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Abstract

Generating molecular structures with desired properties is a critical task
with broad applications in drug discovery and materials design. We
propose 3M-Diffusion, a novel multi-modal molecular graph generation
method, to generate diverse, ideally novel molecular structures with de-
sired properties. 3M-Diffusion encodes molecular graphs into a graph
latent space which it then aligns with the text space learned by encoder-
based LLMs from textual descriptions. It then reconstructs the molecular
structure and atomic attributes based on the given text descriptions us-
ing the molecule decoder. It then learns a probabilistic mapping from the
text space to the latent molecular graph space using a diffusion model.
The results of our extensive experiments on several datasets demonstrate
that 3M-Diffusion can generate high-quality, novel and diverse molecular
graphs that semantically match the textual description provided. The code
is available on github.

1 Introduction

Generating molecular structures with the desired properties is a critical task with broad
applications in drug discovery and materials design (Hajduk & Greer, 2007; Mandal et al.,
2009; Pyzer-Knapp et al., 2015). There is a growing interest in generative models to automate
this task (You et al., 2018; Jin et al., 2018; 2020; Bjerrum & Threlfall, 2017). Kusner et al.
(2017) proposed a variational autoencoder that uses parse trees for probabilistic context free
grammars to encode discrete sequences that specify the Simplified Molecular-Input Line-
entry System (SMILES) (Weininger, 1988) notation of molecules use the resulting parse trees
to generate SMILES codes that describe molecular graphs. Edwards et al. (2021) formulated
molecule retrieval from textual description as a cross-lingual retrieval task.

Recent advances in language models have led to innovative approaches to generate molecu-
lar structures that match human-friendly textual descriptions of their properties, substruc-
tures, and biochemical activity (Edwards et al., 2022; Zeng et al., 2022; Zhao et al., 2023b;
Fang et al., 2023a). These approaches learn mappings from textual descriptions to molecular
structures using single transformer-based cross-lingual language model for molecule gener-
ation. Specifically, with the given text description of a molecule, these approaches produce
SMILES strings that encode the molecular structure.

Despite promising initial results, such approaches suffer from some important limitations:
(i) SMILES encoding is degenerate in that the a given molecular structure can have multiple
SMILE encodings. For example, the structure of ethanol can be specified using CCO, OCC
or C(O)C. Although in principle a unique canonical SMILES representation can be produced
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for a given molecular structure, the procedure used to do so relies on several arbitrary
choices. Not surprisingly, molecules with identical structure may map to different SMILES
strings. This makes SMILES notation less than ideal for generating molecules from their
textual descriptions (Jin et al., 2018). Important chemical properties corresponding to the
substructures of molecules are more straightforward to express using molecular graphs
rather than linear SMILES representations (Jin et al., 2018; Du et al., 2022); (ii) Using language
models to generate diverse and high-quality molecular structures matching a description
is challenging, because the process used to decode the learned representation into the
corresponding molecular structure, e.g., beam search or greedy search, often produces
structures that are often too similar to each other (See Figure 2). Hence, there is an urgent
need for better approaches for generating diverse, novel molecular structures from a given
textual description (Brown et al., 2019). Against this background, this paper aims to answer
the following research question: How can we generate a diverse and novel collection of molecular
graphs that match a given textual description?

LLM Encoder Graph Encoder

Diffusion ModelCondition Latent  

Graph Decoder

Text  Molecule Graph  

Only in Training
Traning & Inference Molecule Graph  

Representation Alignment

Figure 1: The overview of 3M-diffusion, with a molec-
ular graph encoder/decoder and a latent diffusion
model conditioned on a prior (an aligned LLM en-
coder). The details of alignment in the text/graph en-
coders and diffusion model are given in Section 4.

We introduce 3M-Diffusion, a
novel multi-modal molecular dif-
fusion method, for generating
high-quality, diverse, novel molec-
ular structures from a textual de-
scription. Inspired by text-guided
image generation using a diffusion
model on the latent space (Rom-
bach et al., 2022), 3M-Diffusion
is trained to generate molecular
structures from the latent distribu-
tion of a molecular graph autoen-
coder (See Figure 1). This enables
the diffusion process to focus on
the high-level semantics of encod-
ings of molecular structures. We find that this approach is particularly well-suited for
discrete molecular graph modality because it relegates the challenge of modeling a dis-
crete and diverse distribution to the autoencoder and simplifies the diffusion process by
restricting it to the continuous, latent feature space. Since graph data consists of both node
attributes and graph structure, which differs significantly from the sequential text data, to
align the latent representations of textual descriptions and molecular graphs, 3M-diffusion
employs contrastive learning on a large data set of pairs of molecular structures and their
textual descriptions to pretrain molecular graph encoders and LLM text encoders. This
enables 3M-diffusion to generate high-quality molecular graphs that match the given textual
descriptions.

Key Contributions. The key contributions of this paper are as follows: (i) To the best of
our knowledge, 3M-Diffusion offers the first multimodal diffusion approach to generating
molecular structures from their textual descriptions, surpassing the limitations of state-
of-the-art (SOTA) methods for this problem. (ii) 3M-Diffusion aligns the latent spaces of
molecular graphs and textual descriptions to offer a text-molecule aligned latent diffusion
model to generate higher-quality, diverse, and novel molecular structures that match the
textual description provided; and (iii) Results of extensive experiments using four real-world
text-based molecular graphs generation benchmarks show that 3M-Diffusion outperforms
SOTA methods for both text-guided and unconditional molecular structure generation. In
particular, 3M-Diffusion achieves 146.27% novelty, 130.04% diversity relative improvement
over the SOTA method with maintained semantics in textual prompt on the PCDes dataset.

2 Related Work

2.1 Molecular Structure Generation

Existing molecular graph generation methods can be broadly grouped into two categories:
text-based and graph-based models. Text-based models typically utilize the SMILES
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Reference

 Prompt: The molecule is a member of the class of flavones.

3M-Diffusion

MolT5-large

Reference Sim: 0.87 Sim: 0.87 Sim: 0.87 Sim: 0.86

Sim: 0.74 Sim: 0.63 Sim: 0.47 Sim: 0.46

logP: 6.59 logP: 6.22 logP: 5.81logP: 6.03 logP: 5.67

 Prompt: This molecule is insoluble in water.

logP: 5.67 logP: 5.67 logP: 5.67 logP: 5.67 logP: 1.32MolT5-large

3M-Diffusion

Figure 2: Qualitative comparisons to the MolT5-large of generated molecules on ChEBI-20.
Compared with the SOTA method MolT5-large, our results are more diverse and novel with
maintained semantics in textual prompt. More results are provided in Appendix D.4

