
WALL-E: World Alignment by NeuroSymbolic
Learning improves World Model-based LLM Agents

Siyu Zhou1, Tianyi Zhou2, Yijun Yang3, Guodong Long1, Deheng Ye3,
Jing Jiang1, Chengqi Zhang4

1Australian AI Institute, University of Technology Sydney
2University of Maryland, College Park 3Tencent 4Hong Kong Polytechnic University

Siyu.Zhou-2@student.uts.edu.au, zhou@umiacs.umd.edu

Start

Neurosymbolic Learning 3
Action Rules: If the 'tool'
is not appropriate for the
'object' being mined, the
action will fail, ...

Knowledge Graph:

Scene Graph:

Success

plains

sheep zombie

desert

sand

 Target Item: Diamond

Success3.Mine iron ore
with wooden pickaxe

End

Planned actions:
6.Mine diamond with
 stone pickaxe

Symbolic Knowledge:[If the 'stone pickaxe'
is not appropriate for the 'diamond'...,
]
Prediction:
6.success = False,
 feedback = "stone pickaxe cannot ..."
 suggestion = "use iron pickaxe ..."

LLM Agent LLM World Model4 5

Act

Predict
6.craft an iron
 pickaxe
7.Mine diamond with
 iron pickaxe 6 6,7.success = True, ... 7

Failure

Predicted Failure
6.Mine diamond
with stone pickaxe

Success
Success

5.Mine iron ore
with stone pickaxe

Model-Predictive Control

LLM Agent
Planned actions:
1.Mine stone with
 wooden pickaxe;
...
3.Mine iron with
 wooden pickaxe;

Symbolic Knowledge:[]
Prediction
1.success = True, ...
...
3.success = True,...
...

LLM World Model1 2

Act

Predict

Model-Predictive Control

1.Mine stone with
wooden pickaxe

7.Mine diamond
with iron pickaxe

Figure 1: WALL-E mining a diamond on Mars. Step 1-2: The agent makes decisions via MPC
with the initial unaligned world model, resulting in a failed action for mining iron. Step 3: Leveraging
previous trajectories and world model predictions, WALL-E learns symbolic knowledge, including
action rules, knowledge graphs, and scene graphs. Step 4-5: The learned symbolic knowledge helps
the world model make accurate predictions and correct the previous mistake. Step 6-7: The agent ad-
justs its decision accordingly and replaces stone pickaxe with iron pickaxe toward completing the task.

Abstract

Can we build accurate world models out of large language models (LLMs)? How
can world models benefit LLM agents? The gap between the prior knowledge
of LLMs and the specified environment’s dynamics usually bottlenecks LLMs’
performance as world models. To bridge the gap, we propose a training-free “world
alignment” that learns an environment’s symbolic knowledge complementary
to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and
scene graphs, which are extracted by LLMs from exploration trajectories and
encoded into executable codes to regulate LLM agents’ policies. We further
propose an RL-free, model-based agent “WALL-E” through the model-predictive
control (MPC) framework. Unlike classical MPC requiring costly optimization
on the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future
steps’ actions by interacting with the neurosymbolic world model. While the
LLM agent’s strong heuristics make it an efficient planner in MPC, the quality
of its planned actions is also secured by the accurate predictions of the aligned

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

world model. They together considerably improve learning efficiency in a new
environment. On open-world challenges in Mars (Minecraft like) and ALFWorld
(embodied indoor environments), WALL-E significantly outperforms existing
methods, e.g., surpassing baselines in Mars by 16.1%–51.6% of success rate and
by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success
rate after only 4 iterations. Our code is available here.

1 Introduction

Predictions

 Agent Model World Model
LLMLLM

Planned Actions

Predicted Traj.

Ta
ke

 a
n

O
pt

im
iz

ed
 A

ct
io

n

R
ew

ard, Feedback, and O
bservation

Real Traj.

NeuroSymbolic Learning

Model-Predictive Control (MPC)

Environment

Action Rules

Knowledge Graph

1. if the 'tool' is not
appropriate ...

Scene Graph

plains

sheep

zombie
desert

sand

LLM Program

LLM PruningCode
Rules

Code Rules

Figure 2: Overview of WALL-E. The agent
determines actions to take via MPC, which
optimizes future steps’ actions by interacting
with a neurosymbolic world model. The
world model adopts an LLM whose predic-
tions are aligned with environment dynamics
through code rules converted from symbolic
knowledge (action rules, knowledge/scene
graph) learned via inductive reasoning from
real trajectories and predicted trajectories.

While large language models (LLMs) have been suc-
cessfully applied to complex reasoning, generation,
and planning tasks, they are not sufficiently reliable
to be deployed as an agent in specific open-world
environments, e.g., games, VR/AR systems, medical
care, education, autonomous driving, etc [1–3]. A
primary reason for the failures is the gap between
the prior knowledge driven commonsense reasoning
by LLMs and the specified environment’s dynamics.
The gap leads to incorrect predictions of future states,
hallucinations, or violation of basic laws in LLM
agents’ decision-making process [4–7]. Although the
alignment of LLMs with human preferences has been
widely studied as a major objective of LLM post-
training, “world alignment” with an environment’s
dynamics has not been adequately investigated
for LLM agents [8–10]. Moreover, many existing
LLM agents are model-free: they directly generate
and execute actions in real environments without
being verified or optimized within a world model or
simulator [4, 11–16] in advance. This leads to safety
risks and suboptimality of planned trajectories.

In this paper, we show that the “world alignment”
of an LLM can significantly improve its perfor-
mance as a promising world model, which enables
us to build more powerful embodied LLM agents
in partially observable settings. To this end, we in-
troduce a training-free recipe “World Alignment
by neurosymboLic LEarning (WALL-E)”, which
compares and analyzes agent-explored trajectories
and model-predicted ones to extract symbolic knowl-
edge that is environment-specific and complementary
to the LLM’s prior knowledge, as illustrated in Fig-
ure 2. WALL-E’s symbolic knowledge covers action
rules, knowledge graphs, and scene graphs, which
can be converted into executable code rules to turn
a pretrained LLM into an accurate neurosymbolic world model (via function calling). It combines
the strengths of both LLMs and symbolic representations in modeling environment dynamics, i.e.,
(1) the rich prior knowledge, probabilistic, and deductive reasoning capability of LLMs under uncer-
tainty [17]; and (2) the formal constraints, deterministic transition rules, and environment-specific
structures enforced or encoded by symbolic knowledge. In our studies, LLMs already cover the most
common knowledge of dynamics but a few additional symbolic knowledge can significantly improve
the world model predictions generated by LLMs.

Different types of symbolic knowledge play important roles in building more reliable and adaptive
model-based LLM agents, especially in partially observable Markov decision processes (POMDPs).
The action rules capture and enforce deterministic constraints in the decision-making process; the
knowledge graph represents feasibility constraints and action prerequisites; while the scene graph
provides global information complementing the partial observations of agents. In WALL-E, we

2

https://github.com/elated-sawyer/WALL-E

leverage LLMs’ inductive reasoning capabilities to abstract concise symbolic knowledge from
explored trajectories for episodes. We further develop a maximum coverage-based pruning to
maintain a compact set of code rules. In contrast, existing LLM agents usually learn the environment
dynamics through expensive finetuning of LLM policies via RL/imitation learning, or rely heavily on
task-specific modeling procedures, limiting scalability and flexibility. [4, 5, 18–24].

Unlike the mainstream model-free LLM agents, WALL-E’s precise neurosymbolic world model
enables us to create more reliable and versatile model-based LLM agents for challenging open-world
tasks. Specifically, we propose a novel model-predictive control (MPC) framework for LLM agents,
in which an LLM agent conducts a look-ahead optimization (planning) of future steps’ actions
by interacting with the world model. For example, the agent queries the world model “What will
happen if I take action at in observation ot?”, and receives the prediction with feedback/suggestions
according to the code rules, based on which the agent chooses to execute the plan or keep refining it
until it passes the world model’s examination, i.e., not violating any constraints of the environments
and leading the agent to preferred (predicted) states. Our LLM-based MPC framework overcomes
the inefficiency of classical MPC that requires online k-step optimization, by exploiting the strong
reasoning and instruction following capability of LLMs.

We evaluate WALL-E in challenging open-worlds such as Mars (Minecraft-like) and ALFWorld
(embodied indoor environment) where the agents can explore freely and target complicated tasks.
Our main contributions can be summarized as:

• We address the “world alignment” challenge for LLM agents and propose a novel training-free
approach “WALL-E” to align LLMs with environment dynamics, resulting in neurosymbolic
world models.

• We develop a novel LLM-based MPC framework for world model-based LLM agents.

• WALL-E achieves state-of-the-art performance in Mars and ALFWorld.

2 Related Work

Although the alignment of LLMs has been widely studied as a major objective of LLM post-training
[25–28], their alignment with the dynamics of external environments, which we refer to as “world
alignment”, remains far less explored for LLM agents.

LLMs to build world models. Previous research has used LLMs to construct explicit world models
for planning. For instance, Ada [21] integrate LLMs with hierarchical planners to acquire task-
specific action abstractions and low-level controllers, thereby offering more accurate plans. Other
work constructs domain models in PDDL and leverages external planners, with LLMs acting as an
interface for generating, validating, and refining the models using human or automated feedback [22].
WorldCoder [19] instead builds a Python program to represent the agent’s evolving world knowledge.
The program is iteratively refined through interaction, serving as both a symbolic simulator of state
transitions and a constraint-guided planner, achieving higher sample efficiency. While effective, these
methods typically require building symbolic models from scratch and rely on environment-specific
design, which reduces scalability. In contrast, we treat the LLM itself as the world model and align it
via training-free symbolic knowledge extraction, avoiding complex, environment-specific modeling
pipelines.

LLMs as world models. Another line of work uses the LLM itself as the world model. Some
approaches fine-tune LLMs on embodied experience to enhance reasoning and planning in situated
environments [23], while others incorporate action preconditions and effects during fine-tuning
for more accurate outcome prediction [24]. Prompt-based approaches include LLM-MCTS [20],
RAP [8], and RAFA [29], which guide LLMs to plan trajectories or explore reasoning trees through
carefully designed, environment-specific prompts. While effective, these approaches often depend
on heavy fine-tuning or manual prompt engineering, limiting flexibility and scalability. In contrast,
our method uses the inductive reasoning ability of LLMs to extract symbolic rules directly from
exploration experiences. This process requires no handcrafted prompts, task-specific modeling, or
fine-tuning, enabling rapid and scalable adaptation across diverse environments.

3

NeuroSymbolic Learning of Code Rules
Stage 1. Exploration of Trajectory Data

❌
Knowledge Graph

Stage 3. Translating Symbolic Knowledge to Code Stage 4. Code Rule Set Pruning via Maximum Set Coverage

CodeRule_2

CodeRule_0

CodeRule_1CodeRule_i

Regions covered by selected/dropped CodeRules
Transitions can/cannot be predicted by world model

"nodes":[{"id":1,wood}..]
"edges":[(1,2),(2,3),...]

1. For action 'craft',
if the player does not
have enough materials...
the action will fail
2. For action ...

Stage 2. Learning Symbolic Knowledge

Scene Graph

"nodes":[{"id":1,plains}]
"edges":[(1,2),(2,3),...]

Action Rules

sheep zombie sand

LLM

plains desert

Program

/
/

Real trajectory in the real trajectory

Prompt: Implement the learned rules in Python function
to evaluate a observation and action, optionally using
the Knowledge Graph or Scene Graph as extra arguments.
Input: [textual rules, knowledge_graph, scene_graph]

Output:[code rules]​​
def CodeRule_0(observation, action, knowledge_graph):
 if state["inventory"].get(material, 0) < quantity:
 ...
def CodeRule_i(observation, action, scene_graph):
 if "Unexplored" not in location_items:
 ...

