
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GONE WITH THE BITS: REVEALING RACIAL BIAS IN
LOW-RATE NEURAL COMPRESSION FOR FACIAL
IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural compression methods are gaining popularity due to their impressive rate-
distortion performance and their ability to compress data to extremely small bi-
trates, below 0.1 bits per pixel (bpp). As deep learning architectures, these models
are prone to bias during the training process, potentially leading to unfair out-
comes for individuals in different groups. In this paper, we present a general,
structured, scalable framework for evaluating bias in neural image compression
models. Using this framework, we investigate racial bias in neural compression
algorithms by analyzing 7 popular models and their variants. Through this inves-
tigation we first demonstrate that traditional distortion metrics are ineffective in
capturing bias in neural compression models. Next, we highlight that racial bias is
present in all neural compression models and can be captured by examining facial
phenotype degradation in image reconstructions. Additionally, we reveal a task-
dependent correlation between bias and model architecture. We then examine the
relationship between bias and realism in the image reconstructions and demon-
strate a trade-off across models. Finally, we show that utilizing a racially balanced
training set can reduce bias but is not a sufficient bias mitigation strategy.

1 INTRODUCTION

Lossy image compression aims to accurately represent images using a minimal number of bits while
maintaining their perceptual quality in reconstructions. This area has been the focus of extensive re-
search for the past 40 years, and image encoders/decoders (“codecs”) such as JPEG (Wallace, 1991),
BPG (Bellard, 2014), and even the latest hand-engineered codec in VVC (Bross et al., 2021) have
been crucial enabling technologies in the modern digital world. Despite the widespread adoption
in everyday use, traditional codecs are insufficient for extreme scenarios with low-bandwidth avail-
ability, such as space (Gao et al., 2023), underwater (Li et al., 2023), low-power communication
systems Ez-Zazi et al. (2018) and low-latency systems Hu & Chen (2021). These extreme scenar-
ios impose a very narrow information bottleneck that limits the reconstruction quality of traditional
codecs. In recent years, neural network-based compression (“neural compression”) has emerged as
a popular compression method that enables image compression under extremely low-bitrate scenar-
ios. Early works in this field (Toderici et al., 2015; 2017) utilize recurrent neural networks, while
many subsequent studies have employed VAE-based architectures (Ballé et al., 2018; Townsend
et al., 2019; Duan et al., 2023a;b). Recent studies explore leveraging modern generative architec-
tures such as GANs (Agustsson et al., 2019; Mentzer et al., 2020) and Diffusion (Yang & Mandt,
2023) to promote higher levels of realism in reconstructions.

The goal of this paper is to examine potential unwanted biases in low-rate neural compression mod-
els. We consider a scenario where we train a neural compression model, specialized for human faces,
to attain a very low bitrate. Regardless of the compression method used, image reconstructions at
low bitrates will inherently suffer from significant distortion due to the insufficient number of bits
used to represent images. The central question we pose is the following: when we train a neural
network models to compress human faces with low bitrates, would the model degrade facial images
equally across different demographic groups? Or, would it prioritize accurately reconstructing one
racial group’s faces, at the expense of sacrificing image qualities of another racial group when the
information bandwidth is limited? Such biased and unfair performance of neural compression can
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(a) African

Low BPP High BPP Original

(b) Asian
Low BPP High BPP Original
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Figure 1: All the neural compression models in our evaluation exhibit bias in skin type for African
racial group. Examples are from the QRes Duan et al. (2023b) model. As compression bitrate
reduces, African faces gradually experience skin-lightening effects, while other racial groups are
impacted less. Our novel evaluation approach with phenotype classifiers quantifies how different
phenotypes degrade and highlights bias in this process.

have a significant impact on people of marginalized groups, especially in extreme and high-risk sce-
narios where low-rate compression schemes are deployed (e.g., delaying rescue operations due to
inaccurate facial images transmitted in a warzone).

This question is inspired by a line of research that studies related questions. In (Yucer et al., 2022a),
the authors investigate bias in face image compression using the traditional JPEG scheme and show
unequal performance in facial recognition tasks across different racial groups. Recent works (Jalal
et al., 2021; Laszkiewicz et al., 2024; Tanjim et al., 2022) also looked at biases of image construc-
tion using neural networks. Although these works differ from our setting in that they start with
downsampled or heavily corrupted facial images and use neural networks only for denoising or
super-resolution, we see a fundamental connection to our work: downsampling or adding noise can
be viewed as imposing a narrow information bottleneck, similar to compression. In these settings, it
was shown that the reconstructed images often show a specific type of distortion—African American
faces are frequently reconstructed to appear more Caucasian, while Caucasian faces largely retain
their original features—a phenomenon referred to as the “White Obama” problem (Jalal et al., 2021;
Laszkiewicz et al., 2024). Despite these works, to the best of knowledge, our work is the first to
examine bias in neural compression models, consisting of a neural network encoder and decoder.

To comprehensively explore our central question, we propose the following research questions:
RQ1. Do neural compression models exhibit bias, and how can we quantify this bias? RQ2. How
does bias vary across different model architectures? RQ3. Does using a balanced dataset reduce
or eliminate bias? To answer the research questions, we design a general framework and metric to
evaluate bias in neural image compression models and perform a detailed analysis of racial bias in
facial reconstructions using state-of-the-art models. We also investigate how different model archi-
tectures impact bias and assess the influence of training data distribution by using racially balanced
datasets, leading to the following key observations:

• Traditional image distortion cannot effectively capture neural compression bias, while our
proposed framework using classifiers, is able to highlight significant skin type bias for
images in the African racial group, supporting visual observation of image reconstructions.

• We reveal a phenotype-dependent correlation between bias and model architectures.
Specifically, diffusion-based models exhibit severe skin type bias for the African group,
while the GAN-based model does not.

