
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEALTHY WORLD MODEL MANIPULATION VIA DATA
POISONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based learning agents that use a world model to predict and plan have
shown impressive success in solving diverse, complex tasks and adapting to new
environments. However, the process of exploring open environments and updating
the model with collected experience also exposes them to adversarial manipula-
tion. In this paper, we propose SWAAP, the first scalable and stealthy data poison-
ing method for world models, designed to benchmark their adversarial robustness.
SWAAP uses a novel two-stage approach. In the first stage, the attacker iden-
tifies a target world model that deviates only slightly from the true environment
but significantly degrades agent’s performance when used for planning. This is
achieved via a first-order bilevel optimization and a new transition gradient theo-
rem. In the second stage, the attacker then performs the actual attack by perturbing
a small subset of fine-tuning data to steer the fine-tuned world model toward the
target model. Evaluations using diverse tasks show that our approach induces a
substantial performance drop and remains effective even under robust training and
detection, underscoring the urgent need for stronger protection in world modeling.

1 INTRODUCTION

While artificial intelligence (AI) has achieved remarkable success across various domains, building
general-purpose agents that can quickly adapt to new tasks remains a major challenge, particularly
for sequential decision-making tasks in open-ended environments that require substantial planning
and adaptation. A promising direction is the development of world models (Ha & Schmidhuber,
2018) that accurately capture environmental structure and dynamics to support a wide range of
downstream tasks. In this context, predictive world models, which allow agents to “imagine” future
scenarios for safer, more efficient decisions, are proliferating (Hafner et al., 2023; Hansen et al.,
2024; Zhou et al., 2024). Further, with recent advances in diffusion and transformer architectures,
foundation world models (OpenAI, 2025; DeepMind, 2024; Nvidia, 2025a) capable of simulating
interactive environments from multi-modal input are emerging and are increasingly being applied in
complex domains such as autonomous vehicles and robotics (Nvidia, 2025b), making them valuable
targets for malicious attacks.

To support effective decision-making across diverse domains, world models must encode broad
knowledge, process high-dimensional inputs (e.g., images, videos, and text), and make long-horizon
predictions, introducing new vulnerabilities not present in traditional supervised learning or model-
free reinforcement learning (RL) systems. Despite extensive research in AI security and adversarial
machine learning over the past decade, ensuring the robustness of world models against adversarial
manipulation remains largely unexplored, limiting their deployment in high-stakes domains.

In this work, we take the first step toward adversarially robust world modeling by introducing poison-
ing attacks tailored to world models. Our method strategically alters trajectory data used for training
or fine-tuning, with the objective of manipulating model-based decision-making while maintaining
outputs close to those of a clean model to evade detection. We believe this line of work is both
practical and influential, as it highlights a fundamental vulnerability in world models that underpins
their reliability in downstream applications.

Traditional data poisoning methods from supervised learning (Biggio et al., 2012; Muñoz-González
et al., 2017; Geiping et al., 2021) cannot be directly applied to our setting. These approaches typi-
cally assume fully differentiable training pipelines and discrete labels (e.g., flipping a cat to a dog),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

allowing the adversary to optimize per-example perturbations via gradient-based techniques. In con-
trast, poisoning a world model requires identifying optimal perturbations of next states in transition
tuples, which are continuous and affect long-horizon dynamics. Moreover, differentiating through
the training process of the world model is computationally expensive and generally intractable, mak-
ing standard supervised learning attacks unsuitable for this problem.

Existing data poisoning attacks in reinforcement learning (Rakhsha et al., 2020; Zhang et al., 2020)
primarily manipulate the rewards or transitions observed during training to steer the learned policy
toward an adversary-specified target policy. However, these approaches do not align with our setting
for several reasons. First, they assume a fixed target policy, whereas in our case the adversary must
instead identify a worst-case world model that maximizes performance degradation. Second, both
(Rakhsha et al., 2020; Zhang et al., 2020) focus on relatively simple scenarios and rely on traditional
convex optimization methods, which are computationally infeasible for large environments with
continuous state and action spaces used in state-of-the-art world models such as TD-MPC2 (Hansen
et al., 2024), DINO-WM (Zhou et al., 2024) and DreamerV3 (Hafner et al., 2023). These differences
motivate the need for a fundamentally new approach to poisoning more complex world models.

In this work, we propose SWAAP (Stealthy World Model MAnipulation via DAta Poisoning), a
novel two-stage attack that manipulates the world model to mislead the agent and degrade its per-
formance at test time. In the first stage, the attacker identifies a target poisoned world model that,
once adopted by the agent, induces trajectories leading to low-return outcomes during testing. We
formulate this as a bi-level optimization problem: the objective is to identify a poisoned world model
that significantly degrades the agent’s performance, subject to the constraint that the poisoned model
must remain close to the original world model to avoid detection. In the second stage, we perform
a data poisoning attack by injecting carefully crafted poisoned transitions into a newly collected
fine-tuning dataset. This manipulation steers the updated world model toward the targeted poisoned
model identified in the first stage. Instead of assuming an unrealistic model poisoning attack that
directly replaces the original world model with the poisoned one, we adopt a more realistic data
poisoning approach, where the attacker only manipulates the finetuning training data. This requires
substantially less control over the system while still guiding the world model toward the targeted
poisoned version. We evaluate SWAAP on three widely used continuous state-action environments:
DMControl (Tassa et al., 2018), MyoSuite (Caggiano et al., 2022), and MetaWorld (Yu et al., 2020).
By poisoning just 10% of a small fine-tuning dataset, our data poisoning attack can induce a signif-
icant drop in the agent’s performance across diverse tasks. Moreover, the poisoned world models
maintain a similar deviation from the true environment transitions, comparable to clean models,
making them difficult to detect or mitigate. These findings highlight the urgent need for more robust
world modeling techniques.

2 SYSTEM AND THREAT MODELS

In this section, we present the system and threat models, covering both world models and our pro-
posed data poisoning attacks framework. A more detailed discussion of related work is provided in
Appendix B.

2.1 WORLD MODELS

We study an agent that leverages a learned world model to interact with an environment formal-
ized as a Markov decision process (MDP) (S,A, P,R, γ), where S is the state space, A is the
action space, P : S × A → ∆(S) is the transition kernel, R : S × A → R is the reward
function, and γ ∈ (0, 1) is the discount factor. During training, the agent learns a parameterized
world model Pψ that approximates the environment dynamics: Pψ(s′ | s, a) ≈ P (s′ | s, a), ei-
ther through self-supervised learning on collected trajectories or by finetuning a pretrained foun-
dation model (Zhou et al., 2024; Assran et al., 2025). The fidelity of Pψ is critical, as it di-
rectly determines the effectiveness of downstream decision-making. The training or finetuning pro-
cess F (ψ0, Dn) is carried out via stochastic gradient descent by minimizing the prediction error
L(ψ0;Dn) =

∑
(s,a,s′)∈Dn ∥s

′ − Pψ0(s, a)∥22. If the agent trains a world model from scratch, then
ψ0 denotes the randomly initialized model and Dn = {(s, a, s′)} represents a large training dataset.
In contrast, if the agent relies on a pretrained world model ψ0, which was trained on data that may
slightly deviate from the true distribution encountered at test time or in environments with evolving

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

dynamics, the model is typically updated intermittently with a smaller, newly collected dataset Dn.
This continual updating from the pretrained model ψ0 is regarded as finetuning.