LLM

...

...

Real Trajectory

Predicted Trajectory

✅ ❌

Figure 3: NeuroSymbolic Learning of Code Rules. WALL-E iteratively refines the symbolic
knowledge with the agent’s actual trajectories in the environment and the world model’s predicted
trajectories. The NeuroSymbolic learning takes 4 stages: (1) comparing predicted and actual
trajectories; (2) learning new symbolic knowledge from real trajectories; (4) translating symbolic
knowledge to code; and (4) Code rule set pruning via solving a maximum coverage problem.

3 World Alignment by NeuroSymbolic Learning (WALL-E)

We consider a Partially Observable Markov Decision Process (POMDP) defined by
M =

(
S,A,O, ρ, T , γ

)
, where S is the set of hidden (unobservable) states, A the action

space, O the space of textual observations available to the agent, including possibly partial
descriptions of the environment. The reward function ρ : S × A → R assigns a scalar reward,
T (st+1 | st, at) defines transition dynamics, and γ ∈ [0, 1] is the discount factor. Since the agent
cannot observe the true state st, it must act based on partial observations ot ∈ O.

3.1 NeuroSymbolic Learning of Code Rules

3.1.1 Stage 1: Exploration of Trajectory Data

To evaluate inconsistencies between the LLM world model and the real environment, we compare the
environment-generated (real) trajectory τ real = {δreal = (ot, at, ot+1)}Tt=0 and the model-predicted
trajectory τ predicted = {δpredicted = (ot, at, ôt+1)}Tt=0.

Specifically, our world model first predicts whether a transition will succeed or fail (binary clas-
sification), and then predicts the next observation ot+1. This design choice is motivated by the
fact that ot+1 can be attributed to the success or failure of an action. For example, if the action
“craft a table” succeeds, the number of tables increases and the corresponding materials decrease in
ot+1. In contrast, directly predicting the full observation ot+1 regardless of the action’s consequence
is more challenging and susceptible to noise from minor environmental details (e.g., weather or
creature presence). Thus, we perform consistency checks on ot+1 and ôt+1 based on transition
success/failure only. We then classify all transitions in τ predicted into two sets: correctly predicted
transitions δcor ∈ Dcor and incorrectly predicted transitions δinc ∈ Dinc.

As shown in Step 1 of Figure 3, the real trajectories τ real are used to induce code rules that align the
LLM world model with the true environment (Sec. 3.1.2, 3.1.3). Dincorrect then serves as a diagnostic
set for pruning redundant or conflicting code rules via a maximum coverage problem (Sec. 3.1.4).

4

3.1.2 Stage 2: Learning Symbolic Knowledge

Extraction of Action Rules: Deterministic Transitions We use the LLM’s inductive reasoning
to extract action rules from real trajectories τ real

t−k:t, where τ real
t−k:t denotes the past k real transitions

before timestep t. The parameter k defines a finite context window for the trajectory. These rules
capture deterministic constraints in the environment and help enforce correct decision-making (an
example is shown in the stage 2 of Figure 3). For example, an action rule might specify: “For action
make, if table is not in near_objects, the action will fail.” Formally,

Rt = fLLMrule

(
τ real
t−k:t

)
∪Rt−k (1)

where fLLMrule is implemented by prompting an LLM to generate action rules (see Appendix B.1 for
detailed prompt), andR = {r1, r2, . . . , r|R|} denotes the extracted rule set.

Knowledge Graph: Constraints in the POMDP We construct a knowledge graph Gknowledge =
(V, E) to represent feasibility constraints and action prerequisites, where nodes V are entities (e.g.,
materials, tools) and edges E denote symbolic relations. The graph is incrementally updated by
merging new relations extracted from recent trajectories:

Gknowledge
t ← fLLMkg

(
τ real
t−k:t

)
∪ Gknowledge

t−k , (2)

where fLLMkg prompts the LLM to extract relation triples {(u, v, e) | u, v ∈ V, e ∈ E} from τ real
t−k:t

(see Appendix B.3 for detailed prompt), (u, v, e) captures a constraint on how an entity u relates to
another entity v under the label e, e.g., “require”, “consume”, and “enable”. For instance, if the LLM
observes that item A always fails to be created unless x units of B and y units of C are available, it
induces the constraints (B,A, require x) and (C,A, require y).

Scene Graph: Complementing Partial Observations To handle partial observability in POMDPs,
we construct a Scene Graph (SG) to augment the agent’s local observation with global context.
Formally, Gscene = (V, E), where V represents observed entities (e.g., objects, locations), while E
captures spatial relations such as “ownership”, “in” or “adjacency to”. For example, if the environment
contains multiple rooms, and each room includes certain items, SG can record the specific items
located in every room, complementing the agent’s local observation with global information. At each
time step t, we update the SG via:

Gscene
t = fscene(ot) ∪ Gscene

t−1 , (3)

where fscene is a function that analyzes the agent’s observation ot and generates a sub-graph recording
the spatial relationships among entities present in ot.

3.1.3 Stage 3: Translating Symbolic Knowledge to Compact Code Rules

Next, given the rulesR and the graphs Gknowledge and Gscene (which, unless otherwise specified, refer
to Rt, Gknowledge

t , and Gscene
t , respectively, throughout the rest of the paper), we prompt the LLM

fLLMcode to generate executable code rules as below (see Appendix B.2 for the detailed prompt):

Rcode = fLLMcode
(
R, Gknowledge, Gscene). (4)

def CodeRule_example(state , action , kg/sg):
...
tool = action.get("args", {}).get("toolname")
inventory = state.get("inventory", {})
for res , amt in kg.get(tool , {}).items():

if inventory.get(res , 0) < amt:
return f"Action failed:Not enough {res}."

, False , f"Collect more {res}."
return "Success!", True , ""

An example rule rcode
i ∈ Rcode is

shown on the right (all examples in Ap-
pendix D). Each rule returns: feedback
(fdcode), success flag (flagcode), and sugges-
tion (sugcode). The flag indicates transition
success, while feedback and suggestion
guide corrective re-planning. These com-
pact functions distill symbolic knowledge
to enhance planning.

3.1.4 Stage 4: Code Rules Pruning

To ensure that the code rules derived from neuro-symbolic learning are correct, executable, and
compact, we employ a multi-stage validation and pruning pipeline that integrates empirical testing
with optimization.

5

As described earlier, our world model predicts the success or failure of environment transitions.
Accordingly, each code rule evaluates transition feasibility in the form: “if [state, action conditions]
then [transition success/failure], otherwise [null]” (see code format in Section 3.1.3). A rule is
triggered when its conditions are satisfied, returning a non-null output. By comparing these predictions
against collected transitions, we can systematically pruning rules through the following steps.

Each candidate rule is first tested against ground-truth transitions sampled from the real trajectory
τ real. If a rule misfires, producing outputs inconsistent with the true environment dynamics, it is
immediately discarded. This ensures that only rules faithfully aligned with actual behavior remain.
Next, they are checked for executability, each rule is run in a controlled environment, and any rule
that raises a runtime or logical error is eliminated. Together, these two verification steps guarantee
that only correct and executable rules remain in the pool.

After verification, we optimize the retained rule set using a maximum coverage objective. The goal is
to prioritize rules that best explain and correct incorrectly predicted transitions Dinc. If a code rule
rcode
i corrects a mispredicted transition δinc

j , we define that δinc
j is covered by rcode

i . Thus, we frame
code rule selection as a maximum coverage problem, aiming to find a compact subsetR∗ ⊆ Rcode

that maximally covers Dinc,

R∗ = argmax
R⊆Rcode

|
⋃

rcode∈R

Dcov|, s.t., |R| ≤ l, (5)

where Dcov is the subset of transitions covered by code rules, i.e., Dcov ≜ {δinc ∈ Dinc :
δinc covered by rcode ∈ Rcode}. The parameter l > 0 is the limit of selected code rules, and
we find that a large l usually leads to better performance.

We solve this optimization problem using a greedy algorithm (see Appendix E). Through this process,
we eliminate code rules covering only correct transitions, as they cannot address misalignments,
and redundant code rules fully covered by more comprehensive ones (see Step 4 in Figure 3).

The NeuroSymbolic learning process consists of four stages: (1) comparing predicted and real
trajectories, (2) extracting symbolic knowledge, (3) translating this knowledge into executable code
rules, and (4) pruning the rules via verification and a maximum coverage objective. This procedure,
defined as NSLEARNING(), yields a compact and effective rule set:

Rcode ← NSLEARNING(τ pred, τ real). (6)

The resulting rules enhance the LLM world model’s alignment and improve decision-making quality.

3.2 Model-Predictive Control for World Model-based LLM Agents

As shown in Figure 2, at each MPC step, the agent queries the LLM world model fLLMwm, asking,
“What happens if I take action at in observation ot?”, the model generates the next observation ôt+1,
textual feedback fb, detailed suggestion sug, and flag identifying action’s success/failure, according
to the agent’s action at in ot, as described below.

(ôt+1, fb, sug, flag) = fLLMwm(ot, at). (7)

To align predictions with the true environment dynamics, the code rulesRcode derived from explo-
ration are applied. Importantly, these code rules do not replace the LLM world model. Instead, they
serve as corrective constraints that mitigate LLM’s residual misalignments, while the LLM itself
already captures most of the environment dynamics and contributes essential prior knowledge for
prediction. Specifically, the LLM’s outputs are verified against the rule setRcode, which can generate
corrective feedback (fbcode, sugcode, flagcode) (as discussed in Section 3.1.3). The final aligned output
is handled by

(ôt+1, fb, sug, flag) = ALIGN
(
Rcode, fLLMwm, ot, at

)
, (8)

which internally combines the outputs of fLLMwm andRcode mentioned above. Concretely,

ALIGN =

{
fLLMwm(ot, at, fbcode, sugcode, flagcode), if flagcode ̸=flag,

fLLMwm(ot, at), otherwise,
(9)

In the conflicting case flagcode ̸= flag, the world model is re-invoked with fbcode, sugcode, flagcode to
revise its prediction in line with code rules. We avoid usingRcode’s outputs directly, as they lack the

6

full context needed for the LLM agent to follow reliably (as shown in Section 3.1.3). If flag = False,
the agent uses the feedback and suggestions to revise its plan accordingly.

at ← LLMAGENT(ot, fb, sug). (10)

This refinement loop continues until the proposed action passes verification or the replanning limit is
hit (as shown in Algorithm 1). The entire MPC process is defined as:

at, ôt+1 ← MPC(ot,Rcode) (11)

Crucially, unlike conventional MPC methods that rely on computationally expensive action search
methods such as cross entropy method (CEM) [30] and derivative-free optimization (DFO) [31],
WALL-E leverages the rich prior knowledge and reasoning capabilities of pretrained LLMs to
implement a highly efficient look-ahead optimizer (i.e., LLMAGENT(·)), substantially reducing the
search space and computational complexity, especially in complex or high-dimensional environments.

WALL-E alternately executes MPC and NeuroSymbolic learning. In each MPC phase, actions
proposed by the LLM agent are predicted and validated by the world model using the code rules.
Meanwhile, NeuroSymbolic learning continuously extracts and updates code rules from recent
interactions, which are then integrated into the world model. The full procedure is in Algorithm 2.

