTX-4090 GPUs.

SPEC comparison of different embeddings. To evaluate
SPEC, we compared various image embeddings using the
AFHQ dataset. As shown in Figure 2, we employed SPEC
for pairwise comparisons to analyze the difference between
these embeddings. We reported the top 9 images that corre-
spond to the maximum entries of the top three eigenvectors
in the SPEC approach. Subsequently, we found and visu-
alized the top 100 samples (with maximum entries) from
each of the top 10 eigenvectors (i.e. SPEC-identified clus-
ters). To confirm whether these samples were clustered
by the first embedding and not by the second embedding,
we used UMAP maps (McInnes et al., 2018) to validate
the SPEC-identified different-captured sample groups by
the two embeddings. In the Appendix, we further provide
the t-SNE (Van der Maaten & Hinton, 2008) and PaCMAP
(Wang et al., 2021) plots of the FFHQ and AFHQ exper-
iments. Also, we have analyzed the found clusters using

violin plots to visualize normalized distances between data
points within each cluster. The plots also suggest that the
first embedding can cluster the points more strongly com-
pared to the second embedding. Also, we ran the K-means
clustering algorithm 50 times on each of the embedding’s
features and computed the averaged (across the 50 runs)
Adjusted Mutual Information (AMI) (Vinh et al., 2009) be-
tween the K-means labels and the SPEC-identified labels.
The results indicate that the first embedding aligns more
strongly with K-Means labels.

Furthermore, to highlight clustering differences between
embeddings, we conducted a sanity check on two of the
top five SPEC clusters from the DINOv2 - CLIP on AFHQ.
We computed the center of the top four images in each
cluster in both DINOv2 and CLIP embeddings. Then, we
calculated the cosine similarity between the center and a
set of eight test images: four additional images from the
same cluster and four random images that do not belong
to the cluster. As shown in Figure 12, DINOv2 well sepa-
rates the cluster images from random samples, assigning the
highest similarity scores to cluster-specific samples while
keeping random samples significantly lower. However, in
CLIP, some random images rank higher in similarity than
the cluster-specific samples. A similar experiment was per-
formed on SPEC clusters from the DINOv2 - CLIP on the
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Figure 3. Top 4 SPEC-identified clusters comparing CLIP and DINOv2 embeddings on 10 ImageNet classes with overlaid text labels. The
last row shows the UMAP representation of the top 10 SPEC-identified clusters for each embedding.

FFHQ dataset (Figure 13). Details are in Appendix B.4.

To further evaluate SPEC’s performance in comparing em-
beddings, we apply a typographic attack on CLIP embed-
dings. As studied by Materzynska et al. (2022), CLIP prior-
itizes text added to a custom dataset over the image content.
We selected 10 classes from the ImageNet-1K dataset and
overlaid different text labels directly onto the images. The
top four SPEC-identified clusters are presented in Figure 3,
where we observe that CLIP clusters are based on the over-
laid text, whereas DINOv2 clusters them based on visual fea-
tures. Additionally, the top 10 principal clusters in CLIP are
not well-clustered by DINOv2, and vice versa, demonstrat-
ing that SPEC effectively highlights differences between
embeddings. We compared CLIP and DINOv2 embeddings

under the same settings on the ImageWoof dataset (Howard,
2019), which consists of various dog breeds from ImageNet-
1K. SPEC principal clusters show that DINOv2 primarily
clusters images based on dog breeds, whereas CLIP groups
them based on the animals’ gestures. Additional details are
provided in Figure 11 of Appendix B.3.

SPEC comparison of embeddings on different image
and text datasets. To check the performance of SPEC on
text embeddings, we generated 10K samples from GPT-
4o across different categories, including profession, object,
gender, and emotion. We compared CLIP and RoBERTa
text embeddings in Figure 4 and observed that the top four
clusters in CLIP focused on objects in sentences, while
RoBERTa clustered based on profession and gender. We
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Figure 5. Comparison of Kernel matrices after using SPEC-align to match the sample clusters of CLIP to DINOv2.

also noted from the UMAP visualization of the samples that
the top clusters of each embedding are not well clustered
by the other, indicating that they focus on different aspects
of the sentences. We also compared CLIP with E5 and
observed the same results in Figure 9 of the Appendix B.2.
In Figure 14, we compared different image embeddings on
the MS-COCO 2017 training set with 120K samples which
we discuss in the Appendix B.3.

Aligning embeddings using SPEC-align In this section,
we discuss how to use the SPEC-align method to align the
differential kernel covariance of two embeddings. As ob-
served in the comparison of CLIP and DINOv2 in Figures 3
and 11, DINOv2 successfully captures certain clusters that
CLIP fails to distinguish. To enhance CLIP’s performance
in these tasks, we aligned CLIP with DINOv2 using the
ImageNet training set. Specifically, we incorporated an
alignment term into the CLIP loss function, as formulated
in (6), and computed the gradient using (7). The learning
parameters are detailed in the Appendix B.5.