Existing approaches differ in how the learned world model Pψ is used for action selection. For exam-
ple, DINO-WM (Zhou et al., 2024) relies purely on model predictive control (MPC) without explic-
itly learning a policy, DreamerV3 (Hafner et al., 2023) follows a model-based reinforcement learning
(MBRL) paradigm to train a policy directly from the world model, while TD-MPC2 (Hansen et al.,
2024) combines both approaches by jointly training a policy and world model and using MPC for
planning. These variations demonstrate that modern world models go beyond traditional notions of
MBRL, as they are often motivated by building general-purpose agents capable of solving diverse
tasks. In this work, we adopt the TD-MPC2 (Hansen et al., 2024) setting as our running example,
while noting that our framework applies more broadly.

The agent’s problem is to generate a policy πθ(ψ) that maximizes the discounted cumulative return
using the world model Pψ that approximate the true environment transition function P , which can
be formulated as following,

πθ(ψ) = argmax
πθ

J(Pψ, πθ),where J(Pψ, πθ) = EPψ
[ T∑
i=0

γiR(si, ai)
]
. (1)

This formulation assumes the agent uses model-based reinforcement learning. If the agent employs
model predictive control (MPC), then J(Pψ, πθ) also depends on the true environment dynamics P ,
which we omit from the notation for simplicity.

As discussed above, if the model predictive control (MPC) is used (Hansen et al., 2024; Zhou
et al., 2024), the agent selects actions by searching over a finite-horizon sequence of candidate
actions. Specifically, the planner first samples multiple action sequences. For each sampled action
sequence at:t+H = (at, at+1, . . . , at+H), the planner uses the world model Pψ to predict future
states ŝt+i+1 ∼ Pψ(· | ŝt+i, at+i) and evaluates the expected discounted return of the correspond-
ing trajectory. Then the agent finds the action sequence that can lead to the best expected discounted
return and executes the first action at and replans at the next time step t+ 1, which is shown below.

πθ(st, ψ) = a∗t ,where a∗t:t+H = argmax
at:t+H

EPψ
H∑
i=0

γiR(st+i, at+i).

In contrast, DreamerV3 (Hafner et al., 2023) trains a policy πθ(s) directly on imagined trajectories
generated by Pψ using model-based reinforcement learning approach, allowing the agent to act with-
out explicit planning at inference time. TD-MPC2 (Hansen et al., 2024) combines these approaches:
it jointly trains a policy and world model, and then uses the policy as an initialization for MPC. We
include the detailed MPC algorithm in the Appendix E for completeness.

2.2 DATA POISONING ATTACKS

Against the victim agent, the adversary seeks to degrade long-term return by corrupting the policy
πθ(ψ) through tampering with the world model update. We consider a data-poisoning adversary
that may perturb a bounded fraction of transitions in the training dataset Dn, replacing (s, a, s′)

with (s, a, s̃′) to form a poisoned dataset D̃n. We assume the adversary can observe the finetuning
datasetDn and knows the world model architecture (white-box setting) but cannot directly overwrite
the model or access the agent’s policy parameters. The adversary is restricted to poisoning at most
rp|Dn| samples, producing a modified dataset D̃n. We denote ∥D̃n − Dn∥0 as the number of
transitions changed in Dn. We also assume the adversary can interact with a clean environment
to collect transitions. Although we only consider poisoning the transition dynamics in this work,
our method can potentially apply to reward poisoning similar to (Rakhsha et al., 2020; Zhang et al.,
2020). After the agent trains on D̃n, the resulting world model Pψ deviates from the true dynamics
P and induces suboptimal behavior. This interaction can be formalized as the following bilevel
optimization problem:

min
D̃n

J
(
P, πθ(ψ)

)
+KL(Pψ∥P )

s.t. Pψ = F (Pψ0 , D̃n), πθ(ψ) = argmax
πθ′

J(Pψ, πθ′), ∥D̃n −Dn∥0 ≤ rp|Dn|,
(2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where F (Pψ, Dn) denotes the training process of the world model on datasetDn, given a prior world
model Pψ . KL(Pψ∥P ) constrains the poisoned world model to remain close to the true transition
dynamics, thereby evading detection. The outer minimization corresponds to the adversary’s objec-
tive of reducing real-environment performance, while the inner maximization captures the agent’s
policy optimization under the poisoned world model.

3 STEALTHY WORLD MODEL MANIPULATION VIA DATA POISONING

Figure 1: Pipeline of SWAAP.

Directly solving the bilevel optimization in
Eq. 2 is highly intractable. Because it requires
differentiating through the finetuning process
of the world model, which is typically non-
transparent and computationally expensive. In
addition, unlike standard data poisoning in su-
pervised learning (e.g., flipping labels from cat
to dog) Biggio et al. (2012); Muñoz-González
et al. (2017), our setting involves finding opti-
mal perturbations of next states in transition tu-
ples, a substantially more complex problem. As
a result, traditional gradient-based data poison-
ing methods cannot be directly applied. Exist-
ing RL data poisoning approaches (Zhang et al.,
2020; Rakhsha et al., 2020) also do not transfer to our setting due to: (i) they require a pre-specified
target policy, (ii) their methods cannot scale to complex continuous state and action spaces. To
address these challenges, our method SWAAP decomposes the adversary’s optimization into a two-
stage procedure (see Figure 1).

In the first stage, we identify a worst-case target world model ψ̂ by formulating a bilevel optimization
problem of a two-player game between the agent that maximizes the return by using the model and
the attacker that minimizes the return by changing the model (Eq. 3). In the second stage, we
design poisoned transitions within Dn through the gradient matching technique (Geiping et al.,
2021) to craft D̃n such that the gradient calculated during the finetuning procedure will steer the
world model toward ψ̂. This decomposition avoids direct differentiation through the training process
while providing a principled way to construct adversarial data to provide a surrogate optimization
problem to the original bilevel data poisoning optimization problem.

To ensure our attack remains stealthy, it must avoid detection at both the data-poisoning and testing
stage. During poisoning, injected transitions (s, a, s̃′) should not be distinguishable from genuine
data; during testing, the learned world model Pψ should remain close to the environment’s true
transition function P . We enforce stealthiness by introducing two regularization terms—one applied
at the data level to constrain per-sample perturbations, and one applied at the model level to limit
deviations of the learned dynamics, balancing attack effectiveness with detectability.

3.1 STAGE 1: IDENTIFICATION OF PERTURBED MODELS

In the first stage, the attacker formulates a model poisoning problem, seeking a perturbed model
state ψ such that when the agent uses this model for planning under the true environment dynamics
P , its expected return is minimized.

As discussed in Section 2.1, the agent may leverage the world model in different ways when deriving
its policy, and the specifics of the actual online planning algorithm it uses may be hidden from
the attacker. To keep our approach general, we consider a surrogate policy πθ(ψ) that mimics a
model-based RL agent, where πθ(ψ) is derived to maximize the return in the imaginary environment
Pψ : πθ(ψ) ∈ argmaxπθ′ J(Pψ, πθ′).

