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ABSTRACT

Model-based learning agents that use a world model to predict and plan have
shown impressive success in solving diverse, complex tasks and adapting to new
environments. However, the process of exploring open environments and updating
the model with collected experience also exposes them to adversarial manipula-
tion. In this paper, we propose SWAAP, the first scalable and stealthy data poison-
ing method for world models, designed to benchmark their adversarial robustness.
SWAAP uses a novel two-stage approach. In the first stage, the attacker iden-
tifies a target world model that deviates only slightly from the true environment
but significantly degrades agent’s performance when used for planning. This is
achieved via a first-order bilevel optimization and a new transition gradient theo-
rem. In the second stage, the attacker then performs the actual attack by perturbing
a small subset of fine-tuning data to steer the fine-tuned world model toward the
target model. Evaluations using diverse tasks show that our approach induces a
substantial performance drop and remains effective even under robust training and
detection, underscoring the urgent need for stronger protection in world modeling.

1 INTRODUCTION

While artificial intelligence (Al) has achieved remarkable success across various domains, building
general-purpose agents that can quickly adapt to new tasks remains a major challenge, particularly
for sequential decision-making tasks in open-ended environments that require substantial planning
and adaptation. A promising direction is the development of world models (Ha & Schmidhuber,
2018) that accurately capture environmental structure and dynamics to support a wide range of
downstream tasks. In this context, predictive world models, which allow agents to “imagine” future
scenarios for safer, more efficient decisions, are proliferating (Hafner et al., 2023} |[Hansen et al.,
2024} Zhou et al.| |2024)). Further, with recent advances in diffusion and transformer architectures,
foundation world models (OpenAll [2025; [DeepMind, 2024} Nvidial [2025a) capable of simulating
interactive environments from multi-modal input are emerging and are increasingly being applied in
complex domains such as autonomous vehicles and robotics (Nvidial [2025b)), making them valuable
targets for malicious attacks.

To support effective decision-making across diverse domains, world models must encode broad
knowledge, process high-dimensional inputs (e.g., images, videos, and text), and make long-horizon
predictions, introducing new vulnerabilities not present in traditional supervised learning or model-
free reinforcement learning (RL) systems. Despite extensive research in Al security and adversarial
machine learning over the past decade, ensuring the robustness of world models against adversarial
manipulation remains largely unexplored, limiting their deployment in high-stakes domains.

In this work, we take the first step toward adversarially robust world modeling by introducing poison-
ing attacks tailored to world models. Our method strategically alters trajectory data used for training
or fine-tuning, with the objective of manipulating model-based decision-making while maintaining
outputs close to those of a clean model to evade detection. We believe this line of work is both
practical and influential, as it highlights a fundamental vulnerability in world models that underpins
their reliability in downstream applications.

Traditional data poisoning methods from supervised learning (Biggio et al.,|2012; |[Munioz-Gonzalez
et al.| [2017; |Geiping et al.l [2021)) cannot be directly applied to our setting. These approaches typi-
cally assume fully differentiable training pipelines and discrete labels (e.g., flipping a cat to a dog),
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allowing the adversary to optimize per-example perturbations via gradient-based techniques. In con-
trast, poisoning a world model requires identifying optimal perturbations of next states in transition
tuples, which are continuous and affect long-horizon dynamics. Moreover, differentiating through
the training process of the world model is computationally expensive and generally intractable, mak-
ing standard supervised learning attacks unsuitable for this problem.

Existing data poisoning attacks in reinforcement learning (Rakhsha et al., 2020} [Zhang et al., [2020)
primarily manipulate the rewards or transitions observed during training to steer the learned policy
toward an adversary-specified target policy. However, these approaches do not align with our setting
for several reasons. First, they assume a fixed target policy, whereas in our case the adversary must
instead identify a worst-case world model that maximizes performance degradation. Second, both
(Rakhsha et al.,|2020; Zhang et al.,|2020) focus on relatively simple scenarios and rely on traditional
convex optimization methods, which are computationally infeasible for large environments with
continuous state and action spaces used in state-of-the-art world models such as TD-MPC2 (Hansen
et al.,|2024), DINO-WM (Zhou et al.,[2024) and DreamerV3 (Hafner et al.,[2023)). These differences
motivate the need for a fundamentally new approach to poisoning more complex world models.

In this work, we propose SWAAP (Stealthy World Model MAnipulation via DAta Poisoning), a
novel two-stage attack that manipulates the world model to mislead the agent and degrade its per-
formance at test time. In the first stage, the attacker identifies a target poisoned world model that,
once adopted by the agent, induces trajectories leading to low-return outcomes during testing. We
formulate this as a bi-level optimization problem: the objective is to identify a poisoned world model
that significantly degrades the agent’s performance, subject to the constraint that the poisoned model
must remain close to the original world model to avoid detection. In the second stage, we perform
a data poisoning attack by injecting carefully crafted poisoned transitions into a newly collected
fine-tuning dataset. This manipulation steers the updated world model toward the targeted poisoned
model identified in the first stage. Instead of assuming an unrealistic model poisoning attack that
directly replaces the original world model with the poisoned one, we adopt a more realistic data
poisoning approach, where the attacker only manipulates the finetuning training data. This requires
substantially less control over the system while still guiding the world model toward the targeted
poisoned version. We evaluate SWAAP on three widely used continuous state-action environments:
DMControl (Tassa et al.,2018)), MyoSuite (Caggiano et al.,|[2022), and MetaWorld (Yu et al.|[2020).
By poisoning just 10% of a small fine-tuning dataset, our data poisoning attack can induce a signif-
icant drop in the agent’s performance across diverse tasks. Moreover, the poisoned world models
maintain a similar deviation from the true environment transitions, comparable to clean models,
making them difficult to detect or mitigate. These findings highlight the urgent need for more robust
world modeling techniques.

