
Gaussian Regression-Driven Tensorized Incomplete
Multi-View Clustering with Dual Manifold

Regularization

Zhenhao Zhong1 Zhibin Gu1∗ Pengpeng Yang2 Yaqian Zhou1 Ruiqiang Guo1

1College of Computer and Cyber Security, Hebei Normal University, China
2College of computer and Information Technology, China Three Gorges University, China

guzhibin@hebtu.edu.cn

Abstract

Tensorized Incomplete Multi-View Clustering (TIMVC) algorithms have attracted
growing attention for their ability to capture high-order correlations across multi-
ple views. However, most existing TIMVC methods rely on simplistic noise as-
sumptions using specific norms (e.g., ℓ1 or ℓ2,1), which fail to reflect the complex
noise patterns encountered in real-world scenarios. Moreover, they primarily fo-
cus on modeling the global Euclidean structure of the tensor representation, while
overlooking the preservation of local manifold structures. To address these limi-
tations, we propose a novel approach, GaUssian regressIon-driven TIMVC with
dual mAnifold Regularization (GUITAR). Specifically, we employ a Gaussian
regression model to characterize complex noise distributions in a more realistic
and flexible manner. Meanwhile, a dual manifold regularization is introduced in
tensor representation learning, simultaneously modeling manifold information at
both the view-specific and cross-view consensus levels, thereby promoting intra-
view and inter-view consistency in the tensor representation. Furthermore, to
better capture the intrinsic low-rank structure, we propose the high-preservation
ℓδ-norm tensor rank constraint, which applies differentiated penalties to the sin-
gular values, thereby enhancing the robustness of the tensor representation. In
addition, an efficient optimization algorithm is developed to solve the resulting
non-convex problem with provable convergence. Extensive experiments on six
datasets demonstrate that our method outperforms SOTA approaches. The code is
available at https://github.com/RockfireTip/GUITAR.

1 Introduction

With the rapid expansion of multi-view data across a wide range of domains, multi-view clustering
(MVC) has emerged as a key unsupervised learning paradigm for integrating heterogeneous infor-
mation [1–5]. By exploiting the complementarity and consistency among multiple views, MVC
can significantly enhance clustering performance. However, real-world datasets often suffer from
partially missing views due to sensor failures, privacy concerns, or data corruption. Such incomplete-
ness hinders the accurate modeling of inter-view relationships, thereby limiting the effectiveness of
conventional MVC methods in assigning data points to their correct clusters. As a result, incomplete
multi-view clustering (IMVC) has garnered growing attention for its potential to exploit incomplete
multi-view data and uncover their underlying structure [6–8].

Incomplete multi-view clustering (IMVC) aims to uncover correlations across multiple views in the
presence of missing data by employing various strategies, thereby enabling more accurate data clus-
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tering. For example, Wen et al. [9] developed a confidence-based neighborhood consensus graph
model, which leverages the nearest-neighbor assumption to effectively extract group structure in-
formation. Wang et al. [10] integrated missing data imputation with bipartite graph learning in
a unified framework, leading to improved clustering accuracy and efficiency. Furthermore, Liu et
al. [11] proposed a joint optimization framework for kernel matrix completion and multi-kernel
alignment, enabling collaborative kernel and clustering optimization through alternating iterations.
However, the methods mentioned above primarily focus on capturing linear correlations between
views, neglecting the modeling of higher-order relationships, which limits clustering performance.
To address this limitation, recent tensor-based approaches have been proposed to effectively cap-
ture higher-order correlations in multi-view data [12–14]. For instance, Wen et al.[12] proposed a
unified framework that seamlessly integrates missing-view inference with low-rank tensor learning,
enabling joint recovery of latent information in missing views and modeling of high-order inter-
view correlations. Zhang et al. [15] reformulated IMVC as a joint learning problem of incomplete
similarity graphs and complete tensor representation, effectively capturing inter-view correlations
and suppressing noise via structured tensor decomposition. In addition, EDISON [14] leverages an
enhanced dictionary representation to infer missing data and build anchor graphs, enhancing robust-
ness against data incompleteness.

Despite the impressive clustering performance achieved by TIMVC methods through exploiting
high-order correlations across views, there remain three limitations that warrant further improve-
ment. First, most existing TIMVC approaches rely on specific norms (e.g., ℓ1 or ℓ2,1) to model
noise, which implicitly assumes that the noise follows a predefined distribution. However, in real-
world applications, noise often exhibits more complex characteristics, making it difficult for a single
norm to accurately capture its nature, thus leading to suboptimal tensor representations. Second,
the majority of TIMVC methods focus primarily on modeling the global Euclidean structure of the
tensor representation, while neglecting the preservation of local manifold structures, which are often
crucial for clustering tasks. Third, the commonly adopted Tensor Nuclear Norm (TNN) serves as
a surrogate for tensor rank but is known to be a biased estimator, which may result in suboptimal
tensor recovery and limit the model’s overall effectiveness.

To address the aforementioned challenges, we introduce a novel model, Gaussian regression-driven
tensorized incomplete multiview clustering with dual manifold regularization (GUITAR). Specifi-
cally, first, GUITAR utilizes Gaussian regression to model noise as a Gaussian distribution, facilitat-
ing a more effective adaptation to diverse noise types and resulting in a more discriminative affinity
matrix that better captures the true structure of the data. Second, we propose a dual Laplacian man-
ifold regularization approach, which enables both the view-specific local manifold structures and
the cross-view consensus manifold structure to jointly enhance the representational capacity of the
affinity matrix. Additionally, we design a novel tensor rank regularization function that adaptively
applies varying degrees of penalty to singular values of the tensor, allowing for the modeling of
prior structural knowledge inherent in the tensor data. Figure 1 illustrates the framework of GUI-
TAR. Compared to existing TIMVC methods, the contributions of this work can be summarized as
follows:

• We propose a novel noise modeling strategy based on Gaussian regression, which can flexibly
adapt to diverse real-world noise distributions. This enables the construction of a more discrimi-
native affinity matrix and improves the accuracy of tensor representations.

• A dual manifold regularization framework is introduced, which preserves local geometric struc-
tures within individual views while capturing cross-view consensus structures, thereby improving
the affinity matrixs capacity to model inter-sample relationships.

• To better capture intrinsic low-rank structures, we introduce an adaptive tensor rank constraint that
imposes differentiated penalties on singular values, thereby enhancing the robustness of tensor
representations.

• An efficient ADMM-based solver is developed with theoretical convergence guarantees. Extensive
experiments demonstrate the superiority of our approach.

2 Related work

Incomplete Multi-view Clustering (IMVC) methods can be broadly categorized into matrix-based
and tensor-based approaches, depending on whether they leverage high-order correlations across
multiple views.
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Figure 1: The proposed model consists of four main components: noise modeling, low-rank tensor
learning, manifold alignment, and manifold fusion. Noise modeling captures complex noise caused
by reconstruction errors and missing data. Low-rank tensor learning preserves essential structural
information by imposing a robust low-rank constraint. Manifold alignment and manifold fusion
collaboratively align and integrate manifold structures across multiple views.

Matrix-based methods typically impose structural constraints or optimization strategies on feature
or similarity matrices to integrate multi-view information. For instance, the DAIMC model [16]
proposes a weighted semi-non-negative matrix factorization framework that incorporates l21-norm
regularization to reduce the impact of missing views. Yu et al. [17] propose constructing prototype-
sample affinity matrices and cross-view prototypes to jointly unify representation learning and clus-
tering under incomplete data. Recent deep learning-based matrix constraint methods have further
advanced this area. Lin et al. [18] unify multi-view consistency learning and missing view recovery,
maximizing mutual information through contrastive learning while minimizing conditional entropy
to aid view completion. Tang and Liu [7] develop a dual optimization framework to dynamically
interpolate missing views and select interpolated samples for training, thus reducing the impact of
semantically inconsistent interpolations on clustering performance.

Tensor-based methods impose low-rank structural constraints on the three-dimensional tensor recon-
structed from incomplete multi-view data, leveraging cross-view high-order information to facilitate
the completion of missing data [15, 19, 20]. Zhang et al. [15] decompose the tensor into a sparse
tensor for noise modeling and a low-rank intrinsic tensor for capturing true similarities, enhancing
the discriminative power of the similarity matrix. Wu et al. [13] propose the use of kernel tensors to
model inter-view correlations and impose low-rank constraints to enhance cross-view consistency,
facilitating effective completion of missing kernel entries. Huang et al. [20] employ tensor decompo-
sition to jointly perform missing value imputation and feature selection, effectively capturing shared
structures across multiple views.

