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Abstract

Prior research diverges on language diversity001
in LLM fine-tuning: Some studies report bene-002
fits while others find no advantages. Through003
controlled fine-tuning experiments across 132004
translation directions, we systematically re-005
solve these disparities. We find that expand-006
ing language diversity during fine-tuning im-007
proves translation quality for both unsuper-008
vised and—surprisingly—supervised pairs, de-009
spite less diverse models being fine-tuned ex-010
clusively on these supervised pairs. However,011
benefits plateau or decrease beyond a certain012
diversity threshold. We show that increased lan-013
guage diversity creates more language-agnostic014
representations. These representational adap-015
tations help explain the improved performance016
in models fine-tuned with greater diversity.1017

1 Introduction018

General-purpose LLMs like LLAMA 3 (Grattafiori019

et al., 2024) show promise for machine translation020

but require targeted fine-tuning beyond their inci-021

dental bilingualism (Briakou et al., 2023) to match022

the performance of specialized translation systems.023

Through fine-tuning approaches ranging from two-024

stage methods (Li et al., 2024; Zeng et al., 2024;025

Stap et al., 2024) to more sophisticated optimiza-026

tion techniques (Xu et al., 2025; Zhu et al., 2024b),027

LLMs such as TOWER (Alves et al., 2024) now028

outperform traditional NMT systems (Kocmi et al.,029

2024; Deutsch et al., 2025).030

Current research presents conflicting evidence031

on multilingual fine-tuning strategies. Some stud-032

ies show that scaling the number of tasks or lan-033

guages during instruction tuning improves (cross-034

lingual) generalization (Wang et al., 2022; Muen-035

nighoff et al., 2023; Dang et al., 2024), while oth-036

ers report that just 1–3 fine-tuning languages ef-037

fectively trigger cross-lingual transfer (Kew et al.,038

1We will release our code and models upon acceptance.

2024; Zhu et al., 2024a). Recent inference-only ex- 039

periments by Richburg and Carpuat (2024) across 040

132 translation directions highlight this uncertainty, 041

showing variance in translation quality with off- 042

target generations for non-English sources and in- 043

consistent performance across languages. While 044

non-English over-tokenization and typological dis- 045

tance provide partial explanations, controlled fine- 046

tuning experiments on the effects of language di- 047

versity during fine-tuning remain unexplored. 048

We address these conflicting findings through 049

systematic experimentation with varying transla- 050

tion directions, measuring effects on both seen 051

and unseen language pairs. Through controlled 052

fine-tuning across 132 translation directions, we 053

demonstrate that increasing language diversity con- 054

sistently improves translation quality in all cate- 055

gories. Counterintuitively, models fine-tuned on 056

the most diverse language sets outperform others 057

even on fully supervised language pairs that less 058

diverse models are specifically optimized to handle. 059

However, experiments with even larger language 060

sets (272 directions) reveal that benefits plateau or 061

decrease beyond a certain diversity threshold. Anal- 062

ysis of model activations shows that fine-tuning 063

on diverse language directions creates more target 064

language-agnostic representations in middle layers, 065

explaining the performance improvements in our 066

most diverse models. 067

2 Fine-tuning and evaluation design 068

Following Richburg and Carpuat (2024), we cate- 069

gorize our language pairs into three groups based 070

on their presence in the fine-tuning data of the 071

TOWER model we build upon: fully supervised 072

(pairs between de, en, ko, nl, ru and zh), zero- 073

shot (pairs involving cs, is, ja, pl, sv and uk), 074

and partially supervised (pairs combining super- 075

vised and zero-shot languages). This yields 132 076

translation directions across 12 typologically di- 077

verse languages with varying pre-training represen- 078
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Figure 1: COMET-STRICT scores (left) and off-target rates (right) for BASE (no fine-tuning), FSEC (English-centric),
FS (seen directions), FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised
(cs/is/ja/pl/sv/uk pairs), and partially supervised (combining supervised and unsupervised) language pairs. Numbers above
bars show mean scores. Training on more diverse sets improves all categories, with FS+PS+UN achieving best COMET-STRICT
scores even for fully supervised pairs. FS substantially reduces off-target rates for unsupervised directions compared to BASE and
FSEC, despite these pairs being absent from its fine-tuning data.

tation, enabling comprehensive assessment across079

different data conditions (see Appendix A).080

Fine-tuning setups We compare the follow-081

ing incremental fine-tuning approaches using the082

TOWER family of models, which are built on083

LLAMA 2 and underwent continued pre-training084

with a mixture of monolingual and parallel data:085

BASE: TOWERBASE-7B model without task-086

specific fine-tuning, serving as our baseline.087

FSEC: BASE fine-tuned only on fully supervised088

English-centric translation directions (10 direc-089

tions), representing minimal supervision.090

FS: BASE fine-tuned on all fully supervised lan-091

guage directions (30 directions), extending beyond092

English-centric pairs to investigate transfer learn-093

ing between diverse language combinations.094

FS+PS+UN: BASE fine-tuned on fully supervised,095

partially supervised, and unsupervised directions096

(132 directions), maximizing language diversity to097

investigate cross-lingual transfer effects.098

This controlled experimental design allows us to099

systematically evaluate how increasing language100

diversity during fine-tuning affects both supervised101

and unsupervised translation directions, moving be-102

yond aggregate scores to understand performance103

patterns across specific language groups.104

Data We fine-tune on NTREX-128 (Federmann105

et al., 2022), a high-quality dataset of 1,997 multi-106

parallel professionally translated sentences de-107

signed for machine translation evaluation.2 For108

evaluation, we use the FLORES-200 (Team et al.,109

2Preliminary experiments with additional FLORES-200
(dev) data showed no significant improvements, so we ex-
clude it for experimental clarity.