2 SYSTEM AND THREAT MODELS

In this section, we present the system and threat models, covering both world models and our pro-
posed data poisoning attacks framework. A more detailed discussion of related work is provided in

Appendix [B]
2.1 WORLD MODELS

We study an agent that leverages a learned world model to interact with an environment formal-
ized as a Markov decision process (MDP) (S, A, P, R,~), where S is the state space, A is the
action space, P : S x A — A(S) is the transition kernel, R : S x A — R is the reward
function, and v € (0, 1) is the discount factor. During training, the agent learns a parameterized
world model P, that approximates the environment dynamics: Py (s’ | s,a) = P(s' | s,a), ei-
ther through self-supervised learning on collected trajectories or by finetuning a pretrained foun-
dation model (Zhou et al. 2024} Assran et al., 2025). The fidelity of P, is critical, as it di-
rectly determines the effectiveness of downstream decision-making. The training or finetuning pro-
cess F'(vo, D,,) is carried out via stochastic gradient descent by minimizing the prediction error
L(%0; Dn) = 3 (s a.5neny IS — Pyo(s,a) ||2. If the agent trains a world model from scratch, then
1o denotes the randomly initialized model and D,, = {(s, a, s")} represents a large training dataset.
In contrast, if the agent relies on a pretrained world model v, which was trained on data that may
slightly deviate from the true distribution encountered at test time or in environments with evolving
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dynamics, the model is typically updated intermittently with a smaller, newly collected dataset D,,.
This continual updating from the pretrained model v is regarded as finetuning.

Existing approaches differ in how the learned world model P, is used for action selection. For exam-
ple, DINO-WM (Zhou et al.,2024)) relies purely on model predictive control (MPC) without explic-
itly learning a policy, DreamerV3 (Hafner et al.} 2023) follows a model-based reinforcement learning
(MBRL) paradigm to train a policy directly from the world model, while TD-MPC2 (Hansen et al.,
2024) combines both approaches by jointly training a policy and world model and using MPC for
planning. These variations demonstrate that modern world models go beyond traditional notions of
MBRL, as they are often motivated by building general-purpose agents capable of solving diverse
tasks. In this work, we adopt the TD-MPC2 (Hansen et al.| 2024) setting as our running example,
while noting that our framework applies more broadly.

The agent’s problem is to generate a policy 7y () that maximizes the discounted cumulative return
using the world model Py, that approximate the true environment transition function P, which can
be formulated as following,

T
mo(¢) = argmax J(Py, mg), where J(Py,, mg) = ]Epw[ZWiR(si, ai)} ) (1)
o i=0
This formulation assumes the agent uses model-based reinforcement learning. If the agent employs
model predictive control (MPC), then J(Py, ) also depends on the true environment dynamics P,
which we omit from the notation for simplicity.

As discussed above, if the model predictive control (MPC) is used (Hansen et al., 2024} Zhou
et al., 2024)), the agent selects actions by searching over a finite-horizon sequence of candidate
actions. Specifically, the planner first samples multiple action sequences. For each sampled action
sequence ayryg = (a¢, i1, ..., ae+H), the planner uses the world model Py to predict future
states $¢1i41 ~ Py(- | 8144, ar+4) and evaluates the expected discounted return of the correspond-
ing trajectory. Then the agent finds the action sequence that can lead to the best expected discounted
return and executes the first action a; and replans at the next time step ¢ + 1, which is shown below.

H
* * 7
mo(st,%) = af, where af,;, ;; = argmax Ep, E Y R(St4i, Qrai)-
at:t4+H i=0

In contrast, DreamerV3 (Hafner et al., 2023 trains a policy 7g(s) directly on imagined trajectories
generated by P, using model-based reinforcement learning approach, allowing the agent to act with-
out explicit planning at inference time. TD-MPC2 (Hansen et al.,[2024)) combines these approaches:
it jointly trains a policy and world model, and then uses the policy as an initialization for MPC. We
include the detailed MPC algorithm in the Appendix [E] for completeness.

2.2 DATA POISONING ATTACKS

Against the victim agent, the adversary seeks to degrade long-term return by corrupting the policy
mg (1)) through tampering with the world model update. We consider a data-poisoning adversary
that may perturb a bounded fraction of transitions in the training dataset D,,, replacing (s, a, )
with (s, a, §) to form a poisoned dataset D,,. We assume the adversary can observe the finetuning
dataset D,, and knows the world model architecture (white-box setting) but cannot directly overwrite
the model or access the agent’s policy parameters. The adversary is restricted to poisoning at most
7p|Dy| samples, producing a modified dataset D,,. We denote ||D,, — D,||o as the number of
transitions changed in D,,. We also assume the adversary can interact with a clean environment
to collect transitions. Although we only consider poisoning the transition dynamics in this work,
our method can potentially apply to reward poisoning similar to (Rakhsha et al.| 2020; Zhang et al.,
2020). After the agent trains on D,,, the resulting world model P, deviates from the true dynamics
P and induces suboptimal behavior. This interaction can be formalized as the following bilevel
optimization problem:

min J (P, 79 (¢)) + KL(Py||P)

n

s.t. Py = F(Py,, Dy,), () = argmax J(Py, mg:), | Dr, — Dyllo < 75| D,

T/

2)
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where F'(Py, D,,) denotes the training process of the world model on dataset D,,, given a prior world
model Py. KL(Pyl||P) constrains the poisoned world model to remain close to the true transition
dynamics, thereby evading detection. The outer minimization corresponds to the adversary’s objec-
tive of reducing real-environment performance, while the inner maximization captures the agent’s
policy optimization under the poisoned world model.

3 STEALTHY WORLD MODEL MANIPULATION VIA DATA POISONING

Directly solving the bilevel optimization in
Eq.|2|is highly intractable. Because it requires O
differentiating through the finetuning process Pre-mivinsl Robust Testéime | -~ Potential Defenses

. . . Detection Training Detection
of the world model, which is typically non- o F7 P

. J i Generate —
transparent and computationally expensive. In o T — /i \ o
addition, unlike standard data poisoning in SU-  roisoncd Dataset By, Updated World Model Py Rollouts Real Environment P

‘Can I data poison the world model, leading
the agent to a bad policy?

to dog) IBiggio et al.[(2012); [Mufioz-Gonzalez,
et al.| (2017)), our setting involves finding opti-
mal perturbations of next states in transition tu-

ples, a substantially more complex problem. As ~ Sgge Ivordenify Wf,;‘:f;,f;j,{fj;‘;fi@
a result, traditional gradient-based data poison-
ing methods cannot be directly applied. Exist-
ing RL data poisoning approaches (Zhang et al.|
2020; |[Rakhsha et al., 2020)) also do not transfer to our setting due to: (i) they require a pre-specified
target policy, (ii) their methods cannot scale to complex continuous state and action spaces. To
address these challenges, our method SWAAP decomposes the adversary’s optimization into a two-
stage procedure (see Figure|[T).

pervised learning (e.g., flipping labels from cat Poison
| CXXEN
i

T
=k

Dataset D Target World Model Py,

Adversary

Figure 1: Pipeline of SWAAP.