• Leveraging a racially balanced training dataset can reduce bias in certain cases but not
in others, motivating further exploration into the development of balanced datasets and
algorithmic bias mitigation methods.

2 RELATED WORK

Fairness in Image Compression Our work is closely related to Yucer et al. (2022a), which studies
the impact of JPEG compression on facial verification and identification tasks and the amount of ad-
verse impact of JPEG compression on different racial and phenotype-based subgroups. They define
bias as the different amount of downstream task performance degradation across groups. They find
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phenotype groups of darker skin tones, wide noses, curly hair, and monolid eye shapes suffer the
most adverse impact in the facial recognition tasks. Hofer & Böhme (2024) study neural compres-
sion model reconstructions through visual inspection and gives a taxonomy of “mis-compressions”,
which they define as errors in semantic information after neural compression. Our work not only
studies bias in neural compression through visual inspection but also aims to capture bias in a struc-
tured and scalable approach through a facial phenotype classifier. We see this as a first step towards
systematically evaluating and mitigating bias in neural image compression models.

Fairness in Image Denoising and Upsampling Stemming from the “White Obama” problem,
fairness has been explored across image upsampling, denoising, and superresolution models. Menon
et al. (2020), the authors of the original model which suffers from the “White Obama” problem,
conduct an investigation concluding the bias is likely induced during the creation of the StyleGAN
which they adopt for their task. Jalal et al. (2021) design novel definitions of fairness for image
upsampling tasks and highlight fairness-accuracy tradeoffs for these types of models. Tanjim et al.
(2022) examine the disappearance of minority attributes such as eye-glasses and baldness during
image-to-image generation. They also propose a contrastive learning framework to improve upon
bias in existing image-to-image translation models. Laszkiewicz et al. (2024) aim to study and
benchmark the fairness in face image upsampling, demonstrating bias when imbalanced datasets are
used while training these upsampling methods.

Fairness in Face Analysis The processing of facial images is utilized across various domains,
including face recognition, facial biometrics, and facial expression recognition. Fairness in such
systems is crucial and has been studied in various aspects of the face and biometric analysis (Droz-
dowski et al., 2020; Vangara et al., 2019; Serna et al., 2019). Buolamwini & Gebru (2018) evalu-
ated commercial gender classification tools and identified that darker-skinned females suffer from
significantly higher misclassification rates than lighter-skinned males. Klare et al. (2012) found
that various face recognition systems exhibited the poorest performance on cohorts comprising fe-
males, Black individuals, and those aged 18-30. Motivated by the imbalanced distribution of datasets
used for facial expression detection, Xu et al. (2020) investigate biases across gender, race, and age
groups, and propose methods to mitigate these biases in such models.

3 PROBLEM DEFINITION AND METHODS

Overall, our goal is to develop a framework to evaluate and quantify bias in neural compression
image reconstructions. In Section 3.1 we provide an overview of neural image compression. In
Section 3.2 we define a general bias metric to evaluate bias in neural compression reconstructions.
In Section 3.3 we highlight a specific instance of the bias metric, using a phenotype classifier to
examine bias.

3.1 NEURAL IMAGE COMPRESSION

Neural compression models consist of an encoder genc : X → Z and a decoder gdec : Z → X , each
built from learnable network layers. For each input image x ∈ X , the encoder is used to obtain the
latent space output z, which is then quantized to ẑ and compressed losslessly to a bitstream. This
bitsream is then decompressed to ẑ and passed through the decoder to provide the decoded image x̂.
Overall, the goal for neural compression models is to minimize

D(x, x̂) + λR(ẑ) (1)

where D(x, x̂) is the distortion, R(ẑ) is the compression bitrate, and λ acts as the Lagrange mul-
tiplier that balances the rate-distortion trade-off. Distortion is typically measured using the mean
squared error between the original image and the reconstruction while the bitrate is bounded using
the entropy of the quantized latent ẑ.

3.2 EVALUATING BIAS IN NEURAL COMPRESSION

We aim to define a scalable, general framework to analyze the bias in neural compression models.
Let D = {(xi, yi, ai)}ni=1 be our dataset, where xi ∈ X is our image, yi ∈ Y is a label corre-
sponding to a physical attribute of the image, and ai ∈ A is a protected attribute. Our goal is to
examine how the quality of reconstructions of xi differ across A. First, given a pretrained encoder
and decoder, we can obtain the reconstructed dataset D̂(genc, gdec) = {(x̂i, yi, ai)}ni=1 and consider
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a general loss metric L(D, D̂(genc, gdec)) which is designed to evaluate the quality of the reconstruc-
tion (e.g. distortion metric, downstream task performance). We include the original dataset D in
the general loss metric as some metrics (e.g distortion) compare reconstructions to original images.
Note that this original dataset is not needed in all loss metrics and we omit it when it is not used.
Now, from this general loss metric, we can derive a conditional loss metric

L(D, D̂(genc, gdec)|a) = L(D, D̂a(genc, gdec)) (2)

where D̂a(genc, gdec) = {(x̂i, ai, yi) ∈ D̂(genc, gdec)|ai = a}.

Using this conditional loss, we can define bias to be

Bias ≜ max
a,b∈A

[L(D̂(genc, gdec)|a)− L(D̂(genc, gdec)|b)]. (3)

This bias term represents the maximum difference in loss across groups in A. Surprisingly, different
selections of the loss function yield different insights into the bias of the neural compression archi-
tectures. As we will show in the following sections, traditional distortion metrics show no apparent
bias, while the accuracy of a phenotype classifier highlights significant bias across different racial
groups (Section 4.2).

