Make Continual Learning Stronger via C-Flat

Ang Bian*!, Wei Li* 2, Hangjie Yuan >*, Chengrong Yu', Mang Wang®
Zixiang Zhao®, Aojun Lu', Pengliang Ji”, Tao Feng' 2
!Sichuan University ~ 2Tsinghua University >DAMO Academy, Alibaba Group
4Zhejiang University °ByteDance %Xi’an Jiaotong University ~ "Carnegie Mellon University
hj.yuan@zju.edu.cn, {ymjiii98, fengtao.hi}@gmail.com

Abstract

How to balance the learning ’sensitivity-stability’ upon new task training and
memory preserving is critical in CL to resolve catastrophic forgetting. Improving
model generalization ability within each learning phase is one solution to help
CL learning overcome the gap in the joint knowledge space. Zeroth-order loss
landscape sharpness-aware minimization is a strong training regime improving
model generalization in transfer learning compared with optimizer like SGD. It
has also been introduced into CL to improve memory representation or learning
efficiency. However, zeroth-order sharpness alone could favors sharper over flatter
minima in certain scenarios, leading to a rather sensitive minima rather than a
global optima. To further enhance learning stability, we propose a Continual
Flatness (C-Flat) method featuring a flatter loss landscape tailored for CL. C-Flat
could be easily called with only one line of code and is plug-and-play to any CL
methods. A general framework of C-Flat applied to all CL categories and a thorough
comparison with loss minima optimizer and flat minima based CL approaches is
presented in this paper, showing that our method can boost CL performance in
almost all cases. Code is available at https://github.com/WanNaa/C-Flat|

C-Flat: just a line of code suffices for its utilization.

i from ... import C_Flat

2

3

4 C_Flat_optimizer = C_Flat(params,base_optimizer ,model, args)

1 Introduction

Why study Continual Learning (CL)? CL is generally acknowledged as a necessary attribute for
Artificial General Intelligence (AGI) [22} 15540, [67]. In the open world, CL holds the potential for
substantial benefits across many applications: e.g. vision model needs to learn a growing image
set [[17,161}162], or, embodied model needs to incrementally add skills to their repertoire [12]].

Challenges. A good CL model is expected to keep the memory of all seen tasks upon learning
new knowledge [22]. However, due to the limited access to previous data, the learning phase is
naturally sensitive to the current task, hence resulting in a major challenge in CL called catastrophic
forgetting [9], which refers to the drastic performance drop on past knowledge after learning new
knowledge. This learning sensitivity-stability dilemma is critical in CL, requiring model with strong
generalization ability [16]] to overcome the knowledge gaps between sequentially arriving tasks.

*Equal Contribution
fCorresponding Authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/WanNaa/C-Flat

Current solutions. A series of works [43} 44, 33| 25]] are proposed to improve learning stability by
extending data space with dedicated selected and stored exemplars from old tasks, or frozen some
network blocks or layers that are strongly related to previous knowledge 68 24} 169} 57, 124].

Another group of works seeks to preserve model generalization with regularisation onto the training
procedure itself [32,118131]]. Diverse weight [45, 28, 2] or gradient alignment [[22, 9} 135} 26] strategies
are designed to encourage the training to efficiently extracting features for the current data space
without forgetting.

Loss landscape sharpness optimization [23| 19,165, [70] as an efficient training regime for model
generalization starts to gain attentions [27, 63]. Ordinary loss minima based optimizer like SGD
can easily lead to suboptimal results [4, [37, [13]. To prevent this, zeroth-order sharpness-aware
minimization seeking neighborhood-flat minima [20] has been proven a strong optimizer to improve
model generalization ability, especially in transferring learning tasks. It is also introduced into
some CL works [49, [30]] with dedicated designs to improve old knowledge representation or few-
shot learning efficiency. However, given the limited application scenarios[10, 149]], the zeroth-order
sharpness used in the current work is proved to favor sharper minima than a flat solution [70]. It
means zeroth-order only can still lead to a fast gradient descent to the suboptimal in new data space
than a more generalizable result for the joint old and new knowledge space.

Our solution. Inspired by these works, a beyond zeroth-order sharpness continual optimization
method is proposed as demonstrated in[I] where loss landscape flatness is emphasized to strengthen
model generalization ability. Thus, the model can always converge to a flat minima in each phase,
and then smoothly migrate to the global optimal of the joint knowledge space of the current and next
tasks, and hence resolve the catastrophic forgetting in CL. We dub this method Continual Flatness
(C-Flat or Cb) Moreover, C-Flat is a general method that can be easily plug-and-play into any CL
approach with only one line of code, to improve CL.

Contribution. A simple and flexible CL-friendly optimization method C-Flat is proposed, which
Makes Continual Learning Stronger.

A framework of C-Flat covering diverse CL method categories is demonstrated. Experiment results
prove that Flatter is Better in nearly all cases.

To the best of our knowledge, this work is the first to conduct a thorough comparison of CL approaches
with loss landscape aware optimization, and thus can serve as a baseline in CL.

2 Related work

Continual learning methods roughly are categorized into three groups: Memory-based methods
write experience in memory to alleviate forgetting. Some work [43] 44, 25| [51] design different
sampling strategies to establish limited budgets in a memory buffer for rehearsal. However, these
methods require access to raw past data, which is discouraged in practice due to privacy concerns.
Instead, recently a series of works [[10, 134} 46,33, 50]] elaborately construct special subspace of old
tasks as the memory. Regularization-based methods aim to realize consolidation of the previous
knowledge by introducing additional regularization terms in the loss function. Some works [32}29} 6]
enforce the important weights in the parameter space [45, 128l 2], feature representations [5} 21]], or
the logits outputs [32,42] of the current model function to be close to that of the old one. Expansion-
based methods dedicate different incremental model structures towards each task to minimize
forgetting [68) 139]. Some work [48 24} 60] exploit modular network architectures (dynamically
extending extra components [57, 69], or freeze partial parameters [36l [1]]) to overcome forgetting.
Trivially, methods in this category implicitly shift the burden of storing numerous raw data into the
retention of model [68]].

Gradient-based solutions are a main group in CL, including shaping loss landscape, tempering
the tug-of-war of gradient, and other learning dynamics [22, |9, 41]. One promising solution is
to modify the gradients of different tasks and hence overcome forgetting [7} 138], e.g., aligning
the gradients of current and old one [[L3} [18]], or, learning more efficient in the case of conflicting
objectives [47, 156l [14]]. Other solutions [[10, 49| focus on characterizing the generalization from the
loss landscape perspectives to improve CL performance and yet are rarely explored.

