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ABSTRACT
Graph-structured data is ubiquitous in scientific domains, where
models often face imbalanced learning settings. In imbalanced re-
gression, domain preferences focus on specific target value ranges
that represent the most scientifically valuable cases; however, we
observe a significant lack of research regarding this challenge. In
this paper, we present Spectral Manifold Harmonization (SMH),
a novel approach to address imbalanced regression challenges on
graph-structured data by generating synthetic graph samples that
preserve topological properties while focusing on the most rel-
evant target distribution regions. Conventional methods fail in
this context because they either ignore graph topology in case
generation or do not target specific domain ranges, resulting in
models biased toward average target values. Experimental results
demonstrate the potential of SMH on chemistry and drug discov-
ery benchmark datasets, showing consistent improvements in pre-
dictive performance for target domain ranges. Code is available
at https://github.com/brendacnogueira/smh-graph-imbalance.git.
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• Computing methodologies → Spectral methods; Knowl-
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1 INTRODUCTION
Graph-structured data has become increasingly important in scien-
tific domains, particularly drug discovery, materials science, and
genomics. Graph Neural Networks (GNNs) have revolutionized the
modeling of such data by operating directly on graph structures,
enabling more accurate predictions of molecular properties, ma-
terial characteristics, and biological interactions, for example. In
drug discovery alone, GNNs have demonstrated significant promise
for tasks such as property prediction [20], molecular design [8],
and drug-target interaction prediction [10]. The pharmaceutical
industry has embraced these methods to accelerate the traditional
drug development pipeline, which typically costs over $1 billion
and spans more than a decade from discovery to market [16].

While considerable research has targeted imbalanced classifica-
tion problems in graph learning [1, 19], the regression setting has
received little attention [11, 14]. Crucial scientific problems involve
predicting continuous properties where the most valuable cases are
rare, e.g., in drug discovery, high-potency compounds represent a
tiny fraction of the chemical space but are the most scientifically
interesting [15]. Standard machine learning approaches, including
GNNs, typically optimize for average performance across the en-
tire distribution, resulting in models that perform poorly on these
traditionally infrequent but valuable cases. Additionally, existing
oversampling techniques for imbalanced data often fail to preserve
the complex topological properties inherent in graph-structured
scientific data, thereby limiting their effectiveness in these domains.

In this paper, we present SpectralManifoldHarmonization (SMH),
a novel approach for tackling imbalanced regression [12–14] on
graph-structured data. SMH (Figure 1) operates in the graph spec-
tral domain—the eigenspace of the graph Laplacian—to generate
synthetic graph samples that preserve essential topological proper-
ties while focusing on underrepresented target distribution regions.
Building on the concept of relevance in imbalanced regression [14],
which maps target values to non-uniform domain preferences, SMH
learns a continuous manifold of valid graph structures by relating
target values and the spectral domain, allowing the generation of
new samples with targeted properties.

Novelty. This approach overcomes the limitations of existing
oversampling techniques in regression settings by operating in a
space that captures the structural properties of graphs, enabling
the generation of realistic synthetic examples that address the im-
balance problem without distorting the underlying graph topology.

https://github.com/brendacnogueira/smh-graph-imbalance.git
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Figure 1: Visual description of the Spectral Manifold Harmo-
nization method’s workflow.

Findings. Experimental results show that SMH considerably im-
proves predictive performance on target ranges in benchmark
datasets from drug discovery. Specifically, models trained with
SMH-augmented datasets improve the accurate prediction of rare
compounds, while maintaining or improving performance on av-
erage cases. We also demonstrate how synthetic graphs generated
by SMH preserve essential structural characteristics of the original
data, confirming the effectiveness of our spectral approach.