We provide the kernel matrices for the four clusters in this
experiment in Figure 5, corresponding to the results in Fig-
ure 3. Notably, the SPEC-aligned CLIP kernel captures
the top four clusters based on image content rather than
the overlaid text labels. The clusters and their UMAP vi-
sualizations are shown in Figure 21. To further evaluate

SPEC-align’s performance, we conducted an experiment
similar to (Oquab et al., 2024), where feature quality was
assessed by training a simple classifier on a frozen backbone
without fine-tuning its weights. In this setting, SPEC-align
CLIP achieved 73.93% top-1 accuracy on ImageNet-1K,
outperforming the standard CLIP model, which reached
67.20%. For reference, DINOv2 achieved 78.99% on the
same task, indicating that SPEC-align brings CLIP substan-
tially closer to DINOv2 performance.

7. Conclusion
In this paper, we proposed the spectral SPEC approach to
the comparison of embedding maps. The SPEC method
aims to identify groups of samples clustered by one embed-
ding model which is not grouped by another model. We
formulated a scalable algorithm with O(n) computations to
apply SPEC to a dataset of size n. We also discussed the
application of SPEC for measuring the mismatches of two
embeddings and their alignment. We note that the SPEC ap-
proach operates based on the assumption that the differently
clustered samples can be detected by the spectral method.
Extending the clustering-based approach to non-spectral
clustering frameworks will be interesting for future explo-
ration. In addition, extending the framework to compare
cross-modal embeddings such as CLIP, BLIP, and ALIGN
will be a future direction to this work.
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A. Proofs
A.1. Proof of Theorem 1

For simplicity, we adopt the following notations in this proof:

K
(1)
11 :=

1

n
Kψ1 [I, I], K

(1)
12 :=

1

n
Kψ1 [I, Ic], K

(1)
22 :=

1

n
Kψ1 [Ic, Ic]

K
(2)
11 :=

1

n
Kψ2

[I, I], K
(2)
12 :=

1

n
Kψ2

[I, Ic], K
(2)
22 :=

1

n
Kψ2

[Ic, Ic]

Λ11 := Λψ1,ψ2
[I, I], Λ12 := Λψ1,ψ2

[I, Ic], Λ22 := Λψ1,ψ2
[Ic, Ic]

As a result, the following holds by definition:

Λ11 = K
(1)
11 −K

(2)
11 , Λ12 = K

(1)
12 −K

(2)
12 , Λ22 = K

(1)
22 −K

(2)
22

According to Condition 1, we know the Frobenius norm bound ∥K(1)
12 ∥F ≤ ϵ1. Also, due to Condition 2, we know the

ℓ2-operator norm bound ∥K(2)
11 ∥2 ≤ ϵ2. Note that the matrix 1

nKψ2
is positive semi-definite (PSD). Therefore, the Schur

complement of its block representation following indices in I and Ic = {1, . . . , n} − I must be a PSD matrix, i.e.

K
(2)
22 −K

(2)
12

⊤
K

(2)
11

−1
K

(2)
12 ⪰ 0.

Therefore, the above Schur complement has a non-negative trace, implying that

Tr
(
K

(2)
22 −K

(2)
12

⊤
K

(2)
11

−1
K

(2)
12

)
≥ 0 =⇒ Tr

(
K

(2)
12

⊤
K

(2)
11

−1
K

(2)
12

)
≤ Tr

(
K

(2)
22

)
.

Therefore, we will have the following:

1 = Tr
( 1

n
Kψ2

)
≥ Tr

(
K

(2)
22

)
≥ Tr

(
K

(2)
12

⊤
K

(2)
11

−1
K

(2)
12

)
≥ Tr

(
K

(2)
12

⊤( 1

λmax(K
(2)
11 )

I
)
K

(2)
12

)
≥ 1

λmax(K
(2)
11 )

Tr
(
K

(2)
12

⊤
K

(2)
12

)
=

1

∥K(2)
11 ∥2

Tr
(
K

(2)
12

⊤
K

(2)
12

)
=

1

∥K(2)
11 ∥2

∥∥K(2)
12

∥∥2
F

The above means that Condition 2 implies ∥∥∥K(2)
12

∥∥∥2
F
≤

∥∥∥K(2)
11

∥∥∥
2
≤ ϵ2.

As a result, we can apply Young’s inequality to show that

∥Λ12∥2F ≤ 2

(∥∥∥K(2)
12

∥∥∥2
F
+

∥∥∥K(1)
12

∥∥∥2
F

)
≤ 2(ϵ21 + ϵ2).

Therefore, we will have the following:∥∥∥Λψ1,ψ2
−
[
Λ11 0
0 Λ22

]
︸ ︷︷ ︸

Λ̃ψ1,ψ2

∥∥∥2
F

= 2
∥∥Λ12

∥∥2
F
≤ 4(ϵ21 + ϵ2).
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Now, since Λψ1,ψ2
is a symmetric matrix, we can apply spectral decomposition to write it as Λψ1,ψ2