Algorithm 1 Model-Predictive Control (MPC)

1: Input: ot,Rcode

2: Initialize: fb← [], sug← [], count← 0
3: repeat
4: at ← LLMAGENT(ot, fb, sug)

/*eq.(10)*/
5: ôt+1, fb, sug, flag ←

ALIGN(Rcode, fLLMwm, ot, at)
/*eq.(8)*/

6: count← count + 1
7: if flag then
8: break /*Action accepted*/
9: end if

10: until count ≥ REPLANLIMIT
11: Output: at, ôt+1

Algorithm 2 WALL-E

1: /* NSLEARNING() in Sec. 3.1; MPC() in
Sec. 3.2 */

2: Initialize Rcode ← ∅, τ real, τ pred ← [], t ←
0, o0 ← ENV()

3: while ¬TASKCOMPLETE(ot) and
¬AGENTDIED(ot) do

4: at, ôt+1 ← MPC(ot,Rcode) /*eq.(11)*/
5: ot+1 ← ENV(at)
6: τ real.APPEND((ot, at, ot+1))
7: τ pred.APPEND((ot, at, ôt+1))
8: Rcode ← NSLEARNING(τ pred, τ real)

/*eq.(6)*/
9: t← t+ 1

10: end while

4 Experiments

4.1 Benchmarks

• Mars [32] is an interactive benchmark for testing situated inductive reasoning—where agents
must derive and apply new rules in unfamiliar contexts. Built on Crafter [33], Mars modifies
terrain, survival settings, and task dependencies to generate diverse counter-commonsense worlds.
Agents must interact with these worlds, adapting to novel rules rather than relying on pre-existing
knowledge. This makes Mars a unique testbed for evaluating agent adaptability and reasoning in
dynamic environments. See Appendix F for details.

• ALFWorld [34] is a virtual environment designed as a text-based simulation where agents perform
tasks by interacting with a simulated household environment. This benchmark includes six distinct
task types, each requiring the agent to accomplish a high-level objective, such as placing a cooled
lettuce on a countertop. See Appendix F for details.

4.2 Evaluation Metrics

• Mars: (1) Reward (higher is better): the sum of sparse rewards given during an episode, including
+1 for unlocking achievements, −0.1 for health points lost, and +0.1 for health points regained.
The reward primarily reflects the number of achievements unlocked. (2) Score (higher is better): a
single aggregated value derived from the geometric mean of success rates across achievements,
weighing rare and difficult achievements more heavily to better reflect overall capability.

• ALFWorld: (1) Success rate (higher is better): percentage of tasks the agent completes.

7

Table 1: Comparison of WALL-E with RL-based (PPO [35] & DreamerV3 [36]) and LLM-based
methods (ReAct [37], Reflexion [38], Skill Library [39], IfR [32] in Mars [32]. LLM-based methods
and RL-based methods’ results are averaged over 9 trials and 20 trials, respectively (∗-reported
in previous work). RL trains a policy separately for each world and is supposed to be better than
LLM-based. Reward are accumulated and reflects unlocked achievements. Score (%) is the weighted
geometric mean of success rates, emphasizing rare and challenging achievements. Both metrics
report mean±standard deviation across trials. The “Average” row excludes the Default world to focus
on counter-commonsense settings, following the Mars evaluation protocol. The best results within
the training-free (LLM-based) methods are in bold. WALL-E is the SOTA among training-free
methods, demonstrating strong adaptability and planning in both familiar and counter-commonsense
settings that conflict with pretrained LLM priors. DreamerV3, while achieving higher absolute
scores, is trained with 1 million environment steps and included for reference only, highlighting
the contrast in sample efficiency and the rapid adaptation capabilities of WALL-E.

Metrics Mod. Type1 RL-based methods LLM-based methods
PPO* DreamerV3* ReAct* Reflexion* Skill Library* IfR* WALL-E

Reward ↑

Default 1.9± 1.4 11.5± 1.6 7.7± 1.6 6.0± 1.7 8.0± 2.1 9.0± 2.3 9.5± 2.1
Terrain −0.1± 0.6 9.3± 2.2 7.4± 2.7 6.4± 3.0 9.5± 2.9 8.0± 3.7 10.7± 2.6
Survival −0.6± 0.5 8.6± 4.1 6.4± 3.7 4.6± 3.9 7.9± 2.9 7.7± 3.7 13.8± 4.4
Task. Dep. 2.1± 1.2 8.8± 2.8 5.0± 2.1 3.2± 1.6 1.5± 1.9 5.6± 2.9 6.4± 2.9
Terr. Surv. 0.0± 0.7 7.1± 2.1 6.7± 2.5 4.9± 2.5 3.0± 2.5 6.8± 1.9 5.5± 2.7
Terr. Task. −0.7± 0.3 6.6± 0.7 4.8± 2.0 5.3± 2.5 5.5± 1.5 6.9± 1.8 5.8± 2.2
Surv. Task. −0.6± 0.4 9.6± 3.4 1.5± 1.3 1.0± 1.6 2.3± 1.5 3.3± 1.4 3.2± 1.4
All three 0.1± 0.8 5.1± 1.8 0.7± 1.6 −0.4± 0.7 −0.5± 0.5 0.1± 0.5 1.3± 1.6

Average 0.0 7.9 4.6 3.6 4.2 5.5 6.7

Score (%) ↑

Default 1.3± 1.7 14.2± 1.3 8.0± 1.5 5.3± 0.9 8.3± 1.3 13.0± 2.1 20.3± 1.8
Terrain 0.3± 0.1 13.0± 1.6 7.6± 2.6 7.4± 1.6 11.9± 3.4 11.8± 2.9 27.8± 1.7
Survival 0.2± 0.0 10.8± 2.8 8.0± 0.6 5.5± 1.7 9.7± 2.0 11.0± 3.7 50.8± 1.1
Task. Dep. 1.7± 0.6 12.1± 1.9 4.6± 1.6 2.2± 0.8 1.5± 0.6 6.9± 2.5 9.3± 2.0
Terr. Surv. 0.4± 0.1 7.9± 1.3 7.1± 3.0 4.7± 1.6 2.8± 0.6 6.7± 0.8 8.6± 1.9
Terr. Task. 0.1± 0.1 4.2± 0.1 3.8± 0.3 5.5± 1.7 4.1± 0.7 7.1± 2.5 4.7± 2.0
Surv. Task. 0.1± 0.1 15.9± 2.6 1.3± 0.2 1.1± 0.1 1.9± 0.1 2.1± 0.4 3.3± 1.9
All three 0.6± 0.2 4.0± 0.3 1.0± 0.3 0.2± 0.1 0.2± 0.0 0.6± 0.0 2.2± 1.6

Average 0.6 10.3 5.2 4.0 5.0 7.4 15.3

Table 2: Comparison of WALL-E and baselines on 134
testing tasks from the ALFWorld [34]. ∗-reported in previous
work. The highest success rate (%) for each task is highlighted
in bold. WALL-E outperforms all other baselines.

Method Success Rate (%) ↑
Avg. Pick Clean Heat Cool Examine Picktwo

BUTLER* [15] 26 31 41 60 27 12 29
GPT-BUTLER* [15] 69 62 81 85 78 50 47
DEPS [41] 76 93 50 80 100 100 0
AutoGen* [14] 77 92 74 78 86 83 41
ReAct [11] 74 79 54 96 85 83 51
AdaPlanner [40] 91 100 100 89 100 97 47
Reflexion [12] 86 92 94 70 81 90 88
RAFA [29] 95 100 97 91 95 100 82
WALL-E (ours) 98 100 100 96 100 100 94
Human Performance* [42] 91 - - - - - -

1 2 3 4 5 6 7 8 9 10
Iteration Times

50

60

70

80

90

100

Su
cc

es
s R

at
e

(%
)

WALL-E(ours)
RAFA
Reflexion
AdaPlanner

Figure 4: WALL-E vs. baselines
on 134 ALFWorld tasks. WALL-E
achieves the highest success rate
after only 4 iterations, surpassing
all baselines.

4.3 Main Results

WALL-E excels in planning and task-solving with rapid adaptation. As shown in Tables 1 and
2, WALL-E consistently outperforms baselines across diverse environments. In Mars, WALL-E
achieves reward improvements of 16.1% to 51.6% and boosts task scores by at least 61.7%. While
DreamerV3 reaches higher absolute rewards, it is trained for 1 million environment steps—far
exceeding WALL-E ’s budget of just 5,600 steps (0.56% of DreamerV3’s budget). Our focus is
not on absolute performance, but on enabling efficient few-shot adaptation and situated reasoning.
DreamerV3 is included as a reference to emphasize this contrast in learning efficiency. In the
"Survival" setting, our method shows high variance due to cow attacks: performance drops sharply
when many cows spawn nearby, but remains strong when few appear, leading to a large standard
deviation. In ALFWorld, WALL-E achieves the highest success rate after only four iterations,
significantly surpassing strong baselines like RAFA [8] and AdaPlanner [40], as shown in Figure 4.

1World types include Default (original Crafter setting with no modifications) and counter-commonsense
worlds, which feature individual modifications (Terrain, Survival, Task Dependency) or combinations of two or
all three modifications (Terr. Surv., Terr. Task., Surv. Task., All Three).

8

WALL-E adapts effectively to environments that contradict the LLM’s prior knowledge. As
shown in Table 1, performance drops significantly (by 3.3%–97.1%) when the environment deviates
from the LLM’s priors. However, WALL-E overcomes this by inductively learning symbolic
knowledge that realign the world model with actual environment dynamics. This leads to improved
predictions and decision-making, yielding at least a 21.8% reward gain and 51.6% score gain over
other methods in counter-commonsense settings. When environmental changes originate from a
single source, WALL-E remains highly adaptable, improving reward and score by at least 31% and
66%, respectively. However, when multiple factors change, the improvement diminishes—likely
because our rules are tailored to specific dynamics and cannot fully capture more complex mechanics.

0 1 2 3 4 5
Iteration Times

4

5

6

Re
wa

rd

0 1 2 3 4 5
Iteration Times

4

6

8

10

12

14

Sc
or

e
(%

)

WALL-E(ours)
IfR

Figure 5: Comparison between WALL-E and IfR
(the best baseline in Table 1) over learning iter-
ations in Mars. WALL-E achieves a clear ad-
vantage over IfR in both learning efficiency and
overall performance, due to the world alignment
with diverse symbolic knowledge and code rules.

WALL-E significantly outperforms the
SOTA baseline IfR. Figure 5 shows that
WALL-E improves from a reward of 3.6 to 6.7
and from a score of 4% to 15.3%, exceeding
IfR by 17.9% and 51.6%, respectively. Two
key innovations drive this gain: (1) NeuroSym-
bolic learning fuses action rules, knowledge
graphs, and scene graphs for a richer environ-
ment model, whereas IfR uses only inductively
learned rules; (2) We use executable code rules,
ensuring strict, deterministic enforcement, while
IfR’s natural-language rules, applied via prompt-
ing, introduce variability when priors conflict
with rules. This combination delivers more re-
liable, effective planning.

4.4 Effectiveness of NeuroSymbolic Learning

0 1 2 3 4 5
Iteration Times

0

20

40

60

80

100

Co
ve

r R
at

e
(%

)

0 1 2 3 4 5
Iteration Times

4

5

6

Re
wa

rd

WALL-E(ours)
Skill Library

Figure 6: Left: WALL-E code rules’ cover rate
(higher the better) over neurosymsbolic learning
iterations in Mars. The cover rate measures the
percentage of LLM failed predictions that can be
corrected by our world model. Right: Comparison
between WALL-E’s world model and skill library
when applied to LLM agents with reasoning and
reflection (base agent). WALL-E—base agent +
world model; Skill Library—base agent + skill
library. WALL-E’s neurosymbolic learning sig-
nificantly improves world alignment and brings
greater gains to LLM agents than skill library.