(Weininger, 1988) or SELFIES (Krenn et al., 2022) linear strings to describe each molecule
(Bjerrum & Threlfall, 2017; Gómez-Bombarelli et al., 2018; Kusner et al., 2017; Flam-Shepherd
et al., 2022; Fang et al., 2023b; Grisoni, 2023). Because a given molecular graph can have
several linear string representations and small changes to the string representation can
result in large changes in molecular graph being described, such linear string encodings
are far from ideal for learning generative models for producing molecular graph from
textual descriptions. Inspired by the success of learning enhanced graph representations
using graph based models (Kipf & Welling, 2016; You et al., 2020; Xiao et al.; 2024), several
authors have employed deep generative models, including graph variational autoencoders
(VAEs) (You et al., 2018; Jin et al., 2018; Xiao et al., 2021; Jin et al., 2020; Kong et al., 2022; Liu
et al., 2018; Diamant et al., 2023), normalizing flows (Madhawa et al., 2019; Zang & Wang,
2020; Luo et al., 2021), generative adversarial networks (Guarino et al., 2017; Maziarka et al.,
2020), diffusion models (Niu et al., 2020; Vignac et al., 2022; Jo et al., 2022) and autoregressive
models (You et al., 2018; Xiao & Wang, 2021; Popova et al., 2019; Goyal et al., 2020) to learn
distributions of molecular graphs from large databases of known graphs. However, many of
these studies focus on generating molecular graphs with specific low-level properties, such
as logP (the octanol-water partition coefficient) as opposed to those that match high-level
textual descriptions of a broader range of molecular properties (Edwards et al., 2022), e.g.,
water solubility, chemical activity, etc. However, practical applications, such as drug design,
call for effective approaches to generating diverse and novel molecular graphs that match a
given textual description of such high-level properties.

2.2 Language-guided Molecule Generation

Advances in deep learning and language models have inspired a growing body of work
on applications of such models to problems in the molecular sciences (Schwaller et al.,
2019; Xiao et al., 2023; Toniato et al., 2021; Xiao et al., 2024; Zhao et al., 2023a; Seidl et al.,
2023; Schwaller et al., 2021; Vaucher et al., 2020). Advances in text-guided generation of
images, videos, and audios (Radford et al., 2021; Rombach et al., 2022; OpenAI, 2023;
Yin et al., 2023), together with the flexibility offered by natural language descriptions
of molecular graphs have inspired a growing body of work on text-guided generation
of molecular graphs (Christofidellis et al., 2023; Edwards et al., 2022; Fang et al., 2023a;
Zeng et al., 2022; Su et al., 2022). For example, MolT5 (Edwards et al., 2021; 2022) and
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ChemT5 (Christofidellis et al., 2023) pre-train on a substantial volume of unlabeled language
text and SMILES strings for tasks such as molecule captioning and text-based molecule
generation (Christofidellis et al., 2023; Edwards et al., 2022). However, as noted above, the
degenerate nature of linear SMILES string representation of molecular graphs makes it less
ideal for generating molecules from their textual descriptions. To address this problem,
we propose 3M-Diffusion, a novel method that aligns the latent representation of textual
descriptions of molecules with that of the corresponding molecular structures, yielding a
powerful approach to text-guided molecular structure generation.

3 Preliminaries

3.1 Problem Definition

We consider generative modeling of 2D molecular graphs. Each molecule is represented
as a graph G = (V , E), where V =

{
v1, . . . , v|V|

}
is the set of |V| nodes and E is the set of

edges. Let X =
[
x1, x2, · · · , x|V|

]
∈ R[V|×Dx be the node attribute matrix, where xi is the

Dx-dimensional one-hot encoding feature vector of vi, such as atomic type and chirality
type. Similarly, a tensor A ∈ R|V|×|V|×b groups the one-hot encoding eij of each edge, where
each entry is a distinct edge type (bond types for molecule), with the absence of an edge
encoded explicitly using a designated edge type. Given the dataset D = {(Gi, Ti)

N
i=1} where

molecule G has specific text descriptions T characterizing the features of the molecule, our
goal is to learn conditional generation models pθ(G | T ) for generating novel, diverse, and
valid molecules while also aligning with the desired features outlined in text descriptions T .
For brevity, in what follows, we omit the input subscript i when it is clear from context.

3.2 Diffusion Models

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020) are latent variable models that
represent the data z0 as Markov chains zT · · · z0, where intermediate variables share the
same dimension. DMs involve a forward diffusion process q (z1:T | z0) = ∏T

t=1 q (zt | zt−1)
that systematically adds Gaussian noise to samples and a reverse process pθ (z0:T) =

p (zT)∏T
t=1 pθ (zt−1 | zt) that iteratively ”denoises” samples from the Gaussian distribution

to generate samples from the data distribution. A formal description of diffusion models
is given in the Appendix A. To ensure training stability, we can use a simple regression
objective with a denoising network ẑθ with input (xt, t):

Ldiff = Et,x0 ,ϵ

[
λt

∥∥∥ẑθ

(√
αtz0 +

√
1− αtϵ, t

)
− z0

∥∥∥2

2

]
, (1)

where t is the time step, αt ∈ [0, 1] is the noise schedule and ϵ ∼ N (0, I) is Gaussian noise
and λt is a time-dependent weighting term. Intuitively, the denoising network is trained to
denoise a noisy state, zt =

√
αtz0 +

√
1− αtϵ, aiming to reconstruct the clean data z0 with

Equation (1) that prioritizes specific times t. After training, we can draw samples with ẑθ by
the iterative ancestral sampling (Ho et al., 2020):

zt−1 =
√

αt−1(1−αt|t−1)
1−αt

ẑθ(xt, t) +
√

αt|t−1(1−αt−1)

1−αt
zt + σ(t− 1, t)ϵ, (2)

where αt|t−1 represents αt/αt−1 and σ(t − 1, t) = (1− αt−1)
(

1− αt|t−1

)
/(1− αt). The

sampling chain is initialized from Gaussian prior zT ∼ p (zT) = N (zT ; 0, I).

4 Latent Multi-Modal Diffusion for Molecules

3M-Diffusion (See Figure 1) aims to learn a probabilistic mapping from the latent space
of textual descriptions to a latent space of molecular graphs for text-guided generation of
molecular graphs. However, direct mapping between these two latent representations using
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a diffusion model faces a key hurdle, namely, large mismatch between the latent spaces of
textual descriptions and of molecular graphs. To overcome this hurdle, 3M-Diffusion adopts
a two-step approach. The first step uses contrastive learning to produce text-molecule
aligned variational autoencoder that align the representation of molecular graphs with that
of their textual descriptions, and a decoder that maps the latent representation back to the
corresponding molecular graphs. The second step uses the text-aligned latent representation
of molecular graphs to learn a conditional generative model, that maps textual descriptions
to latent representations of molecular graphs. As we will see later, 3M-Diffusion can produce
diverse novel molecular graphs that match the given textual descriptions.

4.1 Text-Molecule Aligned Variational Autoencoder

The proposed text-molecule aligned variational autonecoder comprises of three parts: the
molecular graph encoder Eg, LLM encoder Et and molecular graph decoder D. To bridge
the representation gap between molecular graphs and their textual descriptions, the text
and molecular graph encoders are trained on a large-scale dataset of molecule-text pairs.
These encoders use contrastive learning to construct well-aligned text-molecular structure
encodings that align the latent representation of molecular structures by aligning it with
with that of their textual descriptions. The details of this process are given below.