Loss Loss Loss
loss of old tasks

—— loss of new tasks

Lot — - - tolerance line

<— perturb radius
___________ — ® well learnt
Lota |uuadene B
®

Lowa

S— Lpew f="r2R7Es

1
Lnew ® | Lnew A ® ordinary performance
| _ —
6 6] A 2] _t;—:g:bj_@’ @ catastrophic forgetting
(a) Direct Tuning (b) Regularization (c) C-Flat

Figure 1: Illustration of C-Flat overcoming catastrophe forgetting by fine-tuning the old model
parameter to flat minima of new task. a) loss minima for current task only can cause catastrophe
forgetting on previous ones. b) balanced optima aligned by regularization leads to unsatisfying results
for both old and new tasks. ¢) C-Flat seeks global optima for all tasks with flattened loss landscape.

Sharpness minimization in CL Many recent works [23| [19, 4] are proposed to optimize neural
networks in standard training scenarios towards flat minima. Wide local minima were considered an
important regularization in CL to enforce the similarity of important parameters learned from past
tasks [6]. Sharpness-aware seeking for loss landscape flat minima starts to gain more attention in CL,
especially SAM based zeroth order sharpness is well discussed. An investigation [41] proves SAM
can help with addressing forgetting in CL, and [8] proposed a combined SAM for few-shot CL. SAM
is also used for boosting the performance of specific methods like DFGP [58]] and FS-DGPM [[10]]
designed for GPM. SAM-CL [52] series with loss term gradient alignment for memory-based CL.
These efforts kicked off the study of flat minima in CL, however, zeroth-order sharpness may not be
enough for flatter optimal [[70]. Thus, flatness with a global optima and universal CL framework is
further studied.

3 Method

Our solution addresses the learning sensitivity-stability dilemma in CL by improving model general-
ization for joint learning knowledge obtained from different catalogues domains or tasks. Moreover,
a general but stronger optimization method enhanced by the latest gradient landscape flatness is
proposed as a ’plug-and-play’ tool for any CL approach.

Loss landscape flatness. Let B(6,p) = {0 : ||¢' — 0]| < p} denotes the neighborhood of 6 with
radius p > 0 in the Euclidean space © C R, the zeroth-order sharpness at point # is commonly
defined by the maximal training loss difference within its neighborhood B(6, p):

RY(0) = max{¢s(0') — £s(0) : 0" € B(6,p)}. (1)

where Z5(6) denotes the loss of an arbitrary model with parameter 6 on any dataset S with an oracle
loss function £(+). The zeroth-order sharpness Rg(@) regularization can be directly applied to restrain
the maximal neighborhood training loss:

0

267 (0) = £5(0) + R(6) = max{£s(60') : 6 € B(0, p)}, @)

However, for some fixed p, local minima with a lower loss does not always have a lower major
hessian eigenvalue [[/0], which equals to the neighborhood curvature. It means that zeroth-order
sharpness optimizer may goes to a sharper suboptimal than to the direction of a flatter global optimal
with better generalization ability.

Recently, first-order gradient landscape flatness is proposed as a measurement of the maximal
neighborhood gradient norm, which reflects landscape curvature, to better describe the smoothness of
the loss landscape:

R(0) = p-max{||VZs(0)]|2 : ' € B(6,p)}. 3)

Unlike zeroth-order sharpness that force the training converging to a local minimal, first-order flatness
alone constraining on the neighborhood smoothness can not lead to an optimal with minimal loss.
To maximize the generalization ability of loss landscape sharpness for continual learning task, we

propose a zeroth-first-order sharpness aware optimizer C-Flat for CL. Considering the data space,
model or blocks to be trained are altered regarding the training phase and CL method, (as detailed in
the next subsection), we define the the C-Flat loss as follows:

£5r (f1(07) = Cor (FT(07)) + Ry sr (F1(07)) + X~ Ry oo (f1(07))

RD
= et (fT(07)) + A Rp g (f1(6T)), 4
with the minimization objective:
mingr {max{Zsr (f7(65)) + Ao~ [Vesr (F1(07))2} : 65,61 € BT, p)} ©)

0

where £ 5 ?(0) is constructed to replace the original CL loss, while R}(6) further regularizes the
smoothness of the neighborhood, and hyperparameter A is to balance the influence of Rfl) as an
additional regularization to loss function #. Hence, the local minima within a flat and smooth

neighborhood is calculated for a generalized model possessing both old and new knowledge.

Optimization. In our work, the two regularization terms in the proposed C-Flat are resolved
correspondingly in each iteration. Assuming the loss function #(-) is differentiable and bounded, the

0
gradient of £ ? » at point #7' can be approximated by

R . Vs (07)
Ve (01) =~ Ves(6F) with0l =07 +p. —2_~ (6)
s (07) s(6o) 0 P VZs(07)]|o
And the gradient of the first-order flatness regularization VR})(QT) can be approximated by
VR (07) = p- V|[VEs(07)]2 @
: V|[VZs(67)ll2
with 0F =67 +p-
' IVIVZs (07|22
Vs (07)

where V([VEs(0T)|2 = V25 (07) - Vs

The optimization is detailed in Appendix algorithm [l Note that V7 is the gradient of # with
respect to 6 through this paper, and instead of the expensive computation of Hessian matrix V2£,
Hessian-vector product calculation is used in our algorithm, where the time and especially space
complexity are greatly reduced to o(n) using 1 forward and 1 backward propagation. Thus, the
overall calculation in one iteration takes 2 forward and 4 backward propagation in total.

Theoretical analysis. Given RS(Q) measuring the maximal limit of the training loss difference, the

first-order flatness is its upper bound by nature. Denoting 6 + ¢ € B(6, p) the local maximum point,
a constant €* € [0, €] exists according to the mean value theorem that

Rp(6) = max{¢s(¢') — ¢5(6) : 6 € B(6,p)}
= 2s(0+¢€) = £5(0) = (Ves(0+€))" - e < [Ves(0+ €) [|ela
< maz{||[Ves(0)||2: 0" € B(0,p)} - p= R(0). 8)
Assuming the loss function is twice differentiable, bounded by M, obeys the triangle inequality,

its gradient has bounded variance 2, and both the loss function and its second-order gradient are
B—Lipschitz smooth, we can prove that, according to [3163], C-Flat converges in all tasks with

n<1/8,p<1/48, andniT =n/V/i, pI' = p/ /i for epoch i in any task T,

2 n
TZEHW (PO < T D E IVEGE T O)IP)

S oo SMB 1602 32X2(2v/nT — 1)
+7§;E\\ARPST<f S

where n” is the total iteration numbers of task 7', and b is the batch size.