= V diag(λ)V ⊤ where
every row vi of matrix V is an eigenvector of Λψ1,ψ2 with corresponding eigenvalue λi, sorted as λ1 ≥ · · · ≥ λn. Note that
the eigenvalues are real and sum up to 0 as the trace of Λψ1,ψ2 is zero. Then, we can write:

n∑
i=1

∥∥Λ̃ψ1,ψ2
vi − Λψ1,ψ2

vi
∥∥2
2
=

n∑
i=1

∥∥(Λ̃ψ1,ψ2
− Λψ1,ψ2

)
vi
∥∥2
2

=

n∑
i=1

v⊤
i

(
Λ̃ψ1,ψ2

− Λψ1,ψ2

)⊤(
Λ̃ψ1,ψ2

− Λψ1,ψ2

)
vi

=

n∑
i=1

Tr
(
v⊤
i

(
Λ̃ψ1,ψ2

− Λψ1,ψ2

)⊤(
Λ̃ψ1,ψ2

− Λψ1,ψ2

)
vi

)
=

n∑
i=1

Tr
(
viv

⊤
i

(
Λ̃ψ1,ψ2 − Λψ1,ψ2

)⊤(
Λ̃ψ1,ψ2 − Λψ1,ψ2

))
=Tr

(( n∑
i=1

viv
⊤
i

)(
Λ̃ψ1,ψ2 − Λψ1,ψ2

)⊤(
Λ̃ψ1,ψ2 − Λψ1,ψ2

))
=Tr

((
Λ̃ψ1,ψ2 − Λψ1,ψ2

)⊤(
Λ̃ψ1,ψ2 − Λψ1,ψ2

))
=
∥∥∥Λ̃ψ1,ψ2

− Λψ1,ψ2

∥∥∥2
F

≤ 4
(
ϵ21 + ϵ2

)
As a result, we can write

4
(
ϵ21 + ϵ2

)
≥

n∑
i=1

∥∥Λ̃ψ1,ψ2
vi − Λψ1,ψ2

vi
∥∥2
2

=

n∑
i=1

∥∥Λ̃ψ1,ψ2
vi − λivi

∥∥2
2

=

n∑
i=1

∥∥Λ11vi[I]− λivi[I]
∥∥2
2
+
∥∥Λ22vi[Ic]− λivi[Ic]

∥∥2
2

≥
n∑
i=1

(
λi − λIi

)2∥∥vi[I]∥∥22 + (
λi − λI

c

i

)2∥∥vi[Ic]∥∥22.
In the above, the last inequality holds as we know for every PSD matrix A and vector v, we have ∥Av− λv∥2 ≥ |λj − λ|v,
where λj is the eigenvalue of A with the minimum absolute difference |λj − λ|. Therefore, the proof of Theorem 1 is
complete.

A.2. Proof of Proposition 1

Note that we can write Λψ1,ψ2
using the following matrix multiplication:

Λψ1,ψ2 =
1

n

[
Φψ1

Φψ2

]  Φ⊤
ψ1

−Φ⊤
ψ2


In the above, we define Φψ1

∈ Rn×d1 to be the embedding of dataset x1, . . . , xn with embedding map ψ1, i.e., its ith
row will be ϕ1(ψ1(xi)), and similarly we let Φψ2 ∈ Rn×d2 to be the embedding of dataset with embedding map ψ2 with

its ith row being ϕ2(ψ2(xi)). Therefore, if we define A =
[
Φψ1

Φψ2

]
and B = 1

n

[
Φ⊤
ψ1
−Φ⊤

ψ2

]⊤
, then we will have

Λψ1,ψ2
= AB.

On the other hand, we know that for every matrix A ∈ Rn×(d1+d2) and B ∈ R(d1+d2)×n, AB and BA share the same
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non-zero eigenvalues. In this case, the matrix BA sharing the non-zero eigenvalues with Λψ1,ψ2
= AB can be calculated as

BA =
1

n

[
Φ⊤
ψ1

−Φ⊤
ψ2

] [
Φψ1

Φψ2

]
=

[
1
nΦ

⊤
ψ1
Φψ1

1
nΦ

⊤
ψ1
Φψ2

− 1
nΦ

⊤
ψ2
Φψ1

− 1
nΦ

⊤
ψ2
Φψ2

]

=

[
Cψ1

Cψ1,ψ2

−C⊤
ψ1,ψ2

−Cψ2

]
= Γψ1,ψ2

.

In addition, for every eigenvector v (corresponding to a non-zero eigenvalue) of Γψ1,ψ2
= BA, we have that u = Av is an

eigenvector of Λψ1,ψ2
= AB which is

u =
[
Φψ1 Φψ2

]
v =

ϕ1(ψ1(x1)) ϕ2(ψ2(x1))
...

...
ϕ1(ψ1(xn)) ϕ2(ψ2(xn))

v

Therefore, the proof is complete.

A.3. Proof of Theorem 2

As stated in the theorem, we consider independent random Fourier features ω1, . . . , ωm ∼ κ̂ where the proxy feature map is:

ϕ̂(x) =
1√
m

[
cos(ω⊤

1 x), sin(ω
⊤
1 x), ., cos(ω

⊤
mx), sin(ω

⊤
mx)

]
Based on the assumption, the shift-invariant kernel k(x, y) = κ(x − y) is normalized where k(x, x) = 1 for every
x ∈ X . Therefore, using the Fourier synthesis equation k(x, y) = Eω∼κ̂

[
cos(ω⊤(x− y))

]
= Eω∼κ̂

[
cos(ω⊤x) cos(ω⊤y) +

sin(ω⊤x) sin(ω⊤y)
]
. The RFF-proxy kernel function can be viewed as

k̂(x, y) =
1

m

m∑
i=1

cos(ω⊤
i (x− y)).

As a result, if we consider kernel matrix Kψ1,ωi where kψ1,ωi(x, y) = cos(ω⊤
i (ψ1(x)−ψ1(y))), we can simplify the proxy

kernel matrix as
1

n
K̂ψ1 =

1

m

m∑
i=1

1

n
Kψ1,ωi

where we note that Eωi∼pω [ 1nKψ1,ωi ] =
1
nKψ1

as ω is drawn from the Fourier transform κ̂.