2 RELATEDWORK
The challenge of imbalanced distributions in graph learning tasks
has received increasing attention, particularly in scientific domains
where rare values are critical. Recent research by Almeida et al. [1]
demonstrates that imbalanced learning in drug discovery datasets
can be tackled with techniques such as oversampling and loss func-
tion manipulation when using Graph Neural Networks (GNNs).
Despite these advances, most approaches operate directly in graph
space rather than the spectral domain, limiting their ability to main-
tain global structural constraints. Bo et al. [4] published a compre-
hensive survey on spectral GNNs, highlighting their unique ability
to capture global information and provide better expressiveness
than spatial approaches. Wang and Zhang [17] further analyzed the
theoretical expressive power of spectral GNNs, proving that they
can produce arbitrary graph signals under specific conditions. How-
ever, these methods focus on balanced and classification datasets,
illustrating the novelty and significance of SMH.

2.1 Spectral Graph Methods
Spectral graph theory has a rich history in machine learning, with
applications spanning dimensionality reduction, clustering, and
graph signal processing. Recent work in spectral methods includes
Specformer [3], combining spectral GNNs with transformer archi-
tectures to create learnable set-to-set spectral filters, or the work by
[9] to enhance the scalability of spectral GNNs without decoupling
the network architecture, addressing a key limitation in previous
approaches. These advanced spectral methods demonstrate im-
proved performance on various graph learning tasks, but do not

specifically target the regression setting or leverage the spectral
domain for manifold harmonization in imbalanced scenarios. Our
SMH method extends these ideas to regression, enabling targeted
generation in underrepresented regions while maintaining global
graph properties.

2.2 Manifold Learning for Structured Data
Manifold learning principles underpin many approaches to gen-
erating synthetic structured data. Recently, Zhong et al. [25] de-
scribed how models can be enhanced by incorporating structured
knowledge representations and latent manifold embeddings, in the
context of knowledge-augmented graph machine learning for drug
discovery. Similarly, Baumgartner et al. [2] demonstrated that incor-
porating manifold information improves synthetic oversampling
techniques for high-dimensional spectral data where standard ap-
proaches often fail. Our SMH approach differs from these works
by explicitly modeling the regression target-to-spectrum mapping
and performing manifold learning in the spectral domain, making
it particularly suited for scientific applications with imbalanced
regression targets.

2.3 Graph Sampling and Synthesis in Scientific
Domains

Due to domain-specific constraints and validity requirements, scien-
tific applications pose unique challenges for graph-based methods.
Yao et al. [22] provided a comprehensive bibliometric analysis of
GNN applications in drug discovery, showing significant growth
in this area and highlighting the need for methods to handle the
inherent data imbalances in these domains. Similarly, Fan et al. [6]
addressed the challenge of overconfident errors in molecular prop-
erty classification, demonstrating the importance of uncertainty
quantification in imbalanced datasets. These approaches focus pri-
marily on classification rather than regression tasks, and do not
specifically utilize spectral representations to address imbalance.

On regression tasks, a review on GNNs for predicting synergistic
drug combinations [24] noted that graph-based models often suffer
from imbalanced data distributions, affecting their performance.
They emphasized the need for methods to handle such imbalances
to improve predictive accuracy effectively. Our SMH method of-
fers a domain-agnostic approach that incorporates scientific va-
lidity constraints while focusing on generating underrepresented
regions of the target distribution, bridging critical gaps in existing
methodologies for imbalanced regression on graph-structured data
in scientific applications.

3 METHODS: SPECTRAL MANIFOLD
HARMONIZATION

Our Spectral Manifold Harmonization (SMH) method addresses
imbalanced regression on graph-structured data by learning to gen-
erate synthetic graph samples in underrepresented regions of the
target distribution while preserving their topological properties.
The key insight is that operating in the graph spectral domain al-
lows us to construct a continuousmanifold of valid graph structures,
making it possible to sample new graphs with targeted properties.
SMH integrates the concept of relevance from recent work on im-
balanced regression [14, 15] and consists of five main components
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(Figure 1): we first transform graphs into their spectral represen-
tation, learn how target values map to this spectral space with
emphasis on relevant regions, model the manifold of valid spectral
representations, strategically sample from underrepresented areas,
and finally transform back to generate new graph instances that
address the imbalance problem.