The adversary thus minimizes the return of the surrogate policy that learns from perturbed transitions
by solving the following bilevel optimization problem:

minψ J(P, πθ(ψ)) + λKL(Pψ∥P )
s.t. πθ(ψ) ∈ argmaxπθ′ J(Pψ, πθ′).

(3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The goal is to minimize the KL-regularized expected return with respect to the optimal policy de-
rived from the poisoned environment.

This bilevel optimization problem remains challenging due to its nested structure. The primary
difficulty lies in computing the derivative ∇ψπθ(ψ). If one directly treats πθ(ψ) as a function of ψ,
gradient-based methods such as hypergradient descent (Bard, 2013) update ψ using

∇ψJ(P, πθ(ψ)) = ∇ψπθ(ψ)∇2J(P, πθ(ψ)),

but evaluating∇ψπθ(ψ) = ∇ψ argmaxπθ′ J(Pψ, πθ′) requires solving linear systems and comput-
ing costly second-order Hessians. Prior work has attempted to bypass this difficulty either through
surrogate approximations or heuristics that are difficult to control (Pedregosa, 2016; Ghadimi &
Wang, 2018; MacKay et al., 2019). Moreover, reinforcement learning objectives are highly non-
convex, involve high-dimensional state–action spaces, and present a complex optimization land-
scape. As a result, naive bilevel optimization methods often fail to converge reliably, making them
unsuitable for Problem 3 (Liu et al., 2021).

To obtain a more scalable solution, we adopt the first-order dynamic barrier gradient descent method
in (Liu et al., 2022), which reformulates the problem by replacing the implicit argmin operator with
a value-function constraint. This allows the outer objective and inner objective to be solved without
explicitly computing the derivative ∇ψπθ(ψ). Formally, let f(ψ, θ) := J(P, πθ) + KL(Pψ∥P )
denote the outer objective, and q(ψ, θ) := maxπθ′ J(Pψ, πθ′) − J(Pψ, πθ), which measures the
suboptimality of πθ relative to the optimal policy under Pψ . Under the value-function approach, the
bilevel problem becomes the following constrained optimization:

min
ψ,θ

f(ψ, θ) s.t. q(ψ, θ) ≤ 0.

The main idea of the dynamic barrier gradient method is to iteratively update the parameters (ψ, θ)
to reduce f while ensuring that q decreases whenever q > 0. To this end, the parameters (ψ, θ) are
jointly updated as:

(ψk+1, θk+1)← (ψk, θk)− ξ [∇f(ψk, θk) + λk∇q(ψk, θk)] , (4)

where ξ is the step size and λk is the dual variable at iteration k (see Appendix D for details). The
gradients of f and q can be explicitly written as:

∇(ψ,θ)f(ψk, θk) = (λ∇ψKL(Pψk∥P ),∇θJ(P, θk)) , (5)

∇(ψ,θ)q(ψk, θk) ≈
(
∇ψJ(ψk, θWk )−∇ψJ(ψk, θk),−∇θJ(ψk, θk)

)
, (6)

where we use the shorthand J(ψk, θk) := J(Pψk , πθk), and θWk is the W -step approximation of the
optimal policy π∗

θ ∈ argmaxπθ′ J(Pψ, πθ′).

While the gradient of the expected return with respect to the policy θ is readily available from the
classic policy gradient theorem (Sutton et al., 1999), the gradient with respect to the transition ψ
is not directly available. To address this, we establish the following result by extending the policy
gradient theorem (see Appendix C for the proof).

Theorem 1. The transition gradient of expected return in an MDP with transition dynamics Pψ and
policy πθ can be expressed by

∇ψJ(Pψ, πθ) = E(s,a,r,s′)∼Pψ,πθ

[
(R(s, a, s′) + V (s′))∇ψ logPψ(s

′|s, a)
]
.

Using this formulation, our algorithm for perturbed model identification proceeds as follows. We
initialize (ψ0, θ0) from pretrained models and iteratively approximate the locally optimal policy
via T -step gradient ascent. At each iteration, we collect rollouts under Pψk , πθk and compute the
required gradients of the return with respect to ψ and θ. The parameters are then updated using
Equation 4. To improve sample efficiency, we maintain replay buffers to reuse trajectories, enabling
multiple gradient updates per step. The full procedure is summarized in Algorithm 1.

3.2 STAGE 2: POISONING DATA TO MANIPULATE MODEL

As noted earlier, it is unrealistic for an attacker to directly replace the agent’s world model Pψ with
Pψ̂ , as this would require complete control over the victim agent. Thus, we choose to conduct a data

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Algorithm for Perturbed Model Identification

Input: Environment dynamics P , a dynamics model ψ0, a policy θ0
Output: perturbed model ψ̂
while (ψk, θk) not converged do

θ0k ← θk
for i← 1 to W do

θi+1
k ← θik +∇θJ(ψk, θik)

Collect rollouts from (ψk, θ
W
k ), (P, θk), (ψk, θk) to form bufferkW , bufferpk, bufferkk, re-

spectively
Ω← [ ]
for i← 1 to N do

Compute∇ψJ(ψk, θWk ) by sampling bufferkW
Compute∇θJ(P, θk) by sampling bufferpk
Compute∇ψJ(ψk, θk) and ∇θJ(ψk, θk) by sampling bufferkk
Compose ∇f(ψk, θk) and ∇q(ψk, θk) from Equation 5 and Equation 6, and λk
Append ∇f(ψk, θk) + λk∇q(ψk, θk) to Ω

ωk ←
∑
ω∈Ω ω

N
(ψk+1, θk+1)← (ψk, θk)− ξ · ωk

return ψ̂ ← ψk

poisoning attack on the fine-tuning dataset Dn to manipulate the victim’s model toward Pψ̂ , which
can be stated as follows.

min
D̃n

KL
(
Pψ̂∥F (Pψ0

, D̃n)
)

s.t.∥D̃n −Dn∥0 ≤ rp|Dn|, (7)

where Pψ = F (Pψ0
∥D̃n) is the poisoned world model after training and KL

(
Pψ̂∥F (ψ0, D̃n)

)
is the

KL divergence between the target world model generated in Stage 1 and the updated world model
using poisoned data. To improve stealth, the attacker is allowed to modify up to rp|Dn| transitions
in the finetuning dataset Dn, where rp is the maximum fraction of transitions that can be perturbed.

Directly solving (7) requires jointly optimizing which transitions to modify and how to modify them,
which is computationally hard: selecting up to rp|Dn| transitions fromDn is a discrete subset selec-
tion problem, and for each such choice, one must also solve a continuous perturbation optimization
over the chosen elements. Solving these two problems jointly requires searching an exponentially
large space while repeatedly finetuning (or differentiating through) the world model, rendering the
approach computationally infeasible in practice.