Also, ∥ 1nKψ1,ωi∥F ≤ 1 holds, because the kernel function is assumed to be normalized and |kψ1(x, y)| ≤ 1 for every x, y.
Noting that the Frobenius norm ∥ · ∥F can be written as the Euclidean norm of the vectorized matrix, the application of
Vector Bernstein inequality (Gross, 2011; Kohler & Lucchi, 2017) proves for any 0 ≤ ϵ ≤ 2:

P
(∥∥∥ 1

m

m∑
i=1

[
1

n
Kψ1,ωi ]−

1

n
Kψ1

∥∥∥
F
≥ ϵ

)
≤ exp

(8−mϵ2
32

)
,

Therefore, we will have

P
(∥∥∥ 1
n
K̂ψ1 −

1

n
Kψ1

∥∥∥
F
≥ ϵ

)
≤ exp

(8−mϵ2
32

)
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Similarly, we can show that for the embedding ψ2 we will have

P
(∥∥∥ 1
n
K̂ψ2

− 1

n
Kψ2

∥∥∥
F
≥ ϵ

)
≤ exp

(8−mϵ2
32

)
Next, we note that

n∑
i=1

∥∥∥Λψ1,ψ2
v̂i − λiv̂i

∥∥∥2
2
=

n∑
i=1

∥∥∥Λψ1,ψ2
v̂i − Λ̂ψ1,ψ2

v̂i

∥∥∥2
2

=

n∑
i=1

∥∥∥(Λψ1,ψ2
− Λ̂ψ1,ψ2

)
v̂i

∥∥∥2
2

=

n∑
i=1

v̂⊤
i

(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)⊤(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)
v̂i

=

n∑
i=1

Tr
(
v̂⊤
i

(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)⊤(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)
v̂i

)
=

n∑
i=1

Tr
((

Λψ1,ψ2 − Λ̂ψ1,ψ2

)⊤(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)
v̂iv̂

⊤
i

)
= Tr

((
Λψ1,ψ2 − Λ̂ψ1,ψ2

)⊤(
Λψ1,ψ2 − Λ̂ψ1,ψ2

)( n∑
i=1

v̂iv̂
⊤
i

))
= Tr

((
Λψ1,ψ2 − Λ̂ψ1,ψ2

)⊤(
Λψ1,ψ2 − Λ̂ψ1,ψ2

))
=

∥∥∥Λψ1,ψ2
− Λ̂ψ1,ψ2

∥∥∥2
F

≤ 2
∥∥∥Kψ1

− K̂ψ1

∥∥∥2
F
+ 2

∥∥∥Kψ2
− K̂ψ2

∥∥∥2
F

The last line in the above inequalities follow from Young’s inequality showing that ∥A+B∥2F ≤ 2∥A∥2F + 2∥B∥2F . Then,

setting δ = 2 exp
(
8−mϵ2

32

)
implying ϵ =

√
32 log(2e−1/4/δ)

m , we will have

P
(∥∥∥ 1
n
K̂ψ1

− 1

n
Kψ1

∥∥∥
F
≤

√
32 log(2e−1/4/δ)

m

)
≥ 1− δ

2
, P

(∥∥∥ 1
n
K̂ψ2

− 1

n
Kψ2

∥∥∥
F
≤

√
32 log(2e−1/4/δ)

m

)
≥ 1− δ

2

where by applying the union bound we can show

P
(∥∥∥ 1
n
K̂ψ1 −

1

n
Kψ1

∥∥∥
F
≤

√
32 log(2e−1/4/δ)

m
and

∥∥∥ 1
n
K̂ψ2 −

1

n
Kψ2

∥∥∥
F
≤

√
32 log(2e−1/4/δ)

m

)
≥ 1− δ

which shows that

P
( n∑
i=1

∥∥∥Λψ1,ψ2
v̂i − λiv̂i

∥∥∥2
2
≤ 128 log(2e−1/4/δ)

m

)
≥ 1− δ

The above completes the theorem’s proof.

A.4. Proof of Proposition 2

To show this statement, we leverage the fact that the eigenvalues of matrix Γψ1,θ,ψ2
are real, as they are shared with the

symmetric matrix Λψ1,ψ2
. Then, we can leverage the Jordan canonical form to write the matrix Γψ1,θ,ψ2

as follows:

Γψ1,θ,ψ2 = UJU−1

In the above, matrix U ∈ Rd1+d2 includes the right generalized eigenvectors of matrix Γψ1,θ,ψ2 as its rows, and U−1

includes the left generalized eigenvectors of matrix Γψ1,θ,ψ2 in its rows. Also, J is the Jordan normal form containing one
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block matrix on the diagonal for every eigenvalue. Assuming that the eigenvalue with the maximum absolute value (which
determines the spectral radius) has multiplicity 1, the Jordan canonical form has only one diagonal entry λmax for the top
eigenvalue, and so we can write the decomposition as:

Γψ1,θ,ψ2
= U (−imax)J (−imax)U−1(−imax)

+ λmaxuleftu
⊤
right

Due to the bi-orthogonality of uleft, uright with the rest of right and left generalized eigenvectors, respectively, we will have

λmax(Γψ1,θ,ψ2) = u⊤
leftΓψ1,θ,ψ2uright

Taking the partial derivative with respect to θ from the above identity proves the proposition.