3.1 Graph Spectral Representation and
Relevance Concept

Let 𝐺 = (𝑉 , 𝐸) be a graph with |𝑉 | = 𝑛 nodes and a set of edges 𝐸.
We define the adjacency matrix A ∈ R𝑛×𝑛 where 𝐴𝑖 𝑗 = 1 if (𝑖, 𝑗) ∈
𝐸, 0 otherwise, the degree matrix D with 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 , and the nor-

malized Laplacian Lnorm = I − D−1/2AD−1/2. The spectral decom-
position of Lnorm yields Lnorm = UΛU𝑇 , where U = [𝑢1, 𝑢2, ..., 𝑢𝑛]
contains the eigenvectors and Λ = diag(𝜆1, 𝜆2, ..., 𝜆𝑛) contains the
eigenvalues with 0 = 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑛 ≤ 2. For any graph signal
x ∈ R𝑛 , its Graph Fourier Transform (GFT) is given by x̂ = U𝑇 x,
where x̂ represents the signal in the spectral domain.

A key concept in addressing imbalanced regression is relevance,
which maps target values to non-uniform domain preferences [14].
In this context, a continuous, domain-dependent relevance func-
tion 𝜙 (𝑌 ) : Y → [0, 1] expresses the application-specific bias
concerning the target variable Y. A domain expert ideally defines
the relevance function for the specific task where the expert inputs
information on the available target value-relevance pairs, i.e., which
value is considered low or high-relevance. When this information
is unavailable, the function can be interpolated from boxplot-based
statistics where extreme values are considered high-relevance and
the distribution median is considered the lowest point of relevance.

3.2 Relevance-Guided Target-to-Spectrum
Mapping

Given a dataset D = {(𝐺𝑖 , 𝑦𝑖 )}𝑁𝑖=1 of graph-label pairs, we learn a
parameterized function 𝑓𝜃 : R → R𝑘 that maps regression target
values to spectral coefficients, where 𝑘 < 𝑛 is the number of sig-
nificant eigenmodes. The mapping function is implemented as a
neural network:

𝑓𝜃 (𝑦) = W𝐿 · 𝜎 (W𝐿−1 · 𝜎 (· · ·𝜎 (W1 ·𝑦 + b1) · · · ) + b𝐿−1) + b𝐿 (1)

where 𝜎 is a non-linear activation function, and W𝑙 , b𝑙 are learn-
able parameters. We incorporate the relevance concept into our
optimization objective by weighting the loss according to the im-
portance of each target value:

L(𝜃 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝜙 (𝑦𝑖 ) · ∥s𝑖 − 𝑓𝜃 (𝑦𝑖 )∥2 + 𝛼 · Ω(𝜃 ) (2)

where s𝑖 = U𝑇
𝑖

x𝑖 are spectral coefficients of graph 𝐺𝑖 , 𝛼 is a
regularization parameter, and Ω(𝜃 ) is a regularization term. This
relevance-weighted loss function ensures that the model focuses
more on learning the mapping for high-relevance target values.

3.3 Manifold Learning in Spectral Space
We model the distribution of spectral coefficients conditioned on
target values as a multivariate Gaussian:

𝑝 (s|𝑦) = N(𝜇 (𝑦), Σ(𝑦)) (3)

where 𝜇 (𝑦) = 𝑓𝜃 (𝑦) and Σ(𝑦) is estimated using a relevance-
weighted covariance:

Σ(𝑦) =
𝑁∑︁
𝑖=1

𝑤𝑖 (𝑦) · (s𝑖 − 𝜇 (𝑦)) (s𝑖 − 𝜇 (𝑦))𝑇 (4)

with weights determined by target similarity:

𝑤𝑖 (𝑦) =
𝐾 (𝑦,𝑦𝑖 )∑𝑁
𝑗=1 𝐾 (𝑦,𝑦 𝑗 )

(5)

where 𝐾 (𝑦,𝑦𝑖 ) = exp(−𝛾 (𝑦 − 𝑦𝑖 )2) is a Gaussian kernel. This
weighting scheme ensures that the manifold captures the variability
in of each region more accurately when modeling the covariance
structure.