2022) devtest set, which provides multi-parallel 110

data for controlled cross-language comparison. 111

Metrics Our primary metric is COMET-STRICT, 112

a modified version of COMET (Rei et al., 2020) 113

that assigns zero scores to off-target transla- 114

tions, following recommendations by Zouhar et al. 115

(2024).3 We also report off-target rates, measured 116

using FASTTEXT (Joulin et al., 2017, 2016) lan- 117

guage identification.4 Optimization and inference 118

details are provided in Appendix B. 119

3 Results 120

Increased diversity leads to better performance 121

Figure 1 (left) demonstrates that expanding lan- 122

guage diversity during fine-tuning yields consis- 123

tent performance improvements across all language 124

pair categories. The COMET-STRICT scores show 125

a clear progression from BASE to FSEC to FS to 126

FS+PS+UN models, with the most diverse model 127

achieving the highest scores in every category. Sur- 128

prisingly, the FS+PS+UN model (fine-tuned on all 129

132 directions) outperforms specialized models 130

even on fully supervised language pairs (0.880 vs. 131

0.876 for FSEC), despite the latter being specifi- 132

cally optimized for these directions. The benefits 133

become more pronounced for partially supervised 134

(0.812 vs. 0.448 for BASE) and unsupervised (0.739 135

vs. 0.253 for BASE), although this improvement is 136

expected as FS+PS+UN is explicitly fine-tuned on 137

these directions. 138

These results clarify conflicting evidence on lan- 139

guage diversity (see §1) and align with Wang et al. 140

3We use version wmt22-comet-da.
4We use the lid.176.bin model.
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(2022) and Dang et al. (2024), confirming that141

broad language diversity (132 directions vs. 10–142

30), rather than minimal exposure, substantially143

enhances cross-lingual transfer, even for pairs al-144

ready well supported in more specialized models.145

Increased diversity reduces off-target problem146

Off-target translations, where models generate con-147

tent in incorrect languages, represent a critical fail-148

ure mode in LLM-based MT (Zhang et al., 2023;149

Guerreiro et al., 2023; Sennrich et al., 2024).150

Figure 1 (right) shows that while all models151

maintain target language fidelity for fully super-152

vised pairs, the BASE model produces incorrect153

target languages at alarming rates for partially154

supervised (44%) and unsupervised pairs (65%).155

Fine-tuning progressively mitigates this problem,156

with FS showing substantial improvements (13%157

and 31% respectively) despite not being explicitly158

trained on these language combinations. Signifi-159

cantly, the FS+PS+UN model completely eliminates160

off-target translations across all categories.161

Diversity benefits plateau Expanding from162

FS+PS+UN (132 directions) to 272 directions re-163

veals nuances in the diversity-performance rela-164

tionship. Unsupervised directions benefit from in-165

creased diversity, while fully supervised directions166

show slight performance decline, suggesting ben-167

efits plateau beyond a certain threshold (details168

in Appendix C.1). This contradicts prior work169

that found monotonic improvements with diversity170

Wang et al. (2022); Dang et al. (2024), but aligns171

with Muennighoff et al. (2023)’s observation of172

diminishing returns when scaling multilingual pre-173

training beyond certain language counts.174

Regularization alone insufficient Regulariza-175

tion benefits models by enhancing generalization176

and calibration, with strong effects when using dis-177

tant languages (Meng and Monz, 2024). We in-178

vestigate whether these benefits can be achieved179

through explicit regularization techniques (weight180

decay and LoRA) rather than language diversity,181

but find no comparable improvements. This aligns182

with Aharoni et al. (2019), who suggest that multi-183

lingualism provides benefits beyond explicit regu-184

larization methods. See Appendix C.2 for details.185

Results not due to multi-parallel data While186

recent work by Caswell et al. (2025) found that187

fine-tuning on multi-parallel data causes catas-188

trophic forgetting in LLMs when trained on X→en189

directions, our findings persist beyond multi- 190

parallel settings. We replicated our experiments 191

using non-multi-parallel data scraped from OPUS 192

and observed similar diversity benefits (see Ap- 193

pendix C.3). Unlike the overfitting issues reported 194

for LLMs, our models maintain performance, con- 195

sistent with prior work showing multi-parallel data 196

benefits in NMT (Stap et al., 2023; Wu et al., 2024). 197

Findings persist at larger scale Larger models 198

(13B) exhibit the same trends: increased language 199

diversity leads to reduced off-target rates and im- 200

proved cross-lingual transfer. This confirms our 201

findings are robust across model scales. Complete 202

experimental details are provided in Appendix C.4. 203
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Figure 2: SVCCA similarity scores between fine-tuned and
BASE models across layers. Lower values indicate greater
adaptation during fine-tuning. BASE-FSEC (blue), BASE-FS
(red), and BASE-FS+PS+UN (green) are compared, with their
mean shown in black. Shaded regions represent confidence
intervals. Middle layers show most significant adaptation,
with lowest mean similarity (0.91) at layer 12. FP+PS+UN
exhibits greater adaptation throughout the network.