B. Additional Numerical Results
In this section, we provide additional numerical results on embedding comparisons and alignment using the SPEC framework,
further illustrating its effectiveness in identifying clustering differences across various datasets and embedding methods.

B.1. Ablation Study on the Comparison of Visualization Algorithms

To further validate that the SPEC method can distinguish between two embeddings, we supplemented the UMAP visualization
in Figure 2 with additional techniques, PacMAP (Wang et al., 2021) and t-SNE. These visualizations assess how well the
clusters identified by SPEC align across different dimensionality reduction methods. As shown in Figure 6, the alternative
techniques confirm that SPEC correctly isolates distinct clusters in one embedding, whereas the other embedding fails to
produce clean separations.

B.2. Comparison of text embeddings

Synthetic text dataset. To evaluate the performance of SPEC on text embeddings, we generated a dataset of 10K text
samples using GPT-4o, covering diverse categories such as profession, objects, gender, and emotions. We then applied SPEC
to compare CLIP, RoBERTa, and E5 text embeddings. As shown in Figures 8 and 9, CLIP primarily clusters sentences
based on objects mentioned in the text, whereas RoBERTa organizes them according to profession and gender. For instance,
CLIP’s first cluster consists of sentences related to cameras and photography, while RoBERTa’s first cluster groups sentences
about female firefighters and female carpenters. This suggests that CLIP embeddings do not cluster professions based on
gender but excel at grouping objects, which aligns with its training focus. Additionally, the t-SNE visualization reveals that
the principal clusters identified in one embedding are not well-separated in the other, indicating that each model captures
different semantic aspects of the text. In addition to previous experiments, we used MS-COCO 2017 train set captions
( 120K samples) to compare RoBERTa and E5-L-V2 embeddings. As shown in Figure 10, we can observe that E5 managed
to cluster captions where two or more animals are interacting.

The prompt used to generate the text dataset: “You are an expert prompt optimizer for text-to-image models. Text-to-image
models take a text prompt as input and generate images. Your task is to generate a prompt describing a person in [Profession],
[Emotion], and [Gender] performing [Action] with [Object]. You can randomly choose the categories from the attributes:
Professions: Chef, doctor, journalist, scientist, carpenter, engineer, pilot, artist, teacher, firefighter. Emotions: Excited, calm,
angry, serious, curious, confident, focused, determined, happy, tired. Genders: Male, female. Actions: Designing, adjusting,
sitting, crouching, climbing, carrying, holding, standing, inspecting, juggling. Objects: Camera, frying pan, painting, laptop,
photograph, syringe, golden throne, desk, guitar, airplane.”

Real world text dataset. To further compare the text embeddings, we validated our approach on a large-scale real text
dataset: WikiText-2 (Merity et al., 2016). We split the dataset into 10K samples, each containing 100 tokens. Then, we used
SPEC to compare CLIP and RoBERTa embeddings. As shown in Figure7. We observed that RoBERTa better clustered
Military Operations & Infrastructure, Ecology & Species Biology, Historical Figures, and Music, while CLIP embeddings
more strongly clustered Entertainment & Sports and Science.

In addition to t-SNE plots, we also examined the distribution of pairwise distances within each cluster to verify that
one embedding successfully captured these clusters while the other was less inclined to do so. Also, we ran the K-
means clustering algorithm 50 times on each of the embedding’s features and computed the averaged (across the 50 runs)
Normalized Mutual Information (NMI) between the K-means labels and the SPEC-identified labels. The results demonstrate
that one embedding achieved considerably stronger alignment with KMeans labels.
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Figure 6. Comparison of SPEC-identified clusters across different visualization methods (PacMAP, t-SNE, UMAP) of Figure 2 experiment.
One embedding shows clear cluster separation, while the other fails to distinguish groups.

19



Towards an Explainable Comparison and Alignment of Feature Embeddings

SPEC Principal Clusters for CLIP   RoBERTa

SPEC Principal Clusters for RoBERTa   CLIP

Roger Federer's 2009 season
Cole Hamels in 2009 postseason (loss to Yankees)
Hurricane Helms' wrestling moves
Track and field event classifications
Roger Federer's playing style evolution
Roger Federer career statistics
Roger Federer in 2004
2017 Azerbaijan Grand Prix
Federer-Roddick rivalry"21-3 head-to-head record

Normalized Intra-cluster Distances of top 10 SPEC-identified clusters RoBERTa   CLIP

Cardinal Appointments of 26 September 1766
Milanese Cardinals Under Benedict XIV
Papal Legates Appointed 1758-1759
French Cardinals Under Clement XIII (1766)
Future Pope Clement XIV's Cardinalate (1759)
Spanish Cardinals of Benedict XIV's Era
 Pope Clement XIV (1743-1754)
 Antonio Colonna Branciforte - Cardinal
Urbano Paracciani Rutili ( Sep 1766 ) – Cardinal

Hydrostatic equilibrium in stellar (Astrophysics)
Xenon compounds and their chemical (Chemistry)
Antimony oxides and halides (Chemistry)
Tropical cyclone formation from easterly waves
Lifecycle of an Atlantic tropical depression
Extinct fauna of Réunion Island
Impact of agriculture on Irish wildlife habitats
Extinct fauna of Réunion Island
Legal protection status of cougars by country