We address the challenge of jointly determining which transitions to modify and how to modify
them by adopting a simple yet effective heuristic. Specifically, we first select the top rp fraction of
transitions {(s, a, s′)} ⊂ Dn that exhibit the largest model residuals, where for a given dynamics
model ψ the residual is defined as

eψ(s, a, s
′) = ∥s′ − Pψ(s, a)∥2. (8)

Let Dp denote the selected top rp fraction of transitions with residuals with respect to the target
model eψ̂(s, a, s

′) in Dn, and let Dc = Dn \Dp be the remaining clean transitions. The poisoned
dataset is then D̃n = Dc ∪Dp. We then solve the reduced data poisoning problem only in Dp using
gradient matching (Geiping et al., 2021) as follows. Let

Greal = E(s,a,s̃′)∈D̃n

[
∇ψ0∥s̃′−Pψ0(s, a)∥22], Gtarget = E(s,a,s′)∼Dall

[
∇ψ0∥Pψ̂(s, a)−Pψ0(s, a)∥22],

here Dall = {(s, a, s′)} is a large dataset collected by the attacker. The gradient matching problem
is

min
{s̃′i:(si,ai,s′i)∈Dp}

∥∥∥Greal −Gtarget

∥∥∥2
2

s.t. D̃n = Dc ∪Dp, |Dp| ≤ rp|Dn|. (9)

This gradient-matching formulation provides an effective solution to the original data poisoning
problem in Equation 7 because it directly aligns the updates induced by the poisoned dataset D̃n

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

with the target world model Pψ̂ . By defining Greal as the expected gradient on the poisoned data
and Gtarget as the gradient corresponding to the adversary’s worst-case model over a large reference
dataset Dall, minimizing ∥Greal −Gtarget∥22 ensures that training on D̃n nudges the world model Pψ
in the direction toward the target world model Pψ̂ .

To solve this gradient matching problem, we define a loss function LP with two components:

LP = (1− α)
(
1− cos(Greal, Gtarget)

)
+ α

∑
(si,ai,s′i)∈Dp

|∥s̃′i − s′i∥2 − ∥Pψ(si, ai)− s′i∥2|. (10)

The first term maximizes the cosine similarity between the gradient from the poisoned dataset and
the target gradient estimated from Dall, thereby steering the fine-tuned world model toward Pψ̂ . The
second term focuses on the selected subset Dp and leverages the fact that the original world model
Pψ already exhibits some one-step prediction error (see Table 1). Thus, we can measure perturba-
tion size relative to this existing error to allow bounded, plausible poisoned data while discouraging
large or conspicuous changes to avoid being detected. Regularization coefficient α ∈ (0, 1) con-
trols the trade-off between gradient alignment and the relative size of perturbations compared to
the model’s inherent prediction error. By minimizing the loss LP , the adversary determines the
poisoned transitions Dp and forms the poisoned finetuned dataset D̃n.

3.3 DEFENSES AGAINST DATA POISONING

We assume that the agent may employ defense mechanisms during finetuning to mitigate the ef-
fects of data poisoning. We consider pre-training detection, robust training, and test-time detection
defenses. Pre-training detection and robust training methods require the agent to have a relatively ac-
curate mimic model of the environment transitions; however, in practice, the agent may not possess
such a model due to limited clean data. To overestimate the agent’s defense capability in our exper-
iments, we assume that the agent has access to a reasonably accurate world model Pψ′ to conduct
these defenses.

Detection-based methods identify potentially poisoned transitions before they are used for model
updates by comparing the residual against a certain threshold. Transitions with residuals eψ′(s, a, s′)
that violate this threshold are flagged as suspicious and removed or down-weighted (Chen et al.,
2021).

Training-time defenses aim to reduce the impact of poisoned samples without explicitly identifying
them. One representative approach is the TRIM strategy (Biggio et al., 2012), which iteratively fil-
ters transitions based on their residuals. At each iteration, the transitions are ranked by eψ′(s, a, s′),
and only the lowest (1− β)n residual transitions are retained, where n is the number of transitions
considered and β ∈ (0, 1) controls the fraction of discarded data. The finetuning update is then
computed using this subset. By discarding high-residual transitions, the TRIM strategy limits the
influence of adversarially perturbed transitions while preserving the underlying clean dynamics.

In addition, the agent can perform a test-time detection to monitor whether the world model is
poisoned. The agent can observe the true next state s′ from the environment and compare it with the
world model output Pψ(s, a). We define δ = 1

T

∑T
i=0 eψ(si, ai, s

′
i) =

1
T

∑T
i=0 ∥s′ − Pψ(s, a)∥2 as

the deviation, where T is the number of transitions (s, a, s′) the agent observes during testing.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We adopt TD-MPC2 (Hansen et al., 2024) as our victim algorithm because it jointly trains a policy
and a world model, then uses the learned policy to initialize MPC. We evaluate a finetuning scenario
that the agent starts from a pretrained world model ψ0, which is trained from 1, 000, 000 clean
transitions, and updates it using a small datasetDn including 5, 000 transitions. TD-MPC2 uses 512
rollouts with a horizon of 3 in MPC planning. A detailed hyperparameter table is in Appendix F.

We report the cumulative return and the deviation δ from the true transitions under four scenarios.
The Clean corresponds to the agent using the pre-trained, unpoisoned world model Pψ during test-
ing. SWAAP (Random) uses randomly perturbed transitions as the target model in stage two instead

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Main results comparison between clean, direct model poisoning, SWAAP (Random), and
SWAAP. Each test aggregates over 100 episodes and all have the same data poisoning ratio rp = 0.1,
α is chosen to be 0.9 or 0.99 to make δ small and comparable to clean ones.

Environment Clean SWAAP (Random) Direct Model Poisoning SWAAP
Return δ Return δ Return δ Return δ

DMControl humanoid-walk 866± 57 .09± .05 839± 90 .10± .05 813± 112 .11± .05 776± 145 .11± .06
humanoid-run 587± 53 .05± .03 565± 60 .05± .04 207± 42 .10± .04 497± 64 .06± .04

dog-walk 744± 49 .06± .02 803± 36 .06± .02 328± 76 .10± .03 693± 75 .06± .03
dog-run 653± 54 .05± .02 631± 54 .05± .02 246± 66 .08± .02 475± 63 .06± .02

cheetah-run 834± 62 .03± .04 845± 34 .02± .04 415± 121 .09± .09 792± 42 .04± .06
Myosuite pen-twirl-hard 3693± 2195 .06± .03 2507± 2343 .13± .10 2876± 2364 .07± .02 2479± 2236 .13± .13

reach-hard 733± 98 .04± .04 631± 510 .07± .05 678± 162 .07± .02 531± 772 .10± .13
Metaworld push 1789± 20 .08± .03 1747± 185 .09± .06 1572± 559 .11± .06 1716± 58 .11± .07

soccer 1707± 43 .05± .04 1691± 180 .04± .05 1642± 89 .07± .06 1483± 516 .06± .08

of the poisoned world model Pψ̂ from stage one. Direct Model Poisoning deploys the target poi-
soned world model Pψ̂ without data poisoning, representing an unrealistic direct model overwrite.
Finally, SWAAP reports the results from the two-stage attack pipeline, including both target model
identification and data poisoning. We conduct our experiments on three widely used benchmarks
with continuous state and action spaces: DMControl (Tassa et al., 2018), MyoSuite (Caggiano et al.,
2022), and MetaWorld (Yu et al., 2020). Additional results for SWAAP, SWAAP(Random), direct
model poisoning, and ablation on MPC parameters are provided in Appendix G.