In the first stage, we identify a worst-case target world model 1[) by formulating a bilevel optimization
problem of a two-player game between the agent that maximizes the return by using the model and
the attacker that minimizes the return by changing the model (Eq. [3). In the second stage, we
design poisoned transitions within D,, through the gradient matching technique (Geiping et al.,
2021) to craft D,, such that the gradient calculated during the finetuning procedure will steer the
world model toward 1[) This decomposition avoids direct differentiation through the training process
while providing a principled way to construct adversarial data to provide a surrogate optimization
problem to the original bilevel data poisoning optimization problem.

To ensure our attack remains stealthy, it must avoid detection at both the data-poisoning and testing
stage. During poisoning, injected transitions (s, a, §") should not be distinguishable from genuine
data; during testing, the learned world model Py should remain close to the environment’s true
transition function P. We enforce stealthiness by introducing two regularization terms—one applied
at the data level to constrain per-sample perturbations, and one applied at the model level to limit
deviations of the learned dynamics, balancing attack effectiveness with detectability.

3.1 STAGE 1: IDENTIFICATION OF PERTURBED MODELS

In the first stage, the attacker formulates a model poisoning problem, seeking a perturbed model
state 1) such that when the agent uses this model for planning under the true environment dynamics
P, its expected return is minimized.

As discussed in Section[2.T} the agent may leverage the world model in different ways when deriving
its policy, and the specifics of the actual online planning algorithm it uses may be hidden from
the attacker. To keep our approach general, we consider a surrogate policy 7y (¢) that mimics a
model-based RL agent, where 7y (v)) is derived to maximize the return in the imaginary environment
Py : mg(¢) € argmaxy,, J(Py,mor).

The adversary thus minimizes the return of the surrogate policy that learns from perturbed transitions
by solving the following bilevel optimization problem:

miny, J(P, 79 (¢)) + AKL(Py||P)

st.  me(1) € argmaxy,, J(Py, Ty ). 3)

4
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The goal is to minimize the KL-regularized expected return with respect to the optimal policy de-
rived from the poisoned environment.

This bilevel optimization problem remains challenging due to its nested structure. The primary
difficulty lies in computing the derivative Vg (10). If one directly treats mg(¢)) as a function of 1,
gradient-based methods such as hypergradient descent (Bard, |2013) update 1) using

VyJ (P, () = Vyme(¥)Vad (P, (1)),

but evaluating V7 (¢)) = Vy, arg maxy,, J(Py, g ) requires solving linear systems and comput-
ing costly second-order Hessians. Prior work has attempted to bypass this difficulty either through
surrogate approximations or heuristics that are difficult to control (Pedregosal [2016; |(Ghadimi &
Wang] 2018} MacKay et al.| [2019). Moreover, reinforcement learning objectives are highly non-
convex, involve high-dimensional state—action spaces, and present a complex optimization land-
scape. As a result, naive bilevel optimization methods often fail to converge reliably, making them
unsuitable for Problem 3] (Liu et al. [202T).

To obtain a more scalable solution, we adopt the first-order dynamic barrier gradient descent method
in (Liu et al} 2022}, which reformulates the problem by replacing the implicit argmin operator with
a value-function constraint. This allows the outer objective and inner objective to be solved without
explicitly computing the derivative V,mg(1)). Formally, let f(¢,6) = J(P,mp) + KL(Py|P)
denote the outer objective, and ¢(v,0) = maxr,, J(Py, 7o) — J(Py,my), which measures the
suboptimality of 7y relative to the optimal policy under P,,. Under the value-function approach, the
bilevel problem becomes the following constrained optimization:

rg}glf(d)ﬁ) s.t. q(y,0) <0.

The main idea of the dynamic barrier gradient method is to iteratively update the parameters (¢, 0)
to reduce f while ensuring that ¢ decreases whenever ¢ > 0. To this end, the parameters (1, 0) are
jointly updated as:

(V41,0 11) < (Vr, Ok) — § [V f (U, Ok) + M Va(Yr, O1)] )

where ¢ is the step size and Ay, is the dual variable at iteration k (see Appendix [D|for details). The
gradients of f and ¢ can be explicitly written as:

V(w,@)f(wkv gk) = ()‘vaL(Pwk ”P)a VHJ(Pv ek)) ) (5
V.00d(Wr, 0k) = (Vo (1, 0) — Vo J (Un, 0k), —Vo I (¥, 0)), (6)

where we use the shorthand J (¢, 0 ) = J(Py, , 7, ), and 8}V is the W -step approximation of the
optimal policy 75 € arg maxr,, J(Py, mor).

While the gradient of the expected return with respect to the policy 6 is readily available from the
classic policy gradient theorem (Sutton et al., [1999), the gradient with respect to the transition 1
is not directly available. To address this, we establish the following result by extending the policy
gradient theorem (see Appendix [C|for the proof).

Theorem 1. The transition gradient of expected return in an MDP with transition dynamics Py, and
policy my can be expressed by

va(Pwa 7T9) = E(s,a,r,s/)NPw,mg {(R(Sv a, SI) + V(‘S/))vdl 1Og Pd)(sl"sv (l) .