To evaluate the effectiveness of our proposed
NeuroSymbolic Learning approach, we compare
it with the skill library, a widely used agent learn-
ing method also employed by JARVIS-1 [39]
and Voyager [43]. In the Mars benchmark, this
approach is further simplified to better adapt
to the environment, resulting in a framework
consisting of a reasoning module, a reflector,
and the skill library [32]. In contrast, WALL-E
comprises a reasoning module, a reflector, and
a neurosymbolic learning module. The skill li-
brary stores successful plans and utilizes them as
in-context examples to align LLM agents with
the environment’s dynamics.

NeuroSymbolic Learning enables efficient
“world alignment”. To assess how well the
learned symbolic knowledge corrects the LLM
world model, we collect the transitions that the
world model mispredicts and compute the cover
rate—the fraction of these errors fixed by newly
acquired knowledge (details in Appendix F.3).
By analyzing both the neurosymbolic learning
process and the agent’s performance across iterations (Figure 6), we observe that WALL-E con-
sistently outperforms the skill library, and a significant performance improvement as the quality of
the symbolic knowledge library increases (i.e., as the cover rate rises). This result highlights that
WALL-E ’s advancements primarily stem from acquiring and leveraging new symbolic knowledge.

9

Table 3: Ablation study of WALL-E with differ-
ent symbolic knowledge (KNWL) types. KG—
Knowledge Graph, SG—Scene Graph. The row
highlighted in grey represents the configuration
and performance of WALL-E. Learning di-
verse types of symbolic knowledge is essential
for effectively aligning the LLM world model
with the environment.

Symbolic KNWL Mars ALFWorld
Action Rules KG/SG Reward ↑ Score (%) ↑ Success Rate (%) ↑
✓ 5.1 8.3 95

✓ 4.4 5.2 88
✓ ✓ 6.7 15.3 98

Table 4: Ablation study of WALL-E with dif-
ferent configurations on Mars tasks. Symbolic—
apply code rules.The row highlighted in grey rep-
resents WALL-E. Code rules translated from
symbolic knowledge bring more improvement
when applied to the world model, indicating
the importance of world alignment.

Agent World Model Reward ↑ Score (%) ↑
LLM - 3.6 4.0
LLM LLM 3.8 4.1
LLM+symbolic - 5.5 7.4
LLM LLM+symbolic 6.7 15.3
LLM+symbolic LLM+symbolic 6.3 13.1

4.5 Ablation Study

Combining multiple types of symbolic knowledge enhances world alignment We evaluated
world alignment using different symbolic knowledge combinations. When action rules are present,
they run as executable code; otherwise, the system uses prompt learning alone. Table 3 shows that
relying on a single type degrades performance: in the Mars environment, “rules only” cuts reward by
23.9% and score by 45.8%, while “KG+SG only” drops reward by 34.3% and score by 66.0%. These
findings underscore the necessity of multiple symbolic knowledge types.

World models with symbolic knowledge is an effective structure. We examine the impact of
learned symbolic knowledge and the world model by removing each component from WALL-E and
observing changes in performance (Table 4). Adding symbolic knowledge, whether in the agent or
the world model, consistently boosts the success rate. Specifically, applying symbolic knowledge in
the world model yields about a 46.3% improvement, while applying them in the agent yields about a
30.9% gain. This difference likely arises because learned symbolic knowledge heavily depend on
observation information (see Appendix D). Moreover, a standalone world model without symbolic
knowledge offers little performance benefit, underscoring that symbolic knowledge-driven alignment
with environment mechanism is key to WALL-E ’s success.

Table 5: Ablation study on the code rule set prun-
ing stage in Mars. The column in bold shows
the configuration and performance of WALL-E.
Pruning is essential for selecting high-quality,
impactful rules that align the LLM world
model with environment dynamics.

Metrics w/o Pruning w/ Pruning - Rule Set Limit
1 3 5 7 no limit (9)

Reward ↑ 1.5 4.3 5.7 6.2 6.5 6.7
Score (%) ↑ 1.6 8.1 9.5 12.8 14.5 15.3

Ablation on code rules pruning stage. We
ablate the code rule pruning stage by evaluat-
ing performance both without pruning and under
different code rule set limits l. Table 5 shows
that pruning stage is essential—without it, perfor-
mance drops sharply due to noisy or conflicting
rules. As fewer rules are retained, performance
degrades, confirming that pruning stage selects
impactful, high-quality rules that align the LLM
world model with environment dynamics.

5 Conclusion

We have demonstrated that LLMs can effectively serve as world models for agents when aligned
with environment dynamics via neurosymbolic knowledge learning. Our neurosymbolic approach
leverages code-based, gradient-free integrations of action rules, knowledge graphs, and scene graphs,
thereby bridging the gap between the LLMs’ prior knowledge and specific environments. By using a
model-based framework, our agent, WALL-E, achieves substantial improvements in planning and
task completion. In open-world environments such as Mars and ALFWorld, WALL-E outperforms
Mars baselines by 16.1%–51.6% in success rate and achieves a new record 98% success rate in
ALFWorld after only four iterations. These results underscore that additional symbolic knowledge is
essential to align LLM predictions with environment dynamics, enabling high-performing model-
based agents in complex settings.

10

References
[1] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv.2303.08774, 2023.

[2] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi, Q. V. Le, and D. Zhou,
“Chain-of-thought prompting elicits reasoning in large language models,” in NeurIPS, 2022.

[3] Y. Liu, W. Chen, Y. Bai, J. Luo, X. Song, K. Jiang, Z. Li, G. Zhao, J. Lin, G. Li, et al., “Aligning cyber
space with physical world: A comprehensive survey on embodied ai,” arXiv preprint arXiv:2407.06886,
2024.

[4] Y. Mu, Q. Zhang, M. Hu, W. Wang, M. Ding, J. Jin, B. Wang, J. Dai, Y. Qiao, and P. Luo, “Embodiedgpt:
Vision-language pre-training via embodied chain of thought,” arXiv preprint arXiv:2305.15021, 2023.

[5] Y. Yang, T. Zhou, K. Li, D. Tao, L. Li, L. Shen, X. He, J. Jiang, and Y. Shi, “Embodied multi-modal agent
trained by an llm from a parallel textworld,” in CVPR, 2024.

[6] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied question answering,” in CVPR,
2018.

[7] X. Wu, T. Guan, D. Li, S. Huang, X. Liu, X. Wang, R. Xian, A. Shrivastava, F. Huang, J. L. Boyd-Graber,
et al., “Autohallusion: Automatic generation of hallucination benchmarks for vision-language models,”
arXiv preprint arXiv:2406.10900, 2024.

[8] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu, “Reasoning with language model is
planning with world model,” arXiv preprint arXiv:2305.14992, 2023.

[9] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct preference optimiza-
tion: Your language model is secretly a reward model,” NeurIPS, 2024.

[10] Z. Ge, H. Huang, M. Zhou, J. Li, G. Wang, S. Tang, and Y. Zhuang, “Worldgpt: Empowering llm as
multimodal world model,” arXiv preprint arXiv:2404.18202, 2024.

[11] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and
acting in language models,” in ICLR, 2023.

[12] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents with verbal
reinforcement learning,” NeurIPS, 2024.

[13] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, et al., “Rt-2:
Vision-language-action models transfer web knowledge to robotic control,” in CoRL, 2023.

[14] Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang, X. Zhang, and C. Wang, “Au-
togen: Enabling next-gen llm applications via multi-agent conversation framework,” arXiv preprint
arXiv:2308.08155, 2023.

[15] V. Micheli and F. Fleuret, “Language models are few-shot butlers,” arXiv preprint arXiv:2104.07972, 2021.

[16] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, et al., “Rt-1: Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[17] Z. Hu and T. Shu, “Language models, agent models, and world models: The law for machine reasoning
and planning,” arXiv preprint arXiv:2312.05230, 2023.

[18] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and D. Sadigh, “Physically grounded
vision-language models for robotic manipulation,” arXiv preprint arXiv:2309.02561, 2023.

[19] H. Tang, D. Key, and K. Ellis, “Worldcoder, a model-based llm agent: Building world models by writing
code and interacting with the environment,” arXiv preprint arXiv:2402.12275, 2024.

[20] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as commonsense knowledge for large-scale task
planning,” NeurIPS, 2024.

[21] L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. Andreas, “Learning
adaptive planning representations with natural language guidance,” arXiv preprint arXiv:2312.08566, 2023.

[22] L. Guan, K. Valmeekam, S. Sreedharan, and S. Kambhampati, “Leveraging pre-trained large language
models to construct and utilize world models for model-based task planning,” NeurIPS, 2023.

11

[23] J. Xiang, T. Tao, Y. Gu, T. Shu, Z. Wang, Z. Yang, and Z. Hu, “Language models meet world models:
Embodied experiences enhance language models,” NeurIPS, 2024.

[24] K. Xie, I. Yang, J. Gunerli, and M. Riedl, “Making large language models into world models with
precondition and effect knowledge,” arXiv preprint arXiv:2409.12278, 2024.

[25] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al., “Training language models to follow instructions with human feedback,” NeurIPS, 2022.

[26] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli, T. Henighan,
et al., “Training a helpful and harmless assistant with reinforcement learning from human feedback,” arXiv
preprint arXiv:2204.05862, 2022.

[27] K. Yang, Z. Liu, Q. Xie, J. Huang, T. Zhang, and S. Ananiadou, “Metaaligner: Towards generalizable
multi-objective alignment of language models,” arXiv preprint arXiv:2403.17141, 2024.

[28] G. Seneque, L.-H. Ho, A. Kuperman, N. E. Saeedi, and J. Molendijk, “Abc align: Large language model
alignment for safety & accuracy,” arXiv preprint arXiv:2408.00307, 2024.

[29] Z. Liu, H. Hu, S. Zhang, H. Guo, S. Ke, B. Liu, and Z. Wang, “Reason for future, act for now: A principled
framework for autonomous llm agents with provable sample efficiency,” arXiv preprint arXiv:2309.17382,
2023.

[30] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy method,”
Annals of operations research, vol. 134, pp. 19–67, 2005.

[31] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization. SIAM, 2009.

[32] X. Tang, J. Li, Y. Liang, S.-c. Zhu, M. Zhang, and Z. Zheng, “Mars: Situated inductive reasoning in an
open-world environment,” arXiv preprint arXiv:2410.08126, 2024.

[33] D. Hafner, “Benchmarking the spectrum of agent capabilities,” arXiv preprint arXiv:2109.06780, 2021.

[34] M. Shridhar, X. Yuan, M.-A. Côté, Y. Bisk, A. Trischler, and M. Hausknecht, “Alfworld: Aligning text and
embodied environments for interactive learning,” arXiv preprint arXiv:2010.03768, 2020.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[36] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse domains through world models,” arXiv
preprint arXiv:2301.04104, 2023.

[37] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and
acting in language models,” arXiv preprint arXiv:2210.03629, 2022.

[38] N. Shinn, F. Cassano, B. Labash, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents
with verbal reinforcement learning.(2023),” arXiv preprint cs.AI/2303.11366, 2023.

[39] Z. Wang, S. Cai, A. Liu, Y. Jin, J. Hou, B. Zhang, H. Lin, Z. He, Z. Zheng, Y. Yang, et al., “Jarvis-1:
Open-world multi-task agents with memory-augmented multimodal language models,” arXiv preprint
arXiv:2311.05997, 2023.

[40] H. Sun, Y. Zhuang, L. Kong, B. Dai, and C. Zhang, “Adaplanner: Adaptive planning from feedback with
language models,” NeurIPS, 2024.