Molecular Graph Encoder aims to map each molecular graph G with the adjacency tensor
A and node features matrix X into a lower-dimensional latent space Z . This transformation
maps the discrete space of graph structures and node attributes into a continuous latent
space. Specifically, we use Graph Isomorphism Network (GIN) (Hu et al., 2019) as encoder
network on the input adjacency tensor A and node features X of graph G to derive the mean
and standard deviation of the variational marginals:

µg, σg = GIN(A, X), (3)

where µg and σg represent the mean and standard deviations, respectively. Then, the
latent graph representation z is sampled from a Gaussian distribution as z ∼ q (z | A, X) ≃
N

(
µg, σg

)
. This graph encoding process can be expressed as z = Eg(G) signifying the

outcome of the encoding operation in the input context of G.

LLM Encoder maps the textual descriptions of molecular structures into a latent space
that provides input to a conditional generative model of molecular graphs. This encoded
information is instrumental in generating molecules that match a given textual description.
To inject potentially useful scientific knowledge from the literature into Et we initialize it
with encoder-based LLM, i.e., Sci-BERT (Beltagy et al., 2019), which is pretrained on the text
of scientific publications.

Aligning the representation of molecular graphs with that of their textual descriptions is
crucial for establishing a shared representation for effective text-guided molecular graph
generation. Graph data encodes both node attributes and graph structure which differs
significantly from the sequential and contextual nature of text data. We aim to align the
molecular representation from the molecule graph encoder Eg with text representation from
the LLM encoder Et using contrastive learning. Consider a molecular graph G and its textual
description T . To align these two encoders and ensure a cohesive latent space, we employ
the following contrastive learning loss over a batch B ∈ D of large-scale dataset containing
molecule-text pairs to pretrain encoders:

Lcon = − 1
|B| ∑

(Gi ,Ti)∈B
log

exp (cos (zi, ci) /τ)

∑
|B|
j=1 exp

(
cos

(
zi, cj

)
/τ

) , (4)

where zi = Eg(Gi), ci = Et(Ti) and cj = Et(Tj) are representations of corresponding
molecule graph and texts, respectively. cos(·, ·) denotes cosine similarity and τ is the
temperature hyperparameter. The encoders are pretrained on molecule-text (300K) pairs
from PubChem Liu et al. (2023). As we will see, this process yields a well-aligned molecule-
text space that can support the generation of diverse and novel molecular structures from
their textual descriptions.
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Molecular Graph Decoder learns to use latent representation z to generate the correspond-
ing molecular structure. In this work, we employ the HierVAE (Jin et al., 2020) decoder.
Note however that our approach can be combined with other graph decoders (Li et al., 2018;
Kong et al., 2022; Grover et al., 2019). Specifically, the molecular graph decoder generates a
molecular structure G using a graph representation z from the encoder. Given the molecular
graph G, we minimize the negative Evidence Lower Bound (ELBO) (Jin et al., 2020) to train
both the encoder and the decoder:

Lelbo = −Eq(z|A,X)[p(G | Ĝ)] + αKL[q(z | G)∥p(z)]. (5)

Here Ĝ = D(z), in which D denotes the decoder parameterized by HierVAE (Jin et al., 2020).
KL[q(·)||p(·)] is the Kullback-Leibler (KL) divergence between q(·) and p(·). We follow Jin
et al. (2020) and set the weight of KL loss α = 0.1. Here, p(z) = N (z | 0, I) is the isotropic
multivariate Gaussian prior, where I is the identity matrix. We optimize this first expectation
term concurrently using the reparameterization trick (Kingma & Welling, 2013).

4.2 Multi-modal Molecule Latent Diffusion

We next introduce latent diffusion for conditional molecular graph generation, a method
that leverages the aligned molecule-text latent space of encoder-decoder described above,
enabling us to preserve the crucial molecular properties and aligning the textual description
of G. Specifically, we learn a probabilistic mapping from the text to the text aligned molecular
structure latent space, and thus generate molecular structures that match the conditional
text inputs.

The denoising network ẑθ focuses on generating latent graph representation z conditioned
on the text representation c from the LLM encoder Et. The objective to be optimized is:

Ldiff = Et,x0,ϵ

[
λt

∥∥∥ẑθ

(√
αtz +

√
1− αtϵ, t, c

)
− z

∥∥∥2

2

]
, (6)

where λt are time-dependent weights and we use MLPs for the network ẑθ . Specifically,
we concatenate c to graph latent representation zt for timestep t as the input of ẑθ . The
denoising network is trained to denoise a noisy latent, zt =

√
αtz +

√
1− αtϵ to the clean z.

c is the text representation from the fixed encoder Et pretrained by Equation (4).

Additionally, to improve sample quality we take advantage of classifier-free guidance (Ho
& Salimans, 2022), to jointly train an unconditional network, ẑθ(zt, t), and a conditional
network, ẑθ (zt, t, c). Conditioning information is randomly dropped with a probability
of p = 0.1 during training. When conditioning information is dropped, we replace the
embedded source text with its embedding.

4.3 Training and Inference

Training. We proceed to describe the training procedure for 3M-Diffusion. While the
learning objectives for graph encoder-decoder and multi-modal latent diffusion have already
been specified by Equations (5) and (6), it is unclear whether the two components should
be trained sequentially. Previous research on latent diffusion models for image generation
indicates that a two-stage training strategy often results in superior performance (Rombach
et al., 2022). Hence, we adopt a similar two-stage strategy. The first stage consists of training
an encoder-decoder pair using Equation (5), and the second stage consists of training a
multi-modal molecule latent diffusion with the fixed encoder-decoder from the first stage.

Inference. During inference, we use a weight w in computing the prediction as follows (Ho
& Salimans, 2022):

z̃t = wẑθ (zt, t, c) + (1− w)ẑθ(zt, t), (7)
where z̃t represents the newly predicted results, incorporating both conditional and uncon-
ditional information. Setting w = 1.0 corresponds to the conditional diffusion model, while
setting w > 1.0 enhances the impact of the conditioning information. A smaller value of w
contributes to more diverse samples. The new sampling equation is:

zt−1 =
√

αt−1(1−αt|t−1)
1−αt

z̃t +

√
αt|t−1(1−αt−1)

1−αt
zt + σ(t− 1, t)ϵ, (8)
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Table 1: Quantitative comparison of conditional generation on the PCDes and MoMu. 3M-
Diffusion outperforms other SOTA methods in terms of novelty, diversity, and validity
metrics by a large margin, while maintaining a good similarity metric.

PCDes MoMu
# Metrics Similarity (%) Novelty (%) Diversity (%) Validity (%) Similarity (%) Novelty (%) Diversity (%) Validity (%)

MolT5-small 64.84 24.91 9.67 73.96 16.64 97.49 29.95 60.19
MolT5-base 71.71 25.85 10.50 81.92 19.76 97.78 29.98 68.84
MolT5-large 88.37 20.15 9.49 96.48 25.07 97.47 30.33 90.40
ChemT5-small 86.27 23.28 13.17 93.73 23.25 96.97 30.04 88.45
ChemT5-base 85.01 25.55 14.08 92.93 23.40 97.65 30.07 87.61
Mol-Instruction 60.86 35.60 24.57 79.19 14.89 97.52 30.17 68.32

3M-Diffusion 81.57 63.66 32.39 100.0 24.62 98.16 37.65 100.0

Table 2: Quantitative comparison of conditional generation on the ChEBI-20 and PubChem.
3M-Diffusion outperforms other SOTA methods in terms of novelty, diversity, and validity
metrics by a large margin, while maintaining a good similarity metric.