4.2 ATTACK PERFORMANCES

Table 1 shows our SWAAP algorithm can significantly lower the agent’s return while maintaining
a comparable level of deviation as a clean world model. SWAAP (Random) is substantially less
effective than our two-stage attack at comparable deviation levels δ, which underscores the value
of Stage one for identifying a target world model. Figure 2 further illustrates that allowing larger
deviations (by relaxing the regulization coefficient α) yields greater return degradation in Humanoid-
Walk and Myo-Pen-Twirl; additional ablations on α appear in Appendix G.1.

Relative to the direct model poisoning results, performance depends on the magnitude of the devia-
tion: in some environments direct model overwrite produces stronger immediate degradation, while
in others our two-stage pipeline attains comparable or better results. This indicates two points: (i)
realistic data poisoning with constrained budget and stealthiness can closely approximate the effect
of direct model poisoning, and (ii) in environments such as Myo-Pen-Twirl-Hard our Stage two pro-
cedure does not fully recover the Stage one target Pψ̂ , suggesting room for improved data-poisoning
algorithms. To visualize these relationships we plot return versus deviation curves for varying rp and
α across the three methods (SWAAP, SWAAP(Random) and direct model poisoning) in Figure 3.
In Humanoid-Walk our method achieves the strongest attack for a given δ, while in some Myosuite
tasks direct model poisoning remains the most damaging under the same level of δ.

Figure 2: Comparing results between SWAAP (Random) and SWAAP across different α =
(0.1, 0.5, 0.9). Data poisoning ratio rp used by the three tasks are 0.1, 0.2, 0.1, respectively. It
shows, with some increase on deviation, our attack can reliably lead to decrease of agent’s perfor-
mance, and the failure of SWAAP (Random), which brew the poison data by applying random noise
for the model to finetune, to affect the agent in humanoid-walk and mw-soccer indicate that the
identification of vulnerable perturbed model state is positively contributing to attack result.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

Re
tu

rn

Humanoid-Walk

SWAAP
Direct Model Poisoning
SWAAP (Random)
Clean Return
Clean 

(a) Humanoid-Walk

0.0 0.1 0.2 0.3 0.4 0.5

0

1000

2000

3000

4000

5000

Re
tu

rn

Myo-Pen-Twirl-Hard

SWAAP
Direct Model Poisoning
SWAAP (Random)
Clean Return
Clean 

(b) Myo-Pen-Twirl-Hard

Figure 3: Comparing SWAAP (Random), direct model poisoning, and SWAAP in δ–Return plots.
The data points for SWAAP (Random) and SWAAP are from using different rp and α, while data
points for direct model poisoning baseline are extracted from different training iterations under
λ = 10 for humanoid-walk, λ = 1 for myo-pen-twirl-hard (see Figure 7).

4.3 ATTACK UNDER DEFENSES

We consider three defenses the agent might deploy: pre-training detection (Chen et al., 2021), robust
training (TRIM) (Biggio et al., 2012), and testing-time detection. As illustrated in Fig. 4a, the resid-
uals of the poisoned dataset D̃n are statistically indistinguishable from those of a clean dataset Dn,
indicating the agent cannot reliably identify poisoned transitions during pre-training. Fig. 4b reports
results when the agent applies the TRIM robust-training procedure: our SWAAP attack preserves its
effectiveness under TRIM and in some cases produces even stronger degradation. We conjecture this
occurs because the poisoned transitions are carefully crafted to mislead TRIM’s filtering rule into
removing clean transitions, thereby amplifying the attack’s effect after training. Finally, as shown
in Table 1, SWAAP induces a level of model deviation at test time that is comparable to—or indis-
tinguishable from—that produced by a clean world model, demonstrating that the attack remains
difficult to detect during testing.

0.1 0.5 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
sid

ua
l

Humanoid Walk
Clean
Poison

(a) Humanoid-Walk Pre-Training Detection

Clean (No Trim)
Clean (Trim

)

SWAAP (No Trim)

SWAAP (Trim
)

0

200

400

600

800

1000

Re
tu

rn

Humanoid Walk ( =0.9)

0.0

0.1

0.2

0.3

0.4

0.5

Return

(b) Humanoid-Walk TRIM Training Defense

Figure 4: Detection and training defense results. β = 0.2 is used in TRIM training in (b).

5 CONCLUSION AND FUTURE WORK

In this work, we proposed SWAAP, a novel two-stage data poisoning attack that manipulates world
models, leading to significant performance degradation at test time while remaining stealthy. A
promising future direction is to further refine the data poisoning stage by designing algorithms that
align the poisoned model more closely with the target model obtained from the first stage. Another
interesting avenue is to study foundation world models that can be applied across diverse tasks, and
to investigate how their generality influences both the effectiveness of poisoning attacks and the
robustness of potential defenses.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Jonathan F Bard. Practical bilevel optimization: algorithms and applications, volume 30. Springer
Science & Business Media, 2013.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. In International Conference on Machine Learning (ICML), 2012.

Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar.
Myosuite–a contact-rich simulation suite for musculoskeletal motor control. arXiv preprint
arXiv:2205.13600, 2022.

Eduardo F Camacho and Carlos Bordons. Model predictive control. Springer, 2013.

Jian Chen, Xuxin Zhang, Rui Zhang, Chen Wang, and Ling Liu. De-pois: An attack-agnostic
defense against data poisoning attacks. IEEE Transactions on Information Forensics and Security,
16:3412–3425, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

DeepMind. Genie: Generative interactive environments. https://sites.google.com/
view/genie-2024/home, 2024.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In International Conference on Machine Learning (ICML), 2011.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX Security Symposium, 2020.

Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah Goldblum, and Tom Goldstein. Witches’
brew: Industrial scale data poisoning via gradient matching. In Advances in Neural Information
Processing Systems, volume 34, pp. 20143–20156, 2021.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Learning latent dynamics
for planning from pixels. International Conference on Machine Learning (ICML), 2019.

Danijar Hafner, Tom Le Paine, Joanna K. Piotrowska, Mohammad Norouzi, Quoc V. Le, and Thang
Luong. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104,
2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning (ICML), pp. 9902–
9915. PMLR, 2022.

10

https://sites.google.com/view/genie-2024/home
https://sites.google.com/view/genie-2024/home


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning for
atari. In International Conference on Learning Representations (ICLR), 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations (ICLR), 2016.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in neural information processing systems, 35:
17248–17262, 2022.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimiza-
tion for learning and vision from a unified perspective: A survey and beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):10045–10067, 2021.

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning net-
works: Bilevel optimization of hyperparameters using structured best-response functions. arXiv
preprint arXiv:1903.03088, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In 10th ACM Workshop on Artificial Intelligence and Security (AISec), 2017.

Nvidia. Cosmos world foundation model platform for physical ai. https://arxiv.org/abs/
2501.03575, 2025a.

Nvidia. World foundation models. https://www.nvidia.com/en-us/glossary/
world-models/, 2025b.

OpenAI. Creating video from text. https://openai.com/index/sora/, 2025.

Tim Pearce, Clare Lyle, Luisa Zintgraf, and Yarin Gal. Imitating human behaviour with diffusion
models. arXiv preprint arXiv:2301.01301, 2023.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International con-
ference on machine learning, pp. 737–746. PMLR, 2016.