3 Proposed method

3.1 The GUITAR model

Given a multi-view dataset {Xv}mv=1 consisting of m views and n samples, where Xv ∈ Rdv×n

denotes the feature matrix of the v-th view with dv dimension, we build our method upon a tensor-
based multi-view clustering framework [1, 21, 22], which can be generally formulated as follows:

min
{Ev,Zv}m

v=1

R(Z) + αP(Ev) + βT (Zv)

s.t. ∀v, Xv = XvZv +Ev,Z = Φ(Z1,Z2, . . . ,Zm),
(1)
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where α and β are trade-off parameters. Zv ∈ Rn×n denotes the coefficient matrix of the v-th
view, and Ev ∈ Rdv×n represents the reconstruction error of the v-th view. The operator Φ stacks
{Zv}mv=1 into a third-order tensor Z whose rank is approximated by R(·). P(·) and T (·) are used
to model the reconstruction error and regularize the coefficient matrices, respectively.

Model (1) is capable of capturing high-order correlations across multiple views. However, it has
been shown that selecting all sample points to construct the dictionary is unnecessary and leads to
increased computational cost. In contrast, selecting a subset of t representative samplesreferred to
as anchorsis sufficient to form an expressive dictionary, and these anchors can be learned adaptively
during optimization [23–25]. In this setting, the sample data Xv for each view v can be approxi-
mately reconstructed using an anchor matrix Av ∈ Rdv×t and a coefficient matrix Zv ∈ Rt×n, i.e.,
Xv ≈ AvZv . Furthermore, to address the common issue of missing data in multi-view settings,
we introduce a diagonal indicator matrix Wv ∈ Rn×n to encode sample availability in the v-th
view. Specifically, the i-th diagonal entry of Wv is set to 1 if the i-th sample is missing in view v,
and 0 otherwise. Under this formulation, the missing data can be estimated via the reconstruction
Xv = AvZvWv in the optimization process, which selectively reconstructs only the missing entries.
Accordingly, Model (1) can be naturally extended to a tensorized and anchor-based formulation that
accommodates incomplete multi-view data. The resulting model is defined as:

min
{Ev,Zv,Av}m

v=1

R(Z) + αP(Ev) + β T (Zv)

s.t. ∀v, Xv = AvZv +Ev,Z = Φ(Z1,Z2, . . . ,Zm), (Av)⊤Av = I
(2)

Av ∈ Rdv×t denotes the anchor matrix for view v, where each column represents an anchor point.
The orthogonality constraint (Av)⊤Av = I is commonly adopted in anchor-based multi-view clus-
tering to enhance the discriminability and representativeness of the anchor points, thereby improving
the clustering performance. The fundamental challenge in Model (2) lies in the principled design
of regularization termsP(Z), R(Ev), and T (Zv)to fully harness the complementary and heteroge-
neous information across multiple views for improved clustering performance. Although existing
methods have proposed various constraints on the tensor representation Z , the error term Ev , and
their affinity matrix Zv , they often suffer from inherent limitations in expressiveness, flexibility, or
robustness, particularly when dealing with complex, noisy, or incomplete multi-view data.

Limitation 1: inaccuracy in reconstruction error modeling. Common reconstruction error mod-
els, such as the ℓ1 norm, ℓ2,1 norm, and Frobenius norm, each address specific types of noiserandom,
sample-specific, and Gaussian noise, respectively [26]. However, these approaches have key limi-
tations. They fail to explicitly model noise distributions, and while the Frobenius norm assumes
Gaussian noise for Ev , it does so imprecisely, potentially introducing bias. Furthermore, in the case
of incomplete views, missing data makes reconstruction errors more complex, a challenge these
norms cannot adequately handle. To better model reconstruction error and handle complex noise,
we propose the Gaussian Regression Norm, which draws inspiration from the work of [27].

Definition 1 (Gaussian Regression Norm) Consider the set of noise matrices {Ev}mv=1. We as-
sume that the noise within each view is independently and identically distributed (i.i.d.), with each
noise vector following a multivariate Gaussian distribution N (evq | µv,Σv). The Gaussian Regres-
sion Norm (GRN) is defined as:

∥{Ev}mv=1∥GRN = −
m∑

v=1

(
n∑

q=1

ln
(
N (evq | µv,Σv)

))
(3)

where evq ∈ Rdv denotes the noise vector corresponding to the q-th sample in the v-th view, µv ∈
Rdv is the mean vector of the noise distribution, and Σv ∈ Rdv×dv is the view-specific covariance
matrix.

The GRN represents the negative log-likelihood of observing the residual noise under a multivariate
Gaussian model. Minimizing this norm encourages the residuals to follow the assumed distribution,
allowing for adaptive modeling of intra-view noise characteristics, including correlation structure
and scale. The detailed procedure for constructing ∥{Ev}mv=1∥GRN is provided in Appendix A.1.

Limitation 2: inadequate utilization of manifold information. For the term T (·), a commonly
used constraint is the Laplacian manifold regularization, such as [1, 28, 29]. However, these meth-
ods typically construct the Laplacian matrix solely based on a consensus similarity matrix, thereby

4



neglecting manifold alignment across different view pairs. This oversight introduces bias into the
consensus manifold constraint and compromises its effectiveness. To address this issue, we propose
a novel constraintDual Manifold Regularizationdesigned to precisely capture the intrinsic structure
of the data.

Definition 2 (Dual Manifold Regularization) Given a set of coefficient matrices {Zv}mv=1, we de-
fine its Dual Manifold Regularization (DMR) term as follows:

∥{Zv}mv=1∥DMR = γ

m∑
v=1

m∑
v′=1
v′ ̸=v

Tr
(
ZvLv′

(Zv)
⊤
)
+

m∑
v=1

Tr
(
ZvLs(Z

v)
⊤
)

(4)

where Tr(·) denotes the matrix trace operator, and Lv and Ls represent the normalized Laplacian
matrices for the v-th view and the consensus across all views, respectively. γ is the balancing
parameter. The first term in the DMR encourages mutual constraints among the manifolds of each
view, thereby enhancing their consistency. The second term constructs a consensus Laplacian matrix
that fuses the manifolds across all views, capturing a unified manifold structure.

For each view v, the similarity Sv ∈ Rn×n is computed as Sv
ij =

(zv
i )

⊤zv
j

∥zv
i ∥2∥zv

j ∥2
, where zvi ∈ Rdv

denotes the feature vector of the i-th sample in view v. Each Sv is sparsified by retaining only the
K-nearest neighbors. To integrate manifold information from multiple views, a consensus Lapla-
cian Ls is constructed based on the averaged similarity S = 1

m

∑m
v=1 S

v , with the corresponding
degree matrix D. The normalized shared Laplacian is given by Ls = I − D−1/2SD−1/2. This
construction provides a unified representation of manifold structures across all views. In the ideal
case, the coefficient matrices Zv from all views are expected to share a similar intrinsic structure
of the data manifold. To this end, the consensus Laplacian matrix serves as a regularizer that pro-
motes unified manifold learning across views. As illustrated in the construction of the consensus
Laplacian matrix, it leverages a consensus similarity matrix to regularize a fused manifold across
multiple views, thereby enhancing the clustering performance. A thorough elaboration of the HPℓδ
mechanism is contained within Appendix A.2.