ChEBI-20 PubChem
# Methods Similarity (%) Novelty (%) Diversity (%) Validity (%) Similarity (%) Novelty (%) Diversity (%) Validity (%)

MolT5-small 73.32 31.43 17.22 78.27 68.36 20.63 9.32 78.86
MolT5-base 80.75 32.83 17.66 84.63 73.85 21.86 9.89 79.88
MolT5-large 96.88 12.92 11.20 98.06 91.57 20.85 9.84 95.18
ChemT5-small 96.22 13.94 13.50 96.74 89.32 20.89 13.10 93.47
ChemT5-base 95.48 15.12 13.91 97.15 89.42 22.40 13.98 92.43
Mol-Instruction 65.75 32.01 26.50 77.91 23.40 37.37 27.97 71.10

3M-Diffusion 87.09 55.36 34.03 100 87.05 64.41 33.44 100

where the sampling chain is initialized from Gaussian prior zT ∼ p (zT) = N (zT ; 0, I). The
detailed training and inference algorithms of 3M-diffusion are provided in Appendix B.

5 Experiments and Results

5.1 Experimental Setup

Datasets. We use PubChem (Liu et al., 2023), ChEBI-20 (Edwards et al., 2021), PCDes (Zeng
et al., 2022) and Momu (Su et al., 2022) datasets. Following the evaluation methodology
adopted with datasets (ZINC250K (Irwin et al., 2012) and QM9 (Blum & Reymond, 2009;
Rupp et al., 2012)) used in previous studies of molecular structure generation, we limit
our training, validation, and test data to molecules with fewer than 30 atoms. Statistics of
datasets are shown in Table 5 and detailed descriptions are given in the Appendix C.1.

Evaluation. We evaluate the model’s performance on two tasks: text-guided and uncondi-
tional molecule generation. Following previous works on text-guided molecule generation,
we compare our 3M-Diffusion the SOTA baselines (Edwards et al., 2022; Christofidellis et al.,
2023; Fang et al., 2023a). Text-guided molecule generation measures the model’s capacity
to generate chemically valid, structurally diverse, novel molecules that match the textual
description provided. As in previous work (Chen et al., 2021; Fu et al., 2021; Wang et al.,
2022), we adopt the following metrics for this task: Similarity, Novelty, Diversity, Validity. We
call a predicted molecular structure, specifically one that is chemically valid (g′), qualified
with the ground truth graph g if f (g, g′) > 0.5, where f measures the MACCS (Durant et al.,
2002) cosine similarity between the two. If the f (g, g′) similarity between g′ and g is smaller
than a threshold (0.8 in this paper), we call this predicted molecule g novel. Specifically,
(i) Similarity: the percentage of qualified molecules out of 20K molecules; (ii) Novelty: the
percentage of novel molecules out of all qualified molecules; (iii) Diversity: the average
pairwise distance 1− f (·, ·) between all qualified molecules. (iv) Validity: the percentage of
generated molecules that are chemically valid out of all molecules.

We report the results for unconditional molecule generation tasks using the GuacaMol
benchmarks (Brown et al., 2019) to assess the model’s ability to learn a generative model
of molecular structures that can be used to generate realistic, diverse molecules. Specifi-
cally, Uniqueness gauges the ratio of unique molecules among the generated ones. Novelty
measures the models’ capacity to generate molecules not present in the training set. KL
Divergence assesses the proximity between the distributions of various physicochemical
properties in the training set and the generated molecules. Fréchet ChemNet Distance (FCD)
computes the proximity of two sets of molecules based on their hidden representations in
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Table 3: Quantitative comparison of unconditional generation. Results of Uniq, KL Div and
FCD on ChEBI-20 and PubChem, which refer to Uniqueness, KL Divergence and Fréchet
ChemNet Distance, respectively. A higher number indicates a better generation quality.

ChEBI-20 PubChem
# Methods Uniq (%) Novelty (%) KL Div (%) FCD (%) Validity (%) Uniq (%) Novelty (%) KL Div (%) FCD (%) Validity (%)

CharRNN 72.46 11.57 95.21 75.95 98.21 63.28 23.47 90.72 76.02 94.09
VAE 57.57 47.88 95.47 74.19 63.84 44.45 42.47 91.67 55.56 94.10
AAE 1.23 1.23 38.47 0.06 1.35 2.94 3.21 39.33 0.08 1.97
LatentGAN 66.93 57.52 94.38 76.65 73.02 52.00 50.36 91.38 57.38 53.62
BwR 22.09 21.97 50.59 0.26 22.66 82.35 82.34 45.53 0.11 87.73
HierVAE 82.17 72.83 93.39 64.32 100.0 75.33 72.44 89.05 50.04 100.0
PS-VAE 76.09 74.55 83.16 32.44 100.0 66.97 66.52 83.41 14.41 100.0

3M-Diffusion 83.04 70.80 96.29 77.83 100.0 85.42 81.20 92.67 58.27 100.0

ChemNet (Preuer et al., 2018). Each metric is normalized to a range of 0 to 1, with a higher
value indicating better performance.

Baselines. For text guided molecule generation, we compare 3M-Diffusion with the follow-
ing baselines: MolT5 (Edwards et al., 2022), ChemT5 (Christofidellis et al., 2023) and Mol-
Instruction (Fang et al., 2023a). We consider seven representative baselines for unconditional
molecule generation based on Variational Autoencoder, including CharRNN (Segler et al.,
2018), VAE (Kingma & Welling, 2013), AAE (Makhzani et al., 2015), LatentGAN (Prykhodko
et al., 2019) BwR (Diamant et al., 2023), HierVAE (Jin et al., 2020) and PS-VAE (Kong et al.,
2022). The details of the baselines are given in Appendix C.1.

Setup. We randomly initialize the model parameters and use the Adam optimizer to
train the model. HierVAE is used as our variational autoencoder for all of the following
experiments. For baselines of unconditional generation that did not report results in these
datasets, we reproduce the results using the official code made available by the authors.
To ensure a fair comparison across all methods for unconditional generation, we select the
best hyperparameter configuration solely based on the loss on the training set. We evaluate
the performance of baselines for text-guided molecule generation using the pretrained
parameters made available by the authors of the respective studies.

5.2 Text-guided Molecule Generation

MolT5-small

ChemT5-small

MolT5-base

ChemT5-base

MolT5-large

3M-Diffusion
101

102

103

Ti
m

e 
(m

s)

40x faster

Figure 3: Inference time comparison for con-
ditional molecule generation on ChEBI-20.