WWI Sinai Railway Construction (1916)
Ottoman Water Source Destruction (1916)
Operation Joint Endeavor (1995–96)
Zanzibar Anti-Slavery Missions (1880s) 
WWI Naval Raid Planning (1917–18)
St. Nazaire Raid Plan (1942) 
Maryang San Battle (Korean War, 1951)
Fort Glanville’s Decline (1889)
Fort Glanville’s Final Role (1890s–1903)
Mogadishu Road Modernization (2013–15)

Habitat of Zygoballus sexpunctatus
Life Cycle of Zygoballus sexpunctatus
Oribi Antelope Description
Oribi Diet & Behavior
Kakapo Parrot Characteristics 
Noisy Miner Taxonomy
Tawny Nurse Shark Ecology
False Morel Fruiting Patterns
Mutinus elegans (Stinkhorn Fungus)
Amylostereaceae Fungal Family 

Lord Rosebery’s Eccentricities
Archibald, 5th Earl of Rosebery
Simon Bradstreet’s Legacy
Djedkare Isesi’s Reign
Neolithic Long Barrow Folklore
Arikamedu’s Roman Connection
Coldrum Stones Rediscovery
Feroz Shah’s Temple Destruction
García Márquez’s Historical Novel
Erving Goffman’s Influence

t-SNE visualization of top 10 SPEC clusters with CLIP embeddingt-SNE visualization of top 10 SPEC clusters with RoBERTa embedding

Coldplay's "Clocks"
Rihanna's Diamonds World Tour
Beyoncé's "Crazy in Love"
Weird Al Yankovic's "Christmas at Ground Zero"
Whitney Houston's Ballad Reviews
Beyoncé's "Freakum Dress"
The Family Jewels Album Reception
Nina Simone's Performances
Nelly Furtado's "Folklore"
Casting Crowns' "Who Am I"

RoBERTa KMeans & SPEC NMI: 0.62 ± 0.0004 CLIP KMeans & SPEC NMI : 0.31 ± 0.0005

Normalized Intra-cluster Distances of top 10 SPEC-identified clusters RoBERTa   CLIP

t-SNE visualization of top 10 SPEC clusters with CLIP embedding t-SNE visualization of top 10 SPEC clusters with RoBERTa embedding

RoBERTa KMeans & SPEC NMI: 0.32 ± 0.0003CLIP KMeans & SPEC NMI : 0.63 ± 0.0011

Tristan (horse): Career Highlights
Ross and Rachel: Cultural Analysis of Friends
Chelsea F.C. in the 1950s: First Division Triumph
Otra Nota: Marc Anthony's Pivotal Transition
The Seymour-Dudley Marriage Alliance
Evolution of Barbie's Midge
Newcastle United Reserves 47-48 Central League
Odyssey Number Five
Wrestling Championships Through the Ages

Cluster #1
λ =0.0321

ϵ₁ = 0.0156, ϵ₂ = 0.0010
ξ = 0.0052

Cluster #2
λ =0.0212

ϵ₁ = 0.0140, ϵ₂ = 0.0020
ξ = 0.0089

Cluster #3
λ =0.0183

ϵ₁ = 0.0152, ϵ₂ = 0.0015
ξ = 0.0071

Cluster #4
λ =0.0134

ϵ₁ = 0.0143, ϵ₂ = 0.0014
ξ = 0.0065

Cluster #1
λ =0.0351

ϵ₁ = 0.0157, ϵ₂ = 0.0010
ξ = 0.0052

Cluster #2
λ =0.0262

ϵ₁ = 0.0140, ϵ₂ = 0.0020
ξ = 0.0089

Cluster #3
λ =0.0143

ϵ₁ = 0.0151, ϵ₂ = 0.0015
ξ = 0.0071

Cluster #4
λ =0.0114

ϵ₁ = 0.0143, ϵ₂ = 0.0014
ξ = 0.0065

Figure 7. Top 4 SPEC-identified clusters by comparing CLIP and RoBERTa text embeddings on the WikiText-2 dataset with the
visualization of the top 10 SPEC-identified clusters using t-SNE.
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A focused male engineer is inspecting a painting.
A determined male doctor is holding a painting.
A focused male engineer is carrying a painting.
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A calm female firefighter is inspecting a camera.
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A happy female firefighter is holding a guitar.
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A curious male artist is holding a photograph.
A happy male artist is inspecting a frying pan.
A happy male artist is carrying a desk.
A curious male artist is inspecting a camera.
An excited male artist is carrying a desk.
A confident male artist is inspecting a desk.
An excited male artist is holding a laptop.
An angry male artist is inspecting a camera.
A happy male artist is holding a painting.
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A calm female journalist is holding a photograph.
A calm male journalist is holding a photograph.
A focused female journalist is holding a guitar.
A calm female journalist is inspecting a camera.
An angry male journalist is holding a photograph.
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An angry male journalist is holding a frying pan.
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UMAP visualization of top 10 SPEC
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t-SNE visualization of top 10 SPEC
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RoBERTa KMeans & SPEC AMI: 0.72 ± 0.0010 CLIP KMeans & SPEC AMI : 0.45 ± 0.0014