Using this formulation, our algorithm for perturbed model identification proceeds as follows. We
initialize (vg,0p) from pretrained models and iteratively approximate the locally optimal policy
via T-step gradient ascent. At each iteration, we collect rollouts under Py, , 7y, and compute the
required gradients of the return with respect to v and 6. The parameters are then updated using
Equation[d] To improve sample efficiency, we maintain replay buffers to reuse trajectories, enabling
multiple gradient updates per step. The full procedure is summarized in Algorithm I

3.2 STAGE 2: POISONING DATA TO MANIPULATE MODEL

As noted earlier, it is unrealistic for an attacker to directly replace the agent’s world model P, with
Py, as this would require complete control over the victim agent. Thus, we choose to conduct a data
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Algorithm 1 Algorithm for Perturbed Model Identification

Input: Environment dynamics P, a dynamics model g, a policy 6,
Output: perturbed model zﬁ
while (1)1, 0),) not converged do
for i < 1to W do
Ot < 05, + Vo (¢, 0})
Collect rollouts from (¢, 0}:‘/), (P,0r), (Y, 0r) to form bufferyy, buffer,y, bufferyy, re-
spectively
Q<11
fori < 1to N do
Compute V,J (¢, 0}V by sampling buffery,
Compute V4 J(P,0) by sampling buffer,,
Compute V. J (Y, 0)) and Vo J (¢y, 0x) by sampling buffery,
Compose V f (1, 0x) and Vq(1x, 0),) from Equation[5|and Equation[6] and A
Append V f (vx, O) + AV q(Yr, Ox) to Q2
Wy 72“’]?2 w
(Vrs1, Org1) = (Pr, Ok) — € - wi
return v <— vy,

poisoning attack on the fine-tuning dataset D,, to manipulate the victim’s model toward P 5 which
can be stated as follows.

r%in KL(P||F(Pyy, Dp))  stl|Dn = Dnllo < rp| D, %

where Py, = F(Py,||D,,) is the poisoned world model after training and KL (P, 1 (Yo, D,,)) is the
KL divergence between the target world model generated in Stage 1 and the updated world model
using poisoned data. To improve stealth, the attacker is allowed to modify up to r,,|D,, | transitions
in the finetuning dataset D,,, where 7, is the maximum fraction of transitions that can be perturbed.

Directly solving (7)) requires jointly optimizing which transitions to modify and how to modify them,
which is computationally hard: selecting up to 7,|D,,| transitions from D,, is a discrete subset selec-
tion problem, and for each such choice, one must also solve a continuous perturbation optimization
over the chosen elements. Solving these two problems jointly requires searching an exponentially
large space while repeatedly finetuning (or differentiating through) the world model, rendering the
approach computationally infeasible in practice.

We address the challenge of jointly determining which transitions to modify and how to modify
them by adopting a simple yet effective heuristic. Specifically, we first select the top r, fraction of
transitions {(s,a, s’)} C D, that exhibit the largest model residuals, where for a given dynamics
model v the residual is defined as

ey(s,a,5") = ||s" = Py(s,a)]2. (8)

Let D, denote the selected top 7, fraction of transitions with residuals with respect to the target
model e (s, a,s") in Dy, and let D = Dy, \ D), be the remaining clean transitions. The poisoned

dataset is then D,, = D, U D,,. We then solve the reduced data poisoning problem only in D,, using
gradient matching (Geiping et al.,|2021)) as follows. Let

Greal = E(s,a,é')eﬁn [vd)o ”5, - P‘/Jo (Sa CL)H%], Gtarget = E(&G’S')NDau [VU)O “Pi/;(S’ a) - Pl/lo(s’ a) ”3]7

here Dy = {(s,a,s’)} is a large dataset collected by the attacker. The gradient matching problem
is

s.t. Dy, = DU Dy, |Dy| < 1| Dyl 9)

2
. min HGreal - Gtarget
{5}:(si,ai,8;)EDy} 2

This gradient-matching formulation provides an effective solution to the original data poisoning
problem in Equation |7| because it directly aligns the updates induced by the poisoned dataset D,
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with the target world model Pu;. By defining Grea as the expected gradient on the poisoned data
and Gareer as the gradient corresponding to the adversary’s worst-case model over a large reference

dataset Dy, minimizing ||Grea — Grarget||3 ensures that training on D,, nudges the world model P,
in the direction toward the target world model P b

To solve this gradient matching problem, we define a loss function L p with two components:

Lp=(1- a)(l — ¢08(Gieal, Gtarget)) +a Z ‘Hg; - 5;H2 - ||P¢(5ivai) - 5;||2| (10)
(si,a4,8;)ED,

The first term maximizes the cosine similarity between the gradient from the poisoned dataset and
the target gradient estimated from D,j;, thereby steering the fine-tuned world model toward P, ;- The
second term focuses on the selected subset D,, and leverages the fact that the original world model
Py, already exhibits some one-step prediction error (see Table . Thus, we can measure perturba-
tion size relative to this existing error to allow bounded, plausible poisoned data while discouraging
large or conspicuous changes to avoid being detected. Regularization coefficient o« € (0,1) con-
trols the trade-off between gradient alignment and the relative size of perturbations compared to
the model’s inherent prediction error. By minimizing the loss Lp, the adversary determines the
poisoned transitions D,, and forms the poisoned finetuned dataset D,,.

3.3 DEFENSES AGAINST DATA POISONING

We assume that the agent may employ defense mechanisms during finetuning to mitigate the ef-
fects of data poisoning. We consider pre-training detection, robust training, and test-time detection
defenses. Pre-training detection and robust training methods require the agent to have a relatively ac-
curate mimic model of the environment transitions; however, in practice, the agent may not possess
such a model due to limited clean data. To overestimate the agent’s defense capability in our exper-
iments, we assume that the agent has access to a reasonably accurate world model Py to conduct
these defenses.

Detection-based methods identify potentially poisoned transitions before they are used for model
updates by comparing the residual against a certain threshold. Transitions with residuals ey (s, a, s”)
that violate this threshold are flagged as suspicious and removed or down-weighted (Chen et al.,
2021).

Training-time defenses aim to reduce the impact of poisoned samples without explicitly identifying
them. One representative approach is the TRIM strategy (Biggio et al., [2012), which iteratively fil-
ters transitions based on their residuals. At each iteration, the transitions are ranked by ey (s, a, s"),
and only the lowest (1 — $)n residual transitions are retained, where n is the number of transitions
considered and 5 € (0, 1) controls the fraction of discarded data. The finetuning update is then
computed using this subset. By discarding high-residual transitions, the TRIM strategy limits the
influence of adversarially perturbed transitions while preserving the underlying clean dynamics.