Middle layers adapt most We analyze activation 204

patterns across models by comparing them with 205

the base model using Singular Vector Canonical 206

Correlation Analysis (SVCCA; Raghu et al., 2017). 207

This analysis identifies where and to what extent 208

adaptations occur during fine-tuning. We aggregate 209

activations across all source-target language pairs 210

and present the layer-specific results in Figure 2. 211

Our analysis reveals that middle layers con- 212

sistently undergo the most substantial adaptation 213

across all fine-tuned models, with the lowest mean 214

similarity (0.91) occurring at layer 12. Further- 215

more, models fine-tuned on more languages ex- 216

hibit greater divergence from the base model, with 217

FS+PS+UN showing most substantial adaptations. 218

Middle layers encode semantic information and 219

show the strongest cross-lingual transfer capabil- 220

ities (Liu and Niehues, 2025; Liu et al., 2025). 221
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Figure 3: Kernel density estimation of layer 12 activations
for BASE (top) and FS+PS+UN (bottom). Colors represent
translation directions. Intra-cluster distances show increased
specialization for single-target clusters in FS+PS+UN, while
multi-target cluster C1 demonstrates increased overlap.

Our findings support that larger degrees of cross-222

lingual transfer within middle layers explain the223

performance improvements observed in models224

fine-tuned on a larger linguistic diversity.225

Diversity increases cross-lingual overlap We226

analyze layer 12 (the most significantly modified227

layer) to understand which adaptations occur dur-228

ing fine-tuning. Following from Gao et al. (2024)229

and Wang et al. (2024), we apply t-SNE dimen-230

sion reduction (van der Maaten and Hinton, 2008)231

to layer activations and visualize the bivariate ker-232

nel density (KDE) estimation. Next, we employ233

k-means clustering to identify language groups234

within these representations, using silhouette score235

maximization (Rousseeuw, 1987) for optimal clus-236

ter determination without requiring manual inspec-237

tion. Finally, we calculate the intra-cluster dis-238

tances. We compare the BASE and FS+PS+UN mod-239

els, visualizing unsupervised directions where we240

expect the most significant adaptations.241

Figure 3 presents the resulting visualization. No-242

tably, for the single-target language clusters C0243

and C2, the FS+PS+UN model exhibits greater244

intra-cluster distances (0.54±0.34 and 0.41±0.26)245

compared to the BASE model (0.45±0.32 and246

0.35±0.20), suggesting increased specialization per247

source-target direction after fine-tuning on diverse248

data. Conversely, for the multi-target language 249

cluster (C1), the FS+PS+UN model shows reduced 250

intra-cluster distances (0.47±0.29) relative to the 251

BASE model (0.55±0.28), indicating greater rep- 252

resentational overlap between these linguistically 253

related languages. This increased overlap provides 254

evidence for enhanced cross-lingual transfer, which 255

contributes to the superior performance of models 256

fine-tuned on greater linguistic diversity. 257

Table 1 presents intra-cluster distances for all 258

models. Note that clusters contain the same lan- 259

guages for all setups. As diversity increases, single- 260

target clusters (C0, C2) show greater specializa- 261

tion while multi-language cluster C1 exhibits en- 262

hanced representational overlap, suggesting im- 263

proved cross-lingual transfer. 264

While previous work has explicitly aligned repre- 265

sentations (Liu and Niehues, 2025; Kargaran et al., 266

2024; Stap et al., 2023), our findings show implicit 267

alignment occurs through multilingual fine-tuning. 268

× C0 + C1 ⋆ C2

BASE 0.45± 0.32 0.55± 0.28 0.35± 0.20
FSEC 0.49± 0.33 0.53± 0.26 0.34± 0.20
FS 0.52± 0.36 0.51± 0.28 0.39± 0.24
FS+PS+UN 0.54± 0.34 0.47± 0.29 0.41± 0.26

Table 1: Intra-cluster distances. C0 (is target) and C2 (ja
target) show increased distances in models fine-tuned on more
diverse data, while C1 (cs, pl, sv, uk targets) shows de-
creased distances, indicating enhanced cross-lingual transfer.

4 Conclusion 269

Our systematic investigation across 132 transla- 270

tion directions resolves conflicting findings on lan- 271

guage diversity in LLM fine-tuning. We show that 272

fine-tuning on broader language sets consistently 273

improves translation across all categories: fully su- 274

pervised, partially supervised, and zero-shot pairs. 275

Consequently, we recommend fine-tuning with di- 276

verse language directions even when optimizing for 277

a limited subset of target translation pairs, as our 278

most diverse model outperformed models special- 279

ized exclusively for those target pairs. However, we 280

advise identifying an optimal diversity threshold, 281

as too many languages diminishes performance 282

for well-supported pairs while still benefiting less- 283

represented languages. Our representational analy- 284

sis attributes the diversity improvements to specific 285

adaptations in middle layers, revealing increased 286

language-agnostic representations, which explains 287

the enhanced cross-lingual transfer. 288
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Limitations289

We evaluate on the FLORES-200 (Team et al.,290

2022) devtest set, a multi-parallel benchmark291

consisting of documents originally written in En-292

glish and professionally translated into multiple293

languages. While this may introduce some trans-294

lationese effects, the multi-parallel nature enables295

controlled comparison across language pairs.296

Our findings are based on the TOWER model297

family (Alves et al., 2024) (7B and 13B), built on298

LLAMA 2 (Touvron et al., 2023). Further research299

should verify whether these patterns generalize to300

other model architectures and even larger model301

sizes.302
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Popel, Maja Popović, Mariya Shmatova, Steinthór578
Steingrímsson, and Vilém Zouhar. 2024. Findings579
of the WMT24 general machine translation shared580
task: The LLM era is here but MT is not solved yet.581
In Proceedings of the ninth conference on machine582
translation, pages 1–46, Miami, Florida, USA. Asso-583
ciation for Computational Linguistics.584

Philipp Koehn. 2024. Neural methods for aligning large- 585
scale parallel corpora from the web for south and 586
East Asian languages. In Proceedings of the ninth 587
conference on machine translation, pages 1454–1466, 588
Miami, Florida, USA. Association for Computational 589
Linguistics. 590

