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Abstract

Prior research diverges on language diversity
in LLM fine-tuning: Some studies report bene-
fits while others find no advantages. Through
controlled fine-tuning experiments across 132
translation directions, we systematically re-
solve these disparities. We find that expand-
ing language diversity during fine-tuning im-
proves translation quality for both unsuper-
vised and—surprisingly—supervised pairs, de-
spite less diverse models being fine-tuned ex-
clusively on these supervised pairs. However,
benefits plateau or decrease beyond a certain
diversity threshold. We show that increased lan-
guage diversity creates more language-agnostic
representations. These representational adap-
tations help explain the improved performance
in models fine-tuned with greater diversity.!

1 Introduction

General-purpose LLMs like LLAMA 3 (Grattafiori
et al., 2024) show promise for machine translation
but require targeted fine-tuning beyond their inci-
dental bilingualism (Briakou et al., 2023) to match
the performance of specialized translation systems.
Through fine-tuning approaches ranging from two-
stage methods (Li et al., 2024; Zeng et al., 2024;
Stap et al., 2024) to more sophisticated optimiza-
tion techniques (Xu et al., 2025; Zhu et al., 2024b),
LLMs such as TOWER (Alves et al., 2024) now
outperform traditional NMT systems (Kocmi et al.,
2024; Deutsch et al., 2025).

Current research presents conflicting evidence
on multilingual fine-tuning strategies. Some stud-
ies show that scaling the number of tasks or lan-
guages during instruction tuning improves (cross-
lingual) generalization (Wang et al., 2022; Muen-
nighoff et al., 2023; Dang et al., 2024), while oth-
ers report that just 1-3 fine-tuning languages ef-
fectively trigger cross-lingual transfer (Kew et al.,
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2024; Zhu et al., 2024a). Recent inference-only ex-
periments by Richburg and Carpuat (2024) across
132 translation directions highlight this uncertainty,
showing variance in translation quality with off-
target generations for non-English sources and in-
consistent performance across languages. While
non-English over-tokenization and typological dis-
tance provide partial explanations, controlled fine-
tuning experiments on the effects of language di-
versity during fine-tuning remain unexplored.

We address these conflicting findings through
systematic experimentation with varying transla-
tion directions, measuring effects on both seen
and unseen language pairs. Through controlled
fine-tuning across 132 translation directions, we
demonstrate that increasing language diversity con-
sistently improves translation quality in all cate-
gories. Counterintuitively, models fine-tuned on
the most diverse language sets outperform others
even on fully supervised language pairs that less
diverse models are specifically optimized to handle.
However, experiments with even larger language
sets (272 directions) reveal that benefits plateau or
decrease beyond a certain diversity threshold. Anal-
ysis of model activations shows that fine-tuning
on diverse language directions creates more target
language-agnostic representations in middle layers,
explaining the performance improvements in our
most diverse models.

2 Fine-tuning and evaluation design

Following Richburg and Carpuat (2024), we cate-
gorize our language pairs into three groups based
on their presence in the fine-tuning data of the
TOWER model we build upon: fully supervised
(pairs between de, en, ko, nl, ru and zh), zero-
shot (pairs involving cs, is, ja, pl, sv and uk),
and partially supervised (pairs combining super-
vised and zero-shot languages). This yields 132
translation directions across 12 typologically di-
verse languages with varying pre-training represen-
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Figure 1: COMET-STRICT scores (left) and off-target rates (right) for BASE (no fine-tuning), FSEC (English-centric),
FS (seen directions), FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised
(cs/isl/jalpl/sv/uk pairs), and partially supervised (combining supervised and unsupervised) language pairs. Numbers above
bars show mean scores. Training on more diverse sets improves all categories, with FS+PS+UN achieving best COMET-STRICT
scores even for fully supervised pairs. FS substantially reduces off-target rates for unsupervised directions compared to BASE and

FSEC, despite these pairs being absent from its fine-tuning data.

tation, enabling comprehensive assessment across
different data conditions (see Appendix A).

Fine-tuning setups We compare the follow-
ing incremental fine-tuning approaches using the
TOWER family of models, which are built on
LLAMA 2 and underwent continued pre-training
with a mixture of monolingual and parallel data:
BASE: TOWERBASE-7B model without task-
specific fine-tuning, serving as our baseline.
FSEC: BASE fine-tuned only on fully supervised
English-centric translation directions (10 direc-
tions), representing minimal supervision.

FS: BASE fine-tuned on all fully supervised lan-
guage directions (30 directions), extending beyond
English-centric pairs to investigate transfer learn-
ing between diverse language combinations.
FS+PS+UN: BASE fine-tuned on fully supervised,
partially supervised, and unsupervised directions
(132 directions), maximizing language diversity to
investigate cross-lingual transfer effects.