Table 1 and 2 report Similarity, Novelty, Di-
versity, and Validity for text-guided molecule
generation on four datasets. Each metric is
computed as an average over 5 structures
generated from a given textual description.
We see that 3M-Diffusion is competitive with
SOTA baselines with respect to Similarity and
outperforms them substantially with respect
to Diversity and Novelty. Specifically, 3M-
Diffusion achieves 146.27% (Novelty of PCDes), 130.04% (Diversity of PCDes) relative
improvement over the second-best SOTA baseline while matching the textual prompt. We
conclude that while the transformer based models that are pretrained on a large dataset
excel in producing molecular structures that match the textual descriptions provided, 3M-
Diffusion outperforms them with respect to the diversity and novelty of the molecular
structures without sacrificing the match between the textual descriptions provided as input
and the molecular structures generated as output. Also, as Figure 3 shows, 3M-Diffusion
enjoys a substantial advantage in terms of its speed over transformer-based methods (See
Appendix D.1 for details).

5.3 Unconditional Molecule Generation

Table 3 shows the results of unconditional molecule generation on PubChem and ChEBI-20.
3M-Diffusion consistently outperforms or matches the performance of SOTA baselines
across all four metrics on both datasets, suggesting that it is able to generate realistic,
diverse, and novel molecules without overfitting the training data. Furthermore, 3M-
Diffusion consistently outperforms HierVAE when both methods use the same decoder.
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Table 4: Results of ablation study with different model designs of 3M-diffusion for Pubchem.
# Methods Similarity (%) Novelty (%) Diversity (%) Validity (%)

(i) Without two-stage training 77.74 67.03 31.05 100.0
(ii) Without representation alignment 86.21 62.81 32.78 100.0
(iii) Without two-stage training & representation alignment 10.24 77.89 27.86 100.0

3M-Diffusion 87.05 64.41 33.44 100.0

This underscores the clear advantage of 3M-Diffusion in generating a diverse and novel
molecular graphs (See Figure 10 for 50 samples from the learned distribution).

5.4 Ablation Studies

We conduct ablation studies to assess the impact of different model designs, by joint training
of the diffusion model and Variational Autoencoder (”without two-stage training”) and
training the model without aligning the representation space of graphs and text using
Lcon in Equation (4) ( ”without representation alignment”). Additionally, we perform
experiments without both two-stage training and representation alignment (”without two-
stage training & representation alignment”) in Table 4. We find that joint training the aligned
encoder-decoder alongside Multi-modal Molecule Latent Diffusion achieves comparable or
superior performance relative to 3M-Diffusion in terms of diversity and novelty, but at the
expense of reduced quality of match between the molecular structures produced and the
textual descriptions provided. We find that training the model without the aligned encoder-
decoder results in substantial drop in performance relative to 3M-Diffusion, underscoring
the importance of aligning the representation of textual descriptions of molecules with that
of molecular structures. Ablation of both two-stage training and representation alignment
components leads to a substantial drop in performance (Similarity of 10.24), rendering the
resulting model unsuitable for real-world applications. The full 3M-Diffusion model (last
row) achieves the best performance with respect to all of the metrics. This confirms the
importance of two-step training and representation alignment in training a model that can
generate diverse, novel set of molecular structures from their textual descriptions.

5.5 Qualitative Analysis and Case Study

Property Conditional Molecule Generation. In traditional molecule generation models, the
generation process is often conditioned on specific molecular properties such as logP (Kus-
ner et al., 2017) and QED. logP assesses a molecule’s solubility, while QED evaluates its
drug likeness (Bickerton et al., 2012). Previous methods have explored ways to optimize
such models further in order to generate molecules with desired properties. In contrast,
3M-Diffusion utilizes textual prompts for conditional molecule generation (See Figure 2).
In particular, we generated 10 samples for each prompt and subsequently select the top 5
samples based on the value of the desired property. For MolT5-large, we adjust the temper-
ature of the transformer in an attempt to encourage diversity while ensuring that invalid
samples are controlled during the sampling process. We applied the same methodology
used in our previous experiments to maintain consistency across the comparative analysis,
as shown in Figure 2. When compared to the MolT5-large model, we find that 3M-Diffusion
excels in generating a diverse range of molecules that also score better with respect to the
desired properties, as evidenced by higher logP values Figure 2. This underscores our
3M-Diffusion’s ability to produce molecules that are not only novel and diverse but also
match the textual description provided. This unique approach distinguishes 3M-Diffusion
from prior methods for molecular generation, presenting a fresh and promising perspective
on molecular design. Additional experimental details and insights regarding prompts
related to solubility and drug likeness are provided in Appendix D.2.

Qualitative Comparison. In Figure 2, we introduce more specific prompts related to molec-
ular categories, such as ”The molecule is a member of the class of flavones.” These prompts
bias the model in favor of generating useful drug candidates. Specifically, we choose a
reference molecule from the training dataset that matches the given textual prompt. Subse-
quently, we generate ten additional molecules and select the top five molecules that exhibit
the highest structural similarity (calculated by Rascal algorithm (Raymond et al., 2002)) to
the reference molecule. These selected molecules are shown in Figure 2.Comparison of 3M-
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The molecule is a dihydroxy 
monocarboxylic acid anion 
that is the conjugate base of 
(3,4-dihydroxyphenyl)acetic 
acid, arising from 
deprotonation of the carboxy 
group. It has a role as a 
human metabolite. It derives 
from a phenylacetate. It is a 
conjugate base of a (3,4-
dihydroxyphenyl)acetic acid.

The molecule is a 
dihydroxyanthraquinone 
that is anthracene-9,10-
dione substituted by 
hydroxy groups at 
positions 1 and 5. It 
derives from a hydride 
of an anthracene.

Text

The molecule is an aliphatic 
alcohol that is octane substituted 
by a hydroxy group at position 3. It 
has a role as a metabolite. It is an 
aliphatic alcohol and an octanol.

The molecule is an octanoate ester 
resulting from the formal 
condensation of the carboxy 
group of octanoic acid (caprylic 
acid) with the hydroxy group of 
propan-1-ol. It has a role as a 
metabolite.

The molecule is the alpha-
amino-acid anion formed by 
proton loss from the carboxy 
group of 5-hydroxylysine. It is a 
conjugate base of a 5-
hydroxylysine.

The molecule is a member of the class 
of xanthones that is 9H-xanthen-9-one 
substituted by hydroxy groups at 
positions 1 and 8, a methoxy group at 
position 3 and a methyl group at position 
6. It has been isolated from 
Microdiplodia species. It has a role as a 
metabolite. It is a member of 
xanthones, a polyphenol and an 
aromatic ether.

3M-DiffusionGround Truth 3M-DiffusionGround TruthText

Figure 4: Molecules generated conditionally on input text by 3M-Diffusion on ChEBI-20.

Diffusion with MolT5-large shows that 3M-Diffusion generates more diverse molecules that
exhibit a higher degree of structural similarity with the reference molecule while producing
novel molecular structures. Additional examples of prompts are provided in Appendix D.3.

Case Study. In Figure 4, we choose a set of examples from the ChEBI-20 dataset to visually
illustrate the structural similarity between the molecules generated by 3M-Diffusion and
the ground truth structures corresponding to the given textual descriptions. Specifically, we
show the largest substructure shared by the generated and ground truth molecules (using
RDkit (Landrum, 2010)). 3M-Diffusion demonstrates the capability to generate molecules
that include the relevant substructure, as illustrated in Figure 4. Simultaneously, it displays
the flexibility to generate molecules with novel substructures, thereby striking a balance
between generating structures that are similar to those represented in the training data
and suggesting novel structures that match the textual description provided. We include
additional results in Appendix D.4.