Jiahuan Li, Hao Zhou, Shujian Huang, Shanbo Cheng, 591
and Jiajun Chen. 2024. Eliciting the translation abil- 592
ity of large language models via multilingual finetun- 593
ing with translation instructions. Transactions of the 594
Association for Computational Linguistics, 12:576– 595
592. Place: Cambridge, MA Publisher: MIT Press. 596

Danni Liu and Jan Niehues. 2025. Middle-Layer Rep- 597
resentation Alignment for Cross-Lingual Transfer in 598
Fine-Tuned LLMs. ArXiv:2502.14830 [cs]. 599

Weihao Liu, Ning Wu, Wenbiao Ding, Shining Liang, 600
Ming Gong, and Dongmei Zhang. 2025. Selected 601
languages are all you need for cross-lingual truth- 602
fulness transfer. In Proceedings of the 31st interna- 603
tional conference on computational linguistics, pages 604
8963–8978, Abu Dhabi, UAE. Association for Com- 605
putational Linguistics. 606

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 607
weight decay regularization. In International confer- 608
ence on learning representations. 609

Yan Meng and Christof Monz. 2024. Disentangling 610
the roles of target-side transfer and regularization in 611
multilingual machine translation. In Proceedings of 612
the 18th conference of the european chapter of the 613
association for computational linguistics (volume 1: 614
Long papers), pages 1828–1840, St. Julian’s, Malta. 615
Association for Computational Linguistics. 616

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 617
Adam Roberts, Stella Biderman, Teven Le Scao, 618
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai- 619
ley Schoelkopf, Xiangru Tang, Dragomir Radev, 620
Alham Fikri Aji, Khalid Almubarak, Samuel Al- 621
banie, Zaid Alyafeai, Albert Webson, Edward Raff, 622
and Colin Raffel. 2023. Crosslingual generaliza- 623
tion through multitask finetuning. In Proceedings 624
of the 61st annual meeting of the association for 625
computational linguistics (volume 1: Long papers), 626
pages 15991–16111, Toronto, Canada. Association 627
for Computational Linguistics. 628

Maithra Raghu, Justin Gilmer, Jason Yosinski, and 629
Jascha Sohl-Dickstein. 2017. SVCCA: singular vec- 630
tor canonical correlation analysis for deep learning 631
dynamics and interpretability. In Advances in Neural 632
Information Processing Systems, volume 30, pages 633
6076–6085. Curran Associates, Inc. 634

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and 635
Yuxiong He. 2020. Deepspeed: System optimiza- 636
tions enable training deep learning models with over 637
100 billion parameters. In Proceedings of the 26th 638
ACM SIGKDD International Conference on Knowl- 639
edge Discovery & Data Mining, pages 3505–3506. 640

7

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.1162/tacl_a_00615
https://doi.org/10.1162/tacl_a_00615
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.1612.03651
https://doi.org/10.48550/arXiv.1612.03651
https://doi.org/10.48550/arXiv.1612.03651
https://aclanthology.org/E17-2068/
https://aclanthology.org/E17-2068/
https://aclanthology.org/E17-2068/
https://doi.org/10.48550/arXiv.2410.05873
https://doi.org/10.48550/arXiv.2410.05873
https://doi.org/10.48550/arXiv.2410.05873
https://doi.org/10.18653/v1/2024.findings-emnlp.766
https://doi.org/10.18653/v1/2024.findings-emnlp.766
https://doi.org/10.18653/v1/2024.findings-emnlp.766
https://doi.org/10.18653/v1/2024.wmt-1.1
https://doi.org/10.18653/v1/2024.wmt-1.1
https://doi.org/10.18653/v1/2024.wmt-1.1
https://doi.org/10.18653/v1/2024.wmt-1.1
https://doi.org/10.18653/v1/2024.wmt-1.1
https://doi.org/10.18653/v1/2024.wmt-1.132
https://doi.org/10.18653/v1/2024.wmt-1.132
https://doi.org/10.18653/v1/2024.wmt-1.132
https://doi.org/10.18653/v1/2024.wmt-1.132
https://doi.org/10.18653/v1/2024.wmt-1.132
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.48550/arXiv.2502.14830
https://doi.org/10.48550/arXiv.2502.14830
https://doi.org/10.48550/arXiv.2502.14830
https://doi.org/10.48550/arXiv.2502.14830
https://doi.org/10.48550/arXiv.2502.14830
https://aclanthology.org/2025.coling-main.601/
https://aclanthology.org/2025.coling-main.601/
https://aclanthology.org/2025.coling-main.601/
https://aclanthology.org/2025.coling-main.601/
https://aclanthology.org/2025.coling-main.601/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.eacl-long.110/
https://aclanthology.org/2024.eacl-long.110/
https://aclanthology.org/2024.eacl-long.110/
https://aclanthology.org/2024.eacl-long.110/
https://aclanthology.org/2024.eacl-long.110/
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf


Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon641
Lavie. 2020. COMET: A Neural Framework for MT642
Evaluation. In Proceedings of the 2020 Conference643
on Empirical Methods in Natural Language Process-644
ing (EMNLP), pages 2685–2702, Online. Association645
for Computational Linguistics.646

Aquia Richburg and Marine Carpuat. 2024. How mul-647
tilingual are large language models fine-tuned for648
translation? In First conference on language model-649
ing.650

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid651
to the interpretation and validation of cluster analysis.652
Journal of Computational and Applied Mathematics,653
20:53–65.654