Limitation 3: insufficient exploration of tensor prior information. Small singular values in ten-
sor data typically correspond to noise, while large singular values capture the primary information.
Traditional tensor rank approximation methods, such as the tensor nuclear norm [30] fail to dif-
ferentiate between these two aspects. In contrast, non-convex approximations, such as the Logdet
function[31, 32], the Laplace function[33, 34], and the ℓδ-norm [35] impose heavier penalties on
small singular values and lighter penalties on larger ones, effectively removing noise while pre-
serving critical information. Among these methods, the ℓδ-norm offers a compact approximation
of tensor rank; however, it tends to impose stronger penalties on larger singular values compared
to other non-convex approximations, potentially leading to the loss of important components. To
address this issue, we propose an improved version of the ℓδ-norm , termed the High-Preservation
ℓδ-norm, which better balances noise removal and the retention of useful information under the
low-rank constraint. The formal definitions of the three components are as follows:

Definition 3 (High-Preservation ℓδ-norm) Given a third-order tensor Z ∈ Rn1×n2×n3 , the High-
Preservation ℓδ-norm (HPℓδ) of Z is defined as:

∥Z∥HPℓδ =
1

n3

n3∑
k=1

∥Zk
f∥HPℓδ =

1

n3

n3∑
k=1

h∑
i=1

(1 + δ) tanh
(
Sk

f (i, i)
)

δ + tanh
(
Sk

f (i, i)
) (5)

where h = min(n1, n2) and δ is a positive scalar that controls the flexibility of the norm. Here, Sk
f

denotes the k-th frontal slice of the tensor Sf , which is obtained through the tensor singular value
decomposition (t-SVD [36]) of Z’s k-th frontal slice Zk

f = Uk
fS

k
f (V

k
f )

⊤. A full exposition of HPℓδ
is presented in Appendix A.3.
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Overall objective function of GUITAR: Building upon (2)-(5), the overall objective function of
the GUITAR model is as follows:

min
{Ev,Zv,Av}m

v=1,Z
∥Z∥HPℓδ + λ1∥{Ev}mv=1∥GRN + λ2∥{Zv}mv=1∥DMR-1 + λ3∥{Zv}mv=1∥DMR-2

s.t. ∀v,Xv = AvZv +Ev,Z = Φ(Z1,Z2, . . . ,Zm), (Av)⊤Av = I
(6)

where the parameter µv in the GRN term is set to a zero vector to simplify the optimization pro-
cess. The term ∥Z∥HPℓδ imposes a low-rank constraint on the tensor Z . The employed HPℓδ norm
is a variant of the standard ℓδ norm. It penalizes small singular values similarly to the ℓδ norm,
while applying relatively milder penalties to larger singular values. This design helps to preserve
more critical structural information in the data. ∥{Ev}mv=1∥GRN introduces a novel formulation
for the reconstruction error model. Compared to traditional norms such as the ℓ1 norm, ℓ2,1 norm,
and Frobenius norm, it has the ability to capture the underlying noise distribution to a certain ex-
tent. Moreover, it incorporates learnable parameters that can adaptively adjust during optimization,
enabling more effective modeling of complex noise patterns, especially in scenarios involving in-
complete views. The DMR term is explicitly decomposed into two complementary components for

better interpretability. Specifically, we define ∥{Zv}mv=1∥DMR-1 =
m∑

v=1

m∑
v′=1,v′ ̸=v

Tr
(

ZvLv′
(Zv)

⊤
)

,

and ∥{Zv}mv=1∥DMR-2 =
m∑

v=1
Tr
(

ZvLs(Zv)
⊤
)

. The combined effect of λ2 and λ3 can be regarded

as equivalent to adjusting both the value of γ and the weight of the DMR term. ∥{Zv}mv=1∥DMR-1
encourages the manifolds of each view to mutually constrain each other, thus enhancing cross-view
consistency. ∥{Zv}mv=1∥DMR-2 constructs a consensus Laplacian matrix that fuses the manifolds
across all views, which helps capture a unified and globally consistent manifold structure. After op-
timization, we compute the left singular vectors of 1√

m
[(Z1)⊤, . . . , (Zm)⊤], and then apply spectral

clustering on these vectors to obtain the final clustering result [37].

3.2 Optimazition

To solve the proposed optimization problem, we adopt the Alternating Direction Method of Multi-
pliers (ADMM) [38]. The corresponding augmented Lagrangian function is formulated as follows:

L({Av}mv=1, {Ev}mv=1, {Zv}mv=1, {Σv}mv=1, {Yv}mv=1,G,Q)

= ∥G∥HPℓδ − λ1

m∑
v=1

(
n∑

q=1

ln(N (evq | 0,Σv))

)
+ ⟨Q,Z − G⟩

+

m∑
v=1

(
⟨Yv,Xv −AvZv −Ev⟩+ µ

2
∥Xv −AvZv −Ev∥2F

)

+
ρ

2
∥Z − G∥2F + λ2

m∑
v=1

m∑
v′=1
v′ ̸=v

Tr(ZvLv′
(Zv)⊤) + λ3

m∑
v=1

Tr(ZvLs(Z
v)⊤)

(7)

In the above formulation, {Yv}mv=1 and Q are the Lagrange multipliers and µ > 0 and ρ > 0 are
the penalty parameters. The detailed optimization procedure is provided in Appendix A.4.

3.3 Convergence analysis

Theoretical guarantees for the convergence of the optimization algorithm are provided in Theorem
1, while Appendix A.5 offers a detailed exposition of the underlying principles and implementation
details.

Theorem 1 The sequence {Jp = Av
p,E

v
p,Z

v
p,Σ

v
p,Y

v
p ,Gp,Qp}∞p=1 generated by the proposed op-

timization algorithm satisfies the following properties:

• The sequence {Jp}∞p=1 is bounded;

• Any accumulation point of {Jp}∞p=1 is a stationary point that satisfies the KKT conditions.
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3.4 Complexity analysis

The computational complexity of the proposed GUITAR model mainly arises from variable op-
timization. Specifically, the optimization involves five groups of variables, namely Av , Ev , Zv ,
Σv , and G, whose respective computational complexities are denoted as O(ndvt + dvt), O(nd3v),
O(ntdv + n3), O(nd2v), and O(mntlog(mn) + m2nt). Consequently, the overall computational
complexity of GUITAR scales cubically with the number of data samples.

4 Experiments

In this section, we evaluate the effectiveness and robustness of the proposed model through a series
of experiments. All experiments are conducted in MATLAB R2023b on a machine equipped with
a 2.30 GHz i7-12650H CPU and 16GB RAM. Due to space limitations, a subset of experimental
results is presented in the main text; additional experiments can be found in Appendix A.6.

4.1 Experimental settings

Datasets: We conduct experiments on six datasets: Yale3 [39], MSRC_v1 [40], EYaleB10 [41],
COIL20MV, Mfeat [42], and Scene [43]. These datasets differ in both sample size and the number
of views. Specifically, Yale3 contains 165 samples with 3 views; MSRC_v1 has 210 samples and 5
views; EYaleB10 includes 640 samples with 3 views; COIL20MV provides 1440 samples across 4
views; Mfeat consists of 2000 samples with 6 views; and Scene comprises 2688 samples described
by 4 views.

Incomplete multi-view data construction: Incompleteness is introduced to the originally com-
plete multi-view datasets by randomly setting a fraction of samples to zero, where the missing rate r
is chosen from {0.1, 0.3, 0.5} in each view. To ensure that every sample remains present in at least
one view, we restore the data in one randomly selected view for samples missing across all views.
All experiments, except those in Section 4.2, are conducted with r = 0.5.

Baselines: We compare our method with six baseline approaches: BSV (2001) [44–46], Con-
cat [45, 46], PVC (2014) [47], IMVC-CBG (2022) [48], PSIMVC-PG (2024) [49], and SCSL
(2024) [29]. For each method requiring hyperparameter tuning, we adjust the parameters within the
recommended ranges. For our method, we search for the optimal values of λ1, λ2, and λ3 from the
set {10−3, 10−2, 10−1, 100, 101}, while δ is tuned over {10−3, 10−2, 10−1, 100}.

Evaluation metrics: Three evaluation metrics, Accuracy (ACC), Normalized Mutual Information
(NMI), and Purity (PUR), are used to assess clustering performance. To ensure the reliability of the
results, each method is executed five times during the evaluation process.

4.2 Clustering results

The performance comparison of clustering results is shown in Table 1, with the top-performing
method in each dataset highlighted in bold and the second-best method underlined. The analysis of
the clustering results leads to the following three conclusions:

(1) The proposed GUITAR method consistently demonstrates strong performance across different
missing rates, clearly outperforming the second-best method. For example, at a missing rate of 0.5,
our method achieves higher ACC scores than the runner-up by 16.89%, 12.86%, 5.35%, 33.51%,
24.12%, and 15.98% on the Yale3, MSRC_v1, EYaleB10, COIL20MV, Mfeat, and Scene datasets,
respectively. Furthermore, even at lower missing rates, our method achieves competitive results.
These findings demonstrate the robustness of our approach in the presence of complex noise and
validate the effectiveness of the GRN component.