[41] Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, Y. Liang, and T. CraftJarvis, “Describe, explain, plan and select:
interactive planning with large language models enables open-world multi-task agents,” in NeurIPS, 2023.

[42] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and D. Fox,
“ALFRED: A benchmark for interpreting grounded instructions for everyday tasks,” in CVPR, 2020.

[43] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar, “Voyager: An
open-ended embodied agent with large language models,” arXiv preprint arXiv:2305.16291, 2023.

[44] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, et al., “Ghost in
the minecraft: Generally capable agents for open-world environments via large language models with
text-based knowledge and memory,” arXiv preprint arXiv:2305.17144, 2023.

[45] Y. Qin, E. Zhou, Q. Liu, Z. Yin, L. Sheng, R. Zhang, Y. Qiao, and J. Shao, “Mp5: A multi-modal
open-ended embodied system in minecraft via active perception,” in CVPR, 2024.

[46] Z. Li, Y. Xie, R. Shao, G. Chen, D. Jiang, and L. Nie, “Optimus-1: Hybrid multimodal memory empowered
agents excel in long-horizon tasks,” arXiv preprint arXiv:2408.03615, 2024.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction clearly state our main contributions, which are
fully supported by the proposed method and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

13

Justification: This paper does not include theoretical results, assumptions, or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sections 4, F, and B provide sufficient details on setup, implementation, and
prompts to reproduce the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]
Justification: An anonymous GitHub repository with code and reproduction instructions is
linked in the Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details are provided in Sections 4, B, and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 1 reports mean and standard deviation across 9 trials for LLM-based
methods and 20 trials for RL-based methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres fully to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational and focuses exclusively on improving the alignment
of LLM-based world models and the planning efficiency of embodied agents. It does not
directly address any societal applications or their consequences—positive or negative—since
it is not tied to specific deployments or use cases. Therefore, there is no discussion of
potential harms or benefits in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce models or data with high risk of misuse; thus,
safeguards are not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide an anonymized URL in the abstract linking to the released assets,
which include code, and documentation for reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are central to our method—they serve as the world model, induce
symbolic knowledge, and generate executable rules. These roles are core to the originality
and effectiveness of our approach.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Detailed Related Work

Using LLMs to Build World Models. Many studies have leveraged LLMs to construct world
models for planning. For example, Ada [21] translates natural language instructions into adaptable
planning representations via LLMs, enabling flexible and context-aware world modeling. Combining
pre-trained LLMs with task-specific planning modules has also been shown to improve task success
rates by providing a more detailed understanding of the environment [22]. Another approach,
WorldCoder [19] exemplifies an LLM agent that constructs world models by generating and executing
code to simulate various states and actions, refining its understanding iteratively.

These studies demonstrate the effectiveness of using LLMs to construct explicit world models from
scratch to enhance planning and reasoning in complex environments. However, our key novelty lies
in treating the LLM itself as the world model and aligning it with environment dynamics through
training-free symbolic knowledge extraction. Rather than building a complete symbolic model from
the ground up, we focus on identifying and correcting the misalignment between the base LLM’s prior
knowledge and the specific environment. This allows a small amount of complementary symbolic
knowledge, combined with the LLM’s existing priors, to form an accurate and generalizable world
model. In contrast, prior methods rely on complex, environment-specific modeling procedures, which
limits their scalability and adaptability to high-complexity environments like Mars.

Using LLMs as World Models. Several studies have explored using LLMs directly as world
models by leveraging their implicit knowledge. Some methods rely on fine-tuning to align the LLM
world model with the environment. For example, one approach fine-tunes LLMs using embodied
experiences in simulation to improve reasoning and planning in embodied settings [23]. Another
incorporates action preconditions and effects during fine-tuning to enable accurate outcome prediction
and action reasoning [24].

Other approaches align LLMs as world models through prompting. LLM-MCTS [20] prompts LLMs
to serve as both the policy and world model for large-scale task planning, integrating commonsense
priors with guided search. RAP [8] uses prompting to guide LLMs in generating reasoning trees for
structured decision making. RAFA [29] applies a Bayesian adaptive Markov Decision Process to
prompt LLMs to predict future states for trajectory planning.

While these approaches demonstrate the potential of using LLMs as world models, they often require
extensive fine-tuning or rely heavily on human-crafted prompts, making them labor-intensive and
inflexible. Our approach leverages the LLM’s inductive reasoning to automatically extract symbolic
rules from exploration trajectories, drastically cutting human effort and computational overhead. This
enables rapid, domain-agnostic adaptation across diverse environments.

A.1 Existing Agents in Minecraft

Although our method is evaluated in Mars, a 2D environment inspired by Minecraft, we also discuss
prior agent methods developed in the Minecraft domain due to their conceptual relevance.

DEPS [41] uses an LLM to generate, explain, and revise plans, but it does NOT learn knowledge
from previous tasks and generalize to new scenarios. Methods like GITM [44], MP5 [45], JARVIS-1
[39], and Voyager [43] use a memory buffer or skill library to directly store successful trajectories and
reuse them later. However, no inductive reasoning is applied to these trajectories to learn condensed,
generalized principles. So their agents have to reason based on many raw trajectories, which can suffer
from poor generalization, overfitting, and inefficiency when adapted to new scenarios/tasks. Optimus-
1 [46] partially addresses this issue by extracting knowledge graphs from historical trajectories,
enabling more flexible knowledge transfer across tasks. However, it still relies heavily on logging
trajectories and custom scripts tailored to a specific environment’s data format for graph extraction,
which cannot be easily generalized to new environments.

In contrast, our method does not store and reason directly based on raw trajectories. It overcomes
these limitations by inductive reasoning using LLM on existing trajectories, condensing them into
a compact, principal, generalizable, and comprehensive set of symbolic knowledge (action rules,
knowledge graphs, and scene graphs) that can be reused efficiently and generalized across tasks/envi-
ronments. This LLM-abstraction of environment is novel and critical to building an accurate world
model. Another primary difference and novelty of WALL-E is to compile all symbolic knowledge

20

into executable code, which makes the planning verifiable with formal guarantees. This avoids
possible hallucinations and mistakes of in-context learning by LLMs, which are common for planning
in prior work.

A.2 Existing Agents in ALFWorld

ReAct [11], Reflexion [12], and AutoGen [14] leverage LLMs for reasoning, but they do NOT learn
reusable knowledge from past tasks. AdaPlanner [40] introduces a skill library, but it merely stores
trajectories from previous successful tasks. Reasoning solely based on these specific trajectories
can mislead the agent and lead to suboptimal behavior in new scenarios. RAFA [29] relies on an
LLM’s prior knowledge for planning, which can be problematic when the environment dynamics and
principles diverge from or conflict with LLM priors.

WALL-E differs from them in several key properties: Instead of simply recording past trajectories,
WALL-E prompts the LLM to perform inductive reasoning over historical trajectories to extract
compact and generalizable symbolic knowledge, as discussed above. Unlike RAFA, whose model
LLM solely relies on LLM prior, WALL-E applies verifiable neurosymbolic learning to align the
LLM’s predictions with real environment dynamics. This “world alignment” greatly enhances both
prediction accuracy and long-horizon planning capabilities.

B Detailed Prompt

B.1 Learn Action Rules from Real Trajectories

Prompt for Learning Action Rules from Real Trajectories

You are responsible for mining new rules from the given
transitions , ensuring that these rules differ from the ones
already provided. Focus on generating general and universal
rules that are not tied to any specific item or tool. Your goal
is to generalize across different objects , creating flexible

rules that can be applied broadly to diverse contexts and
situations.

I will give you an array of transitions:
[

{
’state_0 ’: {

"state feature 1": {" feature name": value , ...},
...

},
’action ’: {

"name": "action name",
"action feature 1": {" feature name": value , ...},
...

},
’action_result ’: {
"feedback ": "the environment feedback",
"success ": "Whether the action is executed successfully ,",
"suggestion ": "..."

}
},
...

]
and an array of rules:
[

"Rule 1: For action ..., if..., the action will fail; Checking
Method: ...",

...
]

You should only respond in the format as described below:
RESPONSE FORMAT:

21

{
"new_rules ":[

"Rule ...: For action ... ,...; Checking Method: ...",
"Rule ...: For action ... ,...; Checking Method: ...",
...

]
}

Instructions:
- Ensure the response can be parsed by Python ‘json.loads ‘, e.g.:

no trailing commas , **no single quotes**, etc.
- Please use you knowledge in <ENV >, do inductive reasoning. You

need to dig up as many rules as possible that satisfy all
transitions.

- Extract and utilize only the features that influence the outcome
of the action.

- Please generate general and universal rules; the rules should
not reference any specific item or tool! You need to generalize
across various items or tools.

- Generate only the rules under what conditions the action will
fail.

- While generating a rule , you also need to state how to check if
a transition satisfies this rule. Please be specific as to
which and how ’features ’ need to be checked

B.2 Translate Action Rules to Code

Prompt for Translating Action Rules to Code

You are responsible for generating code rules by implementing the
learned rules in Python. Your task is to write a function that
takes the current state and an action as inputs , optionally
incorporating both the knowledge graph and the scene graph to
provide additional contextual information (extra input),
evaluating these conditions , and returns a Boolean value based
on the specified rule. This function should effectively mirror
the logic of the rules , enabling precise predictions for
various state -action pairs.

The function should be defined as follows:

‘‘‘python
def expected_rule_code(state , action , knowledge_graph/scene_graph)

:
Your code here
return feedback , success , suggestion

where
feedback: a string , give the action feedback based on success or

not.
success: a bool , whether the action is executed successfully , give

’True ’ or ’False ’. If the action type is not the action type
in the rule , count as success (e.g., success = True).

suggestion: a string , if the ’action ’ fails , ’suggestion ’ would be
given based on ’rule ’, ’state ’ and ’action ’.

Here are examples of the state and action format:
<Input Format >

For example:
"Instead of obtaining [item] from [collecting_resource],

players can acquire it from [alternative
collecting_resource].",

"To craft a [tool/object], players will need [
crafting_material] and must use [crafting_platform].",

22

"[crafting_material] needs to be gathered from [resource].",
...

Be sure to include such details to make the suggestions more
engaging and relevant.

Knowledge Graph:
<Knowledge Graph >

Scene Graph:
<Scene Graph >

You should only respond in the format as described below , and do
not give example usage or anything else:

RESPONSE FORMAT:
def expected_rule_code(state , action , knowledge_graph/scene_graph)

:
Your code here

where “input format” please refer to Appendix C.

B.3 Learn Knowledge Graph from Real Trajectories

Prompt for Learning Knowledge Graph from Real Trajectories

You are a helpful assistant with inductive reasoning. Given the
history trajectory , including action and observation , you need
to reflect on the action execution results and identify and
extract prerequisite or feasibility constraints , that is,
discover when an action or item creation requires the presence
of certain materials , resources , or other items.

We define the Knowledge Graph as:
{

"V": "the set of entities (e.g., items , materials , location -
specific objects , or abstract concepts)",

"E": "the set of directed edges , each capturing a relationship
or prerequisite among entities"

}

An edge takes the form:
(u, v, label),
where u and v are entities in V, and label indicates how u relates

to v (for example , ’requires ’, ’consumes ’, ’collects ’, etc.).

I will give you an array of transitions:
[

{
’inital_state ’: ’...’,
’action ’: ’...’,
’action_result ’: "Whether the action is executed

successfully , give ’True ’
or ’False ’ only"

},
{

’inital_state ’: ’...’,
’action ’: ’...’,
’action_result ’: "Whether the action is executed

successfully , give ’True ’
or ’False ’ only"

},
...