Rico Sennrich, Jannis Vamvas, and Alireza Moham-655
madshahi. 2024. Mitigating hallucinations and off-656
target machine translation with source-contrastive657
and language-contrastive decoding. In Proceedings658
of the 18th conference of the european chapter of659
the association for computational linguistics (volume660
2: Short papers), pages 21–33, St. Julian’s, Malta.661
Association for Computational Linguistics.662

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,663
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.664
Dropout: a simple way to prevent neural networks665
from overfitting. The Journal of Machine Learning666
Research, 15(1):1929–1958.667

David Stap, Eva Hasler, Bill Byrne, Christof Monz, and668
Ke Tran. 2024. The fine-tuning paradox: Boosting669
translation quality without sacrificing LLM abilities.670
In Proceedings of the 62nd annual meeting of the671
association for computational linguistics (volume 1:672
Long papers), pages 6189–6206, Bangkok, Thailand.673
Association for Computational Linguistics.674

David Stap, Vlad Niculae, and Christof Monz. 2023.675
Viewing Knowledge Transfer in Multilingual Ma-676
chine Translation Through a Representational Lens.677
In Findings of the Association for Computational678
Linguistics: EMNLP 2023, pages 14973–14987, Sin-679
gapore. Association for Computational Linguistics.680

NLLB Team, Marta R. Costa-jussà, James Cross, Onur681
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-682
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,683
Jean Maillard, Anna Sun, Skyler Wang, Guillaume684
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-685
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,686
John Hoffman, Semarley Jarrett, Kaushik Ram687
Sadagopan, Dirk Rowe, Shannon Spruit, Chau688
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti689
Bhosale, Sergey Edunov, Angela Fan, Cynthia690
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp691
Koehn, Alexandre Mourachko, Christophe Ropers,692
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.693
2022. No Language Left Behind: Scaling Human-694
Centered Machine Translation. ArXiv:2207.04672695
[cs].696

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-697
bert, Amjad Almahairi, Yasmine Babaei, Nikolay698

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 699
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 700
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 701
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 702
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 703
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 704
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 705
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 706
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 707
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 708
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 709
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 710
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 711
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 712
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 713
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 714
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 715
Melanie Kambadur, Sharan Narang, Aurelien Ro- 716
driguez, Robert Stojnic, Sergey Edunov, and Thomas 717
Scialom. 2023. Llama 2: Open Foundation and Fine- 718
Tuned Chat Models. ArXiv:2307.09288 [cs]. 719

Laurens van der Maaten and Geoffrey Hinton. 2008. 720
Visualizing data using t-SNE. Journal of Machine 721
Learning Research, 9(86):2579–2605. 722

Weixuan Wang, Minghao Wu, Barry Haddow, and 723
Alexandra Birch. 2024. Bridging the Language 724
Gaps in Large Language Models with Inference-Time 725
Cross-Lingual Intervention. ArXiv:2410.12462 [cs]. 726

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo- 727
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva 728
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, 729
Anjana Arunkumar, David Stap, Eshaan Pathak, 730
Giannis Karamanolakis, Haizhi Lai, Ishan Puro- 731
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, 732
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, 733
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, 734
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, 735
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, 736
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan 737
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong 738
Shen. 2022. Super-NaturalInstructions: Generaliza- 739
tion via Declarative Instructions on 1600+ NLP Tasks. 740
In Proceedings of the 2022 Conference on Empiri- 741
cal Methods in Natural Language Processing, pages 742
5085–5109, Abu Dhabi, United Arab Emirates. As- 743
sociation for Computational Linguistics. 744

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 745
Chaumond, Clement Delangue, Anthony Moi, Pier- 746
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, 747
Joe Davison, Sam Shleifer, Patrick Von Platen, Clara 748
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven 749
Le Scao, Sylvain Gugger, Mariama Drame, Quentin 750
Lhoest, and Alexander Rush. 2020. Transformers: 751
State-of-the-Art Natural Language Processing. In 752
Proceedings of the 2020 Conference on Empirical 753
Methods in Natural Language Processing: System 754
Demonstrations, pages 38–45, Online. Association 755
for Computational Linguistics. 756

Di Wu, Shaomu Tan, Yan Meng, David Stap, and 757
Christof Monz. 2024. How far can 100 samples 758

8

https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://openreview.net/forum?id=bnscREWUuc
https://openreview.net/forum?id=bnscREWUuc
https://openreview.net/forum?id=bnscREWUuc
https://openreview.net/forum?id=bnscREWUuc
https://openreview.net/forum?id=bnscREWUuc
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://aclanthology.org/2024.eacl-short.4/
https://aclanthology.org/2024.eacl-short.4/
https://aclanthology.org/2024.eacl-short.4/
https://aclanthology.org/2024.eacl-short.4/
https://aclanthology.org/2024.eacl-short.4/
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/2024.acl-long.336
https://doi.org/10.18653/v1/2024.acl-long.336
https://doi.org/10.18653/v1/2024.acl-long.336
https://doi.org/10.18653/v1/2023.findings-emnlp.998
https://doi.org/10.18653/v1/2023.findings-emnlp.998
https://doi.org/10.18653/v1/2023.findings-emnlp.998
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/arXiv.2410.12462
https://doi.org/10.48550/arXiv.2410.12462
https://doi.org/10.48550/arXiv.2410.12462
https://doi.org/10.48550/arXiv.2410.12462
https://doi.org/10.48550/arXiv.2410.12462
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.findings-acl.896
https://doi.org/10.18653/v1/2024.findings-acl.896


go? Unlocking zero-shot translation with tiny multi-759
parallel data. In Findings of the association for760
computational linguistics: ACL 2024, pages 15092–761
15108, Bangkok, Thailand. Association for Compu-762
tational Linguistics.763