(2) Compared with recent matrix-based methods such as IMVC-CBG (2022), PSIMVC-PG (2024),
and SCSL (2024), our tensor-based approach consistently achieves superior performance. This high-
lights that the HPℓδ regularization enables the tensor low-rank constraint to effectively capture high-
order correlations.
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Table 1: Clustering performance comparison under different missing rates.

Data Methods
Missing rate 0.1 0.3 0.5

ACC NMI PUR ACC NMI PUR ACC NMI PUR

Yale3

BSV 35.64±6.99 41.06±6.93 36.73±6.74 33.82±6.17 35.53±6.85 35.76±5.88 26.06±2.94 25.59±3.36 28.48±2.74
Concat 31.76±11.65 31.99±12.17 34.30±11.25 28.12±4.57 28.98±6.48 30.42±5.01 22.55±5.82 20.43±6.90 24.48±5.40
PVC 50.30±2.54 53.58±2.06 51.27±1.80 39.74±2.22 43.10±1.43 40.90±2.19 40.44±1.86 42.82±1.55 42.22±2.16

IMVC-CBG 44.48±0.33 45.75±0.00 45.09±0.33 37.58±0.00 38.55±0.00 38.79±0.00 22.91±0.27 19.42±0.29 23.52±0.27
PSIMVC-PG 52.73±0.00 56.24±0.00 53.94±0.00 31.39±0.66 35.22±1.06 32.97±0.81 19.39±0.00 18.38±0.00 21.82±0.00

SCSL 63.03±0.00 64.79±0.00 63.03±0.00 55.76±0.00 58.61±0.00 55.76±0.00 32.12±0.00 35.75±0.00 33.94±0.00
GUITAR 64.48±4.19 65.92±3.18 64.61±4.42 62.18±2.99 62.64±1.64 62.18±2.99 57.33±2.66 58.71±2.21 57.58±3.12

MSRC_v1

BSV 60.00±9.61 51.44±5.29 62.86±6.01 40.10±4.71 28.93±3.48 41.81±3.99 31.43±3.10 18.12±2.97 32.19±3.06
Concat 73.33±10.43 66.58±7.61 74.29±9.39 54.29±7.66 47.78±5.41 56.86±6.41 44.10±2.58 33.60±4.19 44.86±2.78
PVC 62.78±5.77 49.46±3.47 64.98±3.36 71.24±5.34 59.36±3.80 71.96±4.53 52.25±9.29 46.75±8.86 56.75±8.47

IMVC-CBG 50.19±0.43 41.06±0.75 52.10±0.64 36.67±0.00 24.83±0.00 37.62±0.00 19.05±0.00 4.80±0.00 19.05±0.00
PSIMVC-PG 46.67±0.00 36.14±0.00 47.62±0.00 28.76±0.26 17.34±0.26 29.71±0.26 18.29±0.43 5.50±0.44 19.33±0.43

SCSL 74.76±0.00 64.82±0.00 74.76±0.00 61.90±0.00 56.05±0.00 66.19±0.00 67.14±0.00 61.87±0.00 70.48±0.00
GUITAR 77.14±1.75 67.26±1.75 77.14±1.75 81.05±1.63 67.93±1.69 81.05±1.63 80.00±0.00 65.94±0.00 80.00±0.00

EYaleB10

BSV 25.44±1.00 23.32±2.42 27.81±0.98 18.09±0.92 7.62±1.20 18.81±1.16 21.53±1.37 14.28±1.77 22.81±1.38
Concat 17.53±2.24 6.83±3.47 19.03±2.92 18.59±1.57 8.13±2.56 19.47±1.94 16.94±2.05 5.40±1.98 17.75±1.73
PVC 36.25±5.47 35.07±7.80 37.76±4.71 31.09±1.21 27.32±2.40 32.75±1.56 30.40±2.44 25.56±3.89 31.73±2.59

IMVC-CBG 33.94±0.13 28.47±0.11 34.72±0.13 27.19±0.11 18.61±0.00 28.13±0.11 17.25±0.14 7.86±0.12 18.66±0.14
PSIMVC-PG 30.09±0.00 23.88±0.12 31.34±0.00 24.06±0.00 15.20±0.00 24.69±0.00 17.03±0.00 8.78±0.00 19.53±0.00

SCSL 12.81±0.00 3.31±0.00 13.13±0.00 12.19±0.00 2.72±0.00 12.50±0.00 20.00±0.00 8.42±0.00 20.78±0.00
GUITAR 37.03±0.96 34.39±1.52 37.97±0.95 37.97±0.63 34.68±0.68 38.91±0.46 35.75±1.37 30.30±2.01 36.41±1.48

COIL20MV

BSV 52.81±4.93 65.04±2.26 56.89±4.05 42.06±3.63 49.45±1.51 44.82±2.85 31.74±1.95 37.18±1.58 33.93±1.86
Concat 58.68±7.56 73.38±3.21 63.65±6.47 47.47±1.97 58.62±1.44 51.32±1.72 37.67±3.54 47.53±3.99 41.08±3.09
PVC 5.05±0.00 0.00 ± 0.00 5.05 ± 0.00 5.29 ± 0.00 0.00 ± 0.00 5.29 ± 0.00 5.65 ± 0.00 0.00 ± 0.00 5.65 ± 0.00

IMVC-CBG 56.51±1.30 67.58±0.59 59.63±0.85 50.90±0.47 58.12±0.28 54.61±0.26 41.00±1.40 50.45±1.00 44.18±1.29
PSIMVC-PG 56.79±1.85 67.84±0.53 60.08±1.25 50.69±0.16 58.01±0.22 54.42±0.35 32.81±0.57 39.39±0.42 36.44±0.50

SCSL 26.81±0.00 28.51±0.00 30.00±0.00 52.71±0.00 62.34±0.00 53.26±0.00 40.69±0.00 51.00±0.00 46.32±0.00
GUITAR 74.11±1.69 82.67±0.71 75.40±1.08 72.53±2.02 81.90±1.36 73.96±2.18 74.51±5.95 82.46±2.78 75.89±4.93

Mfeat

BSV 63.22±6.56 60.32±4.60 67.42±6.05 52.70±4.46 48.51±2.18 54.19±3.60 39.21±4.00 33.07±2.87 41.68±3.13
Concat 75.25±11.82 73.15±6.24 77.89±8.65 57.88±5.73 53.11±2.11 59.12±4.62 41.24±3.71 35.48±4.75 42.62±3.45
PVC 66.80±2.83 59.58±1.07 68.08±1.89 64.26±3.36 53.93±2.00 65.21±2.21 58.19±4.47 49.29±3.89 59.20±4.21

IMVC-CBG 53.50±0.00 48.31±0.00 53.90±0.00 35.20±0.00 26.49±0.00 35.50±0.00 20.95±0.00 11.54±0.00 21.40±0.00
PSIMVC-PG 48.56±0.00 45.04±0.00 49.96±0.00 31.84±0.00 25.84±0.00 33.34±0.00 19.25±0.00 10.07±0.00 19.55±0.00

SCSL 30.55±0.00 21.68±0.00 33.35±0.00 21.10±0.00 12.51±0.00 24.25±0.00 22.50±0.00 14.43±0.00 26.05±0.00
GUITAR 78.05±2.66 71.53±1.10 78.07±2.65 81.32±0.29 73.49±0.23 81.32±0.29 82.31±0.00 71.89±0.00 82.31±0.00

Scene

BSV 51.18±1.22 37.62±0.82 54.47±0.98 43.09±2.88 29.30±1.99 45.20±2.63 32.65±2.75 19.58±1.80 34.54±2.32
Concat 56.96±4.02 44.25±1.45 58.04±2.48 44.75±1.26 29.98±2.59 45.48±1.71 36.95±2.01 22.59±0.87 37.54±1.88
PVC 55.00±2.40 42.46±2.58 56.18±2.13 46.78±3.36 38.14±2.73 50.57±3.61 42.02±1.06 31.75±1.82 43.75±0.87

IMVC-CBG 42.37±0.00 29.10±0.00 44.90±0.00 27.49±0.00 14.77±0.00 29.24±0.00 20.50±0.00 6.19±0.00 21.24±0.00
PSIMVC-PG 33.82±0.00 21.20±0.00 35.90±0.00 26.90±0.00 13.19±0.00 28.72±0.00 20.19±0.00 5.19±0.00 20.86±0.00

SCSL 48.81±0.00 36.90±0.00 49.26±0.00 16.78±0.00 1.87±0.00 17.04±0.00 19.57±0.00 6.65±0.00 21.50±0.00
GUITAR 59.34±1.06 44.88±0.71 59.72±0.95 59.83±0.00 43.79±0.00 59.89±0.00 58.00±0.33 39.02±0.18 58.00±0.33

(3) Whether compared with methods without manifold constraints (BSV, Concat, PVC, IMVC-CBG,
PSIMVC-PG) or the manifold-constrained method SCSL, our approach maintains relatively stable
performance across different datasets and missing rates. This can be attributed to the ability of DMR
to accurately learn the underlying manifolds, even under high levels of missing data.