Figure 8. Top 4 SPEC-identified clusters by comparing CLIP and RoBERTa text embeddings on a dataset of 10K samples generated from
GPT-4o with the visualization of the top 10 SPEC-identified clusters using t-SNE and UMAP.
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A confident male firefighter is crouching a laptop.
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An angry male scientist is designing a photograph.
A calm female engineer is designing a photograph.
An angry male pilot is designing a photograph.
A determined male artist is designing a photograph.
An angry male engineer is designing a photograph.
A curious male engineer is designing a photograph.
A curious female scientist is holding a photograph.
A happy male doctor is adjusting a photograph.

t-SNE visualization of top 10 SPEC
clusters with E5 embedding
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A serious female firefighter is climbing a camera.
A excited female firefighter is standing a painting.
A happy female firefighter is holding a laptop.
A focused female firefighter is holding a guitar.
A focused female firefighter is crouching a camera.
A calm female firefighter is holding a laptop.
A focused female firefighter is holding a desk.
A confident female firefighter is holding a laptop.

An angry female artist is carrying a laptop.
An angry female pilot is holding a photograph.
An angry female chef is holding a syringe.
An angry female artist is holding a guitar.
An angry female artist is designing a camera.
An angry female pilot is carrying a desk.
An angry female artist is adjusting a laptop.
An angry female chef is designing a syringe.
An angry female artist is carrying a painting.

A tired female firefighter is carrying a syringe.
A tired female doctor is adjusting a photograph.
A tired female doctor is designing a frying pan.
A tired female doctor is adjusting a laptop.
A tired female scientist is adjusting a camera.
A tired female firefighter is holding a camera.
A tired female pilot is carrying a photograph.
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UMAP visualization of top 10 SPEC
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clusters with E5 embedding
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UMAP visualization of top 10 SPEC
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Figure 9. Top 4 SPEC-identified clusters by comparing CLIP and E5-Large-V2 text embeddings on a dataset of 10K samples generated
from GPT-4o with the visualization of the top 10 SPEC-identified clusters using t-SNE.
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A man riding a surfboard in the waves.
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A guy jumps in the air on his skate board
A man who is riding a skateboard down the street.
a man is flying through the air on a skateboard
A man on a skateboard performing a trick.
A man on a skateboard performing a trick.
A man on a skateboard performing a trick.
A man in the air on a skateboard.
Someone doing a trick on their skate board.
A man riding a skateboard doing a trick.
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Figure 10. Top 4 SPEC-identified clusters by comparing RoBERTa and E5-Large-V2 text embeddings on MS-COCO 2017 train captions
( 120K prompts) with the visualization of the top 10 SPEC-identified clusters using t-SNE.
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B.3. Comparison of image embeddings

To explore the capability of CLIP’s image embedding, we analyze the top 4 SPEC-identified clusters comparing CLIP and
DINOv2 embeddings on ImageNet-1k dog breeds in Figure 11, highlighting their different clustering strategies. CLIP
primarily groups dogs based on their posture and gestures rather than their breed. For example, in cluster two, all dogs are
standing, but they belong to different breeds. This suggests that CLIP focuses more on high-level visual features like body
position and orientation. In contrast, DINOv2 forms clusters based on dog breeds, grouping visually similar dogs together
regardless of their posture. The last row presents the t-SNE representation of the top 10 SPEC-identified clusters for each
embedding, further illustrating their distinct clustering behaviors.

We analyzed the clustering behavior of different embeddings on 120K samples from the MS-COCO 2017 dataset and
observed similar trends in how different models organize visual concepts in Figure 14. For instance, SWAV demonstrates
a strong ability to cluster grid-like images, suggesting its emphasis on structural patterns in images. Meanwhile, CLIP
excels at differentiating activities like surfing, capturing fine-grained semantic details that may not be as distinct in SWAV or
DINOv2. However, CLIP struggles to cluster certain sports, such as tennis, as effectively as SWAV or DINOv2, highlighting
its relative limitations in capturing specific action-based similarities. These findings further illustrate the varying strengths
of different embeddings in organizing visual content.

We also analyzed SPEC on 70,000 samples from the FFHQ dataset. As observed in Figure 15, DINOv2 better distinguishes
images where two people are present, with one appearing incompletely, as a cluster. In contrast, CLIP is more effective at
identifying children as a distinct group.

B.4. Comparing similarity ranking for SPEC clusters

In Figure 12, the leftmost images show the top 4 samples of SPEC-identified clusters on AFHQ. The first and second clusters
correspond to black cats and black & white cats, respectively. For each cluster, cosine similarity is computed between the
mean of these samples and both 4 additional cluster members (green-bordered) and 4 random images (red-bordered). Images
are sorted left to right by similarity scores. The first row represents DINOv2, the second CLIP. Unlike DINOv2, CLIP ranks
some random cats more similar to the cluster mean than the actual cluster members.

For the FFHQ dataset, as shown in Figure 13, the first cluster corresponds to people wearing graduation caps, and the
second to people wearing sunglasses. While DINOv2 maintains a significant similarity gap, clearly distinguishing the
clusters, CLIP assigns higher similarity to some samples that lack these defining features.

B.5. SPEC-align Experiments

SPEC-align Finetuning Experiments Parameters. The following parameters were used in our experiment. We used the
OpenCLIP GitHub repository (link) and used the MS-COCO 2017 training set which consists of 120K pairs of texts and
images. We use SPEC-align with the following parameters and chose DINOv2-Vit-B/14 as our reference model.