3.3 BIAS EVALUATION WITH A PHENOTYPE CLASSIFIER

From visual inspection of image reconstructions, we identify key facial phenotypes (e.g., skin color,
eye shape) can get degraded under low-rate neural compression. To systematically quantify phe-
notype degradation induced by the neural compression architecture, accurate labels are required
for image reconstructions. Hand-labeling the phenotypes in the reconstructed images would be the
most accurate way to obtain these labels, but it is not a scalable procedure for large image datasets.
Therefore we propose to use a neural-network-based phenotype classifier as a proxy of human evalu-
ation. Additionally, using a classifier to identify biases across different racial groups offers valuable
insights into the potential disparities that may emerge when reconstructed images are used in sub-
sequent deep-learning tasks. Previous studies (Jalal et al., 2021; Tanjim et al., 2022; Laszkiewicz
et al., 2024) have investigated the use of phenotype classifiers to assess or mitigate bias in facial
images. These existing metrics, however, consider super-resolution-specific problem settings and
do not necessarily transfer to the image compression domain, as we highlight in Example 3.1.

First, given a dataset D where A is the set of racial groups (e.g {African, Asian, Caucasian, Indian}),
and Y is the set of possible phenotype labels (e.g {bald, curly hair, straight hair, wavy hair} for hair
type), we split into Dtrain and Dtest and use Dtrain to train a classifier f : X → Y to predict the
phenotype labels (this can be a binary or multiclass classification task). Then, given a pretrained
encoder and decoder at bitrate r, the original test dataset Dtest is compressed to the bitrate r and
reconstructed to D̂r

test(genc, gdec) = {(x̂i, yi, ai)}ni=1. To measure phenotype degradation at the given
rate, we define our loss function to be the error rate of f on D̂r

test:

Err(D̂r
test(genc, gdec)) = P(x̂,y)∼D̂r

test(genc,gdec)
(f(x̂) ̸= y). (4)

The conditional loss then becomes:

Err(D̂r
test(genc, gdec)|a) = P(x̂,y,a)∼D̂r

test(genc,gdec)
(f(x̂) ̸= y|A = a). (5)

By defining the loss function to be the error rate of the phenotype classifier, our bias metric directly
becomes accuracy disparity, the maximum difference of accuracy across all groups (due to the
standard relationship between error rate and accuracy). Given a rate r, an encoder genc, and a decoder
gdec, the bias metric is defined as:

Bias(D̂r
test(genc, gdec)) ≜ max

a,b∈A
[Acc(D̂r

test(genc, gdec)|a)− Acc(D̂r
test(genc, gdec)|b)] (6)

where Acc(D̂r
test(genc, gdec)|a) = 1−Err(D̂r

test(genc, gdec)|a). This definition of bias is derived from a
popular fairness metric, accuracy parity, in which equal accuracies across all groups imply fairness
in a classifier (Berk et al., 2017; Zafar et al., 2017). The motivation behind the selection of this bias
definition can be observed in the following example.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Example 3.1 Let A be the set of races {African, Caucasian} and let Y = {light skin, dark skin}. In
this case, the conditional error in Equation 5 captures the error rate of the skin color classification
in the reconstructed image space for each group. When these conditional error rates are similar
across A, the skin colors switch equally for both groups in A. When these values are different
across A, one race suffers from a skin color switch significantly more than another. Thus, the bias
metric presented in Equation 6 captures a more descriptive insight into what leads to race flipping
than traditional metrics, which may only capture the frequency of the race flipping (Jalal et al.,
2021). By changing Y = {monolid eyes, non-monolid eyes} or any other phenotype, we can gain
additional insight into how specific phenotypes get lost at different rates across each group in A.

We acknowledge that these phenotype classifiers can be biased themselves. Using our framework,
we can compute the accuracy disparity of our phenotype classifier on the original raw images. We
present these “raw accuracies” in Section 4.2 to provide context into the bias induced by the com-
pression model. Additionally, we address the potential distribution shifts induced by the neural
compression models in Section 4.2.

4 EXPERIMENTS AND EVALUATION

4.1 EXPERIMENTAL SETUP

Neural Compression Models In this paper, we evaluate a diverse collection of neural image com-
pression models across different bitrates. An overview of our models is shown in Table C.1. We
evaluate three fixed-rate models, Hyperprior Ballé et al. (2018), Joint Minnen et al. (2018), and
GaussianMix-Attn Cheng et al. (2020). All of these models are trained towards a fixed trade-off
between rate and distortion as highlighted in Equation 1. We train these models to five operational
bitrates. The model proposed in the QRes paper Duan et al. (2023b) is a progressive decoding
model that supports encoding images to 12 bitrates with one trained model. This is achieved by
encoding only a subset from all the available latent variables. We follow this approach and encode
images to 5 different bitrates with progressive decoding. The VarQRes model Duan et al. (2023a)
is a variable rate compression model. The network is trained to operate in a range of rate-distortion
trade-off points. Additionally, we consider two models which leverage attributes of popular gen-
erative models. The HiFiC model Mentzer et al. (2020) combines GANs with neural compression
by introducing a discriminator conditioned on the latent variable following the decoder. The CDC
model (Yang & Mandt, 2023) is a conditional diffusion model which closely resembles a diffusion-
based autoencoder. In addition to the standard CDC model, we consider two variants, CDC-L2
in which an auxiliary loss term is added that directly captures the distortion between the original
image and the generated image, and CDC-LPIPS, where the model adds an optional realism loss
measured by LPIPS (Zhang et al., 2018). We describe model implementations and training details
in Appendix C.2.