C))

Upper Bound. Let V2£5(6*) denotes the Hessian matrix at local minimum 6*, its maximal eigenvalue
Amaz (V2€5(0*)) is a proper measure of the landscape curvature. The first-order flatness is proven
to be related to the maximal eigenvalue of the Hessian matrix as R}(6*) = p* - Apaa (V€5 (0%)),
thus the C-Flat regularization can also be used as an index of model generalization ability, with the
following upper bound:

RS (07) = RO(07) + ARL(07) < (14 X)p” - Anaa (V2E5(07)). (10)

3.1 A Unified CL Framework Using C-Flat

This subsection presents an unified CL framework using C-Flat with applications covering Class
Incremental Learning (CIL) approaches. To keep focus, the scope of our study is limited in CIL task,
which is the most intractable CL scenarios that seek for a lifelong learning model for sequentially
arriving class-agnostic data. Most CIL approaches belong to three main families, Memory-based,
Regularization-based and Expansion-based methods.

Memory-based methods store samples from the previous phases within the memory limit, or produce
pseudo-samples by generative approaches to extend the current training data space, thus a memory

replay strategy is used to preserve the seen class features with S7 = ST U Sample!<". iCaRL is
one of the early works. It learns classifiers and a feature representation simultaneously, and preserves
the first few most representative exemplars according to Nearest-Mean-of-Exemplars Classification.
Thus a loss function £ = ngE +7 é{fTL combining both cross entropy for the current task and a
knowledge distillation loss for the previous classes is introduced to balance the learning sensitivity
and model generalization to the previous tasks.

Solution: for memory-based method, including, the C-Flat can be easily applied to these scenarios
by reconstruct the oracle loss function with its zeroth- and first-order flatness measurement as eq. [T1]
and trained with algorithm [T]using data set extended with the previous exemplars.

C T\ _ By pT Ry T
fSAT(H)—”ﬂgr(e)—s—)\-fSAT(G). (11)

Regularization-based methods seeks for a apply regularization on the model develop to preserver the
learnt knowledge. For instance, WA introduces weight aligning on the final inference part to balance
the old and new classes. Denoting ¢ the feature learning layers of the model, 1) = [t/°/¢, 1)"¢%] the
decision head for all classes consisting of two branches for the old and new seen data classes, the
output is corrected to f(z) = [/ (¢(x)), - ¥"*(¢(x))], where 7 is the fraction of average norm
of 104 " of all classes.

Gradient Projection Memory (GPM) is another main regularization based group, introducing explicit
align the gradient direction to new knowledge learning. It stores a minimum set of bases of the Core
Gradient Space as Gradient Projection Memory, thus gradient steps are only taken in its orthogonal
direction to learn the new features without forgetting the core information from the previous phases.
FS-DGPM further improves this method by updating model parameter along the aligned orthogonal
gradient at the zeroth-order sharpness minima in dynamic GMP space.

Solution: for regularization-based approaches, the same plug-and-play strategy can be used to
reconstruct the loss function as eq.[LT] and optimized by algorithm T]

An alternative solution for the gradient-based methods like GPM and the improved FS-DGPM,, is to
introduce C-Flat optimization at the gradient alignment stage, so that the orthogonal gradient at a
flatter minima is used to ensure that the training can cross over the knowledge gap between different
data categories. The implementation of our C-Flat-GPM is detailed in Appendix algorithm 2]

Expansion-based methods explicitly construct task-specific parameters to resolve the new class learn-
ing and inference problem. For instance, Memory-efficient Expandable Model (Memo) decomposes
the embedding module into deep layers and shallow layers that ¢ = ¢¢(¢,), where ¢, ¢4 correspond
to the specialized block for different tasks and the generalized block that can be shared during training
phases. An additional block ¢ is added to the deep layers for specified feature extraction for the

new classes, where the model can be reconstructed as f7 = wT([gﬁ?_l (¢g), @' (¢g)]). Thus the
new model training is focusing on the task specified component while the shared shallow layers are
frozen with loss function fé\;gemo = fgf(wT([¢?_l(¢g)a P (dg)])))-

Table 1: Average accuracy (%) across all phases using 7 state-of-art methods (span all sorts of CL) w/
and w/o C-Flat plugged in. Maximum/Average Return in the last row represents the maximum/average
boost of C-Flat towards all methods in each column.

Method Technology CIFAR-100 ImageNet-100 Tiny-ImageNet
Reg. Mem. B0O_Inc5 BO_Incl0 BO_Inc20 B50_Incl0 B50_Inc25 B0_Inc40
Replay [44] ° 58.83 58.87 62.82 63.89 72.18 43.31
w/ C-Flat 59.98 1 59.42 1 64.71 63.60 | 73.37 44.95 1
iCaRL [43] . 58.66 59.76 61.13 64.78 77.25 45.70
w/ C-Flat 59.13 ¢ 60.40 62.93 1 65.01 76.22 | 46.08 1
WA [64] ° 63.36 66.76 68.04 73.17 80.81 55.69
w/ C-Flat 65.70 67.79 1 69.16 1 73.56 1 83.84 1 56.06
PODNet [11] . ° 48.05 56.01 63.45 83.66 85.95 54.24
w/ C-Flat 49.70 © 56.58 1 64.37 © 84.31 1 86.85 1 55.13 1
DER [57] 69.99 71.01 71.40 85.17 87.10 58.63
w/ C-Flat 71.11 1 72.08 72.01 86.64 1 87.96 60.14 1
FOSTER [54] . 63.15 66.73 69.70 84.54 87.81 58.80
w/ C-Flat 63.58 67.34 1 70.89 85.40 87.81 - 58.88 1
MEMO [68] 67.42 69.82 69.91 67.28 83.09 58.15
w/ C-Flat 67.56 69.94 71.79 69.34 8341 1 58.97
Average Return +1.04% +0.66 % +1.34% +0.62 % +0.90 % +0.81%
Maximum Return +2.34% +1.07% +1.89% +2.06% +3.03% +1.64 %

Foster uses KL-based loss function to regularize the three combinations of old and new blocks for a
stable performance on the previous data. It also introduces an effective redundant parameters and
feature pruning strategy to maintain the single backbone model using knowledge distillation. DER
follows the same framework, and introduces an auxiliary classifier and related loss item to encourage
the model to learn diverse and discriminate features for novel concepts.