4.3 Parameters analysis

The GUITAR model involves three balancing parameters: λ1, λ2, and λ3. To evaluate the sensitivity
of the model to these parameters, we perform a grid search over two parameters while fixing the
third, with search values drawn from {10−3, 10−2, 10−1, 100, 101}. ACC is used as the evaluation
criterion. As illustrated in Figure 2, the performance on the Mfeat dataset remains consistently stable
when λ1, λ2, and λ3 are chosen from {10−3, 10−2, 10−1}.

(a) λ1 vs. λ2 (b) λ1 vs. λ3 (c) λ2 vs. λ3

Figure 2: Sensitivity analysis of balancing parameters in the GUITAR model on the Mfeat dataset.
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4.4 Anchor analysis

The proposed GUITAR model utilizes discriminative anchors from the original data as a dictionary
to improve computational efficiency. The number of anchors t is varied within the range [c, 7c],
where c denotes the number of clusters. The detailed clustering results are presented in Figure 3. It
can be observed that even with a number of anchors much smaller than the total number of samples,
competitive and relatively stable clustering performance is consistently achieved across different
datasets. However, results indicate that more anchors do not guarantee better performance. While in-
sufficient anchors limit the dictionary’s expressiveness, causing high reconstruction error, too many
increase the risk of selecting low-quality anchors that introduce noise and degrade performance. The
number of anchors should therefore be optimized empirically. In general, the GUITAR model yields
the best performance when the number of anchors is 2c or 3c.

(a) Yale3 (b) MSRC_v1 (c) EYaleB10

Figure 3: The impact of anchor count on the GUITAR model.

4.5 Analysis of the HPℓδ parameter δ

In this section, we analyze the impact of the HPℓδ parameter on the performance of our model.
We search for an optimal value of δ within the range {10−3, 10−2, 10−1, 100} to make HPℓδ more
effective and compact. As shown in Figure 4, the performance metrics on the Yale3 dataset fluctuate
as δ increases, while on the MSRC_v1 dataset they decrease, and on the EYaleB10 dataset they
increase. For the other datasets, the performance remains relatively stable. Overall, the model
achieves the best performance across all datasets when δ is set to 10−2.

(a) Yale3 (b) MSRC_v1 (c) EYaleB10

Figure 4: The impact of δ on the GUITAR model.

4.6 Convergence behavior

We empirically validate the convergence of the GUITAR model using two metrics: the reconstruc-
tion error (RE), defined as min

v
∥Xv−AvZv−Ev∥∞, and the match error (ME), given by ∥Z−G∥∞.

The convergence processes on the Yale3, EYaleB10, and COIL20MV datasets are illustrated in Fig-
ure 5. As shown, both RE and ME decrease rapidly and approach zero within 40 iterations, demon-
strating the good convergence properties of the GUITAR model.
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(a) Yale3 (b) EYaleB10 (c) COIL20MV

Figure 5: Convergence curves of the GUITAR model.

4.7 Ablation study

To study the effect of GRN and DMR on the model performance, we perform ablation by set-
ting the balancing parameters λ1, λ2, and λ3 to zero in different combinations. DMR can be

decomposed into two smaller components: we define
m∑

v=1

m∑
v′=1,v′ ̸=v

Tr
(

ZvLv′
(Zv)

⊤
)

as DMR-1,

and
∑m

v=1 Tr
(

ZvLs(Zv)
⊤
)

as DMR-2. Table 2 reports the experimental results, where the best-
performing entries are highlighted in bold. Removing GRN results in a substantial performance
degradation, demonstrating its effectiveness in modeling complex noise. When GRN is present,
incorporating either DMR-1 or DMR-2 leads to further improvements. The model achieves its opti-
mal performance when GRN, DMR-1, and DMR-2 are all incorporated, indicating that the manifold
learning capability of DMR also plays a crucial role in enhancing GUITAR.

Table 2: Ablation results of the GUITAR model.

Components
Datasets Yale3 MSRC_v1 EYaleB10

GRN DMR-1 DMR-2 ACC NMI PUR ACC NMI PUR ACC NMI PUR
! 43.03 48.84 44.24 26.67 13.91 28.57 16.88 5.73 17.81

! 7.88 10.91 15.15 14.76 2.99 17.14 10.16 1.45 11.41
! 7.88 10.91 15.15 24.29 5.13 24.76 10.16 1.45 11.41

! ! 52.12 56.70 52.73 72.86 56.72 72.86 36.72 29.89 38.28
! ! 50.30 52.74 50.30 75.71 59.12 75.71 27.66 20.56 29.84

! ! 7.88 10.91 15.15 14.76 2.99 17.14 10.16 1.45 11.41
! ! ! 57.58 58.25 57.58 79.05 65.71 79.05 39.22 33.42 39.84

5 Conclusion

This paper proposes a novel tensorized incomplete multi-view clustering framework that incorpo-
rates a Gaussian regression-based norm, along with two key enhancements: an improved, more
compact and effective ℓδ norm, and a dual Laplacian manifold constraint designed to align and fuse
view-specific manifolds. Our model introduces innovative formulations for noise modeling norms,
rank functions for tensor low-rank regularization, and manifold constraints. Extensive experiments
on six benchmark datasets demonstrate that our method consistently outperforms SOTA approaches,
thereby validating the effectiveness and methodological novelty of GUITAR.

6 Limitations

The main limitation of the proposed model concerns its computational complexity. Specifically, the
computational cost of GUITAR increases cubically with the number of data samples, primarily due
to the matrix inversion required during the update of the coefficient matrices Zv . This complexity
may limit the scalability of the model on large-scale datasets. Regarding hyperparameter sensitivity,
our empirical analysis (see the corresponding chart) indicates that the models performance exhibits
moderate variation under different hyperparameter settings. This suggests that while the model is
relatively robust, hyperparameter sensitivity still has a limited but non-negligible impact.
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A Technical Appendices and Supplementary Material

The supplementary material provides deeper insights into the GUITAR model through detailed opti-
mization procedures, a convergence proof, additional experimental results, and further analyses.

A.1 Construction of the Gaussian Regression Norm

N (evq | µv,Σv) can be characterized by its probability density function, namely, N (evq | µv,Σv) =
1

(2π)dv/2|Σv|1/2 exp
(
− 1

2 (e
v
q − µv)⊤(Σv)−1(evq − µv)

)
. The Gaussian Regression Norm is derived

by the negative log-likelihood of the noise under a multivariate Gaussian model. Specifically, let evq
denote the noise vector of the q-th sample in the v-th view, which is assumed to follow a multivariate
Gaussian distribution:

p(evq) = N (evq | µv,Σv) (8)

where µv and Σv represent the mean vector and covariance matrix for the v-th view, respectively.
Assuming that the noise vectors within each view are independent, the likelihood of the entire noise
matrix Ev = [ev1, · · · , evn] can be expressed as:

p(Ev) =

n∏
q=1

N (evq | µv,Σv) (9)

Taking the negative logarithm yields the negative log-likelihood for the v-th view:

− ln p(Ev) = −
n∑

q=1

ln
(
N (evq | µv,Σv)

)
(10)

To regularize the noise across all views, we minimize the sum of negative log-likelihoods over all m
views, which leads to the definition of the Gaussian Regression Norm:

∥{Ev}mv=1∥GRN =

m∑
v=1

(− ln p(Ev)) = −
m∑

v=1

(
n∑

q=1

ln
(
N (evq | µv,Σv)

))
(11)

A.2 Detailed analysis of the Dual Manifold Regularization

The Dual Manifold Regularization has been introduced in the main text; however, certain details
were not fully elaborated due to space limitations. This subsection will provide a further analysis.
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Detailed explanation of Dual Manifold Regularization: The first term in the DMR,
m∑

v=1

m∑
v′=1,v′ ̸=v

Tr
(

ZvLv′
(Zv)

⊤
)

, is designed to enforce cross-view manifold alignment. Specifi-

cally, it encourages the representation Zv of each view to conform to the manifold structure cap-
tured by the Laplacian matrix Lv′

of other views. This mutual regularization narrows the dis-
crepancy between views and enhances the overall consistency among them. The second term,
m∑

v=1
Tr
(

ZvLs(Zv)
⊤
)

, incorporates a consensus Laplacian matrix Ls that fuses the manifold struc-

tures from all views. It plays a complementary role by guiding each views representation toward a
globally consistent manifold, which reflects the intrinsic geometry shared across views.