]

You should ONLY respond in the following format:

23

{
{’u’:’entity_u ’, ’v’:’entity_v ’, ’label ’:{’relation ’:’...’, ’

quantity ’:’...’}},
{’u’:’entity_u ’, ’v’:’entity_v ’, ’label ’:{’relation ’:’...’, ’

quantity ’:’...’}},
...

}
example:
{’u’:’wooden_sword ’, ’v’:’table ’, ’label ’:{’relation ’:’requires ’,

’quantity ’:None}},
{’u’:’table ’, ’v’:’wood ’, ’label ’:{’relation ’:’consumes ’, ’

quantity ’:’2’}}

C Environments’ Observation Space and Action Space

The format of observation and action information is crucial for understanding the action rules we
have extracted. In this section, we provide an description of the observation and action space used in
different environments.

C.1 Mars

Observation Space. We collect observation information directly from the observation space provided
by Mars [32]. The specific structure is illustrated in the following example.

Examples for Mars’s Observation Space

obs = {
"position ": "grass",
"in_front ": "table",
"visible_objects ": [

{
"type": "plant",
"x": -1,
"y": 0

},
{

"type": "grass",
"x": 1,
"y": 0

},
{

"type": "table",
"x": 0,
"y": -1

},...
],
"near_objects ": [

"sand",
"plant",
"grass",
"table"

],
"status ": {

"health ": 8,
"food": 4,
"drink": 5,
"energy ": 8

},
"inventory ": {

"sapling ": 2,
"wood_pickaxe ": 2,
"wood_sword ": 1

24

}
}

Action Space. We utilize the action space provided by the Mars directly, as demonstrated below.

Mars’s Action Space

mine(block_name , amount) # mine amount blocks of the block_name.
attack(creature , amount) # attack the amount creature that can

move. Creature include zombie , skeleton , cow , etc.
sleep(); # put the player to sleep.
place(block_name); # place the block. Note you need not craft

table and furnace , you can place them directly.
make(tool_name); # craft a tool.
explore(direction , steps); # the player explore in the direction

for steps.

C.2 ALFWorld

Observation Space. In the original ALFWorld setup, observation information is represented as
natural language dialogue history. To facilitate the neurosymbolic learning process, we developed
scripts to transform this dialogue history into a structured JSON format, as shown in the following
example.

Examples for ALFWorld’s Observation Space

obs = {
"reachable_locations ": [

"cabinet 5",
"cabinet 4",
"cabinet 3",
"cabinet 2",
"cabinet 1",
"coffeemachine 1",
"countertop 2",
"countertop 1",
"diningtable 1",
"drawer 2",
"drawer 1",
"fridge 1",
"garbagecan 1",
"microwave 1",
"shelf 3",
"shelf 2",
"shelf 1",
"sinkbasin 1",
"stoveburner 4",
"stoveburner 3",
"stoveburner 2",
"stoveburner 1",
"toaster 1"

],
"items_in_locations ": {

"fridge 1": [
"lettuce 2",
"mug 2",
"potato 3"

],
"microwave 1": []

},
"item_in_hand ": {

"item_name ": "cup 1",
"status ": "normal"

25

},
"current_position ": {

"location_name ": "microwave 1",
"status ": "open"

}
}

Action Space. We utilize the action space provided by the ALFWorld directly, as demonstrated
below.

Action Space for ALFWorld

go to [location/object]: Move to a specified location or object.
open [object]: Open a specified object like a cabinet or drawer.
close [object]: Close an opened object.
take [object] from [location]: Pick up an item from a specified

location.
put [object] in/on [location]: Place an item in or on a specified

location.
clean [object] with [location/tool]: Clean an object using a

specific location or tool , like cleaning lettuce at the sink
basin.

heat [object] with [tool]: Use an appliance , such as a microwave ,
to heat an item.

cool [object] with [tool]: Use a cooling tool or appliance , such
as a fridge , to cool an item.

use [tool]: Activate or use a tool , such as a desklamp.

D Learned Rules

There are two points to note about the numbering of the action rules:

• The reason for duplicates is that the numbering is based on actions, and different actions
have their own separate sequences. For example: Rules for Craft: [Rule 1, Rule 2, Rule 3,
Rule 4, Rule 5...]; Rules for Mine: [Rule 1, Rule 2, Rule 3, Rule 4, Rule 5...].

• The reason the sequence may appear unordered is that some rules have been pruned (Section
3.1.3 Rule Set Pruning via Maximum Coverage). For instance, Rules for Craft where [Rule
1, Rule 2, Rule 4, Rule 5] has been removed, Rules for Mine where [Rule 1, Rule 3, Rule 4,
Rule 5, Rule 6] has been removed, and the final rule set is Rules for Craft: [Rule 3, Rule 6]
and Rules for Mine: [Rule 2, Rule 7].

Additionally, the feedback and suggestions returned by each code rule are automatically generated by
prompting the LLM with the corresponding rule. The detailed prompts used to generate these code
rules can be found in Appendix B.2. These feedback and suggestions play a crucial role in helping
the agent refine and improve its planning process (Section 3.2).

D.1 Rules in Mars

Action Rules for Mars

Rule 6: For action ’make ’, if ’table ’ is not in ’near_objects ’,
the action will fail; Checking Method: Check if ’table ’ is in
the ’near_objects ’ list of the initial state.

Rule 7: For action ’make ’, if the player does not have the
required materials in the inventory to craft the specified tool
, the action will fail; Checking Method: Verify if the player ’s
inventory contains the required materials for the tool

specified in the ’make ’ action ’s ’tool_name ’ argument.
Rule 8: For action ’make ’, if the required resources for the tool

are not present in the inventory or if a ’table ’ is not in ’
near_objects ’, the action will fail; Checking Method: Verify if

26

the inventory contains the necessary resources for the tool
being crafted and ensure that ’table ’ is present in ’
near_objects ’.

Rule 1: For action ’place ’ with block_name ’sapling ’, if ’in_front
’ is ’table ’, the action will fail; Checking Method: Check if ’
in_front ’ in the initial state is ’table ’.

Rule 2: For action ’place ’, if the player does not have the
required materials in the inventory to place the specified item
, the action will fail; Checking Method: Verify if the player ’s
inventory contains the required materials for the item

specified in the ’place ’ action ’s ’block_name ’ argument.
Rule 3: For action ’place ’ with block_name ’table ’, if ’

visible_objects ’ or ’near_objects ’ already contain a ’table ’,
the action should not be executed; Checking Method: Examine
both the ’visible_objects ’ and ’near_objects ’ arrays in the
state for an object with type ’table ’. If found , do not proceed
with placing a new table , and instead reuse the existing one.

Rule 2: For action ’mine ’, if the block_name is ’iron ’ and the
player does not have ’stone_pickaxe ’ or better , the action will
fail; Checking Method: Verify if the ’block_name ’ is ’iron ’

and ensure the inventory includes a ’stone_pickaxe ’ or better.
Rule 4: For action ’mine ’, if the player attempts to mine ’stone ’

and does not have a ’wood_pickaxe ’ or better in their inventory
, the action will fail; Checking Method: Check if ’wood_pickaxe
’ or a better tool is present in the inventory when attempting
to mine ’stone ’.

Rule 5: For action ’mine ’, if the block_name is ’plant ’, the
action will fail; Checking Method: Check if ’block_name ’ in the
action is ’plant ’.

Code Rules for Mars

def CodeRule_6_make(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
args = action.get("args", {})

Check if the action is ’make ’
if action_name == "make":

Check if ’table ’ is in ’near_objects ’
if "table" not in state.get(" near_objects", []):

feedback = "Action failed: ’table ’ is not nearby ."
success = False
suggestion = "Move closer to a ’table ’ to make the

item."
return feedback , success , suggestion

If the action is not ’make ’ or the condition is met
feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_7_make(state , action , knowledge_graph):
Check if the action is ’make ’
if action[’action_name ’] == ’make ’:

tool_name = action[’args ’][’tool_name ’]

Use LLM_request to find out the required materials for
the tool

question = f"What are the required materials to craft a {
tool_name }?"

response_format = "Provide a list of materials and their
quantities ."

27

required_materials = LLM_request(question +
response_format)

Check if the player has the required materials in the
inventory

inventory = state[’inventory ’]
has_all_materials = True
missing_materials = []

for material , quantity in required_materials.items():
if inventory.get(material , 0) < quantity:

has_all_materials = False
missing_materials.append(f"{ material }: {quantity -
inventory.get(material , 0)} more needed ")

if has_all_materials:
feedback = "Action executed successfully ."
success = True
suggestion = ""

else:
feedback = "Action failed: Not enough materials to

craft the tool."
success = False
suggestion = f"To craft a {tool_name}, you need:
{’, ’.join(missing_materials)}."

else:
If the action is not ’make ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""

return feedback , success , suggestion

def CodeRule_8_make(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
args = action.get("args", {})

Check if the action is ’make ’
if action_name != "make":

return "Action executed successfully .", True , ""

Extract tool name
tool_name = args.get(" tool_name ")

Check if ’table ’ is in ’near_objects ’
if ’table ’ not in state.get(" near_objects", []):

feedback = "Action failed: A ’table ’ is required nearby to
make the tool."

suggestion = "Move closer to a ’table ’ and try again."
return feedback , False , suggestion

Check if the required resources are in the inventory
required_resources = knowledge_graph.get(tool_name , {})
inventory = state.get(" inventory", {})

for resource , amount in required_resources.items():
if inventory.get(resource , 0) < amount:

feedback = f"Action failed: Not enough {resource} to
make {tool_name }."

suggestion = f"Collect more {resource} to make {
tool_name }."

return feedback , False , suggestion

If all checks pass

28

return "Action executed successfully .", True , ""

def CodeRule_1_place(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
block_name = action.get("args", {}).get(" block_name ")

Initialize feedback , success , and suggestion
feedback = ""
success = True
suggestion = ""

Rule 1: For action ’place ’ with block_name ’sapling ’, if ’
in_front ’ is ’table ’, the action will fail

if action_name == "place" and block_name == "sapling ":
if state.get(" in_front ") == "table":

feedback = "Action failed: Cannot place a sapling in
front of a table."

success = False
suggestion = "Try placing the sapling in front of a

different object , such as grass or dirt."
else:

feedback = "Action succeeded: Sapling placed
successfully ."