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,764
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-765
ray, and Young Jin Kim. 2025. Contrastive prefer-766
ence optimization: pushing the boundaries of LLM767
performance in machine translation. In Proceed-768
ings of the 41st international conference on machine769
learning, ICML’24. JMLR.org.770

Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie Zhou.771
2024. Teaching large language models to translate772
with comparison. Proceedings of the AAAI Confer-773
ence on Artificial Intelligence, 38(17):19488–19496.774
Abstract note: Open-sourced large language mod-775
els (LLMs) have demonstrated remarkable efficacy776
in various tasks with instruction tuning. However,777
these models can sometimes struggle with tasks that778
require more specialized knowledge such as trans-779
lation. One possible reason for such deficiency is780
that instruction tuning aims to generate fluent and781
coherent text that continues from a given instruction782
without being constrained by any task-specific re-783
quirements. Moreover, it can be more challenging to784
tune smaller LLMs with lower-quality training data.785
To address this issue, we propose a novel framework786
using examples in comparison to teach LLMs to learn787
translation. Our approach involves output compari-788
son and preference comparison, presenting the model789
with carefully designed examples of correct and in-790
correct translations and an additional preference loss791
for better regularization. Empirical evaluation on four792
language directions of WMT2022 and FLORES-200793
benchmarks shows the superiority of our proposed794
method over existing methods. Our findings offer a795
new perspective on fine-tuning LLMs for translation796
tasks and provide a promising solution for generating797
high-quality translations. Please refer to Github for798
more details: https://github.com/lemon0830/TIM.799

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.800
Prompting large language model for machine transla-801
tion: a case study. In Proceedings of the 40th inter-802
national conference on machine learning, ICML’23.803
JMLR.org. Place: Honolulu, Hawaii, USA Number804
of pages: 19 tex.articleno: 1722.805

Dawei Zhu, Pinzhen Chen, Miaoran Zhang, Barry Had-806
dow, Xiaoyu Shen, and Dietrich Klakow. 2024a.807
Fine-tuning large language models to translate: Will808
a touch of noisy data in misaligned languages suf-809
fice? In Proceedings of the 2024 conference on810
empirical methods in natural language processing,811
pages 388–409, Miami, Florida, USA. Association812
for Computational Linguistics.813

Dawei Zhu, Sony Trenous, Xiaoyu Shen, Dietrich814
Klakow, Bill Byrne, and Eva Hasler. 2024b. A815
preference-driven paradigm for enhanced translation816
with large language models. In Proceedings of the817
2024 conference of the north american chapter of818

the association for computational linguistics: Hu- 819
man language technologies (volume 1: Long papers), 820
pages 3385–3403, Mexico City, Mexico. Association 821
for Computational Linguistics. 822

Vilém Zouhar, Pinzhen Chen, Tsz Kin Lam, Nikita 823
Moghe, and Barry Haddow. 2024. Pitfalls and out- 824
looks in using COMET. In Proceedings of the ninth 825
conference on machine translation, pages 1272–1288, 826
Miami, Florida, USA. Association for Computational 827
Linguistics. 828

A Language details 829

The selection of languages shown in Table 2, fol- 830

lowing the language selection from Richburg and 831

Carpuat (2024), enables evaluation across varied 832

typological properties and scripts while providing 833

a systematic comparison between supervised lan- 834

guages (seen during fine-tuning) and zero-shot lan- 835

guages that share linguistic features with the su- 836

pervised set. The languages in the zero-shot set 837

were chosen to represent both varying degrees of 838

resource support in the pre-training data and to 839

have relationships to languages in the supervised 840

set through language family, typological properties, 841

or orthography. 842

B Implementation details 843

B.1 Optimization 844

We conducted hyperparameter tuning on our devel- 845

opment set (FLORES-200 dev), exploring learn- 846

ing rate scheduler ∈ {cosine, inverse square root}, 847

batch size ∈ {128, 256}, and learning rate ∈ {2× 848

10−5, 2× 10−6}. 849

For all experiments, we performed full fine- 850

tuning using the AdamW optimizer (Loshchilov 851

and Hutter, 2019) with 5% warm-up percentage 852

and trained for one epoch. Based on development 853

set performance, we selected the optimal configu- 854

ration: a cosine learning rate scheduler with batch 855

size of 256 and learning rate of 2×10−5. We imple- 856

mented our fine-tuning experiments using the Hug- 857

ging Face transformers library (Wolf et al., 2020) 858

with DeepSpeed (Rasley et al., 2020). 859

B.2 Inference 860

For both fine-tuning and zero-shot inference, we 861

used the prompt template shown in Table 3. We 862

mask out the prompt during fine-tuning. We em- 863

ployed greedy decoding (beam size 1) to balance 864

computational efficiency with comprehensive eval- 865

uation across all translation directions. 866
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Language ISO 639-1 Script LLaMA-2 support Similarity groups

Czech cs Latin 0.03% West Slavic
Polish pl Latin 0.09% West Slavic
Russian ru Cyrillic 0.13% East Slavic
Ukrainian uk Cyrillic 0.07% East Slavic

German de Latin 0.17% West Germanic
English en Latin 89.70% West Germanic
Icelandic is Latin possibly unseen North Germanic
Dutch nl Latin 0.12% West Germanic
Swedish sv Latin 0.15% North Germanic

Japanese ja Kana 0.10% Kanji from Hanzi, SOV order
Korean ko Hangul 0.06% SOV order
Chinese zh Hanzi 0.13% Hanzi to Kanji, loanwords to ja and ko

Table 2: Evaluated languages with rationales for similarity grouping, following the language selection from Richburg
and Carpuat (2024). Languages marked in bold belong to the supervised set used in the original TOWER model
fine-tuning.