Solution: for expansion-based approaches, the plug-and-play strategy is still available. The C-
Flat loss can be reformed with the reconstructed model as eq. Thus C-Flat optimization using
algorithm [I]is applied onto the first stage, where the new constructed block are optimized, while the
generalized blocks are kept frozen. The final model is obtained after post-processing.

5T = €5 ([, 4) (67 (60), 67 (6,)])
A ER (6T (69), 65 (60)])- (12)

To conclude, C-Flat can be easily applied to any CL method with reconstructed loss function, and
thus trained with the corresponding optimize as shown in algorithm[I} Dedicated design using C-Flat
like for the GPM family is also possible wherever flat minima is required.

4 Analysis

4.1 Experimental Setup

Datasets. We evaluate the performance on CIFAR-100, ImageNet-100 and Tiny-ImageNet. Adher-
ence to [66,167]], the random seed for class-order shuffling is fixed at 1993. Subsequently, we follow
two typical class splits in CIL: (i) Divide all ||Y}|| classes equally into B phases, denoted as BO_Incy;
(i1) Treat half of the total classes as initial phases, followed by an equally division of the remaining
classes into incremental phases, denoted as B50_Incy. In both settings, y denotes that learns y new
classes per task.

Baselines. To evaluate the efficacy of our method, we plug it into 7 top-performing baselines
across each CL category: Replay [44] and iCaRL [43] are classical replay-based methods, using
raw data as memory cells. PODNet [[L1] is akin to iCaRL, incorporating knowledge distillation to
constraint the logits of pooled representations. WA [64] corrects prediction bias via regularizing
discrimination and fairness. DER [57]], FOSTER [54] and MEMO [68] are network expansion

() 0 0
310" Trace: §70.36) 5 10, Trace: 429.90| '91 ace 3 z 10, Trace: 97.36
107 Amax:|67.48| 5 10, Jmax 28.11| F 10, \ xmalx g 10 Amax: 6.25
@ 3 @ 10 %]]0 “ 10
e 10 &0 L -3 &0 & 3
5] a 10 =)]0 S 10
S0 S0 SIS 2 0
= 2 -
'gm 207 -?10,{ Z10°
310 £10° Sm’ ‘ ‘ £ 10
=107 207 8 107 H\ \ o7
0 10 20 30 40 50 60 0 10 20 30 40 50 60 15 20 0 5 10 15 20
Eigenvalue Eigenvalue I:lgcnvalut, Eigenvalue

(a) MEMO Epoch: 50 (b) MEMO w/ C-Flat (c) MEMO Epoch: 150 (d) MEMO w/ C-Flat

Figure 2: The Hessian eigenvalues and the traces at epochs 50, and 150 on BO_Inc10 setting (MEMO,
CIFAR-100) w/ and w/o C-Flat plugged in.

methods, dedicate modular architectures towards each task by extending sub-network or freezing
partial parameters. The aforementioned methods span three categories in CL [9,/53]: Memory-based
methods, Regularization-based methods and Expansion-based methods.

Network and training details. For a given dataset, we study all methods using the same network
architecture following repo [66,167], i.e. ResNet-32 for CIFAR and ResNet-18 for ImageNet. If not
specified otherwise, the hyper-parameters for all models adhere to the settings in the open-source
library [66,167]. Each task are initialized with the same p and 1), which drops with iterations according
to the scheduler from [[70l]. To ensure a fair comparison, all models are trained with a vanilla-SGD
optimizer [71]. And the proposed method is plugged into the SGD.

4.2 Make Continual Learning Stronger

Table [T|empirically demonstrates the superiority of our method: Makes Continual Learning Stronger.
In this experiment, we plug C-Flat into 7 state-of-the-art methods that cover the full range of CL
methods. From Table[I] we observe that (i) C-Flat presents consistent outperformance on all models,
spanning Memory-based methods, Regularization-based methods, and Expansion-based methods.
This superiority is indicative of the plug-and-play feature inherent in our method, allowing effortless
installation with all sorts of CL paradigms. (ii) Across multiple benchmark datasets, including
CIFAR-100, ImageNet-100, and Tiny-ImageNet, C-Flat exhibits consistent improvement. This
underscores its generalization ability and effectiveness against diverse data distributions. (iii) C-
Flat presents consistent boosting across multiple incremental scenarios, encompassing BO_Inc5,
BO_Inc10, BO_Inc20, B50_Inc10, B50_Inc25, and BO_Inc40. This consistent boosting reaffirms
robustness of C-Flat for various CL scenarios. To sum up, C-Flat advances baselines across each
CL category, serves as a valuable addition to CL, offering a versatile solution that can complement
existing methods.

4.3 Hessian Eigenvalues and Hessian Traces

Hessian eigenvalues. Equation[I0]delineates the connection between fist-order flatness and Hessian
eigenvalues in CL. Broadly, Hessian eigenvalues serve as a metric for assessing the flatness of a
function. Thus we report Hessian eigenvalue distributions in Figure 2] for empirical analysis. As
shown in Figure 2] models trained with vanilla-SGD exhibit higher maximal Hessian eigenvalues
(67.48/21.07 at epochs 50/150 in Figure [2a] and Figure[2c), while our method induces a significant
drop in Hessian eigenvalues to 28.11/6.25 at epochs 50/150 in Figure 2b|and Figure 2d) during CL,
leading to flatter minima. Consequently, the performance of CL is tangibly enhanced.

Hessian traces. We calculate the empirical Fisher information matrix as an estimation of the Hessian
and leverage the trace of this to quantify the flatness of the approximation loss at the convergence
point. As depicted in Figure [2] we observe that a substantial reduction in the Hessian trace when
employing our method compared with vanilla-SGD (670.36/321.36 drops to 429.90/97.36 at epochs
50/150 in Figure 2b] and Figure 2d). This observation suggests that our method induces a flatter
minimum. These findings not only align with but also substantiate the theoretical insights presented
in the methodology section.