6 Conclusion

Generating molecules with desired properties is a critical task with broad applications in
drug discovery and materials design. Such applications call for methods that produce
diverse, and ideally novel, molecules with the desired properties. We have introduced
3M-Diffusion, a novel multi-modal molecular graph generation method, to address this
challenge. 3M-Diffusion first encodes molecular graphs into a graph latent space aligned
with text descriptions. It then reconstructs the molecular graph and atomic attributes
based on the given text descriptions using the molecule decoder. 3M-Diffusion learns a
probabilistic mapping from the text space to the latent molecular graph space using the
latent diffusion model. The results of extensive experiments show that 3M-Diffusion can
generate high-quality, novel and diverse molecular structures that semantically match the
textual description provided. Ablation studies underscore the critical role of aligning the
latent representation of text with that of molecular graphs in 3M-Diffusion.
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A Diffusion Models

We present a formal description of diffusion (Ho et al., 2020; Song et al., 2020). Diffusion mod-
els are latent variable models that represent the data z0 as Markov chains zT · · · z0, where
intermediate variables share the same dimension. DMs involve a forward diffusion process
q (z1:T | z0) = ∏T

t=1 q (zt | zt−1) and a reverse process pθ (z0:T) = p (zT)∏T
t=1 pθ (zt−1 | zt).

The forward process starting from z0 can be written as:

q (zt | x0) :=
∫

q (z1:t | x0)dz1:(t−1) = N (zt;
√

αtx0, (1− αt) I) , (9)

where the hyperparameter α1:T determines the magnitude of noise added at each timestep t.
The values of α1:T are selected to ensure that samples zT converge to standard Gaussians, i.e.,
q (zT) ≈ N (0, I). This forward process q is usually predefined without trainable parameters.

The generation process of DMs is defined as learning a parameterized reverse denoising
process, which incrementally denoises the noisy variables zT:1 to approximate clean data x0
in the target data distribution:

pθ (zt−1 | zt) = N
(

zt−1; µθ (zt, t− 1, t) , σ2(t− 1, t)I
)

, (10)

where the initial distribution p(zT) is defined as N (0, I). The means µθ typically are neural
networks such as U-Nets for images or Transformers for text, and the variances σ2(t− 1, t)
typically are also predefined. As latent variable models, the forward process q(z1:T |z0)
can be seen as a fixed posterior. The reverse process pθ(z0:T) is trained to maximize the
variational lower bound of the likelihood of the data:

Lvlb = Eq(z1:T |z0)

[
log

q (zT | z0)

pθ (zT)
+

T

∑
t=2

log
q (zt−1 | z0, zt)

pθ (zt−1 | zt)
− log pθ (z0 | z1)

]
(11)

To ensure training stability, a simple surrogate objective up to irrelevant constant terms is
introduced (Song et al., 2020; Ho et al., 2020; Nichol & Dhariwal, 2021):

Ldiff = Et,z0,ϵ

[
λt

∥∥∥ẑθ

(√
αtz0 +

√
1− αtϵ, t

)
− z0

∥∥∥2

2

]
, (12)

where zt is used to denote
√

αtz0 +
√

1− αtϵ for simplicity. Intuitively, we train a neural
network ẑθ(zt, t) to approximate the original data given some noisy latent and the timestep
through Equation (12), ẑθ (zt, t) ≈ z. With a trained denoising network, we define the mean
and variance function in Equation (10) following the previous work (Ho et al., 2020) as:

µθ (zt, t− 1, t) =

√
αt−1

(
1− αt|t−1

)
1− αt

ẑθ(zt, t) +
√

αt|t−1 (1− αt−1)

1− αt
zt,

σ2(t− 1, t) =
(1− αt−1)

(
1− αt|t−1

)
1− αt

,

(13)

where λt is the time-dependent weight and αt|t−1 = αt/αt−1. For generation, we employ
the standard DDPM sampler, also referred to as the ancestral sampler (Ho et al., 2020). The
process involves sampling initial noise zT ∼ N (0, I) and iteratively applying the update
rule:

zt−1 =

√
αt−1

(
1− αt|t−1

)
1− αt

ẑθ(zt, t) +
√

αt|t−1 (1− αt−1)

1− αt
zt + σ(t− 1, t)ϵ, (14)

where ϵ ∼ N (0, I). We use T = 50 for the sampling timesteps.
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Algorithm 1 Training Algorithm of 3M-Diffusion
1: Input: Pairs of Molecule Graph data G = (V , E) and Textual Description T
2: Initial: Graph Encoder network Eg, LLM Encoder network Et and Decoder network D,

denoising network ẑθ
3: Pretraining Stage: Aligned Text and Graph Encoder Training
4: while Eg and Et have not converged do

5: Lcon = − 1
|B| ∑(Gi ,Ti)∈B log exp(cos(zi ,ci)/τ)

∑
|B|
j=1 exp(cos(zi ,cj)/τ)

6: Eg, Et ← optimizer(Lcon)
7: end while
8: First Stage: Autoencoder Training
9: Initialize Eg from Pretraining Stage

10: while Eg and D have not converged do
11: z← Eg(G)
12: G ← D(z) ▶ Decoding

13: Lelbo = −Eq(z|A,X)[p(G | Ĝ)] + αKL[q(z | G)∥p(z)]
14: Eg, D ← optimizer(Lelbo)
15: end while
16: Second Stage: Multi-modal Molecule Latent Diffusion Training
17: Fix Graph Encoder Eg from Stage 1 and LLM Encoder Et from Pretraining Stage
18: while zθ have not converged do
19: z← Eg(G)
20: t ∼ U(0, T), ϵ ∼ N (0, I)
21: Ldiff = Et,x0,ϵ

[
λt

∥∥ẑθ

(√
αtz0 +

√
1− αtϵ, t

)
− z0

∥∥2
2

]
22: θ ← optimizer(Ldiff)
23: end while
24: return Eg, D

Algorithm 2 Sampling Algorithm of 3M-Diffusion
1: Input: decoder network D, denoising network ẑθ
2: zT ∼ N (0, I)
3: for t in T, T − 1, · · · , 1 do
4: ϵ ∼ N (0, I) ▶ Latent Denoising Loop
5: z̃t = wẑθ (zt, t, c) + (1− w)ẑθ(zt, t),

6: zt−1 =
√

αt−1(1−αt|t−1)
1−αt

z̃t +

√
αt|t−1(1−αt−1)

1−αt
zt + σ(t− 1, t)ϵ

7: end for
8: G ∼ p(G|z0) ▶ Decoding
9: return x, h

B Training and Sampling Algorithm

The complete training algorithm is depicted in Algorithm 1. Firstly, the process begins
by training the graph and LLM encoders using contrastive learning. Following that, the
Variational Autoencoder is trained to facilitate the reconstruction of molecule graphs. Lastly,
the Multi-modal Molecule Latent Diffusion Model is employed to train the denoising
network for the sampling process. This structured approach forms the core of our training
procedure. Moreover, we present the sampling method of 3M-Diffusion in Algorithm 2.
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Table 5: Statistics of all datasets.
Dataset #Training #Validation #Test

ChEBI-20 15,409 1,971 1,965
PubChem 6,912 571 1,162
PCDes 7,474 1,051 2,136
MoMu 7,474 1,051 4,554

C Experimental Details

C.1 Datasets Details and Statistics

The statistics of datasets, including their the number of samples for training, validation and
test sets are given in Table 5.