3.4 Constrained Sampling for Underrepresented
Regions

To address target distribution imbalance, we first estimate the den-
sity 𝑝 (𝑦) using kernel density estimation:

𝑝 (𝑦) = 1
𝑁ℎ

𝑁∑︁
𝑖=1

𝐾

(𝑦 − 𝑦𝑖
ℎ

)
(6)

where 𝐾 is a kernel function and ℎ is the bandwidth parame-
ter. We define a sampling weight function that combines both the
inverse density and the relevance:

𝑤 (𝑦) = 𝜙 (𝑦) · (𝑝 (𝑦) + 𝜖)−1 (7)

where 𝜖 is a small constant to prevent division by zero. This
function prioritizes regions that are underrepresented (low density)
and highly relevant. To generate new samples, we:

(1) Sample target values 𝑦new with probability proportional to
𝑤 (𝑦)

(2) Generate spectral coefficients snew ∼ N(𝜇 (𝑦new), Σ(𝑦new))

3.5 Inverse Spectral Transformation
Finally, to reconstruct graphs, given s, we:

(1) Reconstruct spectral representation x̂ = [svalid, 0]
(2) Apply inverse GFT: x̃ = Ux̂
(3) Construct adjacency matrix: �̃�𝑖 𝑗 = 𝜎 (x̃𝑖 · x̃𝑗 ), where 𝜎 is a

sigmoid function

The resulting graph �̃� preserves essential topological properties
while targeting underrepresented yet relevant regions of the target
distribution, effectively augmenting the training set to improve
regression performance on rare but valuable cases. By integrat-
ing the concept of relevance throughout our method, we ensure
that the synthetic samples generated by SMH focus specifically
on the regions of the target space that are most important for the
application domain.
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4 EXPERIMENTS
In this section, we evaluate the effectiveness of SMH in generating
synthetic samples that preserve key structural patterns from the
original molecular dataset and improve prediction performance in
domain-relevant target value ranges.

We address the following research questions:

(1) Do synthetic graphs generated by SMH follow the molecular
structure patterns of the original dataset?

(2) Does the use of SHM improve predictive accuracy in target
ranges considered scientifically important?

(3) How do SMH’s that focus on specific domain regions impact
the overall performance?

(4) How does manifold learning and constrained sampling per-
form in comparison with traditional augmentation?

(5) How does SMH perform in comparison with pre-trained
models?

These questions guide our analysis of the structural fidelity of
generated samples and the practical impact of SMH on regression
performance across diverse benchmarks.

4.1 Methods
We converted the SMILES into a networkx [7] graph to build the
spectral manifold harmonization space. Then, we used XGBoost
to train a model to predict the eigenvalues from a given target.
For property prediction, we then convert the networkx graph for-
mat for PyTorch Geometric data format and input it in a Graph
Isomorphism Network (GIN) [21], a powerful tool for graph-based
machine learning tasks due to of its capability to effectively dif-
ferentiate between different graph structures, using MSE as a loss
function. The hyperparameter is presented in Appendix A with a
5-fold cross-validation. We also compared our relevance-guided
target-to-spectrum transformation and constrained sampling ap-
proach with SMOGN [5]. For the Spectral+SMOGN baseline, we
first compute the spectral representation as described in Section 3.1,
and then apply the SMOGN method. The inverse transformation
used for decoding remains the same. To compare with a pre-trained
model, we used HiMol [23], which is a framework to learn molecule
graph representation for property prediction.