Phenotype Classifier To study phenotype degradation in decoded images from neural compres-
sion, we use the Racial Faces in the Wild (RFW) dataset (Wang et al., 2019) and a recently released
facial phenotype annotation dataset specifically for RFW (Yucer et al., 2022b). This annotation
dataset provides labels for six phenotype categories—skin type, eye type, hair type, hair color, lip
type, and nose type—across four racial groups: African, Indian, Asian, and Caucasian. Skin types
are labeled into 6 classes according to Fitzpatrick Skin Types (Fitzpatrick, 1988). Eye types are
labeled as monolid or non-monolid. Nose types are labeled wide or narrow depending on nasal
breadth. Hair types are labeled into 4 groups: bald, curly, straight, and wavy. Lip types are labeled
as either full or small. Hair colors are labeled red, grey, black, blonde, and brown. The distribution
of phenotypes across these racial groups is depicted in Figure A.1.

We train individual classifiers for each phenotype classification task (e.g. one model for eye type
classification, one for hair type classification, etc.), leading to either a binary or multi-class classi-
fication task. Training details for the phenotype classifiers can be found in Appendix C.1. When
measuring bias, we utilize the racial groups as our sensitive attribute, defining A as the set of all
racial groups. When performing inference for multi-class classification tasks hair color and hair
type, we group the three most dominant classes for each group. For skin type, we group all classes
that make up at least 5% of the group. This allows us to evaluate the extent to which phenotypes
flipped to those not prevalent in the racial group of the raw image.

Datasets We train all neural compression models on the CelebA (Liu et al., 2018), FaceARG
(Darabant et al., 2021), and FairFace (Kärkkäinen & Joo, 2019) datasets. These datasets are chosen
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Figure 2: Traditional rate-distortion metrics (PSNR, SSIM, and LPIPS) for the Joint model trained
on the CelebA dataset, shown for each race and the overall dataset. The rate-distortion curves are
nearly identical across all races for PSNR and SSIM, which contrasts with the findings from the
qualitative analysis. While the LPIPS curve for the African group is slightly higher than for other
races, it fails to fully reflect the disparities observed in the qualitative analysis.

to make comparisons between the impact of racially balanced and imbalanced training sets. The
CelebA dataset has a significantly imbalanced racial composition with more than 70% of the images
from the white racial group (Kärkkäinen & Joo, 2019). Additionally, we leverage the FaceARG
dataset and the FairFace Dataset to investigate the effect of a balanced training dataset. FaceARG is
a large-scale dataset containing over 175,000 facial images, each labeled with age, gender, race, and
ethnicity. The dataset features a relatively balanced distribution of images across four different racial
groups: African, Asian, Caucasian, and Indian. The FairFace dataset contains over 100,000 images
with a balanced racial composition across seven race groups: White, Black, Indian, East Asian,
Southeast Asian, Middle Eastern, and Latino. All images are down-sampled to 64x64 resolution.
Finally, to quantify the relationship between realism and bias, we utilize the DemogPairs dataset
(Hupont & Fernández, 2019) as a reference to compute FID scores of the decoded images.

4.2 DO NEURAL COMPRESSION MODELS EXHIBIT BIAS? HOW CAN WE QUANTIFY IT?
Our initial observation of the skin type phenotype being lost in darker-skinned individuals, as illus-
trated in Figure 1, prompts us to investigate the potential biases present in various neural compres-
sion models across different compression rates. We aim to quantify the potential biases associated
with preserving different phenotypes across different races in images compressed using various neu-
ral compression models.
Traditional Distortion Metrics To quantify the aforementioned bias, we first investigate how
traditional distortion metrics reflect potential bias in neural compression models. We conduct two
experiments using PSNR, SSIM and LPIPS as the loss functions in Equation 3 and present the
results for the Joint model trained on the CelebA dataset in Figure 2. The traditional distortion
metrics results for other studied models are presented in Appendix B. The rate-distortion curves
highlight that distortion values across each race are nearly identical to that of the overall dataset,
suggesting that facial images in different race groups are distorted by similar amounts at similar
rates. The LPIPS curve for African faces sits slightly higher than the others but does not capture the
extent of change seen in the qualitative analysis. This indicates that traditional distortion metrics are
not suitable for capturing the bias in these neural compression architectures, which motivates the
need for an alternative metric to capture this bias more effectively.

Phenotype Classification Metric To more accurately quantify potential biases in the compressed
images, we employ the bias metric defined in Equation 6 and present the classification results for the
skin type phenotype in the Joint model trained on the CelebA dataset, as shown in Figure 3(a). The
figure reveals a significant decline in classification accuracy for individuals in the African group at
low bitrates, while accuracy for images from other racial groups remains relatively stable. This dis-
proportionate drop in accuracy for the African group leads to an increased level of bias as the bitrate
decreases, aligning with our qualitative analysis. These findings indicate that using Equation 6 to
quantify bias values provides a more precise assessment of the biases in compression.

To further explore how bias is amplified at varying compression rates, we plot the bias values across
different phenotypes for the Joint model in Figure 3(b). We observe that the bias in the classification
of skin type, eye type, and hair type increases as compression rates decrease, while other phenotypes
display relatively low bias throughout. Specifically, the rise in bias for skin type and eye type is
primarily driven by a disproportionate drop in accuracy for the African group, while the increased
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Table 1: Phenotype Classification on Raw Data. Phenotype classification accuracies and bias
(Equation 6) values on raw data rounded to 2 decimal places. Largest values for each task bolded,
smallest values italicized.

Race Skin Type Eye Type Nose Type Lip Type Hair Type Hair Color

Asian 0.92 0.78 0.59 0.76 0.99 0.90
African 0.89 0.98 0.83 0.71 0.85 0.96

Caucasian 0.96 0.93 0.57 0.83 0.96 0.77
Indian 0.92 0.96 0.65 0.57 0.96 0.86
Bias 0.07 0.20 0.26 0.27 0.14 0.20
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Figure 3: (a) Bias for Skin Type across different races for Joint reconstructions trained on the CelebA
dataset. (b) As the bitrate is lowered, bias increases for Skin Type, Eye Type, and Hair Type, while
remaining relatively level for other phenotypes.

bias for eye type is linked to a decline in accuracy for the Asian group. This bias trend is consistently
observed, to varying degrees, across all other neural compression architectures studied. A more in-
depth analysis of these differences in bias trends is provided in Section 4.3.