Comparison of Kernel matrices for SPEC-align. As shown in Figure 21, the SPEC-aligned CLIP kernel captures the top
four clusters based on image content rather than the overlaid text labels. Furthermore, according to the t-SNE of the models,
the SPEC-align cluster of fish is close to the cluster of images with overlaying text of fish showing that SPEC-align captured
the similarity of text and image in this experiment while clustered based on the ground truth (cluster of images).

Aligning text embeddings. In addition, we aligned CLIP text features to the T5-XL model. In Figure 20, we can observe
that the CLIP kernel has become more similar to T5-XL, and the SPEC-diff is also decreasing.

Clusters Comparison of SPEC-align. We provide additional results by comparing the top 8 Kernel-PCA (Gaussian RBF
kernel) clusters of CLIP, DINOv2, and SPEC-align CLIP. We used the CLIP aligned with DINOv2 on the ImageNet training
set. We compare the clustering of these embeddings with ImageWoof and the text-overlaid dataset in Figure 3. In Figure 18,
we observe the top 8 clusters on the text-overlaid dataset. DINOv2 clusters are based on the images, while CLIP clusters
are based on images and texts and in some cases fail to cluster based on the image. On the other hand, SPEC-align CLIP
clusters based on images while focusing on the images with the same text, as expected. The top 8 clusters of ImageWoof in
Figure 19 also show that CLIP clusters the dogs based on the gesture or their interaction with humans or the number of dogs,
while DINOv2 clusters them only based on their breed. But SPEC-align CLIP clusters dogs based on their breeds while
focusing on the gesture or the number of dogs or their interactions with humans.
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UMAP visualization of CLIPUMAP visualization of DINOv2

DINOv2 KMeans & SPEC AMI: 0.23 ± 0.0003CLIP KMeans & SPEC AMI : 0.59 ± 0.0009

UMAP visualization of DINOv2UMAP visualization of CLIP

CLIP KMeans & SPEC AMI : 0.51 ± 0.0024DINOv2 KMeans & SPEC AMI: 0.87 ± 0.0003

Figure 11. Top 4 SPEC-identified clusters comparing CLIP and DINOv2 embeddings on ImageNet-1k dog breeds. The last row shows the
UMAP representation of the top 10 SPEC-identified clusters for each embedding.
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Figure 12. Comparing similarity ranking for SPEC clusters in DINOv2-CLIP on the AFHQ dataset. The leftmost images show the top 4
samples of two SPEC-identified clusters. Cosine similarity is computed with 4 cluster members (green-bordered) and 4 random images
(red-bordered), sorted by score. Unlike DINOv2, CLIP ranks some random samples higher than cluster members.
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Figure 13. Comparing similarity ranking for SPEC clusters in DINOv2-CLIP on the FFHQ dataset. The leftmost images show the top 4
samples of two SPEC-identified clusters. Cosine similarity is computed with 4 cluster members (green-bordered) and 4 random images
(red-bordered), sorted by score. Unlike DINOv2, CLIP ranks some random samples higher than cluster members.
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Figure 14. Comparing Different embeddings on the 120K samples from MS-COCO 2017 dataset.
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Figure 15. Comparing embeddings on 70K FFHQ samples. Top numbers show SPEC cluster eigenvalues. Last two images per row
display UMAP representations of SPEC clusters for each embedding.
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Figure 16. Comparing embeddings on 70K FFHQ samples. Top numbers show SPEC cluster eigenvalues. Last two images per row
display UMAP representations of SPEC clusters for each embedding.

Parameter Value
accum freq 1
alignment loss weight 0.1
batch size 128
clip alignment contrastive loss weight 0.9
coca contrastive loss weight 1.0
distributed True
epochs 10
lr 1e-05
lr scheduler cosine
model ViT-B-32
name Vit-B-32 laion2b e16 freeze 5
precision amp
pretrained laion2b e16
seed 0
wd 0.2

Table 1. Configuration parameters used in the experiments.

Table 2. Linear evaluation of frozen features on fine-grained benchmarks.

Model Architecture Data Imagenet-1K

OpenCLIP ViT-B/32 LAION 400M 73.50
SPEC-align OpenCLIP ViT-B/32 LAION 400M 76.45
DINOv2 Vit-B/14 LVD-142M 78.99
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Figure 17. Comparison of different embeddings on 15K samples from the AFHQ dataset, consisting of 5K cats, 5K wildlife, and 5K dogs.
The number at the top of each image represents the eigenvalue of the corresponding SPEC cluster. The last two images in each row show
the UMAP representation of the SPEC clusters for each embedding individually.
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Figure 18. Top 8 Kernel-PCA (Gaussian RBF kernel) clusters for CLIP, DINOv2, and CLIP aligned with DINOv2, trained on the ImageNet
dataset.
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Figure 19. Top 8 Kernel-PCA (Gaussian RBF kernel) clusters for CLIP, DINOv2, and CLIP aligned with DINOv2, trained on the ImageNet
dataset.
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CLIP Kernel SPEC-align CLIP Kernel T5-XL Kernel

Figure 20. Comparison of Kernel matrices after using SPEC-align to match the sample clusters of CLIP to T5-XL with measuring
SPEC-diff during the training.
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Figure 21. Comparison of Kernel matrices after using SPEC-align to align CLIP to DINOv2.
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