In addition, the agent can perform a test-time detection to monitor whether the world model is
poisoned. The agent can observe the true next state s’ from the environment and compare it with the
world model output Py (s, a). We define § = % S ew(siansh) = LS s = Py(s,a)|z as
the deviation, where T’ is the number of transitions (s, a, s") the agent observes during testing.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We adopt TD-MPC2 (Hansen et al., [2024) as our victim algorithm because it jointly trains a policy
and a world model, then uses the learned policy to initialize MPC. We evaluate a finetuning scenario
that the agent starts from a pretrained world model vy, which is trained from 1,000,000 clean
transitions, and updates it using a small dataset D,, including 5, 000 transitions. TD-MPC2 uses 512
rollouts with a horizon of 3 in MPC planning. A detailed hyperparameter table is in Appendix [F|

We report the cumulative return and the deviation ¢ from the true transitions under four scenarios.
The Clean corresponds to the agent using the pre-trained, unpoisoned world model P, during test-
ing. SWAAP (Random) uses randomly perturbed transitions as the target model in stage two instead
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Table 1: Main results comparison between clean, direct model poisoning, SWAAP (Random), and
SWAAP. Each test aggregates over 100 episodes and all have the same data poisoning ratio r, = 0.1,
« is chosen to be 0.9 or 0.99 to make § small and comparable to clean ones.

Environment Clean SWAAP (Random) Direct Model Poisoning SWAAP

Return J Return J Return 1 Return 1
DMControl humanoid-walk 866 £ 57 .09 £.05 839 £ 90 .10 £.05 813 £112 11+.05 776 £ 145 11+ .06
humanoid-run 587 + 53 .05+.03 565 + 60 .05+.04 207 4 42 10+£.04 497 + 64 .06 £.04
dog-walk 744 £49 .06 +.02 803 + 36 .06 +.02 328 £ 76 .10+.03 693 + 75 .06 +.03
dog-run 653 £ 54 .05+£.02 631 + 54 .05£.02 246 + 66 .08 £.02 475+ 63 .06 £.02
cheetah-run 834 + 62 .03+ .04 845 + 34 02+.04 | 415+121 .09 +.09 792 +42 .04+ .06
Myosuite pen-twirl-hard | 3693 £2195 .06 +.03 | 2507 £2343 .13+ .10 | 2876 £2364 .07+ .02 | 2479 £2236 .13+ .13
i reach-hard 733 £98 .04+.04 | 631£510 .07+.05| 678+162 .07+£.02 | 531772 .10+£.13
Metaworld push 1789 +£20 .08£.03 | 1747+£185 .09+.06 [ 1572£559 .11 +.06 1716 £58 . 11£.07
soccer 1707+43  .05+.04 | 1691+180 .04+.05 1642+89  .074+.06 | 1483+516 .06 +.08

of the poisoned world model PyD from stage one. Direct Model Poisoning deploys the target poi-
soned world model P¢ without data poisoning, representing an unrealistic direct model overwrite.
Finally, SWAAP reports the results from the two-stage attack pipeline, including both target model
identification and data poisoning. We conduct our experiments on three widely used benchmarks
with continuous state and action spaces: DMControl (Tassa et al.,2018)), MyoSuite (Caggiano et al.,
2022)), and MetaWorld (Yu et al., 2020). Additional results for SWAAP, SWAAP(Random), direct
model poisoning, and ablation on MPC parameters are provided in Appendix

4.2 ATTACK PERFORMANCES

Table [T] shows our SWAAP algorithm can significantly lower the agent’s return while maintaining
a comparable level of deviation as a clean world model. SWAAP (Random) is substantially less
effective than our two-stage attack at comparable deviation levels J, which underscores the value
of Stage one for identifying a target world model. Figure [2] further illustrates that allowing larger
deviations (by relaxing the regulization coefficient «v) yields greater return degradation in Humanoid-
Walk and Myo-Pen-Twirl; additional ablations on « appear in Appendix [G.1}

Relative to the direct model poisoning results, performance depends on the magnitude of the devia-
tion: in some environments direct model overwrite produces stronger immediate degradation, while
in others our two-stage pipeline attains comparable or better results. This indicates two points: (i)
realistic data poisoning with constrained budget and stealthiness can closely approximate the effect
of direct model poisoning, and (ii) in environments such as Myo-Pen-Twirl-Hard our Stage two pro-
cedure does not fully recover the Stage one target P, suggesting room for improved data-poisoning
algorithms. To visualize these relationships we plot return versus deviation curves for varying r,, and
« across the three methods (SWAAP, SWAAP(Random) and direct model poisoning) in Figure [3
In Humanoid-Walk our method achieves the strongest attack for a given §, while in some Myosuite
tasks direct model poisoning remains the most damaging under the same level of 4.
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Figure 2: Comparing results between SWAAP (Random) and SWAAP across different @ =
(0.1,0.5,0.9). Data poisoning ratio r,, used by the three tasks are 0.1,0.2, 0.1, respectively. It
shows, with some increase on deviation, our attack can reliably lead to decrease of agent’s perfor-
mance, and the failure of SWAAP (Random), which brew the poison data by applying random noise
for the model to finetune, to affect the agent in humanoid-walk and mw-soccer indicate that the
identification of vulnerable perturbed model state is positively contributing to attack result.
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Figure 3: Comparing SWAAP (Random), direct model poisoning, and SWAAP in §—Return plots.
The data points for SWAAP (Random) and SWAAP are from using different r;, and o, while data
points for direct model poisoning baseline are extracted from different training iterations under
A = 10 for humanoid-walk, A = 1 for myo-pen-twirl-hard (see Figure EI)

4.3 ATTACK UNDER DEFENSES

We consider three defenses the agent might deploy: pre-training detection 2021), robust
training (TRIM) (Biggio et al.|[2012), and testing-time detection. As illustrated in Fig.[4a] the resid-
uals of the poisoned dataset D,, are statistically indistinguishable from those of a clean dataset D,,,
indicating the agent cannot reliably identify poisoned transitions during pre-training. Fig.[db|reports
results when the agent applies the TRIM robust-training procedure: our SWAAP attack preserves its
effectiveness under TRIM and in some cases produces even stronger degradation. We conjecture this
occurs because the poisoned transitions are carefully crafted to mislead TRIM’s filtering rule into
removing clean transitions, thereby amplifying the attack’s effect after training. Finally, as shown
in Table[I] SWAAP induces a level of model deviation at test time that is comparable to—or indis-
tinguishable from—that produced by a clean world model, demonstrating that the attack remains
difficult to detect during testing.
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(a) Humanoid-Walk Pre-Training Detection (b) Humanoid-Walk TRIM Training Defense

Figure 4: Detection and training defense results. 5 = 0.2 is used in TRIM training in (b).