Evaluation of Phenotype Classifiers Following the quantification of bias from the phenotype
classification framework, we evaluate the performance of our phenotype classifier to validate its
ability to accurately capture the target phenotypes in the raw images as well as under distribution
shifts caused by neural compression models. As outlined in Section 4.1, we train separate classi-
fiers for each phenotype using raw RFW image data, and use these classifiers to assess phenotype
preservation across various compression rates. We report the classifiers’ accuracies for the specific
classification tasks on the raw RFW images in Table 1. We observe that classifiers trained on raw
images exhibit varying initial biases for different tasks; however, the changes in bias values across
different compression rates do not adhere to a consistent pattern. For example, as previously noted,
the increasing bias trend linked to the disproportionate decline in accuracy for the skin type classifi-
cation in African images is evident across all the neural compression models studied (Appendix D).
In contrast, the initial bias for hair color, which begins at a higher value, remains relatively stable
across various compression rates and models. This suggests that the classifiers effectively capture
the desired phenotypes, indicating that the observed bias cannot be solely attributed to the initial bias
of the model. Moreover, using classifiers to capture biases in neural compression is likely to reflect
the trends observed in machine learning models trained for downstream tasks on the compressed
images, providing us with valuable insights early in the process.

Furthermore, to ensure the classifiers rely on relevant image features rather than spurious correla-
tions, we analyze gradient-based saliency maps. Specifically, we generate smoothed saliency maps
using SmoothGrad (Smilkov et al., 2017) for all classifications in our study. Figure 4 (a) displays the
saliency maps produced by the eye type classifier on compressed images from the VarQRes model
trained on the CelebA dataset. Highlighted regions indicate the areas of the image most influential
in the final classification decision. The eye type classifier correctly identifies the important regions
for determining the eye type phenotype. Additionally, to demonstrate the skin type classifier’s sen-
sitivity to changes in skin tone we present classification results on the compressed images from the
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Figure 4: (a) Saliency maps for eye type classification at varying compression rates for Asian and
Caucasian using the VarQRes model. Highlighted regions represent areas that had the most signifi-
cant influence on the model’s decision, showing emphasis on the eye area for classification. (b) Skin
type classifier accurately captures shifts in skin color observed in African racial groups. Green bor-
ders indicate the correct classifier predicting the skin type to the ground truth label. Purple borders
indicate the predicted skin type is lighter than the ground truth associated with the raw image.

VarQRes model trained on CelebA dataset in Figure 4 (b). We observe that as facial phenotypes get
whitewashed at lower compression rates, the classifier accurately detects this shift and categorizes
the skin tone accordingly.

We further explore the skin type, and hair type saliency maps to confirm the effectiveness of our
classifiers in Appendix E.1. The skin type classifier effectively identifies the relevant area for
classifying skin type in both Caucasian and African examples, focusing solely on the general facial
region. However, the hair type classifier struggles to accurately locate the hair region in images of
African individuals, while it successfully identifies the hair in Caucasian examples. We attribute
this disparity primarily to the distribution of images and labels available for the African group.
Our qualitative analysis present in Figure E.2 reveals that most of the randomly samples images of
African individuals feature males with short hair or wearing headwear. This characteristic makes
hair type classification more challenging for this racial group in contrast to other groups, such as
Caucasians, where such limitations are less prevalent.

4.3 HOW DOES BIAS VARY ACROSS MODEL ARCHITECTURE?

We observe significant bias across neural compression models, which prompts us to investigate how
bias arises differently across different neural compression models. To investigate this, we highlight
the bias for different models for the skin type and eye type classification task in Figure 5. First,
we observe that in the skin type classification task, there is a clear relationship between the model
architecture and the bias we observe. The diffusion models (CDC, CDC-L2 and CDC-LPIPS) appear
to suffer from the most significant bias for the skin type classification task, followed by the VAE-
based models (Hyperprior, Joint, GuassianMix-Attn, QRes, and VarQRes), and then the GAN-based
model (HiFiC). This data supports the visual observations we make from the reconstructed images
from the HiFiC model presented in Figure E.3, which provides further evidence of the phenotype
classifier accurately capturing the desired phenotype. This architecture dependence trend reverses
when we explore eye type classification. Here, the diffusion-based models experience the lowest
amplification of bias while the GAN-based model experiences the highest level of bias. Again, the
VAE-based models remain in the between the two types of generative models. These results suggest
that the bias that different architectures vary across different classification tasks. We believe that
future work can explore which specific properties of these model lead to specific types of bias and
examine how leveraging properties from these architectures can help mitigate bias.

Bias-Realism Relationship In addition to directly comparing the bias, we systematically assess
the relationship between bias and realism across neural compression models. This helps us under-
stand whether models trade off these values and identify which objective each model can optimize.
We quantify realism using Frechet Inception Distance (FID) (Heusel et al., 2017), while bias values
are derived from Equation 6. FID provides statistical insight into how similar generated data is to
a reference distribution. The reference distribution for FID is a set of real images to help capture
how “realistic” the decoded images are. To ensure we are measuring realism with respect to gen-
eral facial datasets, we utilize the Demogpairs dataset (Hupont & Fernández, 2019) as a reference
for computing FID. This enables us to capture the fidelity of the reconstructions without spurious
correlations to any of the datasets used during training.
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Figure 5: Bias in Skin Type and Eye Type across all neural compression models.
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Figure 6: At high bitrates (> 0.1 bpp), bias and realism are correlated across all the models. At low
bitrates (< 0.1 bpp), the trend is more sporadic.