This controlled experimental design allows us to
systematically evaluate how increasing language
diversity during fine-tuning affects both supervised
and unsupervised translation directions, moving be-
yond aggregate scores to understand performance
patterns across specific language groups.

Data We fine-tune on NTREX-128 (Federmann
et al., 2022), a high-quality dataset of 1,997 multi-
parallel professionally translated sentences de-
signed for machine translation evaluation.” For
evaluation, we use the FLORES-200 (Team et al.,

2Preliminary experiments with additional FLORES-200
(dev) data showed no significant improvements, so we ex-
clude it for experimental clarity.

2022) devtest set, which provides multi-parallel
data for controlled cross-language comparison.

Metries Our primary metric is COMET-STRICT,
a modified version of COMET (Rei et al., 2020)
that assigns zero scores to off-target transla-
tions, following recommendations by Zouhar et al.
(2024).> We also report off-target rates, measured
using FASTTEXT (Joulin et al., 2017, 2016) lan-
guage identification.* Optimization and inference
details are provided in Appendix B.

3 Results

Increased diversity leads to better performance
Figure 1 (left) demonstrates that expanding lan-
guage diversity during fine-tuning yields consis-
tent performance improvements across all language
pair categories. The COMET-STRICT scores show
a clear progression from BASE to FSEC to FS to
FS+PS+UN models, with the most diverse model
achieving the highest scores in every category. Sur-
prisingly, the FS+PS+UN model (fine-tuned on all
132 directions) outperforms specialized models
even on fully supervised language pairs (0.880 vs.
0.876 for FSEC), despite the latter being specifi-
cally optimized for these directions. The benefits
become more pronounced for partially supervised
(0.812 vs. 0.448 for BASE) and unsupervised (0.739
vs. 0.253 for BASE), although this improvement is
expected as FS+PS+UN is explicitly fine-tuned on
these directions.

These results clarify conflicting evidence on lan-
guage diversity (see §1) and align with Wang et al.

3We use version wmt 22-comet—da.
“We use the 1id.176.bin model.



(2022) and Dang et al. (2024), confirming that
broad language diversity (132 directions vs. 10—
30), rather than minimal exposure, substantially
enhances cross-lingual transfer, even for pairs al-
ready well supported in more specialized models.

Increased diversity reduces off-target problem
Off-target translations, where models generate con-
tent in incorrect languages, represent a critical fail-
ure mode in LLM-based MT (Zhang et al., 2023;
Guerreiro et al., 2023; Sennrich et al., 2024).
Figure 1 (right) shows that while all models
maintain target language fidelity for fully super-
vised pairs, the BASE model produces incorrect
target languages at alarming rates for partially
supervised (44%) and unsupervised pairs (65%).
Fine-tuning progressively mitigates this problem,
with FS showing substantial improvements (13%
and 31% respectively) despite not being explicitly
trained on these language combinations. Signifi-
cantly, the FS+PS+UN model completely eliminates
off-target translations across all categories.

Diversity benefits plateau Expanding from
FS+PS+UN (132 directions) to 272 directions re-
veals nuances in the diversity-performance rela-
tionship. Unsupervised directions benefit from in-
creased diversity, while fully supervised directions
show slight performance decline, suggesting ben-
efits plateau beyond a certain threshold (details
in Appendix C.1). This contradicts prior work
that found monotonic improvements with diversity
Wang et al. (2022); Dang et al. (2024), but aligns
with Muennighoff et al. (2023)’s observation of
diminishing returns when scaling multilingual pre-
training beyond certain language counts.

Regularization alone insufficient Regulariza-
tion benefits models by enhancing generalization
and calibration, with strong effects when using dis-
tant languages (Meng and Monz, 2024). We in-
vestigate whether these benefits can be achieved
through explicit regularization techniques (weight
decay and LoRA) rather than language diversity,
but find no comparable improvements. This aligns
with Aharoni et al. (2019), who suggest that multi-
lingualism provides benefits beyond explicit regu-
larization methods. See Appendix C.2 for details.

Results not due to multi-parallel data While
recent work by Caswell et al. (2025) found that
fine-tuning on multi-parallel data causes catas-
trophic forgetting in LLMs when trained on X—en

directions, our findings persist beyond multi-
parallel settings. We replicated our experiments
using non-multi-parallel data scraped from OPUS
and observed similar diversity benefits (see Ap-
pendix C.3). Unlike the overfitting issues reported
for LLMs, our models maintain performance, con-
sistent with prior work showing multi-parallel data
benefits in NMT (Stap et al., 2023; Wu et al., 2024).