— Replay — WA — MEMO
s Replay + C-Flat s WA+ C-Flat s MEMO + C-Flat

e

(a) Replay w/ C-Flat (b) WA w/ C-Flat (c) MEMO w/ C-Flat)

Figure 3: The parametric loss landscapes of Replay (Mem.), WA (Reg.) and MEMO (Exp.) are
plotted by perturbing the model parameters at the end of training (CIFAR-100, BO_Inc10) across the
first two Hessian eigenvectors.

13 E

5
=i zeroth-order = Wi zeroth-order
=Wl C-Fl

< \ |

. // .
— V

T 2z £ 3 g &
)]
§Fé g ¢

4

65.45
65.02_—% 65.05
64522 $5.16

accuracy (%)

64.88

s

rage accuracy (%)
@
4

Average accuracy (%)

64.58 % SGD

§) / . - W

63.06 O C-Flat
s -)) C-Flat (100¢)

g 2 Z g £ % § § %8 0 40 80 120 160 0 1000 2000 3000 4000 5000
e 3 g = e < g 8 H Epoch Running time (s)

(a) BO_Inc10 (b) BO_Inc20 (a) Convergence analysis (b) Training time

Figure 4: C-Flat vs. Zero-order flatness Figure 5: Analysis of computation overhead

4.4 Visualization of Landscapes

More intuitively, we present a detailed visualization of landscape. PyHessian [59] is used to draw
the loss landscape of models. To simplify, we choose one typical method from each category of CL
methods (Replay, Wa, MEMO) for testing. Figure [3|clearly illustrates that, by applying C-Flat, the
loss landscape becomes much flatter than that of the vanilla method. This trend consistently holds
across various categories of CL methods, providing strong empirical support for C-Flat, and confirms
our intuition.

4.5 Revisiting Zeroth-order Flatness

Limited work [10, [49] proved that the
Table 2: Revisiting FS-DGPM series using C-Flat. zeroth-order sharpness leads to flat min-
ima boosted CL. Here, we employ a
Method ~ La-GPM FS-GPM DGPM La-DGPM FS-DGPM zeroth-order optimizer [19] instead of

Oracle 72.90 73.12 72.66 72.85 73.14 vanilla-SGD to verify the performance
w/C-Flat 73.66 7357 7301 73.64 73.72 of C-Flat. As shown in Figure] C-
Boost +0.76 045 035 +0.79 +0.58 Flat (purple line) stably outperforms the

zeroth-order sharpness (blue line) on all

baselines. We empirically demonstrated
that flatter is better for CL.

Former work FS-DGPM [10]] regulates the gradient direction with flat minima to promote CL. The
FS (Flattening Sharpness) term derived from FS-DGPM is a typical zeroth-order flatness. We
revisit the FS-DGPM series (including La/FS-GPM, DGPM, La/FS-DGPM) [10, to evaluate
performance using C-Flat instead of FS (see aigorithm [2). Table [2] yields two conclusions: (i)
C-Flat boosts the GPM [46] baseline as a pluggable regularization term. This not only extends the
frontiers of CL methods, incorporating gradient-based solutions, but also reaffirms the remarkable
versatility of C-Flat. (ii) Throughout all series of FS-DGPM, C-Flat seamlessly supersedes FS and
achieves significantly better performance. This indicates that C-Flat consistently exceeds zeroth-order
sharpness. Hence, reconfirming that C-Flat is indeed a simple yet potential CL method that deserves
to be widely spread within the CL community.

-
&

75
+WA +Replay +MEMO| < +WA «Replay+MEMO| ~ SAM = GAM m C-Flat SAM = GAM & C-Flat
IS

0 002 005 01 02 03 0 002 005 01 02 03 002 005 [0.02, 0.04] [OO?OIOJ [0.02,0.20]
a p

s
%)

&

N

\,
=]
-
=]

>
>

Average accuracy (%)
Average accuracy
*
Average accuracy (%
3
Avuragua‘accurucy ©

@
3
@
3
@
8

(a) A on CL methods (b) p on CL methods (c) Effects of p (d) Effects of p scheduler

Figure 6: Ablation study about A and p. (a) and (b) represents the effect of A and p on different CL
methods (WA, Replay, MEMO). (¢) and (d) represents the effect of p and p scheduler on MEMO
with different optimizers (SGD (red line), SAM, GAM, C-Flat).

4.6 Computation Overhead

To assess the efficiency of C-Flat, we provides a thorough analysis from the convergence speed and
running time with CIFAR-100/B0_Inc20 on Replay. As shown in Figure 5] C-Flat is compared with
SGD and other flatness-aware optimiziters. We train C-Flat optimizers on CL benchmarks with 20%,
50%, 100% of iterations and approximately 60% of epochs, while holding the other optimizers at
100%. Figure [5afirst shows that C-Flat converges fastest and has the highest accuracy (purple line),
meaning few iterations/epochs with C-Flat is enough to improve CL. Figure [5b|shows i) Compared
with SGD, with only 20% of iterations and 60% of epochs (pink line) using C-Flat, CL performance
is improved using slightly less time; ii) C-Flat surpasses GAM with similar time as SAM when setting
the iterations/epochs ratio to 50%/60%; iii) Models trained with C-Flat for 100 epochs outperform
those trained with other optimizers for 170 epochs. To sum up, we show that C-Flat outperforms
current optimizers with fewer iterations and epochs. This indicates the efficiency of C-Flat.

To discuss practicality better, we provided a

tier guideline, which categorizes C-Flat into Table 3: A tier guideline of C-Flat.
L1 to L3 levels, as shown in Table 3} L1 de-
notes the low-speed version of C-Flat, with a [evel Speed Boost (SGD/SAM)

slightly lower speed than SAM and the best per-
fofrnal}llce' L2 f(l))llows next; L3 denotes the hip h- Ll SGD > SAM > C-Flat A Y
’] g L2 SGD > C-Flat > SAM +1.52%/+1.04%

speed version of C-Flat, with a faster speed than | 5 C-Flat > SGD +1.51%/+1.03%
SGD and a performance close to L2. - -

4.7 Ablation Study

We perform ablation study in two cases: (i) the influence of A and p on different CL methods; (ii) the
influence of p and its scheduler on different optimizers.

We first present the performance of C-Flat with varying A and p. As described in Eq. 13, A controls
the strength of the C-Flat penalty (when A is equal to O, this means that first-order flatness is not
implemented). As shown in Figure [6a] compared with vanilla optimizer, C-Flat shows remarkable
improvement with varying A. Moreover, p controls the step length of gradient ascent. As shown
in Figure[6b] C-Flat with p larger than 0 outperforms C-Flat without gradient ascent, showing that
C-Flat benefits from the gradient ascent.