Distinctions between the two terms in DMR: The two terms in the DMR serve complementary but
distinct roles in promoting consistent manifold learning across views. When the manifold structures
across different views differ significantly, enforcing a unified manifold directly may introduce bias.

This issue is addressed by the first term,
m∑

v=1

m∑
v′=1,v′≠v

Tr
(
ZvLv′

(Zv)
⊤
)

, which imposes cross-view

constraints, encouraging the manifold of each view to align with those of the others. This mutual
regularization helps to reduce discrepancies among view-specific manifolds and improves inter-view

consistency. In contrast, the second term,
m∑

v=1
Tr
(
ZvLs(Z

v)
⊤
)

, constructs a consensus Laplacian

matrix by integrating the manifold structures of all views. Its goal is to capture a globally consistent
and representative manifold structure shared across views. The effectiveness of this consensus term
is enhanced when the individual view manifolds are already well-aligned, a condition facilitated by
the first term. Together, these two terms enable the model to first harmonize local structures and
then learn a unified global manifold.

A.3 Analysis of the High-Preservation ℓδ-norm mechanism

Theoretical analysis: Let the function fHPℓδ(x) =
(1+δ) tanh x
δ+tanh x . As x → 0, we have fHPℓδ(x) → 0.

When x → +∞, since tanh(x) → π
2 , the function converges to fHPℓδ(x) → π

2δ+π < 1.For com-

parison, consider fℓδ(x) =
(1+δ)x
δ+x . When x → 0, tanh(x) ≈ x, so fHPℓδ(x) ≈ fℓδ(x), indicating

that the penalization on small singular values remains almost unchanged. However, as x → +∞,
fℓδ(x) → 1, while fHPℓδ(x) converges to a fixed value π

2δ+π strictly less than 1. This upper
saturation effect effectively suppresses the penalization on large singular values, thus preserving
more dominant components. As a result, the HPℓδ-norm penalizes small singular values effectively
while reducing shrinkage on large ones, achieving a desirable balance between low-rankness and the
preservation of critical information.

Empirical analysis: To empirically validate the effectiveness of the proposed HPℓδ norm, we con-
duct comparative experiments by replacing it with the LogDet function, the Laplace function, and
the standard ℓδ norm. All evaluations are carried out on the benchmark datasets with a missing rate
of 0.5, and each experiment is executed five times during the evaluation process. As shown in Ta-
ble 3, the proposed HP-ℓδ norm achieves superior or competitive performance across most datasets,
demonstrating its effectiveness.

Table 3: Comparative experimental results of different methods.
Datasets Yale3 MSRC_v1 EYaleB10 COIL20MV Mfeat Scene

LogDet 56.97 ± 2.94 76.19 ± 0.00 35.78 ± 1.10 71.65 ± 2.67 81.83 ± 0.00 54.47 ± 0.46
Laplace 55.88 ± 1.45 76.76 ± 1.03 37.16 ± 2.05 72.75 ± 3.89 82.11 ± 0.00 58.35 ± 0.17
ℓδ 54.91 ± 2.29 79.52 ± 0.58 35.84 ± 2.09 74.50 ± 3.44 81.47 ± 0.11 57.66 ± 0.00
HP-ℓδ 57.33 ± 2.66 80.00 ± 0.00 38.16 ± 2.05 74.51 ± 5.95 82.31 ± 0.00 58.09 ± 0.00
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A.4 Optimization procedures

The augmented Lagrangian function to be optimized is formulated as follows:

L({Av}mv=1, {Ev}mv=1, {Zv}mv=1, {Σv}mv=1, {Yv}mv=1,G,Q)

= ∥G∥HPℓδ − λ1

m∑
v=1

(
n∑

q=1

ln(N (evq | 0,Σv))

)
+ ⟨Q,Z − G⟩

+

m∑
v=1

(
⟨Yv,Xv −AvZv −Ev⟩+ µ

2
∥Xv −AvZv −Ev∥2F

)

+
ρ

2
∥Z − G∥2F + λ2

m∑
v=1

m∑
v′=1
v′ ̸=v

Tr(ZvLv′
(Zv)⊤) + λ3

m∑
v=1

Tr(ZvLs(Z
v)⊤)

(12)

Eq. (12) can be reformulated as a set of the following subproblems.

Av-Subproblem With other variables held constant, Av can be obtained by solving

Av = arg max
(Av)⊤Av=I

Tr((Av)⊤Mv) (13)

where Mv = (Yv + µXv − µEv)(Zv)⊤. To obtain the optimal Av , singular value decomposition
(SVD) is performed on Mv , yielding UAv and V⊤

Av , which are the left and right singular matrices
of Mv , respectively. The product UAvV⊤

Av then gives the optimal solution for Av .

Ev-Subproblem With other variables fixed, Ev ∈ Rdv×n is updated column-wise, where the q-
th column evq represents the noise corresponding to the q-th sample of the v-th view, and can be
obtained by solving the following optimization problem:

min
ev
q

− λ1 ln

(
N (evq |0,Σv)

)
+
〈
yv
q ,x

v
q −Avzvq − evq

〉
+

µ

2
∥xv

q −Avzvq − evq∥22

(14)

The optimal solution is given by

evq =

(
λ1(Σ

v)−1 + µI

)−1[
yv
q − µ(Avzvq − xv

q)

]
(15)

In this context, yv
q , zvq , and xv

q correspond to the q-th column vectors of the matrices Yv ∈ Rdv×n,
Zv ∈ Rt×n, and Xv ∈ Rdv×n, respectively.

Σv-Subproblem With other variables fixed, the update of Σv can be formulated as

min
Σv

− λ1

n∑
q=1

ln

(
N
(
evq | 0,Σv

))
. (16)

This optimization problem admits a closed-form solution, resulting in the following update for the
covariance matrix Σv:

Σv =
1

n

(
n∑

q=1

evq(e
v
q)

⊤ + ϵI

)
(17)

where ϵI is a small regularization term added to ensure numerical stability.
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Zv-Subproblem With other variables fixed, the update of Zv is formulated as the following opti-
mization problem:

Zv = arg min
Zv

Tr(Qv⊤(Zv −Gv)) +
ρ

2
∥Zv −Gv∥2F

+ ⟨Yv,Xv −AvZv −Ev⟩+ µ

2
∥Xv −AvZv −Ev∥2F

+ λ2

m∑
v′=1
v′ ̸=v

Tr(ZvLv′
(Zv)⊤) + λ3 Tr(Z

vLs(Z
v)⊤)

(18)

By setting the derivative of the objective with respect to Zv to zero, the following linear equation is
obtained:

Zv
(
ρI+ µI+ 2λ2

m∑
v′=1
v′ ̸=v

Lv′
+ 2λ3Ls

)
=
(
ρGv −Qv + (Av)⊤Yv + µ(Av)⊤(Xv −Ev)

)
(19)

Therefore, the closed-form solution for Zv is

Zv =
(
ρGv −Qv + (Av)⊤Yv + µ(Av)⊤(Xv −Ev)

) (
ρI+µI+2λ2

m∑
v′=1
v′ ̸=v

Lv′
+2λ3Ls

)−1

(20)

G-Subproblem With other variables fixed, G can be obtained by solving

G = arg min
G

1

ρ
∥G∥HPℓδ +

1

2
∥G − (Z +

Q
ρ
)∥2F (21)

The optimal solution of G can be obtained according to the following theorem:

Theorem 2 Given a tensor D ∈ Rn1×n2×n3 , whose tensor singular value decomposition (t-SVD)
is denoted as D = U ∗ S ∗ V⊤, our objective is to address the following minimization problem
involving the High-Preservation ℓδ-norm:

min
G

ξ∥G∥HPℓδ +
1

2
∥G −D∥2F (22)

The optimal solution to Eq. (22) can be computed in closed-form as:

G∗ = U ∗ ifft
(
Ωf,ξ(Sf ), [], 3

)
∗ V⊤ (23)

In this formulation, ifft
(
Ωf,ξ(Sf ), [], 3

)
denotes a tensor whose frontal slices are diagonal matrices.