Translate this from {source_language} to {target_language}:
{source_language}: {source_sentence}
{target_language}: {target_sentence}

Table 3: Prompting template for fine-tuning and 0-shot inference. For fine-tuning {target_sentence} is filled
with the corresponding target sentence, and for 0-shot inference it is the empty string.

C Additional results867

C.1 Scaling diversity to 272 languages868

To investigate whether further increasing language869

diversity yields additional benefits, we compared870

our most diverse model from the main experiments871

(FS+PS+UN with 132 directions) to an even more872

diverse setup including 272 translation directions.873

While maintaining a similar distribution of lan-874

guage families as in our main experiments, we875

added five additional languages:876

• Germanic family: Danish (da, North Ger-877

manic) and Afrikaans (af, West Germanic)878

• Slavic family: Slovak (sk, West Slavic) and879

Bulgarian (bg, South Slavic)880

• East Asian languages: Vietnamese (vi, dif-881

ferent writing system but shares vocabulary882

with Chinese)883

This selection maintains balanced representation884

across language families while introducing con-885

trolled diversity within each family. All additional886

languages are represented in both NTREX and887

FLORES-200.888

Importantly, we evaluate both models on the889

same set of languages and directions as used890

throughout the paper. The additional languages891

are only used during fine-tuning to increase diver- 892

sity, allowing us to measure their impact on the 893

original set of translation directions. 894
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Figure 4: COMET-STRICT scores comparing models trained
on 132 directions and 272 directions. Both are evaluated on
the original test set with the same language pairs as used
throughout the paper. Unsupervised directions show clearest
benefits from increased diversity (+0.01), while fully super-
vised directions show a slight decrease (-0.003), suggesting
potential diversity trade-offs.

Figures 4 shows the performance comparison 895

between our 132-direction model (FS+PS+UN) and 896

the expanded 272-direction model. 897

For fully supervised pairs, we observe a slight 898

performance decrease (-0.003 COMET-STRICT) 899

when scaling to 272 directions. Partially super- 900

vised directions show almost identical performance 901

(+0.001), while unsupervised directions demon- 902
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strate the clearest benefit (+0.01) from increased903

language diversity.904

These results suggest that language diversity ben-905

efits may plateau or even slightly decline for al-906

ready well-represented language pairs. The slight907

reduction in fully supervised performance may in-908

dicate a trade-off between focused optimization909

and broader generalization, where extremely high910

diversity can dilute the model’s effectiveness for911

specific well-represented languages. Nonetheless,912

the continued improvements for unsupervised di-913

rections (with respect to the original TOWERBASE914

model) demonstrate that higher diversity provides915

additional benefits for these previously unseen lan-916

guage combinations, even though both the 132 and917

272 direction models include these pairs during918

fine-tuning.919

C.2 Regularization alone insufficient920

fully supervised partially supervised unsupervised
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Figure 5: COMET-STRICT scores comparing FS models
with weight decay values of 0.01 (standard) and 0.10. Increas-
ing regularization strength shows minimal impact on fully
supervised and partially supervised directions, while actually
harming performance on unsupervised directions, suggesting
that regularization alone cannot replicate the benefits of in-
creased language diversity.