If the action type is not ’place ’, count as success
else:

feedback = "Action succeeded: No rules apply to this
action type."

return feedback , success , suggestion

def CodeRule_2_place(state , action , knowledge_graph):
Check if the action is ’place ’
if action[’action_name ’] == ’place ’:

block_name = action[’args ’][’block_name ’]

Check if the required material is in the inventory
if block_name in state[’inventory ’] and state[’inventory

’][block_name] > 0:
feedback = f"Successfully placed {block_name }."
success = True
suggestion = ""

else:
feedback = f"Failed to place {block_name }."
success = False
suggestion = f"You need to have {block_name} in your

inventory to place it. Consider collecting or
crafting it first ."

else:
If the action is not ’place ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""

return feedback , success , suggestion

def CodeRule_3_place(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
block_name = action.get("args", {}).get(" block_name ")

Check if the action is ’place ’ and block_name is ’table ’
if action_name == "place" and block_name == "table ":

29

Check for existing ’table ’ in ’visible_objects ’ or ’
near_objects ’

visible_objects = state.get(" visible_objects", [])
near_objects = state.get(" near_objects", [])

Check if ’table ’ is in visible_objects
table_in_visible = any(obj.get("type") == "table" for obj

in visible_objects)
Check if ’table ’ is in near_objects
table_in_near = "table" in near_objects

If a table is found in either , the action should not be
executed

if table_in_visible or table_in_near:
feedback = "Action failed: A table is already present

in the vicinity ."
success = False
suggestion = "Reuse the existing table instead of

placing a new one."
return feedback , success , suggestion

If the action is not ’place ’ or block_name is not ’table ’,
consider it successful

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_mine(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
block_name = action.get("args", {}).get(" block_name ")

Check if the action is ’mine ’ and the block_name is ’iron ’
if action_name == "mine" and block_name == "iron":

Check if the player has a ’stone_pickaxe ’ or better in
the inventory

inventory = state.get(" inventory", {})
has_stone_pickaxe_or_better = any(

tool in inventory for tool in [" stone_pickaxe", "
iron_pickaxe",

"diamond_pickaxe "]
)

if not has_stone_pickaxe_or_better:
feedback = "Action failed: You need a stone_pickaxe or

better to mine iron."
success = False
suggestion = "Consider crafting or acquiring a

stone_pickaxe or better to mine iron."
return feedback , success , suggestion

If the action is not ’mine ’ or the block_name is not ’iron ’,
consider it successful

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_4_mine(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
block_name = action.get("args", {}).get(" block_name ")
Check if the action is ’mine ’ and the block is ’stone ’
if action_name == "mine" and block_name == "stone ":

30

Check if ’wood_pickaxe ’ or a better tool is in the
inventory

inventory = state.get(" inventory", {})
has_wood_pickaxe = ’wood_pickaxe ’ in inventory
better_tool_exists = False
for tool in inventory:

if tool != ’wood_pickaxe ’:
response = LLM_request(f"is {tool} better than

wood_pickaxe ?" +
"only reply True or False ")
if response == "True":

better_tool_exists = True
break

if has_wood_pickaxe or better_tool_exists:
feedback = "Action executed successfully ."
success = True
suggestion = ""

else:
feedback = "Action failed: You need a wood_pickaxe or

a better tool to mine stone ."
success = False
suggestion = "Consider crafting or acquiring a

wood_pickaxe or a better tool to mine stone."
else:

feedback = "Action executed successfully ."
success = True
suggestion = ""

return feedback , success , suggestion

def CodeRule_5_mine(state , action , knowledge_graph):
Extract action details
action_name = action.get(" action_name ")
block_name = action.get("args", {}).get(" block_name ")

Initialize feedback , success , and suggestion
feedback = ""
success = True
suggestion = ""

Check if the action is ’mine ’ and block_name is ’plant ’
if action_name == "mine" and block_name == "plant ":

feedback = "Action failed: You cannot mine a plant."
success = False
suggestion = "Consider mining other resources like ’tree ’

or ’stone ’
instead of ’plant ’."

else:
feedback = "Action executed successfully ."

return feedback , success , suggestion

D.2 Rules in ALFWorld

Action Rules for ALFWorld

Rule 1: For action ’take ’, if the item is not present in the
specified location , the action will fail; Checking Method:
Check if the ’obj ’ in ’action ’ is not listed under ’
items_in_locations ’ for the ’source ’ location in ’inital_state
’.

Rule 2: For action ’take ’, if the agent ’s hand is already holding
an item , the action will fail; Checking Method: Check if ’
item_in_hand ’ in ’inital_state ’ has a non -null ’item_name ’.

31

Rule 3: For action ’take ’, if the agent is not at the specified
location , the action will fail; Checking Method: Check if ’
current_position ’ in ’inital_state ’ does not match the ’source ’
location in ’action ’.

Rule 2: For action ’open ’, if the target location is not in the
list of reachable locations , the action will fail; Checking
Method: Check if ’action.args.target ’ is not in ’
reachable_locations ’.

Rule 7: For action ’open ’, if the target location is a fridge and
the current position is not the same as the target location ,
the action will fail; Checking Method: Check if ’action.args.
target ’ is ’fridge ’ and ’current_position.location_name ’ is not
equal to ’action.args.target ’.

Rule 10: For action ’open ’, if the target location is a drawer and
the current position is not the same as the target location ,

the action will fail; Checking Method: Check if ’action.args.
target ’ starts with ’drawer ’ and ’current_position.
location_name ’ is not equal to ’action.args.target ’.

Rule 3: For action ’go to ’, if the item specified by ’item_name ’
in ’item_in_hand ’ is None and the action ’s ’target ’ in the
Scene Graph is not ’Unexplored ’ or does not contain the state ’s
’target_item ’ in the list , the action will fail; Checking

Method: Check if ’item_in_hand.item_name ’ is None , and validate
if the ’target ’ in ’action ’ is either not labeled ’Unexplored ’
or does not include the ’target_item ’ in the Scene Graph.

Rule 2: For action ’heat ’, if the object to be heated is not in
the tool , the action will fail; Checking Method: Check if the ’
item_in_hand ’ matches the object to be heated and is not placed
in the tool location.

Rule 2: For action ’put ’, if the item to be put is not in hand ,
the action will fail; Checking Method: Check if ’item_name ’ in
’item_in_hand ’ of the ’inital_state ’ matches the ’obj ’ in
action args.

Rule 4: For action ’put ’, if the current position is not the same
as the target location , the action will fail; Checking Method:
Check if ’location_name ’ in ’current_position ’ of the ’
inital_state ’ matches the ’target ’ in action args.

Rule 2: For action ’use ’, if the object is not in the current
location , the action will fail; Checking Method: Check if the
object specified in the action is not present in the ’
items_in_locations ’ of the ’current_position ’ in the initial
state.

Rule 4: For action clean , if the object to be cleaned is not in
hand , the action will fail; Checking Method: Check if the ’
item_in_hand ’ matches the object specified in the action.

Code Rules for ALFWorld

def CodeRule_1_take(state , action , scene_graph):
Extract action details
action_name = action.get("name")
action_args = action.get("args", {})
Check if the action is ’take ’
if action_name == "take":

obj = action_args.get("obj")
source = action_args.get(" source ")
Check if the object is present in the specified source

location
items_in_source = state.get(" items_in_locations", {}).get(

source , [])
if obj not in items_in_source:

feedback = f"Action failed: {obj} is not present in {
source }."

success = False

32

suggestion = f"Check the items in {source} and try
taking an available item."

return feedback , success , suggestion
If the action is not ’take ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_take(state , action , scene_graph):
Extract the action name
action_name = action.get("name")
Check if the action is ’take ’
if action_name == "take":

Check if the agent ’s hand is already holding an item
item_in_hand = state.get(" item_in_hand", {}).get("

item_name ")
if item_in_hand:

feedback = "Action failed: The agent is already
holding an item."

success = False
suggestion = "Put down the current item before taking

another one."
return feedback , success , suggestion

If the action is not ’take ’, consider it successful by
default

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_3_take(state , action , scene_graph):
if action[’name ’] == ’take ’:

current_location = state[’current_position ’][’
location_name ’]

source_location = action[’args ’][’source ’]
if current_location != source_location:

feedback = "Action failed: You are not at the
specified location to take the item."

success = False
suggestion = f"Move to {source_location} before

attempting to take the item."
return feedback , success , suggestion

If the action is not ’take ’, consider it successful by
default

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_open(state , action , scene_graph):
if action[’name ’] == ’open ’:

target = action[’args ’][’target ’]
if target not in state[’reachable_locations ’]:

feedback = f"Action failed: The target location ’{
target}’ is not reachable ."

success = False
suggestion = f"Try moving closer to ’{target}’ before

attempting to open it."
return feedback , success , suggestion

If the action is not ’open ’, consider it successful by
default

feedback = "Action executed successfully ."
success = True
suggestion = ""

33

return feedback , success , suggestion

def CodeRule_7_open(state , action , scene_graph):
Extract necessary information from state and action
current_position = state [" current_position "][" location_name "]
action_name = action ["name"]
target = action ["args "].get(" target", "")

Check if the action is ’open ’ and the target is a fridge
if action_name == "open" and "fridge" in target:

Check if the current position is not the same as the
target location

if current_position != target:
feedback = "Action failed: You must be at the fridge

to open it."
success = False
suggestion = f"Move to {target} before trying to open

it."
return feedback , success , suggestion

If the action is not ’open ’ or the rule does not apply ,
consider it successful

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_10_open(state , action , scene_graph):
Extract necessary information from state and action
current_position = state [" current_position "][" location_name "]
action_name = action ["name"]
target_location = action ["args "]. get(" target", "")

Check if the action is ’open ’ and the target is a drawer
if action_name == "open" and target_location.startswith ("

drawer "):
Check if the current position is not the same as the

target location
if current_position != target_location:

feedback = "Action failed: You must be at the drawer
to open it."

success = False
suggestion = f"Move to {target_location} before trying

to open it."
return feedback , success , suggestion

If the action is not ’open ’ or the rule does not apply ,
consider it successful

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_3_go_to(state , action , scene_graph):
Extract necessary information from state and action
item_in_hand = state[" item_in_hand "][" item_name "]
target_item = state [" target_item "]
action_name = action ["name"]

Check if the action is ’go_to ’
if action_name == "go to":

target_location = action ["args "][" target "]
Check if item in hand is None
if item_in_hand is None:

34

Check if the target location is not ’Unexplored ’ and
does not contain the target item

if target_location in scene_graph [" locations "]:
location_items = scene_graph [" locations "][

target_location]
if "Unexplored" not in location_items and not any(

target_item in item for item in location_items)
:
Search for a location containing the target

item
location_with_target_item = None
unexplored_locations = []

for location , items in scene_graph [" locations
"]. items ():
if any(target_item in item for item in

items):
location_with_target_item = location
break # Stop searching once a

location with the target item is
found

if "Unexplored" in items:
unexplored_locations.append(location)

Prepare suggestion string
if location_with_target_item:

suggestion = f"According to scene graph.
Please go to the location containing
the target item: {
location_with_target_item }."

elif unexplored_locations:
suggestion = (

"According to scene graph. "
"Please explore the following

unexplored locations: "
+ ", ".join(unexplored_locations) +

"."
)

else:
suggestion = "No valid locations found

that contain the target item or are
unexplored ."

feedback = f"Action failed: There is no {
target_item} in {target_location} "

success = False
return feedback , success , suggestion

If the action is not ’go_to ’ or the conditions are not met ,
consider it successful

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_heat(state , action , scene_graph):
Extract necessary information from the state and action
action_name = action.get("name")
action_args = action.get("args", {})
obj_to_heat = action_args.get("obj")
tool = action_args.get("tool")
Check if the action is ’heat ’
if action_name == "heat":

Check if the object to be heated is in hand and not in
the tool location

35

item_in_hand = state.get(" item_in_hand", {}).get("
item_name ")

current_position = state.get(" current_position", {}).get("
location_name ")

if item_in_hand == obj_to_heat and current_position !=
tool:
feedback = f"Failed to heat {obj_to_heat }. It must be

placed in {tool} to be heated ."
success = False
suggestion = f"Place {obj_to_heat} in {tool} before

heating ."
return feedback , success , suggestion

If the action is not ’heat ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_put(state , action , scene_graph):
if action[’name ’] == ’put ’:

obj_to_put = action[’args ’][’obj ’]
item_in_hand = state[’item_in_hand ’][’item_name ’]
if obj_to_put != item_in_hand:

feedback = f"Action failed: {obj_to_put} is not in
hand."

success = False
suggestion = f"Ensure you have {obj_to_put} in hand

before attempting to put it."
return feedback , success , suggestion

If the action is not ’put ’, consider it successful by
default

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_4_put(state , action , scene_graph):
if action[’name ’] == ’put ’:

current_location = state[’current_position ’][’
location_name ’]

target_location = action[’args ’][’target ’]
if current_location != target_location:

feedback = "Action failed: You must be at the target
location to put the item."

success = False
suggestion = f"Move to {target_location} before

attempting to put the item."
return feedback , success , suggestion

If the action is not ’put ’, consider it successful by
default

feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_2_use(state , action , scene_graph):
if action[’name ’] == ’use ’:

obj = action[’args ’][’obj ’]
current_location = state[’current_position ’][’

location_name ’]
Check if the object is in the current location
if obj not in state[’items_in_locations ’].get(

current_location , []):
feedback = f"Action failed: {obj} is not in the

current location {current_location }."