We highlight that at lower FID values, there appears to be a positive correlation between bias and
realism (Figure 6). As the realism deteriorates (FID increases), bias increases. These points mainly
come from the intermediate bitrate regime. In the low bit rate regime, this trend degrades. Here,
the relationship between bias and realism becomes much more sporadic. At lower levels of FID
(higher realism), we can more clearly explore the relationship different neural compression models.
We observe that CDC-LPIPS is able to preserve realism well as the bitrate is reduced while its
accuracy is significantly increased. The trend for the other models appear to be flatter and more
linear indicating the positive correlation we observed in the original plot. We believe the bias-
realism relationship suggests that future neural compression models should consider how to balance
the increase of bias and loss of realism as compression bitrate decreases.

4.4 CAN USING A BALANCED DATASET REMOVE THE BIAS?
As highlighted in Section 4.1, the CelebA dataset is infamously racially imbalanced, potentially
leading to bias in downstream tasks. This motivates the exploration of utilizing a racially balanced
dataset for training neural image compression models. We utilize the FaceARG dataset and the
FairFace dataset to train our models and repeat our experiments from Section 4.2. First, we highlight
scenarios in which training neural compression models with the FaceARG dataset reduces bias. As
presented in Figure 7(a), the Joint model trained on the racially balanced FaceARG dataset shows
lower levels of bias in intermediate bitrates compared to the CelebA counterparts. This difference,
however, is not explicit, and the trend of bias increasing with decreasing rates still exists. These
slightly vary across other neural compression architectures and are presented in Appendix F. While
bias is still present in this setting, these results suggest that leveraging a racially balanced training
set for the neural compression model can reduce bias.

However, leveraging another racially balanced dataset, FairFace, provides alternative insight. As
we observe in Figure 7(b), the FairFace dataset does not improve, and in some cases increases bias,
despite also being racially balanced. We highlight that this can be due to the imbalanced of the
phenotype distribution within the races themselves. This lack of phenotype variability within racial
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Figure 7: (a) Using a racially balanced dataset (FaceARG) helps reduce the bias until extremely low
bitrates less than 0.1 bpp. However, the general trend of bias increasing with decreasing bitrate is
consistent across 2 datasets. (b) Using FairFace does not reduce bias and in cases increases bias.

groups can make certain phenotypes more difficult to preserve, which can lead to bias. This finding is
consistent with that of Cherepanova et al. (2023), that class-balanced learning does not necessarily
lead to fair classification. Additionally, the amplification of bias could be attributed to the facial
orientation differences of the FairFace dataset (Laszkiewicz et al., 2024), in which images with more
variable poses make reconstructions at lower rates, lower quality. We conclude that training with a
balanced dataset can reduce bias in some cases but is not a sufficient bias mitigation strategy. We
believe that this strongly motivates the construction of datasets that are balanced beyond race (e.g.
phenotype level bias) to further reduce bias. Additionally, this motivates algorithmic methods for
bias mitigation in neural image compression architectures, some of which we discuss in Section 5.

5 CONCLUSION AND DISCUSSION

We present a general framework to investigate the bias of neural image compression models. Using
this framework we reveal bias in phenotype loss under low-rate neural compression, notably for
African individuals’ skin and hair types and Asian individuals’ eye types. Additionally, we highlight
bias is consistent across neural compression models. We explore the relationship between bias
and realism and reveal a linear correlation within rates of one model but a trade-off across models.
Finally, we demonstrate that racially balancing the dataset can help alleviate bias in certain scenarios
but is not a sufficient mitigation strategy. This pioneering analysis of bias in low-rate neural image
compression prompts further exploration of the domain. Future research directions include:

Bias Mitigation With bias present in neural compression models, a necessary future step is to ex-
plore how to mitigate this bias. As highlighted in Section 4.4, solely balancing the training data
cannot fully eliminate the bias of the compression models. This motivates algorithmic methods for
reducing bias in neural compression architectures. First, since neural compression can be viewed
as image-to-image models with information bottlenecks, an interesting future direction is exploring
how traditional fair models from the standard image-to-image space Tanjim et al. (2022) translate to
the neural compression domain. Another possibility could be to adopt bias mitigation techniques de-
signed from representation learning (Zemel et al., 2013; Louizos et al., 2015; Creager et al., 2019) to
the neural compression domain, as neural compression can be viewed as a rate-constrained version
of representation learning. Other methods could explore leveraging components from fairness-aware
generative models (Xu et al., 2018; Friedrich et al., 2023) to design fair neural image compression
models. Additionally, Tschannen et al. (2018) proposes a distribution-preserving neural compres-
sion model, which, when combined with a racially balanced training set, could yield interesting
insights into constructing a fair neural compression system.

Isolating bias For evaluation, we utilize a single phenotype classifier across different bitrates. This
allows us to isolate the bias of the classifier by examining the performance differences across dif-
ference rates. Future work can further investigate isolating the bias of the phenotype classifier by
leveraging a fair classifier. Dooley et al. (2023) demonstrate that bias can be inherent to the classifier
architecture and that fair architectures can be found through neural architecture search. Exploring a
fair architecture for neural compression is an interesting future direction. Additionally, emerging in-
formation theoretic techniques (Goldfeld & Greenewald, 2021; Goldfeld et al., 2022; Wongso et al.,
2022; 2023; Tax et al., 2017; Wibral et al., 2017; Dutta et al., 2020; Dutta & Hamman, 2023) can be
explored to further decouple bias in the encoder and decoder of neural compression architectures.
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Nora Hofer and Rainer Böhme. A taxonomy of miscompressions: Preparing image forensics for
neural compression. arXiv preprint arXiv:2409.05490, 2024.