5 CONCLUSION AND FUTURE WORK

In this work, we proposed SWAAP, a novel two-stage data poisoning attack that manipulates world
models, leading to significant performance degradation at test time while remaining stealthy. A
promising future direction is to further refine the data poisoning stage by designing algorithms that
align the poisoned model more closely with the target model obtained from the first stage. Another
interesting avenue is to study foundation world models that can be applied across diverse tasks, and
to investigate how their generality influences both the effectiveness of poisoning attacks and the
robustness of potential defenses.
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APPENDIX

A USE OF LLMS

In this work, we use LLMs mainly for grammar checking and rephrasing words. All references
were independently verified by the authors. No algorithms, proofs, or experimental results were
generated by ChatGPT, and no proprietary or sensitive data were shared with the tool. All technical
contributions and analyses are solely the authors’ work.

B RELATED WORKS

B.1 WORLD MODELS

World models aim to learn compact and predictive representations of environment dynamics that
can be used for planning and control. Instead of interacting directly with the environment, an agent
can rely on its learned model to simulate trajectories, evaluate policies, and anticipate future states.
First introduced in (Ha & Schmidhuber; 2018)), this work introduced a three-component architec-
ture combining a variational autoencoder (VAE), a recurrent neural network (RNN), and a linear
controller, demonstrating that policies trained entirely within a latent model can transfer back to the
real environment. This work sparked a line of research exploring increasingly powerful and scalable
model-based reinforcement learning frameworks.

Dreamer-style agents use latent dynamics models optimized end-to-end with reinforcement learning.
DreamerV3 (Hafner et al.,[2023)) achieves state-of-the-art performance on visual control and robotic
tasks. It employs a recurrent state-space model (RSSM) with deterministic state h; and stochastic
latent s;, performing rollouts entirely in latent space. Three heads are trained on the RSSM: a reward
predictor 74, a value function V() and an actor 7, using imagined rollouts. At decision time, the
actor proposes candidate actions, either sampled or taken as the mean.

More recent approaches have investigated architectural advances tailored for large-scale and com-
plex environments. DINO-WM (Zhou et al., [2024) leverages self-supervised vision transformers
(ViTs) to improve perception quality, enabling stronger generalization in visually rich settings. Sim-
ilarly, TD-MPC2 (Hansen et al., |2024) proposes a temporally abstracted model predictive control
framework that combines world models with trajectory optimization, achieving sample-efficient
learning and strong performance in high-dimensional continuous control tasks.

Parallel to these developments, diffusion-based world models have emerged as a promising alter-
native (Pearce et al.l [2023; Janner et al.| [2022). By parameterizing the transition distribution as a
denoising diffusion process, these models can capture multi-modal and stochastic dynamics more
effectively than conventional Gaussian latent models. Diffusion world models have been shown
to improve both planning quality and robustness to uncertainty, making them attractive in settings
where dynamics are highly non-deterministic.

B.2 MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning (MBRL) is a powerful paradigm that improves sample effi-
ciency and enables better generalization compared to purely model-free methods. In MBRL, an
agent learns an explicit dynamics model of the environment and leverages this model for planning
or policy optimization. Formally, we consider a Markov decision process (MDP) (S, A, P, R, ),
where S is the state space, A is the action space, P : S x A — A(S) defines the transition kernel,
R : S x A — Ris the reward function, and v € (0, 1) is the discount factor. The goal is to find a

policy 7w : S — A(A) that maximizes the expected discounted return ZiT:o Vi R(s¢,az).

Unlike model-free approaches that learn value functions or policies directly from experience (Mnih
et al., 2015; |Lillicrap et al., 2016; |Haarnoja et al., |2018)), MBRL explicitly learns a parametric ap-

proximation P,p of the transition kernel P, often using neural networks (Deisenroth & Rasmussen,
2011; (Chua et al., 2018} Janner et al. 2019; Hansen et al., [2024). This learned dynamics model
can then be used for model-predictive control (MPC) (Camacho & Bordons, [2013)), trajectory opti-
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mization (Tassa et al.,|[2012), or to generate synthetic rollouts for policy improvement (Kaiser et al.,
2020; Hafner et al.,|2019).

B.3 MODEL POISONING ATTACK

Model poisoning attacks directly compromise a learned model by altering its parameters. Model
poisoning attack assumes the adversary can craft malicious model updates to steer the learning
outcome or directly replace the model parameters. For example, carefully crafted local malicious
updates can harm the performance of a federated learning system (Fang et al.| [2020).

In reinforcement learning, model poisoning is particularly concerning when applied to the agent’s
learned dynamics model. Small, adversarial modifications to the transition kernel can propagate over
planning horizons, misleading policy improvement and causing degraded performance (Rakhsha
et al.l 2020). This makes model poisoning a uniquely severe threat in model-based RL, as even
subtle deviations from the true dynamics can cascade into large errors in long-term decision making.

B.4 DATA POISONING ATTACKS AND DEFENSES

Data poisoning attacks compromise learning systems by corrupting the training dataset to bias the
learned model toward an adversarial objective. Unlike model poisoning, which manipulates param-
eters directly, data poisoning assumes the attacker can only influence the data stream but not the
learning algorithm itself, which is a more realistic attack scenario. Data poisoning attacks have been
shown to significantly degrade the model performance even with small amounts of poisoned data
(Biggio et al.} [2012). A recent and effective data poisoning technique leverages gradient matching,
which optimizes poisoned samples such that their gradients closely align with those of a target ad-
versarial objective (Geiping et al.| [2021). By ensuring that poisoned data induces updates similar
to those of the adversary’s intended solution, gradient matching enables stealthy and highly effec-
tive poisoning even under limited attacker control. We also adopt gradient matching in the second
stage of our attack methods, where we injects carefully crafted poisoned transitions into the newly
collected fine-tuning dataset.