4.2 Data
Our experimental evaluation focuses on molecular data, using re-
gression tasks fromMoleculeNet [18]: ESOL, FreeSolv, and Lipophilic-
ity (Lipo). The datasets are briefly described in Table 1. The datasets
exhibit a long-tailed distribution toward the lower end of the prop-
erty range, and we define our relevance function to assign higher
importance to these.

Table 1: Summary of Molecular Property Datasets

Dataset # of Compounds Description

ESOL 1,128 Water solubility dataset
FreeSolv 642 Hydration free energy of small molecules in water
Lipophilicity 4,200 Octanol/water distribution coefficient of molecules

5 RESULTS AND DISCUSSION
This section addresses the research questions raised in Section 3,
specifically concerning SMH’s ability to generate synthetic graphs
andmodel performancewhen using the SMHmethod for generating
and leveraging such data.

5.1 Synthetic Generated Graphs
An illustration of the graphs selected for augmentation and the
corresponding synthetic graphs generated using the approach de-
scribed in Section 3 is presented in Figure 2. Results show that the
generated samples follow the molecular structure patterns of the
original dataset. Importantly, they are not simple copies but exhibit
structural variations, indicating that the method produces diverse,
meaningful graphs.

Figure 2: Illustration of graphs selected for augmentation
and the corresponding synthetic graphs generated using the
approach described in Section 3, for the ESOL dataset.

A comparison of the mean and standard deviation of node and
edge counts between the original and synthetic graphs is provided
in Figure 3. The number of nodes remains very similar across sets.
Minor differences are observed in the number of edges and graph
density, with the synthetic graphs showing slightly higher mean
values. However, these differences remain within an acceptable
range, supporting the validity of the generated graphs (RQ1). Fur-
ther validation on the generated graphs can be addressed.

5.2 Model Performance
The experimental results are reported in Table 2, and Figure 4 illus-
trates each dataset’s improvement across different domain regions.
The results show noticeable improvements in the lower range of
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Figure 3: Comparison of Mean and Standard Deviation of Node and Edge Counts Between Original and Synthetic Graphs.

the domain (RQ2), where our augmentation is focused and where
training data is scarce, with minimal or no degradation in the higher
range (RQ3). This results in an improvement in the SERA evalua-
tion metric and similar results in other metrics. When compared to
Spectral+SMOGN, our method improves performance on the most
relevant ranges, demonstrating the effectiveness of manifold learn-
ing and constrained sampling in generating augmented graphs and

their potential for further improvement (RQ4). In comparison with
a pre-trained model, our approach demonstrates very comparable
results with significant improvements in the low range part of the
domain (RQ5).
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Figure 4: Distribution of train dataset with and without synthetic augmentation, along with the improvements for each part of
the test set domain, for each dataset.

Table 2: Experimental results for the FreeSolv, ESOL, and
LIPO datasets, using the SERA, MAE, RMSE, and 𝑅2 evalu-
ation metrics. Arrows signal the direction for best results,
also noted in bold.

FreeSolv
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.83 ± 0.9 0.55 ± 0.35 0.69 ± 0.58 0.71 ± 0.93
MAE ↓ 1.07 ± 0.16 1.25 ± 0.17 1.06 ± 0.14 0.95 ± 0.17
RMSE ↓ 1.67 ± 0.33 1.81 ± 0.3 1.59 ± 0.32 1.46 ± 0.41
𝑅2 ↑ 0.81 ± 0.07 0.77 ± 0.11 0.83 ± 0.06 0.85 ± 0.08

ESOL
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.07 ± 0.03 0.08 ± 0.03 0.06 ± 0.02 0.08 ± 0.01
MAE ↓ 0.56 ± 0.05 0.59 ± 0.04 0.56 ± 0.02 0.51 ± 0.02
RMSE ↓ 0.73 ± 0.07 0.77 ± 0.05 0.73 ± 0.04 0.7 ± 0.02
𝑅2 ↑ 0.87 ± 0.03 0.86 ± 0.02 0.88 ± 0.02 0.89 ± 0.01