Shaoling Hu and Wei Chen. Joint lossy compression and power allocation in low latency wireless
communications for iiot: A cross-layer approach. IEEE Transactions on Communications, 69(8):
5106–5120, 2021.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition, 2008.

Isabelle Hupont and Carles Fernández. Demogpairs: Quantifying the impact of demographic imbal-
ance in deep face recognition. In 2019 14th IEEE international conference on automatic face &
gesture recognition (FG 2019), pp. 1–7. IEEE, 2019.

Ajil Jalal, Sushrut Karmalkar, Jessica Hoffmann, Alex Dimakis, and Eric Price. Fairness for image
generation with uncertain sensitive attributes. In International Conference on Machine Learning,
pp. 4721–4732. PMLR, 2021.
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A DATASET DETAILS

0

5000

10000
Skin Type

type1
type2
type3
type4
type5
type6

Lip Type
big
small

Nose Type
narrow
wide

Afri
ca

n
Asia

n

Cau
ca

sia
n

Indian
0

5000

10000
Eye Type

narrow
normal

Afri
ca

n
Asia

n

Cau
ca

sia
n

Indian

Hair Type
bald
curly
straight
wavy

Afri
ca

n
Asia

n

Cau
ca

sia
n

Indian

Hair Color
black
blonde
brown
gray
red

Figure A.1: Distribution of phenotype classes for each category across racial groups in RFW dataset.

We observe that across the dataset, certain phenotypes occur at different rates for different races. The
distributions of skin type, hair type, and hair color phenotypes are dependenet on racial group. The
African group has predominantly type 5 and type 6 skin, curly hair, and black hair. The Asian group
has predominantly type 3 and type 4 skin, straight hair, and black hair. The Caucasian group has
predominantly type 2 and type 3 skin, with straight hair and a balanced hair color distribution. The
Indian group has predominantly type 3 and type 4 skin, straight hair, and black hair. Additionally,
the eye type labels are extremely imbalanced within each racial group with nearly all Asian images
labelled as narrow and nearly all non-Asian images labelled as wide. The lip type and nose type
distributions appear relatively balanced within each racial group.

Bias in Facial Image Datasets Machine learning models trained on biased datasets tend to in-
herit and perpetuate those biases, resulting in skewed performance across different demographic
groups. Many large-scale facial image databases are disproportionately biased toward individu-
als with lighter skin tones, underrepresenting those with darker skin (Merler et al., 2019). For
instance, widely used datasets like CelebA (Liu et al., 2018), LFW (Huang et al., 2008), and UTK-
Face (Zhang et al., 2017) reflect significant demographic imbalances. Beyond skin tone, other at-
tributes such as gender and age are also prone to bias in representation. Numerous studies have
explored how these biases in datasets affect the performance of downstream models, particularly in
terms of fairness across demographic groups (Drozdowski et al., 2020; Buolamwini & Gebru, 2018;
Hupont & Fernández, 2019). In response, recent efforts have focused on creating more diverse
and discrimination-aware facial image datasets, such as FairFace (Kärkkäinen & Joo, 2019), Racial
Faces in-the-Wild (RFW) (Wang et al., 2019), and FaceARG (Darabant et al., 2021), to reduce
model biases and improve fairness. While these datasets reduce bias in terms of racial representa-
tion, they do not fully eliminate all forms of bias. In this paper, we focus on the facial phenotypes
within the RFW dataset, which offers a relatively balanced racial composition. However, it remains
imbalanced at the phenotype level, a limitation that will be explored in detail in the paper.
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B TRADITIONAL DISTORTION METRICS

We present the PSNR, SSIM, and LPIPS distortion curves for all models trained on the CelebA
dataset in Figures B.1, B.2, and B.3 respectively.
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Figure B.1: PSNR rate-distortion curves for all neural compression models trained on the CelebA
dataset.
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Figure B.2: SSIM rate-distortion curves for all neural compression models trained on the CelebA
dataset.
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Figure B.3: LPIPS rate-distortion curves for all neural compression models trained on the CelebA
dataset.

C TRAINING DETAILS

C.1 PHENOTYPE CLASSIFIER

We train ResNet18 models He et al. (2016) for facial phenotype classification from scratch. The
classifiers retain the ResNet18 backbone and include a classification head for classifying the spe-
cific attribute. We trained the separate phenotype classifier models for up to 50 epochs, employing
early stopping with patience of 5 epochs. We use cross entropy loss and optimize the models with
the stochastic gradient descent optimizer, a fixed learning rate of 0.01, and a fixed batch size of 32.
To evaluate each compression model at different compression rates, we train the models on decom-
pressed images from each of the evaluated neural compression models with different compression
rates separately, using the provided dataset annotations. We report the average results over 5 runs
with different random seeds for all of our experiments.
C.2 NEURAL COMPRESSION MODELS

For models Hyperprior, Joint, and GaussianMix-Attn, we adopt the implementations from the Com-
pressAI (Bégaint et al., 2020) library. For the other models, we adopt the implementation provided
by the authors (Duan et al., 2023b; Mentzer et al., 2020; Yang & Mandt, 2023) or publicly available
implementations 1. For the CompressAI neural compression models, we train for 1000 epochs with
an early stopping patience of 50 epochs. We use a batch size of 64 and an initial learning rate of
0.0001. For the rest of the parameters, we leave them as they are implemented in the CompressAI
repository. For the QRes (Duan et al., 2023b), VarQres (Duan et al., 2023a), HiFiC(Mentzer et al.,
2020) and CDC(Yang & Mandt, 2023) implementations, we follow the training procedure from the
papers.