In reinforcement learning, data poisoning is particularly dangerous since training relies on sequen-
tial interactions with the environment. By injecting corrupted transitions into the replay buffer or
modifying observed trajectories, an adversary can degrade the long-term performance of the agent,
or even embed targeted failures (Rakhsha et al.l 2020; Zhang et al., 2020)).

Effective defenses against data poisoning attacks involve detection and training-time strategies. We
consider two widely used data poisoning defenses in our work. |[Chen et al.|(2021)) propose De-
Pois, an attack-agnostic detection method that identifies poisoned data points with the help of a
mimic model trained from clean data samples. By measuring the difference between the samples on
the mimic model’s outputs, De-Pois can flag and remove suspicious points, improving robustness
without assuming knowledge of the attack type.

Complementing detection, training-time defenses aim to mitigate the effect of poisoned samples
during learning. For example, Biggio et al.| (2012) introduce the TRIM method and its iterative
variant, which estimate and remove a fraction of potentially poisoned points based on residual errors
and statistical properties of the data.

C DERIVATION OF TRANSITION GRADIENT

Theorem 1. The transition gradient of expected return in an MDP with transition dynamics Py and
policy my can be expressed by

Vi (P, o) = Esa,ms)mPymo | (R(s,a,8") + V(")) Vy log Py(s']s, a)|.
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Proof: To prove the theorem, we start from the derivative of state value function of an arbitrary
initial state and extend the state into the future time indefinitely.

V¢V So sz a0|80 So,ao)
=Vy Zﬂ' aglso) ZPw(sl\so,ao)[R(so,ao, s1) 4+ V(s1)]
= Z 71'((10'80) Z Vd,Pw(Sl‘So, ao)[R(So, ap, 81) + V(Sl)]

+> m(aolso) Y Py(s1ls0,a0) ViV (s1)

aop S1

=M(s0) + > _ prl(so = s1,k =1)VyV(s1)

51

= M(s0) + Y _ palso = s1,k = D[M(s1) + Y _ prls1 — 52,k = 1)V V(s2)]

S1 S2
= M(so) + Zpﬂ(so — s1,1)M(s1) + Zpﬂ(so — $2,2)M(s2) + ...
S1 S2

= Z Zpﬂ(so — x, k)M ()

x k=0

= Zn(s)M s
o 1(s)
g: > n(s)
= Z d,(s) Z m(als) Z Vi Py(s'|s,a)(R(s,a,s") + V(s)).

where M (sg) = iao m(aolso) D, Vi Py(s1]s0, a0)[R(s0, a0, s1) + V (s1)].

pr(so = s1,k =1) =" m(als)P(s1]s0,ao) is the transition probability of reaching s; from s
at step k = 1, and the relation p™(s — z,k+1) = >, p"(s = s, k)p™(s' = x,1) is used to
write the transition gradient into recurrence form. Therefore,

Vo J(Py, ) Zd Z (als) > VyPy(s'|s,a)(R(s,a,s") + V(s))

- E(s’a7r75/)NP¢7ﬂ-[(R(S7 a,8") +V(s"))Vylog Py(s|s,a)].

For deterministic transitions s’ = ju,(s, a), this becomes

Vo (Py,m) = Vy Zd (5)V (s)
=V, Zd Z [5)Q(s, a)
ZWXS:dW s Z (als) ZB/, '|s,a)[R(s,a,s") + V()]
=V, Xs:dw(s Xa:w als)[R(s, a, py (s, a)) + V(py (s, a))]

= Zdﬂ(s) Zﬂ'(a\s)vsz [R(s,a,8") + V(" )ls=p, (s,0) Virhts (5, @).

D MODEL POISONING ALGORITHM

To study adversarial robustness of world models, we cast model poisoning as a bilevel optimization
problem where the outer objective aims to degrade the return J (P, 7y) under the true environment
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dynamics P, while the inner objective enforces that the perturbed model Py, still admits a locally
optimal policy. Directly differentiating through the inner optimization V7 (1)) is intractable due
to the implicit dependence of 7y on v and the need for costly Hessian computations.

Following the first-order dynamic barrier gradient descent method, we reformulate the problem as
a constrained optimization that balances the decrease of the outer objective f (v, #) and a constraint
function ¢(1, 6).
miny J(P,mg) + AL(Py, P) (1
S.t. minﬂé J(Pw,ﬂé)fj(Pw,ﬂ'o) <0
and define f(¢,0) = J(P,mg) + L(Py,Py) and q(¢,0) = J(Py,7m}) — J(Py,m9) =
ming, J(Py,my) — J(Py, ). This transformed problem is solvable by iteratively update (¢, 0) to
decrease f while at the same time keeping the constraint ¢ < 0 satisfied by decreasing ¢ whenever
g > 0 in each step:

(Y1, Ok4+1) < (Y, Ok) — Ewi (12)
where wy, = argn%inHVf(z/)k,Qk) —w||? (13)
s.t. (Vq(Yn, Or),w) > ér. (14)

this could be solved in closed form, which gives wy = V f(¢g, 0r) + M Va(g, k), with A, =
max (¢’“7<Vﬁc(vﬁk(;f:’)éz‘ﬁ§wk’e’“)> , 0) and ¢y, is chosen to be ng(eh,0) or 1| Vq(h,0)||*. Therefore,
the procedure to optimize f by jointly updating (1), 6) is:

(g1, O 11) < (Ui, Ok) — EV f (W, O) + M Va(Wr, O1)] (15)
where V f(1r, 0x) = V(y,.0,)f (¥r, k) is the gradient update of outer problem and Vq(v,0) =
V (4,6)4(¢, 0) imposes the constraint. Expressed explicitly, the gradient of f and ¢ are:

Vo) f Wk, 0k) = (AVyL(Yx, P), Vo (P, 0r)) (16)

Vo) d(Wr, 0) = (Voo (U, 05) — Vi (¥, 0k), =V oI (P, 0x)) (17)
where the shorthand J (v, 0x) = J(Py,, 7, ) is used, and 0F = 779Tk is the T steps approximation
of 75 € argmax,, J(Py, mp).