To investigate whether the performance benefits921

observed with increased language diversity could922

be achieved through explicit regularization tech-923

niques, we conduct additional experiments using924

stronger regularization on models with limited lan-925

guage diversity. If increased language diversity926

primarily functions as a form of regularization, we927

hypothesize that similar improvements could be ob-928

tained by directly increasing regularization strength929

in less diverse models.930

All our previous experiments use the AdamW931

optimizer with weight decay set to 0.01 and gra-932

dient clipping at 1.0. This aligns with common933

practices in LLM fine-tuning, where dropout (Sri-934

vastava et al., 2014) is rarely employed (neither935

the LLAMA nor TOWER papers mention dropout, 936

though both use weight decay). Notably, AdamW 937

applies weight decay directly to the weights rather 938

than through gradients, decoupling it from the 939

learning rate. 940

We tested this hypothesis by fine-tuning the FS 941

setup with increased weight decay values of 0.05 942

and 0.10 (compared to our standard 0.01). We 943

chose the FS setup to examine whether stronger 944

regularization would induce better cross-lingual 945

transfer to partially supervised and unsupervised 946

directions, potentially mimicking the benefits ob- 947

served in the more diverse FS+PS+UN model. 948

Figure 5 shows the COMET-STRICT scores 949

comparing FS models with weight decay values of 950

0.01 (standard) and 0.10.5 Increasing the regular- 951

ization strength has minimal impact on translation 952

performance across all language categories. For 953

fully supervised directions, both models achieved 954

identical mean scores (0.875). For partially su- 955

pervised directions, the difference was negligible 956

(0.699 vs. 0.697). For unsupervised directions, 957

the model with stronger regularization actually per- 958

formed slightly worse (0.483 vs. 0.490). 959

We further explored alternative regularization ap- 960

proaches by implementing LoRA (Hu et al., 2022) 961

with rank 64, which constrains fine-tuning to a low- 962

dimensional subspace. This parameter-efficient 963

tuning method can be considered a form of regu- 964

larization as it restricts model updates to a much 965

smaller parameter space than full fine-tuning, po- 966

tentially preventing overfitting. Results from LoRA 967

experiments align with our weight decay findings: 968

performance for fully and partially supervised di- 969

rections remained comparable to full fine-tuning 970

with standard regularization, while unsupervised 971

directions showed slight degradation. 972

These experiments demonstrate that our initial 973

weight decay value of 0.01 already provides an 974

appropriate balance between overfitting preven- 975

tion and model flexibility. More importantly, they 976

confirm that the cross-lingual transfer benefits ob- 977

served in more diverse models cannot be replicated 978

merely by increasing explicit regularization in less 979

diverse models. The language diversity benefits we 980

observe go beyond simple explicit regularization 981

effects, providing specialized cross-lingual knowl- 982

edge transfer. Our findings align with Aharoni et al. 983

(2019), who suggest that multilingualism provides 984

5The results for weight decay at 0.05 were very similar to
0.10 and are omitted for clarity.
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Figure 6: COMET-STRICT scores for 7B models fine-tuned on filtered NLLB dataset: BASE (no fine-tuning), FSEC (English-
centric), FS (seen directions), FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised
(cs/is/ja/pl/sv/uk pairs), and partially supervised (combining supervised and unsupervised) language pairs. Numbers above bars
show mean scores. Training on more diverse sets improves all categories, with FS+PS+UN achieving best results even for fully
supervised pairs. FS substantially reduces off-target rates for unsupervised directions compared to BASE and FSEC, despite these
pairs being absent from its fine-tuning data.

benefits beyond what can be achieved through ex-985

plicit regularization methods.986

C.3 Results not due to multi-parallel data987

To verify our findings are not artifacts of using988

multi-parallel data, we constructed a non-multi-989

parallel dataset from the NLLB corpus (Team et al.,990

2022). We maintained the same 132 language991

directions as in our main experiments but elimi-992

nated the multi-parallel property Following Koehn993

(2024), we extract examples with LASER (Artetxe994

and Schwenk, 2019) scores above 1.05. We then995

removed sentences that appeared in multiple lan-996

guage pairs and sampled the remaining data to en-997

sure exactly 2,000 examples per direction, creating998

a completely non-multi-parallel dataset of equiva-999

lent size to our NTREX experiments.1000

Figure 6 shows COMET-STRICT (left) and1001

off-target (right) results from experiments con-1002

ducted using the filtered NLLB dataset rather than1003

NTREX, allowing us to verify that our findings1004

are not artifacts of using multi-parallel data.1005

The results demonstrate that our core find-1006

ing—increased language diversity during fine-1007

tuning leads to better performance—holds when us-1008

ing non-multi-parallel data as well. The FS+PS+UN1009

model still achieves the highest COMET-STRICT1010

scores across all language categories, including for1011

fully supervised language pairs. This confirms that1012

the benefits of diverse fine-tuning extend beyond1013

the multi-parallel setting described in our main ex-1014

periments.1015

When comparing performance between models1016

fine-tuned on NLLB versus NTREX data, we1017

observe identical ranking patterns across differ-1018

ent fine-tuning setups, though the NTREX-trained 1019

models show slightly better overall performance. 1020

This marginal improvement is likely attributable to 1021

NTREX’s higher data quality, as it consists of pro- 1022

fessionally translated content specifically designed 1023

for machine translation evaluation. 1024

C.4 Invariance to model scale 1025

Figure 7 demonstrates that our findings about lan- 1026

guage diversity benefits persist when scaling to 13B 1027

parameters. 1028

For translation quality (Figure 7, left), the most 1029

diverse setup (FS+PS+UN) consistently achieves 1030

the best results across all language categories, in- 1031

cluding fully supervised pairs. While most 13B 1032

models show higher scores than their 7B counter- 1033

parts (Figure 1, left), the FSEC model unexpect- 1034

edly performs worse than BASE in partially super- 1035

vised and unsupervised settings (0.557 vs 0.558 1036

and 0.154 vs 0.465), unlike in the 7B configuration 1037

where FSEC outperformed BASE. 1038

For off-target rates (Figure 7, right), the most di- 1039

verse setup again eliminates off-target translations 1040

completely. No model produces off-target trans- 1041

lations for fully supervised pairs. The FSEC 13B 1042

model shows substantially worse performance for 1043

partially supervised (0.34) and unsupervised (0.80) 1044

pairs compared to its 7B version (Figure 1, right). 1045

Though BASE and FS 13B models show improved 1046

off-target rates compared to 7B, the problem re- 1047

mains significant (BASE: 39% for unsupervised, 1048

FS: 22%). 1049

The decrease in performance for the FSEC 13B 1050

model can likely be attributed to overfitting to the 1051

limited English-centric training data. 1052

12



fully supervised partially supervised unsupervised
0.0

0.2

0.4

0.6

0.8

CO
M

ET
 st

ric
t

0.876 0.881 0.881 0.884 0.558 0.557 0.753 0.829 0.465 0.154 0.624 0.771

BASE FSEC FS FS+PS+UN

fully supervised partially supervised unsupervised
0.0

0.2

0.4

0.6

0.8

1.0

of
f-t

ar
ge

t r
at

e

0.00 0.00 0.00 0.00 0.32 0.34 0.10 0.00 0.39 0.80 0.22 0.00

BASE FSEC FS FS+PS+UN

Figure 7: COMET-STRICT scores for 13B models: BASE (no fine-tuning), FSEC (English-centric), FS (seen directions),
FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised (cs/is/ja/pl/sv/uk pairs), and
partially supervised (combining supervised and unsupervised) language pairs. Numbers above bars show mean scores. Training
on more diverse sets improves all categories, with FS+PS+UN achieving best results even for fully supervised pairs. FS
substantially reduces off-target rates for unsupervised directions compared to BASE and FSEC, despite these pairs being absent
from its fine-tuning data.

These results confirm that language diversity1053

benefits during fine-tuning are robust across model1054

scales, consistently improving both translation1055

quality and target language fidelity.1056
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