For each CL task T, same learning rate n” and neighborhood size p” initialization are used. By
default, pI" € [p , p1] is set as a constant, which decays with respect to the learning rate n] € [, 7]

bypl' =p + (f]j: Z,) (n¥f —n). Figureand Figurepresent a comparison on p initialization

and {p_, p+} scheduler. C-Flat outperforms across various settings, and is not oversensitive to
hyperparameters in a reasonable range.

4.8 Beyond Not-forgetting

As is known to all, forward, and in particular backward transfer, are the desirable conditions for
CL [22]. Here, we thoroughly examine the performance of C-Flat in both aspects. Forward Transfer
(FT) means better performance on each subsequent task. Backward Transfer (BT) means better

Figure 7: Analysis of BT and FT. RR refers to
Relative Return on w/o and w/ C-Flat. -
CIFAR-100/ BO_Inc5
Method 30
w/o C-Flat ~ w/ C-Flat RR
old 36.36 3712 BT+2.10%
iCaRL [43] @
new 80.25 8220 FT+243% .
old 46.32 4744 BT+242% £
PODNet [IT]
new 62.65 64.75 FT+3.35%
old 58.50 6135 BT+2.85% L R L
FOSTER (54]
new 62.05 63.05 FT+1.61%

Figure 8: Loss and forgetting of old tasks.

performance on previous tasks, when revisited. We count the performance of new and old tasks on
several CL benchmarks before and after using C-Flat. As observed in Table|/} C-Flat consistently
improves the learning performance of both new and old tasks. This observation indicates that C-Flat
empowers these baselines with robust forward and backward transfer capabilities, that is learning
a task should improve related tasks, both past and future. But, thus far, achieving a baseline that
maintains perfect recall (by forgetting nothing) remains elusive. Should such a baseline emerge,
C-Flat stands poised to empower it with potent backward transfer, potentially transcending the
limitations of mere not-forgetting.

Moreover, one of our contributions is to prove the positive effect of low curvature on overcoming
forgetting. Intuitively, we visualized the change in loss and forgetting of old tasks in CL. Figure|[§]
shows the lower loss or less forgetting (red line) for old tasks during CL. This is an enlightening
finding.

5 Conclusion

This paper presents a versatile optimization framework, C-Flat, to confront forgetting. Empirical
results demonstrate C-Flat’s consistently outperform on all sorts of CL methods, showcasing its
plug-and-play feature. Moreover, the exploration of Hessian eigenvalues and traces reaffirms the
efficacy of C-Flat in inducing flatter minima to enhance CL. In essence, C-Flat emerges as a simple
yet powerful addition to the CL toolkit, making continual learning stronger.

6 Acknowledgments

This work was supported in part by the Chunhui Cooperative Research Project from the Ministry of
Education of China under Grand HZK'Y20220560, in part by the National Natural Science Foundation
of China under Grant W2433165, and in part by the National Natural Science Foundation of Sichuan
Province under Grant 2023 YFWZ0009.

References

[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and Babak Eht-
eshami Bejnordi. Conditional channel gated networks for task-aware continual learning. In CVPR,
2020.

[2] Afra Feyza Akyiirek, Ekin Akyiirek, Derry Tanti Wijaya, and Jacob Andreas. Subspace regularizers for
few-shot class incremental learning. /CLR, 2022.

[3] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization.
In ICML, 2022.

[4] Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning landscape in neural
networks around wide flat minima. Proceedings of the National Academy of Sciences, 2020.

[5] Prashant Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from common represen-
tation space in lifelong learning. /CLR, 2023.

10

[6

—_

[7

—

[8

—_—

9

—

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(7]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

Sungmin Cha, Hsiang Hsu, Taebaeck Hwang, Flavio P Calmon, and Taesup Moon. Cpr: classifier-projection
regularization for continual learning. /CLR, 2021.

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Runhang Chen, Xiao-Yuan Jing, Fei Wu, and Haowen Chen. Sharpness-aware gradient guidance for
few-shot class-incremental learning. Knowl. Based Syst., 299:112030, 2024.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening sharpness for
dynamic gradient projection memory benefits continual learning. NeurIPS, 34, 2021.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet: Pooled
outputs distillation for small-tasks incremental learning. In ECCV, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378, 2023.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training for
free. NeurIPS, 2022.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pages 3762-3773. PMLR,
2020.

Tao Feng, Kaifan Ji, Ang Bian, Chang Liu, and Jianzhou Zhang. Identifying players in broadcast videos
using graph convolutional network. Pattern Recognition, 124:108503, 2022.

Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming catastrophic forgetting in incremental object
detection via elastic response distillation. In CVPR, 2022.

Tao Feng, Hangjie Yuan, Mang Wang, Ziyuan Huang, Ang Bian, and Jianzhou Zhang. Progressive learning
without forgetting. arXiv preprint arXiv:2211.15215, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In /CLR, 2021.

Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. R-dfcil: Relation-guided representation
learning for data-free class incremental learning. In ECCV, 2022.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual learning
in deep neural networks. Trends in cognitive sciences, 24(12):1028-1040, 2020.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima.
NeurlIPS, 32, 2019.

Zhiyuan Hu, Yunsheng Li, Jiancheng Lyu, Dashan Gao, and Nuno Vasconcelos. Dense network expansion
for class incremental learning. In CVPR, 2023.

Kishaan Jeeveswaran, Prashant Bhat, Bahram Zonooz, and Elahe Arani. Birt: Bio-inspired replay in vision
transformers for continual learning. /CML, 2023.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples for online
task-free continual learning. NeurlIPS, 2021.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

11

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

(50]

Do-Yeon Kim, Dong-Jun Han, Jun Seo, and Jaekyun Moon. Warping the space: Weight space rotation for
class-incremental few-shot learning. In /CLR, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. PNAS, 2017.

Yajing Kong, Liu Liu, Huanhuan Chen, Janusz Kacprzyk, and Dacheng Tao. Overcoming catastrophic
forgetting in continual learning by exploring eigenvalues of hessian matrix. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-level
soft-masking for continual learning. arXiv preprint arXiv:2306.14775, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. /IEEE Trans. Pattern Anal. Mach. Intell.,
40(12):2935-2947, 2018.

Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based contrastive
replay for online class-incremental continual learning. In CVPR, 2023.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for continual
learning. arXiv preprint arXiv:2202.02931, 2022.

Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. /CLR, 2022.

Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-incremental learning.
In CVPR, 2021.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In CVPR, 2022.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. NeurIPS,
2017.

Aojun Lu, Tao Feng, Hangjie Yuan, Xiaotian Song, and Yanan Sun. Revisiting neural networks for
continual learning: An architectural perspective. IJCAI, 2024.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification. /[EEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investigation of
the role of pre-training in lifelong learning. J. Mach. Learn. Res., 24:214:1-214:50, 2023.

Youngmin Oh, Donghyeon Baek, and Bumsub Ham. Alife: Adaptive logit regularizer and feature replay
for incremental semantic segmentation. NeurIPS, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In CVPR, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. In NeurIPS, volume 32, 2019.

Tim GJ Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Continual learning
via sequential function-space variational inference. In /CML, 2022.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2020.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. NeurIPS, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting
with hard attention to the task. In ICML, pages 4555-4564, 2018.

Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, and Xiao-Ming Wu. Overcoming catastrophic
forgetting in incremental few-shot learning by finding flat minima. NeurIPS, 2021.

Wenju Sun, Qingyong Li, Jing Zhang, Wen Wang, and Yangli-ao Geng. Decoupling learning and

remembering: A bilevel memory framework with knowledge projection for task-incremental learning. In
CVPR, 2023.

12

[51]

[52]

(53]

[54]

[55]

(561

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Zhicheng Sun, Yadong Mu, and Gang Hua. Regularizing second-order influences for continual learning.
In CVPR, 2023.

Lam Tran Tung, Viet Nguyen Van, Phi Nguyen Hoang, and Khoat Than. Sharpness and gradient aware
minimization for memory-based continual learning. In Proceedings of the 12th International Symposium
on Information and Communication Technology, SOICT 2023, Ho Chi Minh, Vietnam, December 7-8,
2023, pages 189-196. ACM, 2023.

Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning. Nature
Machine Intelligence, pages 1185-1197, 2022.

Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and compression
for class-incremental learning. In European conference on computer vision, pages 398—414, 2022.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. arXiv preprint arXiv:2302.00487, 2023.

Zirui Wang and Yulia Tsvetkov. Gradient vaccine: Investigating and improving multi-task optimiza-
tion in massively multilingual models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021.

Shipeng Yan, Jiangwei Xie, and Xuming He. DER: dynamically expandable representation for class
incremental learning. In CVPR, pages 3014-3023, 2021.

Enneng Yang, Li Shen, Zhenyi Wang, Shiwei Liu, Guibing Guo, and Xingwei Wang. Data augmented
flatness-aware gradient projection for continual learning. In /IEEE/CVF International Conference on
Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages 5607-5616. IEEE, 2023.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks through
the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pages 581-590.
IEEE, 2020.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. In International Conference on Learning Representations,
2020.

Hangjie Yuan, Jianwen Jiang, Samuel Albanie, Tao Feng, Ziyuan Huang, Dong Ni, and Mingqgian Tang.
Rlip: Relational language-image pre-training for human-object interaction detection. In NeurIPS, 2022.

Hangjie Yuan, Shiwei Zhang, Xiang Wang, Samuel Albanie, Yining Pan, Tao Feng, Jianwen Jiang, Dong
Ni, Yingya Zhang, and Deli Zhao. Rlipv2: Fast scaling of relational language-image pre-training. In ICCV,
2023.

Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization seeks
first-order flatness and improves generalization. In CVPR 2023, pages 20247-20257, 2023.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and fairness
in class incremental learning. In CVPR, 2020.

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua Liu, Bo Du, and Dacheng Tao. Improving
sharpness-aware minimization with fisher mask for better generalization on language models. arXiv
preprint arXiv:2210.05497, 2022.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: A python toolbox for class-
incremental learning, 2023.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep class-
incremental learning: A survey. arXiv preprint arXiv:2302.03648, 2023.

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. /CLR, 2023.

Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation expansion for
non-exemplar class-incremental learning. In CVPR, 2022.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar Tatikonda,
James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware training. arXiv
preprint arXiv:2203.08065, 2022.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Machine
Learning, Proceedings of the Twentieth International Conference (ICML), 2003.

13

A Appendix

A.1 Overview

In this supplementary material, we first present more intuitive visualizations of C-Flat, elucidating
the loss landscape from local viewpoint (Appendix [A.5.T) and each task during CL (Appendix [A.5.2).
Next, we provide more details on the accuracy and runtime trade-offs of other CL methods with our

C-Flat (Appendix [A.6)

A.2 C-Flat

We summarize the pseudo code of C-Flat in algorithm [1}

Algorithm 1 C-Flat Optimization

Input: Training phase 7', training data S7', model f7~! with parameter #7 ! from last phase if
T > 1, batch size b, oracle loss function ¢, learning rate 7 > 0, neighborhood size p, trade-off
coefficient A\, small constant e.
Output: Model trained at the current time 7" with C-Flat.
Initialization:
if T=1: then Randomly Initialize parameter 7= n
else

Reconstruct the model and training set if necessary,

Initialize model parameter #7 according to the training strategy, like randomly initialization or
67 = 0T~ in pre-trained model based approaches, n7 = 1, pT = p,

Frozen part of the parameter if required.
end if
Optimization:
while 67 not converge, do

Sample batch B” of b random instances from S7

Compute batch’s loss gradient ggr = /€7 (f7(67))

==, p"=" =p.

Compute Rg perturbation: ¢y = p” - Hgffﬁ

Approximate zeroth-order gradient: go = V€7 (f7 (07 + €))
Compute hessian vector product: hgr = VZI/”BT 0) - ”VZ:f(Tf(f;)(Tg)T)l)‘)ﬁe
Compute R; perturbation: ¢; = p? - Hh}ffﬁ

C ter (T (0" +e))
Vpr (F7 (07 +e1))ll2+e
Update: Model parameter: 7 = 67 — " (go + Ag1); Update training parameters n”’, p”
according to a scheduler that the values drop with iterations;
end while
Post-Processing on Model and Training data if required.
return Model f7 with parameter 67

Approximate first-order gradient: g; = /2¢pr (fT (07 +€1))

A.3 C-Flat-GPM

We summarize the pseudo code of C-Flat for GPM family in algorithm

A4 Convergency Proof
Assumptions 1: the loss function is twice differentiable, bounded by M, with bounded variance o2,

and obeys the triangle inequality. Both the loss function and its second-order gradient are 5—Lipschitz
smooth. n < 1/8,p < 1/43, and n}" = n//i, pI' = p/~/i for epoch i in any task 7.