ChEBI-20 (Edwards et al., 2021): This dataset is generated by leveraging PubChem (Kim
et al., 2016) and Chemical Entities of Biological Interest (ChEBI) (Hastings et al., 2016). It
compiles ChEBI annotations of compounds extracted from PubChem, comprising molecule-
description pairs. To ensure less noise and more informative molecule descriptions, it
includes samples with descriptions exceeding 20 words.

PubChem (Liu et al., 2023): This dataset comprises 324k molecule-text pairs gathered
from the PubChem website. As the dataset contains numerous uninformative texts like
”The molecule is a peptide,” it curates a high-quality subset of 15k pairs with text longer
than 19 words for downstream tasks. This refined subset is then randomly split into
training, validation, and test sets. The remaining dataset, which is more noisy, is utilized for
pretraining. To prevent data leakage, we exclude samples that appear in the testing set of
other datasets from the pretraining dataset.

PCDes (Zeng et al., 2022): This dataset compiles molecule-text pairs sourced from Pub-
Chem (Kim et al., 2016), encompassing names, SMILES notations, and accompanying
paragraphs providing property descriptions for each molecule.

MoMu (Su et al., 2022): This dataset comprises paired molecule graph-text data, with the
textual information for each molecule extracted from the SCI paper dataset (Lo et al., 2019).

For all datasets, inspired by previous datasets (ZINC250K (Irwin et al., 2012) and QM9 (Blum
& Reymond, 2009; Rupp et al., 2012)) on molecule generation, we preserve molecules with
fewer than 30 atoms, creating new training, validation, and test sets from their original
counterparts.

C.2 Baselines

We firstly introduce the baselines used for text-guided molecule generation in this section.

MolT5 (Edwards et al., 2022): MolT5 addresses the difficult problem of cross-domain
generation by linking natural language and chemistry, tackling tasks such as text-conditional
molecule generation and molecule captioning. It presents several T5-based LMs (Raffel
et al., 2020) by training on the SMILES-to-text and text-to-SMILES translations.

ChemT5 (Christofidellis et al., 2023): ChemT5 introduces a versatile multi-task model for
seamless translation between textual and chemical domains. This innovative approach
leverages transfer learning in the chemical domain, with a particular emphasis on addressing
cross-domain tasks that involve both chemistry and natural language.

Then, we will also include seven baselines for unconditional generation to verify the effec-
tiveness of our model.

CharRNN (Segler et al., 2018): CharRNN models a distribution over the next token based
on the previously generated tokens. We train this model by maximizing the log-likelihood
of the training data, which is represented as SMILES strings.
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VAE (Kingma & Welling, 2013): Variational Autoencoder (VAE) consists of two neural
networks: an encoder and a decoder. The encoder infers a mapping from high-dimensional
data to a lower-dimensional space, while the decoder maps this lower-dimensional repre-
sentation back to the original high-dimensional space. It optimizes reconstruction loss and
regularization term in a form of Kullback-Leibler divergence. We use SMILES as input and
output representations as discussed in (Polykovskiy et al., 2020).

AAE (Makhzani et al., 2015): Adversarial Variational Autoencoder (AAE) replaces the
Kullback-Leibler divergence in VAE with an adversarial objective. An auxiliary discrimi-
nator network is trained to distinguish between samples from a prior distribution and the
model’s latent codes. Similar to VAE, we use SMILES as input and output representations
as shown in (Polykovskiy et al., 2020).

LatentGAN (Prykhodko et al., 2019): The Latent Vector Based Generative Adversarial
Network (LatentGAN) integrates an autoencoder with a generative adversarial network. It
first pretrains an autoencoder to map SMILES structures to latent vectors. Subsequently,
a generative adversarial network is trained to generate latent vectors for the pre-trained
decoder.

BwR (Diamant et al., 2023): BwR aims to decrease the time/space complexity and output
space of graph generative models, demonstrating notable performance improvements in
generating high-quality outputs on biological and chemical datasets.

HierVAE (Jin et al., 2020): HierVAE employs a hierarchical encoder-decoder architecture to
generate molecular graphs, leveraging structural motifs as fundamental building blocks.

PS-VAE (Kong et al., 2022): PS-VAE automatically identifies regularities within molecules,
extracting them as principal subgraphs. Utilizing these extracted principal subgraphs, it
proceeds to generate molecules in two distinct phases.

Note that we use the code for CharRNN, VAE, AAE, LatentGAN by the Molecular Sets
(MOSES) Benchmark Polykovskiy et al. (2020).

C.3 Setup and Hyper-parameter settings

We use official implementation publicly released by the authors of the baselines or imple-
mentation from Pytorch. Note that we use the decoder of HierVAE for our model. We
run experiments on a machine with a NVIDIA A100 GPU with 80GB of GPU memory. In
all experiments, we use the Adam optimizer (Kingma & Ba, 2014). In particular, for our
3M-diffusion. we set the dimension of latent representation as 24, the number of layers
for the denosing networks (MLP) as 4, α as 0.1, T as 100 for training and 50 for sampling
process and the probability p = 0.8 for text-guided molecule generation. For unconditional
generation, we set T as 10 or 5 for the sampling process.

D More Experimental Results

D.1 Average Inference Time Comparison

In this section, we compare the average inference times of 3M-Diffusion, MolT5, and
ChemT5 by generating 1,000 samples, as shown in Figure 3. The average time to generate
each molecule is calculated and presented. We observe that 3M-Diffusion achieves a speed
45 times faster than baseline methods, confirming the efficiency of our proposed model.
Our proposed model not only generates molecules more quickly than previous approaches
but also maintains a high level of semantic alignment with textual descriptions.

D.2 Property Conditional Molecule Generation

In this section, we provide more prompt examples and more experiment details for Property
Conditional Molecule Generation. We generate 10 samples for each prompt and subse-
quently select the top 5 samples based on the desired property values, as shown in Figure 2,
5, 6 and 7. For instance, when using the prompt ”This molecule is not like a drug,” we
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logP: -4.76logP: -5.76 logP: -3.97logP: -8.87

 Prompt: This molecule is soluble in water.

logP: -4.83M-Diffusion

MolT5-large
logP: -2.62 logP: -2.62 logP: -2.62 logP: -1.06 logP: -1.06

Figure 5: Qualitative comparisons to the MolT5-large in terms of generated molecules on
CheBI-20. Compared with the SOTA method MolT5-large, our generated results are more
diverse and novel with maintained semantics in textual prompt.

select the top 5 molecules with the smallest QED values, as indicated. Conversely, for the
prompt ”This molecule is like a drug,” we opt for the top 5 molecules with the largest
QED values. This same approach is applied to solubility, where we select molecules based
on logP values. Specifically, we adjust temperature setting within the MolT5 transformer
model to promote the generation of diverse molecules. We carefully selected an appropriate
temperature threshold that struck a balance between diversity and maintaining the valid-
ity of the generated molecules. Moreover, when dealing with MolT5, it is worth noting
that it may occasionally generate multiple unconnected molecules within a single SMILES
representation. In such cases, we select the molecule among these unconnected ones that
best aligns with the top desired attribute. From all figures, it becomes evident that our
model excels in generating molecules with improved desired properties when compared to
MolT5-large.