Amin Rakhsha, Minghao Zhang, Hongfu Zhu, Xiaojin (Jerry) Zhu, and Adish Singla. Policy teach-
ing via environment poisoning: Training-time adversarial attacks against reinforcement learning.
In International Conference on Machine Learning (ICML), 2020.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 1057–1063. MIT Press, 1999.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

11

https://arxiv.org/abs/2501.03575
https://arxiv.org/abs/2501.03575
https://www.nvidia.com/en-us/glossary/world-models/
https://www.nvidia.com/en-us/glossary/world-models/
https://openai.com/index/sora/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. In International Conference on Machine Learning (ICML), 2020.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-
trained visual features enable zero-shot planning, 2024. URL https://arxiv.org/abs/
2411.04983.

12

https://arxiv.org/abs/2411.04983
https://arxiv.org/abs/2411.04983


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LLMS

In this work, we use LLMs mainly for grammar checking and rephrasing words. All references
were independently verified by the authors. No algorithms, proofs, or experimental results were
generated by ChatGPT, and no proprietary or sensitive data were shared with the tool. All technical
contributions and analyses are solely the authors’ work.

B RELATED WORKS

B.1 WORLD MODELS

World models aim to learn compact and predictive representations of environment dynamics that
can be used for planning and control. Instead of interacting directly with the environment, an agent
can rely on its learned model to simulate trajectories, evaluate policies, and anticipate future states.
First introduced in (Ha & Schmidhuber, 2018), this work introduced a three-component architec-
ture combining a variational autoencoder (VAE), a recurrent neural network (RNN), and a linear
controller, demonstrating that policies trained entirely within a latent model can transfer back to the
real environment. This work sparked a line of research exploring increasingly powerful and scalable
model-based reinforcement learning frameworks.

Dreamer-style agents use latent dynamics models optimized end-to-end with reinforcement learning.
DreamerV3 (Hafner et al., 2023) achieves state-of-the-art performance on visual control and robotic
tasks. It employs a recurrent state-space model (RSSM) with deterministic state ht and stochastic
latent st, performing rollouts entirely in latent space. Three heads are trained on the RSSM: a reward
predictor r̂t, a value function V̂ (·), and an actor π, using imagined rollouts. At decision time, the
actor proposes candidate actions, either sampled or taken as the mean.

More recent approaches have investigated architectural advances tailored for large-scale and com-
plex environments. DINO-WM (Zhou et al., 2024) leverages self-supervised vision transformers
(ViTs) to improve perception quality, enabling stronger generalization in visually rich settings. Sim-
ilarly, TD-MPC2 (Hansen et al., 2024) proposes a temporally abstracted model predictive control
framework that combines world models with trajectory optimization, achieving sample-efficient
learning and strong performance in high-dimensional continuous control tasks.

Parallel to these developments, diffusion-based world models have emerged as a promising alter-
native (Pearce et al., 2023; Janner et al., 2022). By parameterizing the transition distribution as a
denoising diffusion process, these models can capture multi-modal and stochastic dynamics more
effectively than conventional Gaussian latent models. Diffusion world models have been shown
to improve both planning quality and robustness to uncertainty, making them attractive in settings
where dynamics are highly non-deterministic.

B.2 MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning (MBRL) is a powerful paradigm that improves sample effi-
ciency and enables better generalization compared to purely model-free methods. In MBRL, an
agent learns an explicit dynamics model of the environment and leverages this model for planning
or policy optimization. Formally, we consider a Markov decision process (MDP) (S,A, P,R, γ),
where S is the state space, A is the action space, P : S × A → ∆(S) defines the transition kernel,
R : S × A → R is the reward function, and γ ∈ (0, 1) is the discount factor. The goal is to find a
policy π : S → ∆(A) that maximizes the expected discounted return

∑T
i=0 γ

iR(st, at).

Unlike model-free approaches that learn value functions or policies directly from experience (Mnih
et al., 2015; Lillicrap et al., 2016; Haarnoja et al., 2018), MBRL explicitly learns a parametric ap-
proximation P̂ψ of the transition kernel P , often using neural networks (Deisenroth & Rasmussen,
2011; Chua et al., 2018; Janner et al., 2019; Hansen et al., 2024). This learned dynamics model
can then be used for model-predictive control (MPC) (Camacho & Bordons, 2013), trajectory opti-

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

mization (Tassa et al., 2012), or to generate synthetic rollouts for policy improvement (Kaiser et al.,
2020; Hafner et al., 2019).

B.3 MODEL POISONING ATTACK

Model poisoning attacks directly compromise a learned model by altering its parameters. Model
poisoning attack assumes the adversary can craft malicious model updates to steer the learning
outcome or directly replace the model parameters. For example, carefully crafted local malicious
updates can harm the performance of a federated learning system (Fang et al., 2020).

In reinforcement learning, model poisoning is particularly concerning when applied to the agent’s
learned dynamics model. Small, adversarial modifications to the transition kernel can propagate over
planning horizons, misleading policy improvement and causing degraded performance (Rakhsha
et al., 2020). This makes model poisoning a uniquely severe threat in model-based RL, as even
subtle deviations from the true dynamics can cascade into large errors in long-term decision making.

B.4 DATA POISONING ATTACKS AND DEFENSES

Data poisoning attacks compromise learning systems by corrupting the training dataset to bias the
learned model toward an adversarial objective. Unlike model poisoning, which manipulates param-
eters directly, data poisoning assumes the attacker can only influence the data stream but not the
learning algorithm itself, which is a more realistic attack scenario. Data poisoning attacks have been
shown to significantly degrade the model performance even with small amounts of poisoned data
(Biggio et al., 2012). A recent and effective data poisoning technique leverages gradient matching,
which optimizes poisoned samples such that their gradients closely align with those of a target ad-
versarial objective (Geiping et al., 2021). By ensuring that poisoned data induces updates similar
to those of the adversary’s intended solution, gradient matching enables stealthy and highly effec-
tive poisoning even under limited attacker control. We also adopt gradient matching in the second
stage of our attack methods, where we injects carefully crafted poisoned transitions into the newly
collected fine-tuning dataset.

In reinforcement learning, data poisoning is particularly dangerous since training relies on sequen-
tial interactions with the environment. By injecting corrupted transitions into the replay buffer or
modifying observed trajectories, an adversary can degrade the long-term performance of the agent,
or even embed targeted failures (Rakhsha et al., 2020; Zhang et al., 2020).

Effective defenses against data poisoning attacks involve detection and training-time strategies. We
consider two widely used data poisoning defenses in our work. Chen et al. (2021) propose De-
Pois, an attack-agnostic detection method that identifies poisoned data points with the help of a
mimic model trained from clean data samples. By measuring the difference between the samples on
the mimic model’s outputs, De-Pois can flag and remove suspicious points, improving robustness
without assuming knowledge of the attack type.

Complementing detection, training-time defenses aim to mitigate the effect of poisoned samples
during learning. For example, Biggio et al. (2012) introduce the TRIM method and its iterative
variant, which estimate and remove a fraction of potentially poisoned points based on residual errors
and statistical properties of the data.