D RACIAL BIAS IN DEGRADATION

1https://github.com/Justin-Tan/high-fidelity-generative-compression
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Figure D.1: Bias in phenotype degradation for the Hyperprior Model trained on CelebA
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Figure D.2: Bias in phenotype degradation for the Hyperprior Model trained on FaceARG
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Figure D.3: Bias in phenotype degradation for the Joint Model trained on CelebA
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Figure D.4: Bias in phenotype degradation for the Joint Model trained on FaceARG

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5
Bits per pixel

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Skin Type

Indian Asian African Caucasian Bias

0.1 0.2 0.3 0.4 0.5
Bits per pixel

Ac
cu

ra
cy

Eye Type

0.1 0.2 0.3 0.4 0.5
Bits per pixel

Ac
cu

ra
cy

Nose Type

0.1 0.2 0.3 0.4 0.5
Bits per pixel

Ac
cu

ra
cy

Lip Type

0.1 0.2 0.3 0.4 0.5
Bits per pixel

Ac
cu

ra
cy

Hair Type

0.1 0.2 0.3 0.4 0.5
Bits per pixel

Ac
cu

ra
cy

Hair Color

Figure D.5: Bias in phenotype degradation for the GaussianMix-Attn Model trained on CelebA
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Figure D.6: Bias in phenotype degradation for the GaussianMix-Attn Model trained on FaceARG
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Figure D.7: Bias in phenotype degradation for the QRes Model trained on CelebA
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Figure D.8: Bias in phenotype degradation for the QRes Model trained on FaceARG
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Figure D.9: Bias in phenotype degradation for the VarQRes Model trained on CelebA
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Figure D.10: Bias in phenotype degradation for the VarQRes Model trained on FaceARG
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Figure D.11: Bias in phenotype degradation for the HiFiC Model trained on CelebA
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Figure D.12: Bias in phenotype degradation for the HiFiC Model trained on FaceARG
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Figure D.13: Bias in phenotype degradation for the CDC Model trained on CelebA
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Figure D.14: Bias in phenotype degradation for the CDC Model trained on FaceARG
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Figure D.15: Bias in phenotype degradation for the CDC-L2 Model trained on CelebA
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Figure D.16: Bias in phenotype degradation for the CDC-L2 Model trained on FaceARG
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Table C.1: Neural Compression Models. The evaluated neural compression models and variants
vary in network architecture, optimization objectives, and rate control strategies.

Model Fixed-rate Architecture Realism Rates [bpp]

Hyperprior ✓ VAE × 0.04 - 0.52
Joint ✓ VAE × 0.02 - 0.52

GaussianMix-Attn ✓ VAE × 0.03 - 0.45
QRes × VAE × 0.01 - 0.70

VarQRes × VAE × 0.10 - 0.51
HiFiC ✓ VAE + GAN ✓ 0.04 - 0.52
CDC ✓ Diffusion × 0.01 - 0.55

CDC-L2 ✓ Diffusion × 0.15 - 0.50
CDC-LPIPS ✓ Diffusion ✓ 0.07 - 0.52
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Figure D.17: Bias in phenotype degradation for the CDC-LPIPS Model trained on CelebA
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Figure D.18: Bias in phenotype degradation for the CDC-LPIPS Model trained on FaceARG

E EVALUATION OF CLASSIFIER EFFECTIVENESS

In this section, we provide further support for the effectiveness of the phenotype classifiers.
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Figure E.1: Saliency maps at varying compression rates for African and Caucasian examples using
the VarQRes model trained on the CelebA dataset. (a) Saliency maps for skin type classification.
The classifier is able to recognize the general area of interest for classifying the skin type. (b)
Saliency maps for hair type classification, where the classifier accurately locates the hair region for
the Caucasian example, but fails to focus on the hair region in the African image, even in the raw
image space.
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(a) African Sample (b) Caucasian Sample

Figure E.2: Qualitative observation of the distribution of images in the (a) African and (b) Caucasian
groups. The Caucasian group exhibits a more gender-balanced set of facial images compared to the
African group. Additionally, many images of African individuals feature headwear, which may
complicate the classification of hair type within this group.
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Figure E.3: HiFiC preserves skin type well. However, it introduces extra image details.
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F TRAINING WITH A BALANCED DATASET

In Figure F we present the impact of using a balanced training set FaceARG on racial bias in phe-
notype degradation.
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Figure F.1: Impact on phenotype degradation bias of racially balanced or imbalanced datasets
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G BIAS-REALISM RELATIONSHIP

In Figure G and Figure G we present FID vs bias figures for all the phenotypes.
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Figure G.1: Bias-realism relationship for models trained on CelebA
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Figure G.2: Bias-realism relationship for models trained on FaceARG

H TRAINING WITH AFRICAN-ONLY IMAGES
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Figure H.1: Using the african-only subset from FaceARG helps reduce bias in one model
(GaussianMix-Attn), but doesn’t have significant impact on other models.
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(a) (b)

(c) (d)

Figure H.2: In each subfigure, the reconstructions are from models trained with CelebA (top),
FaceARG (middle), and African subset from FaceARG (bottom). The bitrate reduces from right
to left, with rightmost image the original image. (a) and (b): Examples of training with african only
reduces skin type bias. (c) and (d): Examples of skin type bias still exists after training with african
only images.
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I FREQUENCY DISTORTION

We are interested in understanding how each neural compression model distort different frequency
components in the image. The figures below plots the percentage of reduction in signal magnitude in
the frequency domain. We can observe different overall pattern across neural compression models,
but the patterns across races are consistent within each models. This means the phenotype classifier
is not leveraging any discrepancy in frequency distortion across races.
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Figure I.1: Frequency degradation map for different neural compression models.
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J RACIAL BIAS IN JPEG CODEC
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Figure J.1: Bias in phenotype degradation in JPEG
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