Lipo
Metric Baseline SHM Spectral+SMOGN HiMol

SERA ↓ 0.11 ± 0.03 0.08 ± 0.01 0.09 ± 0.02 0.08 ± 0.01
MAE ↓ 0.49 ± 0.01 0.47 ± 0.02 0.46 ± 0.01 0.42 ± 0.02
RMSE ↓ 0.66 ± 0.01 0.64 ± 0.02 0.62 ± 0.03 0.57 ± 0.01
𝑅2 ↑ 0.57 ± 0.02 0.6 ± 0.03 0.62 ± 0.04 0.67 ± 0.01

6 CONCLUSION
In this work, we introduced Spectral Manifold Harmonization
(SMH), a novel method for addressing the challenge of imbalanced
regression on graph-structured data. By generating synthetic sam-
ples in the spectral domain of graphs, SMH maintains topological
integrity while focusing learning on underrepresented but domain-
relevant target value regions. Our approach bridges a critical gap
in the literature by combining domain-specific relevance modeling
with structure-preserving augmentation, enabling improved pre-
dictive performance in settings such as drug discovery where rare
cases are of great interest.

Experimental results on benchmark datasets demonstrate that
models trained with SMH-augmented data outperform conven-
tional approaches, particularly in low-frequency target regions,
without sacrificing performance elsewhere. Structural analyses
confirm that generated graphs remain faithful to the original dis-
tribution regarding key topological properties. SMH thus offers
a principled and effective augmentation strategy for improving
learning in scientific domains where data imbalance and structural
complexity often limit model effectiveness.

6.1 Future Improvements
Spectral Manifold Harmonization (SMH) has shown strong poten-
tial for addressing imbalanced regression on graph-structured data,
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but several avenues remain for further enhancement. First, integrat-
ing domain-specific constraints into the graph generation process
could improve the realism and scientific validity of the synthetic
graphs. Second, the absence of semantic context in the current
synthesis process limits the interpretability and relevance of the
generated data, highlighting the need for a hybrid spectral-semantic
approach. Future work will also involve evaluating SMH across a
wider range of benchmark datasets and predictive models to further
optimize performance. Additionally, we plan to conduct more com-
prehensive comparisons with existing state-of-the-art methods and
expand the application domains beyond drug discovery, including
areas such as biology and materials science, to better assess the
generalization of our method. To this end, we aim to develop a
hybrid framework that integrates semantic information into the
generation and modeling pipeline to further enhance prediction
performance and scientific relevance.
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A MODEL DETAILS.
This section provides additional information about the models used
in our experiments. The hyperparameters tested for XGBoost, the
property prediction model, and the augmentation strategies are
summarized in Table 3. Given the relatively small dimensionality
of the eigenvalue vectors (fewer than 50 features), XGBoost out-
performed neural networks in our evaluations. Model selection
was based on performance on the validation split, using the SERA
metric.

Table 3: Hyperparameter search space

Parameter Values Tested
XGBoost Number of estimators 10, 50, 100, 250

Learning rate 0.001, 0.01, 0.1
Max depth 3, 5, 10

GIN Model Learning rate 0.01, 0.005, 0.001
Batch size 16
Hidden dimension 32, 64
Number of layers 2, 5
Epochs 500

SMH 𝛾 1.0, 0.5
Augmentation sampling 0.20, 0.15, 0.10
Binarization cut-off 0.3, 0.2, 0.1

SMOGN Relevance threshold 0.95, 0.99

We defined a relevance function𝜙 (𝑦) using the extremesmethod
with three control points:

𝜙 (𝑦) =

1 if 𝑦 = min(Y)
0.025 if 𝑦 = 𝜇 = mean(Y)
0 if 𝑦 = max(Y)
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where Y denotes the set of target values in the training data.
The relevance function smoothly interpolates between these points
to emphasize extreme values.

The training and validation losses are presented in Figure 5.

Figure 5: Training and validation performance of property
value prediction for each dataset for original and augmented
training sets.
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