C DERIVATION OF TRANSITION GRADIENT

Theorem 1. The transition gradient of expected return in an MDP with transition dynamics Pψ and
policy πθ can be expressed by

∇ψJ(Pψ, πθ) = E(s,a,r,s′)∼Pψ,πθ

[
(R(s, a, s′) + V (s′))∇ψ logPψ(s

′|s, a)
]
.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof: To prove the theorem, we start from the derivative of state value function of an arbitrary
initial state and extend the state into the future time indefinitely.

∇ψV (s0) = ∇ψ
∑
a0

π(a0|s0)Q(s0, a0)

= ∇ψ
∑
a0

π(a0|s0)
∑
s1

Pψ(s1|s0, a0)[R(s0, a0, s1) + V (s1)]

=
∑
a0

π(a0|s0)
∑
s1

∇ψPψ(s1|s0, a0)[R(s0, a0, s1) + V (s1)]

+
∑
a0

π(a0|s0)
∑
s1

Pψ(s1|s0, a0)∇ψV (s1)

=M(s0) +
∑
s1

ρπ(s0 → s1, k = 1)∇ψV (s1)

=M(s0) +
∑
s1

ρπ(s0 → s1, k = 1)[M(s1) +
∑
s2

ρπ(s1 → s2, k = 1)∇ψV (s2)]

=M(s0) +
∑
s1

ρπ(s0 → s1, 1)M(s1) +
∑
s2

ρπ(s0 → s2, 2)M(s2) + ...

=
∑
x

∞∑
k=0

ρπ(s0 → x, k)M(x)

=
∑
s

η(s)M(s)

∝
∑
s

η(s)∑
s η(s)

M(s)

=
∑
s

dπ(s)
∑
a

π(a|s)
∑
s′

∇ψPψ(s′|s, a)(R(s, a, s′) + V (s′)).

where M(s0) :=
∑
a0
π(a0|s0)

∑
s1
∇ψPψ(s1|s0, a0)[R(s0, a0, s1) + V (s1)].

ρπ(s0 → s1, k = 1) :=
∑
a π(a|s)P (s1|s0, a0) is the transition probability of reaching s1 from s0

at step k = 1, and the relation ρπ(s → x, k + 1) =
∑
s′ ρ

π(s → s′, k)ρπ(s′ → x, 1) is used to
write the transition gradient into recurrence form. Therefore,

∇ψJ(Pψ, π) =
∑
s

dπ(s)
∑
a

π(a|s)
∑
s′

∇ψPψ(s′|s, a)(R(s, a, s′) + V (s′))

= E(s,a,r,s′)∼Pψ,π[(R(s, a, s
′) + V (s′))∇ψ logPψ(s

′|s, a)].

For deterministic transitions s′ = µψ(s, a), this becomes

∇ψJ(Pψ, π) = ∇ψ
∑
s

dπ(s)V (s)

= ∇ψ
∑
s

dπ(s)
∑
a

π(a|s)Q(s, a)

= ∇ψ
∑
s

dπ(s)
∑
a

π(a|s)
∑
s′

Pψ(s
′|s, a)[R(s, a, s′) + V (s′)]

= ∇ψ
∑
s

dπ(s)
∑
a

π(a|s)[R(s, a, µψ(s, a)) + V (µψ(s, a))]

=
∑
s

dπ(s)
∑
a

π(a|s)∇s′ [R(s, a, s′) + V (s′)]|s′=µψ(s,a)∇ψµψ(s, a).

D MODEL POISONING ALGORITHM

To study adversarial robustness of world models, we cast model poisoning as a bilevel optimization
problem where the outer objective aims to degrade the return J(P, πθ) under the true environment

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

dynamics P , while the inner objective enforces that the perturbed model Pψ still admits a locally
optimal policy. Directly differentiating through the inner optimization ∇ψπθ(ψ) is intractable due
to the implicit dependence of πθ on ψ and the need for costly Hessian computations.

Following the first-order dynamic barrier gradient descent method, we reformulate the problem as
a constrained optimization that balances the decrease of the outer objective f(ψ, θ) and a constraint
function q(ψ, θ).

minψ J(P, πθ) + λL(Pψ, P )
s.t. minπ′

θ
J(Pψ, π

′
θ)− J(Pψ, πθ) ≤ 0 (11)

and define f(ψ, θ) := J(P, πθ) + L(Pψ, P0) and q(ψ, θ) := J(Pψ, π
∗
θ) − J(Pψ, πθ) =

minπ′
θ
J(Pψ, π

′
θ)− J(Pψ, πθ). This transformed problem is solvable by iteratively update (ψ, θ) to

decrease f while at the same time keeping the constraint q ≤ 0 satisfied by decreasing q whenever
q > 0 in each step:

(ψk+1, θk+1)← (ψk, θk)− ξωk (12)

where ωk = argmin
δ
||∇f(ψk, θk)− ω||2 (13)

s.t. ⟨∇q(ψk, θk), ω⟩ ≥ ϕk (14)

this could be solved in closed form, which gives ωk = ∇f(ψk, θk) + λk∇q(ψk, θk), with λk =

max
(
ϕk−⟨∇f(ψk,θk),∇q(ψk,θk)⟩

∥∇q(ψk,θk)∥2 , 0
)

and ϕk is chosen to be ηq(ψ, θ) or η ∥∇q(ψ, θ)∥2. Therefore,
the procedure to optimize f by jointly updating (ψ, θ) is:

(ψk+1, θk+1)← (ψk, θk)− ξ[∇f(ψk, θk) + λk∇q(ψk, θk)] (15)

where ∇f(ψk, θk) = ∇(ψk,θk)f(ψk, θk) is the gradient update of outer problem and ∇q(ψ, θ) =
∇(ψ,θ)q(ψ, θ) imposes the constraint. Expressed explicitly, the gradient of f and q are:

∇(ψ,θ)f(ψk, θk) = (λ∇ψL(ψk, P ),∇θJ(P, θk)) (16)

∇(ψ,θ)q(ψk, θk) ≈
(
∇ψJ(ψk, θTk )−∇ψJ(ψk, θk),−∇θJ(ψk, θk)

)
(17)

where the shorthand J(ψk, θk) = J(Pψk , πθk) is used, and θTk = πTθk is the T steps approximation
of π∗

θk
∈ argmaxπ′

θ
J(Pψ, π

′
θ).