Each diagonal element Ωf,ξ(Sk
f (i, i)) is obtained by solving the following optimization problem:

Ωf,ξ(Sk
f (i, i)) = argmin

x≥0

1

2

(
x− Sk

f (i, i)
)2

+ ξf(x) (24)

where ξ > 0 and the function f(x) is defined as (1+δ) tanh x
δ+tanh x .

Eq. (24) comprises both convex and concave components, and can be addressed using Difference of
Convex (DC) programming [50], leading to the following closed-form solution:

ζiter+1 =

(
Sk

f (i, i)−
∂f(ζiter)

ρ

)
+

(25)

where f(x) = (1+δ) tanh x
δ+tanh x , ζ = Ωf,ξ(Sk

f (i, i)), and iter denotes the iteration index.
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Lagrange multipliers and penalty parameters The Lagrange multipliers Yv , Q, and the penalty
parameters µ, ρ are updated according to the following rules:

Yv = Yv + µ(Xv −AvZv −Ev)

Q = Q+ ρ(Z − G)
µ = ηµµ, µ = min(µ, µmax)

ρ = ηρρ, ρ = min(ρ, ρmax)

(26)

With the ADMM-based optimization procedure concluded, the subsequent updates are carried out
independently of the ADMM scheme.

Update Lv

Lv = I− (Dv)
−1/2

Sv(Dv)
−1/2 (27)

The Laplacian matrix Lv is constructed from the similarity matrix Sv ∈ Rn×n for view v. Specifi-

cally, Sv
ij =

(zv
i )

⊤zv
j

∥zv
i ∥2·∥zv

j ∥2
, where zvi ∈ Rdv corresponds to the feature vector of the i-th sample from

view v. The similarity matrix Sv is updated by keeping only the K-nearest neighbors; following
this, the degree matrix Dv is given by diag(

∑n
j=1 S

v
ij). The normalized Laplacian matrix for view

v is given by Eq. (27).

Update Ls

Ls = I−D−1/2SD−1/2 (28)
Following the construction in the main text, we compute the normalized shared Laplacian matrix Ls

according to Eq. (28).

Impute Xv

Xv = AvZvWv (29)
This equation utilizes the indicator matrix Wv to reconstruct the columns in Xv that correspond
to missing samples. Algorithm 1 provides a summary of the complete optimization process of
GUITAR.

Algorithm 1 Optimization Algorithm of GUITAR
Input: Incomplete multi-view data{X1, . . . ,Xm}, cluster number c, trade-off parameter λ1, λ2, λ3

and anchor number t.
Output: Clustering results

1: Initialize: ∀v,Zv = 1,Ev = 0,Yv = 0,G = 0,Q = 0, µ = 10−4, ρ = 10−4, ηµ = ηρ =
1.2, µmax = ρmax = 1012, ϵ = 10−7

2: while not converge do
3: Update {Av}mv=1 by Eq. (13)
4: Update {Ev}mv=1 by Eq. (15)
5: Update {Σv}mv=1 by Eq. (17)
6: Update {Zv}mv=1 by Eq. (20)
7: Update {Gv}mv=1 by Eq. (23)
8: Update {Yv}mv=1,Q, µ, ρ by Eq. (26)
9: Update {Lv}mv=1 by Eq. (27)

10: Update Ls by Eq. (28)
11: Update {Xv}mv=1 by Eq. (29)
12: Check the convergence conditions: ∥Xv −AvZv −Ev∥∞ < ϵ and ∥Zv − Gv∥∞ < ϵ
13: end while
14: Output clustering results via performing k-means on the left singular vectors of

1√
m
[(Z1)⊤, . . . , (Zm)⊤].

A.5 Convergence proof

In this section, we present the convergence analysis of the proposed model. We begin by introducing
a supporting lemma, and then proceed to prove Theorem 1 as stated in the main text.
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Lemma 1 [51]Assume a function F : Rm×n → R is defined by the composition F (X) = f(κ(X)),
where κ(X) = (σ1(X), . . . , σr(X)) denotes the vector of singular values of X ∈ Rm×n, with r =
min(m,n). Let the singular value decomposition of X be X = Udiag(κ(X))V⊤, and assume the
function f : Rr → R is absolutely symmetric and differentiable at κ(X). Under these assumptions,
the subdifferential of F (X) at X is given by

∂F (X)

∂X
= Udiag(∂f(κ(X)))V⊤ (30)

where ∂f(κ(X)) =
(

∂f(σ1(X))
∂X , . . . , ∂f(σr(X))

∂X

)
.

Proof of the boundedness of the sequence {Jp}∞p=1: At the (p + 1)-th iteration, the column
update for Ev

p+1 is

evq,p+1 = (λ1(Σ
v)−1 + µpI)

−1
[
yv
q,p + µp(x

v
q −Avzvq,p+1)

]
(31)

The multiplier update is

yv
q,p+1 = yv

q,p + µp(x
v
q −Avzvq,p+1 − evq,p+1) (32)

Substituting evq,p+1 into the multiplier update, we can factor terms to obtain

yv
q,p+1 =

(
I −µp(λ1(Σ

v)−1+µpI)
−1
)
yv
q,p+µp

(
I +µp(λ1(Σ

v)−1+µpI)
−1
)
(xv

q −Avzvq,p+1)

(33)

Taking the ℓ2-norm and using submultiplicativity yields

∥yv
q,p+1∥2 ≤ Υ1∥yv

q,p∥2 +Υ2∥xv
q −Avzvq,p+1∥2, (34)

where Υ1 = ∥I−µp(λ1(Σ
v)−1+µpI)

−1∥2, Υ2 = ∥µp

(
I+µp(λ1(Σ

v)−1+µpI)
−1
)
∥2. Given

that Σv is a positive definite covariance matrix and the regularization in Eq. 17, the inverse matrix
(Σv)−1 possesses a bounded spectral norm. With λ1 constant and µp bounded, Υ1 and Υ2 are
bounded constants. Finally, the initial multiplier yv

q,0 and the data term xv
q −Avzvq,p+1 are bounded,

the recursion implies supp ∥yv
q,p∥2 < ∞ and therefore the sequence {Yv

p} is bounded.

The first-order optimality condition with respect to Gp+1 at iteration (p+ 1) yields:

0 = ∂∥Gp+1∥HPℓδ + ρp(Gp+1 −Zp+1)−Qp (35)

In conjunction with the update rule:

Qp+1 = Qp + ρp(Zp+1 − Gp+1) (36)

we obtain the following relationship:

∂∥Gp+1∥HPℓδ = Qp+1 (37)

The tensor G admits a t-SVD decomposition of the form G = U ∗ S ∗ V⊤. By invoking Lemma 1,
it follows that ∥∥∥∂∥∥Gp+1

∥∥
HPℓδ

∥∥∥2
F
=

∥∥∥∥ 1

n3
U ∗ ifft (∂f (Sf ) , [], 3) ∗ V⊤

∥∥∥∥2
F

=
1

n3
3

∥∂f(Sf )∥2F ≤ 1

n3
3

n3∑
k=1

min(n1,n2)∑
j=1

[∂f(Sk
f (j, j))]

2

(38)

Therefore, the Frobenius norm of the subgradient ∂
∥∥Gp+1

∥∥
HPℓδ

is upper-bounded by a finite quan-
tity, indicating that it remains bounded. In light of Eq. (37), this further implies that the sequence
{Qp}∞p=1 is also bounded.
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Furthermore, based on the update rules described in Algorithm 1, we can derive the following
inequality:

L(Av
p+1,E

v
p+1,Z

v
p+1,Σ

v
p+1,Gp+1,Y

v
p ,Qp, µp, ρp)

≤ L(Av
p,E

v
p,Z

v
p,Σ

v
p,Gp,Y

v
p ,Qp, µp, ρp)

= L(Av
p,E

v
p,Z

v
p,Σ

v
p,Gp,Y

v
p−1,Qp−1, µp−1, ρp−1)