E MODEL PREDICTIVE CONTROL

Algorithm 2 General Model Predictive Control (MPC)

1: Input: World model ), current state s;, goal o, (optional), horizon H, number of rollouts
num_samples
2: Encode: z; = enc(s;), z, = enc(ogy) if goal is given

3: for each MPC step do

4: Sample num_samples candidate action sequences {a}. ;_,}i=7->*""'*° (from a policy
prior, an action sampler, or learned actor)

5: for each sequence 7 do

6: Roll out latent trajectory 2% ;; = Py (¢, ab. ;1)

7: Evaluate cost or return:

Zf;ol (28 al) + yHQ(2Y)  (value/bootstrap)
J' =< |12y — 2412 (goal-closeness)
other task-specific objective

8: Select best sequence(s) according to J*
9: Refit a sampling distribution to top-K sequences

10: return first action or first k actions from selected sequence or sampler

We provide a general formulation of Model Predictive Control (MPC), which abstracts across vari-
ants such as TD-MPC2 (Hansen et al., [2024), DINO-WM (Zhou et al., 2024)). In this section, we use
Z to denote imagined latent, compare to real latent z encoded from real state s from environment.
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TD-MPC2 (Hansen et al.|[2024) uses the learned world model 1) together with a learned prior policy
Tprior- At each planning step the planner first obtains num_pi_trajs candidate trajectories by
rolling out 7o, under transition Py; these yield the policy-guided action sequences. The plan-
ner then samples an additional num_samples — num_pi_trajs random action sequences from
a stochastic proposal (e.g., i.i.d. or Gaussian-perturbed sequences). During the inner improve-
ment/refit loop the action components coming from the prior policy are treated as guidance and are
typically held fixed, while only the remaining (random) action sequences are optimized. This hy-
brid design reduces search dimensionality and biases search toward plausible behavior while still
allowing exploratory refinement.

DINO-WM (Zhou et al.| [2024) does not use a learned prior. Instead it draws many random action
sequences, rolls each sequence forward in the world model Py, for horizon H, and scores each rollout
by a final-state objective (the distance to a goal latent z,, e.g., J = |2z — 24|2). The top-performing
sequences are retained as elites and the sampling distribution is refit to those elites (CEM-style); this
process repeats until the sampling distribution concentrates on sequences that reach the goal.

The above MPC algorithm highlights the shared structure: rolling out candidate action sequences
over a planning horizon H using a learned world model Py, evaluating them under a task-specific
objective (e.g., bootstrapped return, goal closeness, or other criteria), and executing the first action
of the best sequence. The number of sampled rollouts num_samples and the planning horizon H
are hyperparameters that directly affect the quality of planning and computation cost. The general
MPC procedure is summarized in Algorithm 2]

F HYPERPARAMETERS

We report our SWAAP key hyperparameters in Table [2] Other parameters are the same as stated in
TD-MPC2 (Hansen et al., [2024)).

Table 2: Key hyperparameters used in experiments; other parameters are the same as in TD-MPC2

Hyperparameter Typical value(s) Description

Model Poisoning Hyperparameters

A {0, 1, 10, 100} Consistency coefficient applied to the L(P, Py) term
during model poisoning in Equation E]

w {30} The number of update steps used to approximate 65,

N {16} The size of €2, the number of small updates aggregated
to compute gradients of fx, gr and g

sample_batch_size {256} Number of transitions used to calculate each sample in
Q

nume_step {100, 500} The imagined rollout length, 500 for DMControl tasks
and 100 for others.

buffer_size {500} Buffer size for every buffer used in Algorithrn

Data Poisoning Hyperparameters

Tp {0.1, 0.2, 0.3} Fraction of the dataset (or proportion of trajecto-
ries/transitions) modified by adversary.

« {0.1, 0.5, 0.9, 0.95, 0.99} Data poisoning regularization coefficient in Equa-
tion

poison_steps {5000} The number of gradient matching update steps.

noise_scale {0.1,0.3,0.5} The random perturbation scale of SWAAP (Random)

train_epochs {100, 500} The number of training epochs for finetuning, 100 for
DMControl tasks and 500 for others.

learning_rate {0.01,0.0001} Learning rate of finetuning, 0.01 for MyoSuite and
0.0001 for others.

| D | {5000} Size of the finetuning dataset.

| Dan| {50000} Size of the dataset to approximate Garget

17
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G MORE RESULTS

G.1 SWAAP AND SWAAP (RANDOM)

We show more results on SWAAP and SWAAP(Random) in Figure [5]

G.2 PRE-TRAINING DETECTION

We show more results on pre-training detection results in Figure [6]

G.3 MODEL POSIONING TRAINING CURVE

We show the stage one model training curve in Figure

G.4 MPC ABLATION

Table [3| reports the reward of TD-MPC2 under different rollout horizons (h = 3,6, 9) and number
of samples for both the clean and SWAAP settings. We observe that our SWAAP attack consistently
reduces the agent’s performance across all configurations, demonstrating its effectiveness under
every setting. Additionally, the MPC performance generally increases with the number of samples
and decreases as the rollout horizon grows. Consequently, the impact of our attack is also influenced
by these hyperparameters: it tends to be more significant when the baseline MPC performance is
higher (larger sample sizes) and slightly less effective at longer horizons given the low clean reward.

Table 3: Effect of MPC hyperparameters (num_samples, horizon h) on reward under clean and
SWAAP settings. Values are mean = std over 10 episodes.

Return
Num Samples =3 =0 =79
64 Clean 12 + 21 5+4 9+21
SWAAP T+7 19 + 39 14 £+ 20
128 Clean 150 £ 95 58 £92 2+2
SWAAP | 101 £+ 85 38 51 43 + 41
256 Clean 788 £ 157 | 488 =279 | 68 £ 115
SWAAP | 347 4+ 257 93 + 93 21 + 36
512 Clean 855+ 62 | 687 £ 112 37 £ 61
SWAAP | 594 4+ 203 49 + 61 41 + 58
1024 Clean 875 £ 63 812 £ 91 | 385+ 287
SWAAP | 656 =192 | 87 + 147 75 +92

18
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