14

Algorithm 2 C-Flat for GPM-family at 7" > 1

Input: Training set ST, parameter §7 = 71, loss #, learning rate 7y, 12, basis matrix M and
significance A from replay buffer.
while 67 not converge, do

Sample batch BT

Compute perturbation €. using C-Flat optimization

Update basis significance: A = A — 1y - /a7 (07 + €.)

Update model parameter: 07 = 07 — 1, - (I — MAM) <7 €7 (07 +¢.)

Update M and replay buffer.
end while

return Model parameter 67

Claim 1: with Assumptions 1, the convergency of zeroth-sharpness with batch size b is guaranteed
(3] by

1« 0 4 80°
W BNV < 0 - 0+ 13

hence, the zeroth-order part of C-Flat is bounded:

’I’L

4ﬁ

802 4Mﬁ 802
W TONP) < —==Esr (fT (0" = < 14
Lemma 1: let &;,.(0) = £,-(f7(0), f7(6*)), with Assumptions 1, the first-order part is bounded by
1 7LT 1 1 7LT
T S E[IVEgE(1T(07))]) < T D E[IVE (0" + 1) = VER(0T)]]
i=1 i=1
5 nT 9 o nT 2\/7
< S B < £F >l 1 ZE EE
i=1

Theorem 1: with Assumptions 1, by combining the zeroth- and first-order parts, we can prove C-Flat
converges in all tasks that,

ITZEI\VfST(fT(HT))I\ < QTZEIIWST(J“T(HT))H]

SM 1602 3222(2v/nT — 1
TZIEJ IIARY 5= (F7(67))17] < \/775 + 3b\/0;TT+ (BQT:‘T). (16)

A.5 More Visualizations of C-Flat

In this section, we present additional visualization of the loss landscape involving two cases using
PyHessian [39]: (i) Changes in the loss landscape from localized viewpoints; (ii) Changes in the loss
landscape across each task during CL.

A.5.1 Landscapes in a Local Viewpoint

First, we present a more detailed visualization through changes in the local region of the loss
landscape. We set a minimal radius threshold. At this threshold, more detailed changes are displayed.
Similarly, we choose three typical method (Replay [44], WA [64]], MEMO [68]]) from each category
of CL methods for visualization. As shown in Fig.[9] in a tiny view, C-Flat contributes to a flatter
surface, a change that more intuitively reveals the mechanism of C-Flat.

15

(a) Replay (c) MEMO

Figure 9: The visualizations of loss landscapes in a local viewpoint (Replay, WA and MEMO)

A.5.2 Landscapes Across Each Task

Second, we further visualize the loss landscape of more tasks using PyHessian for more intuitive
explanations during CL. To simplify, we choose one CL method (Replay [44]) for visualization on
task 2, 7, 12 and 17 with 5 task intervals. As shown in Fig. @ (a) to (d), the loss landscape all
becomes much flatter than that of the vanilla method across each task. This trend provides strong
empirical support for C-Flat.

(a) Task 2 (b) Task 7 (c) Task 12 (d) Task 17

Figure 10: The visualizations of loss landscapes during CL.

A.6 Overhead of C-Flat

To enhance the computing efficiency, we apply C-Flat in a limited number of iterations within
each epoch. Remarkably, we observe that without executing C-Flat in every iteration can also
significantly boost the performance of CL (All cases derived from C-Flat improves CL performance).
As illustrated in Table[d 10% C-Flat iterations is enough to improve CL performances, and around
50% C-Flat iterations is enough to approach and even exceed the impact of a full C-Flat training. As
a consequence, the overhead of 50% C-Flat is at least 30% shorter compared with the full C-Flat
training. These observations holds potential for light C-Flat boosted CL applications.

Table 4: Accuracy and training speed of training with different ratios of iterations using C-Flat.
Superscripts denotes the ratio of iterations in each epoch is trained with 100%, 50%, 20% and 10%.

Method C-Flat! C-Flat®5 C-Flat?-2 C-Flat’! Oracle
Replay [44] 61.02 (100%) 60.98 (67%) 60.63 (40%) 60.48 (34%) 60.28
iCaRL [43] 63.04 (100%) 62.94 (65%) 62.78 (41%) 62.75(35%) 62.74
WA 68.67 (100%) 68.20 (59%) 67.96 (38%) 68.02(31%) 67.75
PODNet [11] 64.35(100%) 63.82 (60%) 63.27 (39%) 63.80 (34%) 63.05

DER 7225 (100%) 71.82(59%) 71.82(39%) 71.44(31%) 71.52
FOSTER [54] 7024 (100%) 70.43 (70%) 69.99 (52%) 69.71 (47%) 69.30
MEMO [68] 69.97 (100%) 70.03 (64%) 70.48 (41%) 69.90 (32%) 69.71

16

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the contributions and scope in the abstract and introduc-
tion. And our claims match experimental results conducted in various settings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification: There is no new theoretical result in our paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the settings of our proposed method and experiments.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]

Justification: We have provided details for reproduction in Appendix. Code will be publicly
available upon publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have detailed all key experimental settings in the main paper, and hyper-
parameters of all employed CL methods adhere to the settings in the open-source libraries
unless specifically stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not use error bars, but present extensive experiment results across CL
methods, datasets, incremental settings, and architectures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have details this information in the main paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: There are no ethical issues involved in this paper.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is just a basic study on continual learning, and does not directly
address societal impacts to the best of our knowledge.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We have not released any data or models that have risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we have cited all original papers that produced the code packages and datasets
used in our work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

21

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have not introduced any new asset.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related work
	Method
	A Unified CL Framework Using C-Flat

	Analysis
	Experimental Setup
	Make Continual Learning Stronger
	Hessian Eigenvalues and Hessian Traces
	Visualization of Landscapes
	Revisiting Zeroth-order Flatness
	Computation Overhead
	Ablation Study
	Beyond Not-forgetting

	Conclusion
	Acknowledgments
	Appendix
	Overview
	C-Flat
	C-Flat-GPM
	Convergency Proof
	More Visualizations of C-Flat
	Landscapes in a Local Viewpoint
	Landscapes Across Each Task

	Overhead of C-Flat