+
ρp + ρp−1

2ρ2p−1

∥∥Qp −Qp−1

∥∥2
F

+
µp + µp−1

2µ2
p−1

m∑
v=1

∥∥Yv
p −Yv

p−1

∥∥2
F

(39)

By recursively expanding the right-hand side of the inequality from p = 1 to n, we obtain:
L(Av

p+1,E
v
p+1,Z

v
p+1,Σ

v
p+1,Gp+1,Y

v
p ,Qp, µp, ρp)

≤ L(Av
1,E

v
1,Z

v
1,Σ

v
1,G1,Y

v
0 ,Q0, µ0, ρ0)

+

n∑
p=1

ρp + ρp−1

2ρ2p−1

∥∥Qp −Qp−1

∥∥2
F

+

n∑
p=1

(
µp + µp−1

2µ2
p−1

m∑
v=1

∥∥Yv
p −Yv

p−1

∥∥2
F

) (40)

It is straightforward to verify that:
n∑

p=1

ρp + ρp−1

2ρ2p−1

< ∞,

n∑
p=1

µp + µp−1

2µ2
p−1

< ∞ (41)

Given that the initial objective value L(Av
1,E

v
1,Z

v
1,Σ

v
1,G1,Y

v
0 ,Q0,µ0,ρ0) is finite, and the sequences

{Yv
p}∞p=1, {Qp}∞p=1, along with the summations

n∑
p=1

ρp+ρp−1

2ρ2
p−1

and
n∑

p=1

µp+µp−1

2µ2
p−1

are all bounded,

we conclude that the augmented Lagrangian L(Av
p+1,E

v
p+1,Z

v
p+1,Σ

v
p+1,Gp+1,Y

v
p ,Qp, µp, ρp)

remains bounded throughout the iterations.

Recalling the following equality:
L(Av

p+1,E
v
p+1,Z

v
p+1,Σ

v
p+1,Gp+1,Y

v
p ,Qp, µp, ρp)

= ∥Gp+1∥HPℓδ − λ1

m∑
v=1

(
n∑

q=1

ln
(
N (evq,p+1 | 0,Σv

p+1)
))

+ ⟨Qp,Zp+1 − Gp+1⟩

+

m∑
v=1

(〈
Yv

p ,X
v −Av

p+1Z
v
p+1 −Ev

p+1

〉
+

µp

2

∥∥Xv −Av
p+1Z

v
p+1 −Ev

p+1

∥∥2
F

)

+
ρp
2

∥Zp+1 − Gp+1∥2F + λ2

m∑
v=1

m∑
v′=1
v′ ̸=v

Tr(Zv
p+1L

v′
(Zv

p+1)
⊤) + λ3

m∑
v=1

Tr(Zv
p+1Ls(Z

v
p+1)

⊤)

(42)
and each term on the right-hand side of Eq. (42) is finite. Among all the components, particular
attention is given to the term ∥Gp+1∥HPℓδ , which, being bounded, implies the boundedness of the
associated singular values Sk

f (j, j). As a result, we obtain the following relation:

∥∥Gp+1

∥∥2
F
=

1

n3

∥∥Gf,p+1

∥∥2
F
=

1

n3

n3∑
k=1

min(n1,n2)∑
j=1

[Sk
f (j, j)]

2 (43)

which further implies that the sequence {Gp}∞p=1 is bounded.

Moreover, it is readily observed from the update steps that the sequences {Av
p}∞p=1, {Ev

p}∞p=1,
{Zv

p}∞p=1, and {Σv
p}∞p=1 are also bounded. Therefore, we conclude that the entire sequence{

Jp = Av
p,E

v
p,Z

v
p,Σ

v
p,Y

v
p ,Gp,Qp

}∞
p=1

remains within a finite range.
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Establishing that the accumulation points converge to stationary KKT points: By invoking
the WeierstrassBolzano theorem [52], the bounded sequence {Jp}∞p=1 is guaranteed to possess at
least one accumulation point, which we denote by J∗. Accordingly, we have:

lim
p→∞

(Av
p,E

v
p,Z

v
p,Σ

v
p,Y

v
p ,Gp,Qp) = (Av

∗,E
v
∗,Z

v
∗,Σ

v
∗,Y

v
∗ ,G∗,Q∗) (44)

In light of Eq. (26), we observe the following relationships:

Xv −Av
p+1Z

v
p+1 −Ev

p+1 =
Yv

p+1 −Yv
p

µp
,Zp+1 − Gp+1 =

Qp+1 −Qp

ρp
(45)

Given that both sequences {Yv
p}∞p=1 and {Qp}∞p=1 are bounded, we obtain the following constraints

at the accumulation point:

Xv −Av
∗Z

v
∗ −Ev

∗ = 0,Z∗ − G∗ = 0 (46)

Furthermore, due to the fact that Ev
p+1 and Gp+1 satisfy the first-order optimality conditions, it

follows that:

Yv
∗ = λ1∂∥Ev

∗∥GRN, Q∗ = ∂∥G∗∥HPℓδ (47)

Hence, the accumulation point J∗ satisfies all necessary conditions of stationarity and primal fea-
sibility. We thus conclude that any accumulation point of the sequence {Jp}∞p=1 corresponds to a
stationary point that fulfills the KKT conditions of the proposed optimization problem.

A.6 Additional experimental results

Only a subset of the experimental figures was presented in the main text. In this subsection, we
provide the remaining figures to offer a more complete view of the experimental results. Figure 6,
Figure 7 and Figure 8 illustrates the sensitivity analysis on the remaining datasets with respect to the
balance parameter, the number of anchors, and the parameter δ in the HPℓδ regularization. Figure 9
shows the convergence behavior across the remaining datasets, while Table 4 presents the ablation
study results on those datasets.

Table 4: Ablation results of the GUITAR model across the remaining datasets.

Components

Datasets
COIL20MV Mfeat Scene

GRN DMR-1 DMR-2 ACC NMI PUR ACC NMI PUR ACC NMI PUR

! 38.47 52.33 42.36 29.90 21.67 30.25 26.19 13.47 29.02

! 5.07 1.38 6.32 12.80 0.82 13.10 15.29 0.26 15.51

! 5.07 1.38 6.32 10.05 0.45 10.45 15.29 0.26 15.51

! ! 70.76 80.86 73.33 81.85 71.43 81.85 58.11 39.34 58.11

! ! 70.28 76.64 70.90 81.20 70.63 81.20 42.45 29.31 44.23

! ! 5.07 1.38 6.32 10.05 0.45 10.45 15.29 0.26 15.51

! ! ! 73.89 82.44 74.58 82.35 71.86 82.35 58.18 39.88 58.18
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(a) COIL20MV (b) COIL20MV (c) COIL20MV

(d) EYaleB10 (e) EYaleB10 (f) EYaleB10

(g) MSRC_v1 (h) MSRC_v1 (i) MSRC_v1

(j) Scene (k) Scene (l) Scene

(m) Yale3 (n) Yale3 (o) Yale3

Figure 6: Sensitivity analysis of balancing parameters in the GUITAR model on the other datasets.
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(a) COIL20MV (b) Mfeat (c) Scene

Figure 7: The impact of anchor count on the GUITAR model across the remaining datasets.

(a) COIL20MV (b) Mfeat (c) Scene

Figure 8: The impact of δ on the GUITAR model across the remaining datasets.

(a) Mfeat (b) MSRC_v1 (c) Scene

Figure 9: Convergence curves of the GUITAR model across the remaining datasets.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses the computational complexity and hyperparam-
eter sensitivity of the proposed method in the dedicated Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides a complete set of assumptions and a correct proof for each
theoretical result discussed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all the necessary details regarding the experimental setup,
including model configurations, evaluation metrics, and data characteristics, ensuring that
the main results can be reproduced even without the code or data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code, with detailed instruc-
tions to faithfully reproduce the experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed experimental settings have been introduced in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the standard deviation in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:We have provided detailed information about the computing resources in the
experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully complies with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not involve applications with direct societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not describe safeguards for the responsible release of data or
models with a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code for the comparison methods in the experimental section includes
proper citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28



• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We have provided the source code of our algorithm, which is included in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper focuses on machine learning algorithm research and does not in-
volve crowdsourcing or research with human subjects at all.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our manuscript focuses on algorithmic research and does not involve crowd-
sourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve large language
models (LLMs) as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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