E MODEL PREDICTIVE CONTROL

Algorithm 2 General Model Predictive Control (MPC)

1: Input: World model ψ, current state st, goal og (optional), horizon H , number of rollouts
num samples

2: Encode: zt = enc(st), zg = enc(og) if goal is given
3: for each MPC step do
4: Sample num samples candidate action sequences {ai0:H−1}

num samples
i=1 (from a policy

prior, an action sampler, or learned actor)
5: for each sequence i do
6: Roll out latent trajectory ẑi1:H = Pψ(ẑt, a

i
0:H−1)

7: Evaluate cost or return:

J i =


∑H−1
h=0 γ

hr(ẑih, a
i
h) + γHQ(ẑiH) (value/bootstrap)

∥ẑiH − zg∥2 (goal-closeness)
other task-specific objective

8: Select best sequence(s) according to J i
9: Refit a sampling distribution to top-K sequences

10: return first action or first k actions from selected sequence or sampler

We provide a general formulation of Model Predictive Control (MPC), which abstracts across vari-
ants such as TD-MPC2 (Hansen et al., 2024), DINO-WM (Zhou et al., 2024). In this section, we use
ẑ to denote imagined latent, compare to real latent z encoded from real state s from environment.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

TD-MPC2 (Hansen et al., 2024) uses the learned world model ψ together with a learned prior policy
πprior. At each planning step the planner first obtains num pi trajs candidate trajectories by
rolling out πprior under transition Pψ; these yield the policy-guided action sequences. The plan-
ner then samples an additional num samples − num pi trajs random action sequences from
a stochastic proposal (e.g., i.i.d. or Gaussian-perturbed sequences). During the inner improve-
ment/refit loop the action components coming from the prior policy are treated as guidance and are
typically held fixed, while only the remaining (random) action sequences are optimized. This hy-
brid design reduces search dimensionality and biases search toward plausible behavior while still
allowing exploratory refinement.

DINO-WM (Zhou et al., 2024) does not use a learned prior. Instead it draws many random action
sequences, rolls each sequence forward in the world model Pψ for horizonH , and scores each rollout
by a final-state objective (the distance to a goal latent zg , e.g., J = ∥ẑH−zg∥2). The top-performing
sequences are retained as elites and the sampling distribution is refit to those elites (CEM-style); this
process repeats until the sampling distribution concentrates on sequences that reach the goal.

The above MPC algorithm highlights the shared structure: rolling out candidate action sequences
over a planning horizon H using a learned world model Pψ , evaluating them under a task-specific
objective (e.g., bootstrapped return, goal closeness, or other criteria), and executing the first action
of the best sequence. The number of sampled rollouts num samples and the planning horizon H
are hyperparameters that directly affect the quality of planning and computation cost. The general
MPC procedure is summarized in Algorithm 2.

F HYPERPARAMETERS

We report our SWAAP key hyperparameters in Table 2. Other parameters are the same as stated in
TD-MPC2 (Hansen et al., 2024).

Table 2: Key hyperparameters used in experiments; other parameters are the same as in TD-MPC2

Hyperparameter Typical value(s) Description

Model Poisoning Hyperparameters
λ {0, 1, 10, 100} Consistency coefficient applied to the L(P, Pψ) term

during model poisoning in Equation 3
W {30} The number of update steps used to approximate θ∗k
N {16} The size of Ω, the number of small updates aggregated

to compute gradients of fk, qk and λk
sample batch size {256} Number of transitions used to calculate each sample in

Ω
num step {100, 500} The imagined rollout length, 500 for DMControl tasks

and 100 for others.
buffer size {500} Buffer size for every buffer used in Algorithm 1.

Data Poisoning Hyperparameters
rp {0.1, 0.2, 0.3} Fraction of the dataset (or proportion of trajecto-

ries/transitions) modified by adversary.
α {0.1, 0.5, 0.9, 0.95, 0.99} Data poisoning regularization coefficient in Equa-

tion 10
poison steps {5000} The number of gradient matching update steps.
noise scale {0.1, 0.3, 0.5} The random perturbation scale of SWAAP (Random)
train epochs {100, 500} The number of training epochs for finetuning, 100 for

DMControl tasks and 500 for others.
learning rate {0.01, 0.0001} Learning rate of finetuning, 0.01 for MyoSuite and

0.0001 for others.
|Dn| {5000} Size of the finetuning dataset.
|Dall| {50000} Size of the dataset to approximate Gtarget

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G MORE RESULTS

G.1 SWAAP AND SWAAP (RANDOM)

We show more results on SWAAP and SWAAP(Random) in Figure 5.

G.2 PRE-TRAINING DETECTION

We show more results on pre-training detection results in Figure 6.

G.3 MODEL POSIONING TRAINING CURVE

We show the stage one model training curve in Figure 7.

G.4 MPC ABLATION

Table 3 reports the reward of TD-MPC2 under different rollout horizons (h = 3, 6, 9) and number
of samples for both the clean and SWAAP settings. We observe that our SWAAP attack consistently
reduces the agent’s performance across all configurations, demonstrating its effectiveness under
every setting. Additionally, the MPC performance generally increases with the number of samples
and decreases as the rollout horizon grows. Consequently, the impact of our attack is also influenced
by these hyperparameters: it tends to be more significant when the baseline MPC performance is
higher (larger sample sizes) and slightly less effective at longer horizons given the low clean reward.

Table 3: Effect of MPC hyperparameters (num samples, horizon h) on reward under clean and
SWAAP settings. Values are mean ± std over 10 episodes.

Num Samples Return
h = 3 h = 6 h = 9

64 Clean 12 ± 21 5 ± 4 9 ± 21
SWAAP 7 ± 7 19 ± 39 14 ± 20

128 Clean 150 ± 95 58 ± 92 2 ± 2
SWAAP 101 ± 85 38 ± 51 43 ± 41

256 Clean 788 ± 157 488 ± 279 68 ± 115
SWAAP 347 ± 257 93 ± 93 21 ± 36

512 Clean 855 ± 62 687 ± 112 37 ± 61
SWAAP 594 ± 203 49 ± 61 41 ± 58

1024 Clean 875 ± 63 812 ± 91 385 ± 287
SWAAP 656 ± 192 87 ± 147 75 ± 92

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: SWAAP and SWAAP (Random) more results
19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.1 0.5 0.9

0.0

0.2

0.4

0.6

Re
si

du
al

Dog Run
Clean
Poison

0.1 0.5 0.9

Re
si

du
al

Humanoid Run

0.1 0.5 0.9

Re
si

du
al

Humanoid Walk

0.1 0.5 0.9

Re
si

du
al

Mw Push

0.1 0.5 0.9

0.0

0.2

0.4

0.6

Re
si

du
al

Mw Soccer

0.1 0.5 0.9

Re
si

du
al

Myo Pen Twirl Hard

0.1 0.5 0.9

Re
si

du
al

Myo Reach Hard

Figure 6: More Pre-Training detection results

Figure 7: Model poisoning curves (referred as Direct Model Poisoning in Table 1) of return and δ
tested across different training iteration under different λ, each testing is average of 10 test episodes.
From these plots, it is seen that λ is suppressing the deviation of model, but the varying influence
of λ over different environment implies that different λ is required to constrain the perturbation of
model.

20


	Introduction
	System and Threat Models
	World Models
	Data Poisoning Attacks

	Stealthy World Model Manipulation via Data Poisoning
	Stage 1: Identification of Perturbed Models
	Stage 2: Poisoning Data to Manipulate Model
	Defenses Against Data Poisoning

	Experiments
	Experiment Setup
	Attack Performances
	Attack Under Defenses

	Conclusion and Future Work
	Use of LLMs
	Related Works
	World Models
	Model-Based Reinforcement Learning
	Model Poisoning Attack
	Data Poisoning Attacks and Defenses

	Derivation of Transition Gradient
	Model Poisoning Algorithm
	Model Predictive Control
	Hyperparameters
	More Results
	SWAAP and SWAAP (Random)
	Pre-Training Detection
	Model Posioning Training Curve
	MPC Ablation