36

success = False
suggestion = f"Move to the location where {obj} is

present or bring {obj} to the current location ."
return feedback , success , suggestion

If the action is not ’use ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

def CodeRule_4_clean(state , action , scene_graph):
Extract the action name and arguments
action_name = action.get("name")
action_args = action.get("args", {})

Check if the action is ’clean ’
if action_name == "clean ":

Get the object to be cleaned from the action arguments
obj_to_clean = action_args.get("obj")

Get the item currently in hand
item_in_hand = state.get(" item_in_hand", {}).get("

item_name ")

Check if the object to be cleaned is in hand
if obj_to_clean != item_in_hand:

feedback = f"Action failed: {obj_to_clean} is not in
hand."

success = False
suggestion = f"Please ensure {obj_to_clean} is in hand

before cleaning ."
return feedback , success , suggestion

If the action is not ’clean ’, consider it successful
feedback = "Action executed successfully ."
success = True
suggestion = ""
return feedback , success , suggestion

37

Algorithm 3 Greedy Algorithm for the Maximum Coverage Problem in Eq. (5)

1: Input: Dinc = {δinc
1 , δinc

2 , .., δinc
N }, Rcode = {rcode

1 , rcode
2 , .., rcode

M }, aij : Indicator matrix where
aij = 1 if δinc

j ∈ rcode
i , otherwise aij = 0

2: InitializeR∗ ← ∅, Dcov ← ∅
3: while Dcov ̸= Dinc do
4: For each rule rcode

i ∈ Rcode, compute:

gain(rcode
i) =∣∣Dcov ∪ {δinc

j ∈ Dinc : aij = 1}
∣∣− |Dcov|

5: Get the index of rcode
i with the largest gain, i.e.,

i∗ ← argmax gain(rcode
i)

6: if gain(rcode
i∗) = 0 then

7: Break {Terminate if no rcode
i can cover any additional δinc }

8: end if
9: Add rcode

i∗ to the selected rules set:

R∗ ← R∗ ∪ {rcode
i∗ }

10: Update the covered set:

Dcov ← Dcov ∪ {δinc
j ∈ Dinc : ai∗j = 1}

11: if |R∗| = l then
12: Break {Terminate if hit the limit l}
13: end if
14: end while
15: Output: Set of selected rulesR∗

E Greedy Algorithm

We implement the following Algorithm 3 to solve the maximum coverage problem 5.

F Experiment Details

Environment Licenses. Both the Mars and ALFWorld environments are released under the MIT
License, and our experiments fully comply with their respective licensing terms. All code, assets, and
interaction logs used in this work adhere to the usage guidelines provided by the original environment
authors.

Compute Resources. All experiments were conducted on a local Ubuntu 20.04.6 workstation
with an Intel i5-13600KF CPU, 64GB RAM, and a single NVIDIA RTX 4060 Ti 16GB GPU. Each
experimental run (e.g., one evaluation trial) typically completed within 5–10 minutes. The evaluation
required less than 24 hours in total.

F.1 Mars

Task Details. Mars is an open-world environment designed for situated inductive reasoning, where
agents must actively interact with their surroundings, induce generalizable rules, and apply them
to achieve specific goals. Unlike traditional environments that rely on pre-existing commonsense
knowledge, Mars introduces counter-commonsense mechanisms by modifying terrain distributions,
survival settings, and task dependencies.

The agent’s goal is to unlock various achievements, such as:

• Collecting Achievements: Collect Coal, Collect Diamond, Collect Drink, Collect Iron,
Collect Sapling, Collect Stone, Collect Wood.

38

• Crafting Achievements: Make Wooden Pickaxe, Make Stone Pickaxe, Make Iron Pickaxe,
Make Wooden Sword, Make Stone Sword, Make Iron Sword.

• Placing Achievements: Place Table, Place Furnace, Place Plant, Place Stone.

• Survival and Combat Achievements: Kill Skeleton, Kill Zombie, Kill Cow, Eat Plant, Wake
Up.

However, achieving these goals requires adaptive reasoning since the default assumptions about item
acquisition and crafting may no longer hold. For example: Mars introduces counter-commonsense
modifications to challenge agents’ reliance on prior knowledge. These modifications fall into three
categories: Terrain, Survival Settings, and Task Dependencies, which can be combined to create
diverse worlds.

• Terrain Modifications:

– Distribution: Resources appear in unexpected locations (e.g., diamonds in sand, coal
near grass).

– Effects: Terrain properties change (e.g., lava is safe, grass is harmful, mining stone
gives wood).

• Survival Setting Changes:

– Entity Behavior: Cows may be aggressive, zombies passive, skeletons use melee
instead of bows.

– Food and Health: Eating cows might reduce health, drinking lava could restore it.

• Task Dependency Alterations:

– Resource Collection: Mining may yield unexpected materials (e.g., trees drop iron,
stone gives coal).

– Crafting Changes: Items require different materials (e.g., tables need diamonds, pick-
axes need iron).

– Placement Rules: Placing objects may consume extra resources (e.g., tables require
two diamonds).

By combining these modifications, Mars forces agents to learn dynamically, making pre-stored
knowledge unreliable and requiring real-time adaptation.

Each episode in Mars generates a unique 64 ∗ 64 grid-based world where agents operate under partial
observability (7 ∗ 9 grid view). The environment ensures task achievability by maintaining resource
balance, enforcing supply constraints, and allowing procedural rule induction.

Baselines. We compare our method against ReAct [37], which interleaves reasoning and actions;
Reflexion [38], an extension of ReAct with self-reflection; Skill Library [32], an adaptation of
JARVIS-1 [39] and Voyager [43] that stores successful plans for in-context learning; and IfR [32],
which extends Skill Library with an induction-from-reflection module that derives and stores game
rules for adaptive decision-making. These methods’ planning framework and components are shown
in Table 6.

Table 6: Comparison of baselines’ planning framework with different components.

Method Reasoning Experience Reflector Memory/Skill Library Rules Knowledge Graph Scene Graph
ReAct [37] ✓
Reflexion [38] ✓ ✓
Skill Library [39] ✓ ✓ ✓
IfR [32] ✓ ✓ ✓ ✓
WALL-E (ours) ✓ ✓ ✓ ✓ ✓

Method Setup. We use GPT-4 as the backend for our method. Following the Mars setup, we run 5
learning episodes and report results for LLM-based methods and RL-based baselines averaged over 9
and 20 trials, respectively.

39

F.2 ALFWorld

Task Details. ALFWorld is a text-based household simulator aligned with the 3D ALFRED bench-
mark [42]. Each episode gives the agent a natural-language goal (e.g., “put the cooled lettuce on the
countertop”). Agents issue high-level text commands such as "go to countertop 1," "take lettuce 1
from countertop 1," or "cool lettuce 1 with fridge 1," and receive textual observations describing their
egocentric view, nearby objects, inventory contents, and action results. The agent’s internal state is
the running history of these observations.

ALFWorld includes six task families: Pick & Place, Pick & Examine, Cool & Place, Heat & Place,
Clean & Place, Pick-Two & Place, mirroring the ALFRED dataset’s diversity of object manipulations
and state changes.

Method Setup. We use GPT-3.5-Instruct as the backbone model and perform neurosymbolic learning
on the training set. Additionally, to enhance neurosymbolic learning, we developed scripts to convert
the natural language dialogue history and action information into a structured JSON format, as
illustrated in Appendix C.2. Evaluation is conducted on all 134 ALFWorld test tasks, following the
evaluation protocol used by prior ALFWorld agents A.2.

F.3 Experiment Design for Effectiveness of NeuroSymbolic Learning

We set the number of learning episodes to 5. After each episode, the model, equipped with latest
learned code rules or skill library, is tested on the testing set. The cover rate quantifies the extent
to which the code rules derived from the neurosymbolic learning process address the LLM’s failed
predictions. Specifically, it represents the probability that mispredicted transitions by the LLM are
correctly handled by the learned code rules.

To assess the alignment between the LLM-based world model and the actual environment, we first
identify transitions where the LLM fails to make accurate predictions. This is achieved by utilizing an
unaligned LLM world model to generate predictions for trajectories obtained from the test set. The
discrepancies between the predicted observation ôt+1 and the actual observation ot+1 are compiled
into a set of mispredicted transitions. These mispredictions highlight areas where the LLM world
model does not align with the environment’s dynamics.

Subsequently, the learned code rules at each iteration are evaluated against the mispredicted transitions
dataset to determine their effectiveness in correcting these mispredictions. If a code rule successfully
predicts the outcome of a previously mispredicted transition, it demonstrates that the code rule
effectively addresses the LLM’s failure in that instance. The cover rate is then calculated as the ratio
of correctly addressed mispredictions to the total number of mispredicted transitions:

Cover Rate =
Number of Mispredictions Addressed by Code Rules

Total Number of Mispredicted Transitions
(12)

A higher cover rate indicates that the neurosymbolic learning process effectively enhances the
alignment of the LLM world model with the environment, thereby improving the overall accuracy
and reliability of the agent’s planning.

G Limitation and Future Work

Our current neurosymbolic learning framework exhibits two limitations. First, it focuses on learning
transition-level code rules that determine whether a transition succeeds or fails. While effective for
aligning local dynamics, these code rules lack the expressiveness to capture more abstract, long-
horizon planning constraints or temporally extended dependencies. Future work will explore inducing
higher-level symbolic structures—such as hierarchical knowledge or temporal logic—that can support
more complex reasoning and structured planning.

Second, the framework assumes deterministic dynamics, meaning that each action in a given state is
expected to produce a single, predictable outcome. However, many embodied environments involve
inherent stochasticity—for instance, actions in Mars may occasionally succeed or fail depending on
contextual factors like time of day or agent health. Our current neurosymbolic learning framework
does not account for such probabilistic variations, leading to potentially misleading failure classifica-
tions. Extending the framework to support probabilistic transition modeling is a key direction for
improving robustness.

40

	Introduction
	Related Work
	World Alignment by NeuroSymbolic Learning (WALL-E)
	NeuroSymbolic Learning of Code Rules
	Stage 1: Exploration of Trajectory Data
	Stage 2: Learning Symbolic Knowledge
	Stage 3: Translating Symbolic Knowledge to Compact Code Rules
	Stage 4: Code Rules Pruning

	Model-Predictive Control for World Model-based LLM Agents

	Experiments
	Benchmarks
	Evaluation Metrics
	Main Results
	Effectiveness of NeuroSymbolic Learning
	Ablation Study

	Conclusion
	Detailed Related Work
	Existing Agents in Minecraft
	Existing Agents in ALFWorld

	Detailed Prompt
	Learn Action Rules from Real Trajectories
	Translate Action Rules to Code
	Learn Knowledge Graph from Real Trajectories

	Environments' Observation Space and Action Space
	Mars
	ALFWorld

	Learned Rules
	Rules in Mars
	Rules in ALFWorld

	Greedy Algorithm
	Experiment Details
	Mars
	ALFWorld
	Experiment Design for Effectiveness of NeuroSymbolic Learning

	Limitation and Future Work