QED: 0.89 QED: 0.83 QED: 0.80 QED: 0.78 QED: 0.76

 Prompt: This molecule is like a drug.

QED: 0.79 QED: 0.79 QED: 0.77 QED: 0.77 QED: 0.63
MolT5-large

3M-Diffusion

Figure 6: Qualitative comparisons to the MolT5-large in terms of generated molecules on
CheBI-20. Compared with the SOTA method MolT5-large, our generated results are more
diverse and novel with maintained semantics in textual prompt.

D.3 Qualitative Comparison

In this section, we introduce an additional prompt example: ”The molecule is an antho-
cyanidin cation.” This prompt is used to generate molecules belonging to specific categories.
We have the same observation that our model excels in generating molecules that not
only closely resemble the reference molecule but also encompass some diverse and novel
structures.
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QED: 0.11QED: 0.05 QED: 0.05 QED: 0.11 QED: 0.13

 Prompt: This molecule is not like a drug.

QED: 0.77 QED: 0.77 QED: 0.89 QED: 0.89 QED: 0.89MolT5-large

3M-Diffusion

Figure 7: Qualitative comparisons to the MolT5-large in terms of generated molecules on
CheBI-20. Compared with the SOTA method MolT5-large, our generated results are more
diverse and novel with maintained semantics in textual prompt.

Reference

 Prompt: The molecule is an anthocyanidin cation.

3M-Diffusion

MolT5-large

Reference Sim: 0.87 Sim: 0.85 Sim: 0.83 Sim: 0.81

Sim: 0.74 Sim: 0.74 Sim: 0.74 Sim: 0.73

Figure 8: Qualitative comparisons to the MolT5-large in terms of generated molecules on
CheBI-20. Compared with the SOTA method MolT5-large, our generated results are more
diverse and novel with maintained semantics in textual prompt.

D.4 Case Study

In this section, we choose 20 more examples from the ChEBI-20 dataset to visually illus-
trate the structural similarity between the molecules generated by 3M-Diffusion and the
ground truth molecules corresponding to the given text descriptions. All results are shown
in Figure 4. We also observe that our model is proficient at generating molecules that
share significant common structural elements, while simultaneously obtaining diverse and
innovative molecular structures.

D.5 Unconditional Molecule Generation

As shown in Figure 10, our sampled molecules present rich variety and structural complexity.
This demonstrates our model’s ability to generate diverse, novel, and realistic molecules.
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The molecule is a hydroxyquinolone that is 
3-hydroxyuinolin-2(1H)-one which is 
substituted at position 4 by a phenyl groups. 
Isolated from the mycelium of several 
Penicillium species, it exhibits strong 
antibiotic activity against M. tuberculosis and 
also against B. subtilis, S. aureus and S. 
cerevisiae. It has a role as an antibacterial 
agent and a Penicillium metabolite.

The molecule is a tripeptide composed of L-
phenylalanine, L-alanine and L-proline joined 
in sequence by peptide linkages. It has a role 
as a metabolite. It derives from a L-
phenylalanine, a L-alanine and a L-proline.

3M-DiffusionGround TruthText

The molecule is an imidazoquinoline that is 3H-
imidazo[4,5-f]quinoline substituted by a methyl 
group at position 3 and an amino group at 
position 2. It has a role as a carcinogenic agent.

The molecule is a L-serine derivative. It has 
a role as an Escherichia coli metabolite. It is 
a conjugate acid of a N-(2,3-
dihydroxybenzoyl)-L-serinate.

3M-DiffusionGround TruthText

The molecule is a phenylacetaldehyde in 
which the 3 and 4 positions of the phenyl 
group are substituted by hydroxy groups. It 
has a role as a human metabolite, an 
Escherichia coli metabolite and a mouse 
metabolite. It is a member of catechols, an 
alpha-CH2-containing aldehyde and a 
member of phenylacetaldehydes.

The molecule is a quinolinemonocarboxylate 
that is the conjugate base of xanthurenic 
acid, obtained by deprotonation of the 
carboxy group. It has a role as an animal 
metabolite. It is a conjugate base of a 
xanthurenic acid.

The molecule is an aldoxime resulting from 
the formal condensation of the aldehyde 
moiety of indol-3-ylacetaldehyde with 
hydroxylamine. It is a member of indoles and 
an aldoxime.

The molecule is a quaternary ammonium ion 
obtained by methylation of the tertiary amino 
function of reticuline. It derives from a reticuline.

The molecule is an N(2)-acyl-L-ornithine 
where the acyl group is specified to be acetyl. 
It has a role as a human metabolite, an 
Escherichia coli metabolite, a Saccharomyces 
cerevisiae metabolite and a mouse 
metabolite. It is an acetyl-L-ornithine and a 
N2-acyl-L-ornithine. It is a tautomer of a N(2)-
acetyl-L-ornithine zwitterion.

The molecule is a trihydroxyflavone with the 
hydroxy groups at positions C-5, -7 and -8. It 
has a role as an antioxidant and a metabolite.

The molecule is a leucoanthocyanidin that is 
the 3-deoxy derivative of (2R,3S,4S)-
leucocyanidin. It is a pentahydroxyflavan and a 
leucoanthocyanidin. It derives from a 
(2R,3S,4S)-leucocyanidin.

The molecule is a tetrahydroxyflavone that is 
apigenin with an extra hydroxy group at 
position 8. It has a role as a metabolite. It 
derives from an apigenin.

The molecule is an aromatic L-alpha-amino 
acid zwitterion resulting from transfer of a 
proton from the carboxy to the amino group of 
3-O-methyldopa. Major species at pH 7.3 It has 
a role as a human metabolite. It is a tautomer 
of a 3-O-methyldopa.

The molecule is a 2-hydroxy carboxylate that 
is the conjugate base of 3-(indol-3-yl)lactic 
acid. It has a role as a human metabolite. It 
derives from a lactate. It is a conjugate base 
of a 3-(indol-3-yl)lactic acid.

The molecule is a tetrachlorobiphenyl that is 
biphenyl in which both phenyl groups are 
substituted by chlorines at positions 3 and 5. It is 
a tetrachlorobiphenyl and a dichlorobenzene.

The molecule is an aromatic ether that is the 
derivative of 2-phenylethylamine with methoxy 
substituents at the 3- and 4-positions. It is an 
alkaloid isolated from the Cactaceae family. It 
has a role as a plant metabolite and an 
allergen. It is a phenylethylamine, an aromatic 
ether and an alkaloid. It derives from a hydride 
of a 2-phenylethylamine.

Figure 9: More molecules generated conditionally on input text by 3M-Diffusion on the
ChEBI-20 dataset.
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Figure 10: 50 molecules sampled from the prior distribution N (0, I).
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