Findings persist at larger scale Larger models
(13B) exhibit the same trends: increased language
diversity leads to reduced off-target rates and im-
proved cross-lingual transfer. This confirms our
findings are robust across model scales. Complete
experimental details are provided in Appendix C.4.
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Figure 2: SVCCA similarity scores between fine-tuned and
BASE models across layers. Lower values indicate greater
adaptation during fine-tuning. BASE-FSEC (blue), BASE-FS
(red), and BASE-FS+PS+UN (green) are compared, with their
mean shown in black. Shaded regions represent confidence
intervals. Middle layers show most significant adaptation,
with lowest mean similarity (0.91) at layer 12. FP+PS+UN
exhibits greater adaptation throughout the network.

Middle layers adapt most We analyze activation
patterns across models by comparing them with
the base model using Singular Vector Canonical
Correlation Analysis (SVCCA; Raghu et al., 2017).
This analysis identifies where and to what extent
adaptations occur during fine-tuning. We aggregate
activations across all source-target language pairs
and present the layer-specific results in Figure 2.
Our analysis reveals that middle layers con-
sistently undergo the most substantial adaptation
across all fine-tuned models, with the lowest mean
similarity (0.91) occurring at layer 12. Further-
more, models fine-tuned on more languages ex-
hibit greater divergence from the base model, with
FS+PS+UN showing most substantial adaptations.
Middle layers encode semantic information and
show the strongest cross-lingual transfer capabil-
ities (Liu and Niehues, 2025; Liu et al., 2025).
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Figure 3: Kernel density estimation of layer 12 activations
for BASE (top) and FS+PS+UN (bottom). Colors represent
translation directions. Intra-cluster distances show increased
specialization for single-target clusters in FS+PS+UN, while
multi-target cluster C1 demonstrates increased overlap.

Our findings support that larger degrees of cross-
lingual transfer within middle layers explain the
performance improvements observed in models
fine-tuned on a larger linguistic diversity.

Diversity increases cross-lingual overlap We
analyze layer 12 (the most significantly modified
layer) to understand which adaptations occur dur-
ing fine-tuning. Following from Gao et al. (2024)
and Wang et al. (2024), we apply t-SNE dimen-
sion reduction (van der Maaten and Hinton, 2008)
to layer activations and visualize the bivariate ker-
nel density (KDE) estimation. Next, we employ
k-means clustering to identify language groups
within these representations, using silhouette score
maximization (Rousseeuw, 1987) for optimal clus-
ter determination without requiring manual inspec-
tion. Finally, we calculate the intra-cluster dis-
tances. We compare the BASE and FS+PS+UN mod-
els, visualizing unsupervised directions where we
expect the most significant adaptations.

Figure 3 presents the resulting visualization. No-
tably, for the single-target language clusters CO
and C2, the FS+PS+UN model exhibits greater
intra-cluster distances (0.54+0.34 and 0.41+0.26)
compared to the BASE model (0.45+0.32 and
0.35+0.20), suggesting increased specialization per
source-target direction after fine-tuning on diverse

data. Conversely, for the multi-target language
cluster (C1), the FS+PS+UN model shows reduced
intra-cluster distances (0.47+0.29) relative to the
BASE model (0.55+0.28), indicating greater rep-
resentational overlap between these linguistically
related languages. This increased overlap provides
evidence for enhanced cross-lingual transfer, which
contributes to the superior performance of models
fine-tuned on greater linguistic diversity.

Table 1 presents intra-cluster distances for all
models. Note that clusters contain the same lan-
guages for all setups. As diversity increases, single-
target clusters (CO, C2) show greater specializa-
tion while multi-language cluster C1 exhibits en-
hanced representational overlap, suggesting im-
proved cross-lingual transfer.

While previous work has explicitly aligned repre-
sentations (Liu and Niehues, 2025; Kargaran et al.,
2024; Stap et al., 2023), our findings show implicit
alignment occurs through multilingual fine-tuning.

x CO + Cl1 * C2
BASE 0.45£0.32 0.55£0.28 0.35£0.20
FSEC 0.49+0.33 0.53£0.26 0.34+0.20
FS 0.52£0.36 0.51£0.28 0.39£0.24
FS+PS+UN 0.54+0.34 047+0.29 0.41+0.26

Table 1: Intra-cluster distances. CO (i s target) and C2 (ja
target) show increased distances in models fine-tuned on more
diverse data, while C1 (cs, pl, sv, uk targets) shows de-
creased distances, indicating enhanced cross-lingual transfer.

4 Conclusion

Our systematic investigation across 132 transla-
tion directions resolves conflicting findings on lan-
guage diversity in LLM fine-tuning. We show that
fine-tuning on broader language sets consistently
improves translation across all categories: fully su-
pervised, partially supervised, and zero-shot pairs.
Consequently, we recommend fine-tuning with di-
verse language directions even when optimizing for
a limited subset of target translation pairs, as our
most diverse model outperformed models special-
ized exclusively for those target pairs. However, we
advise identifying an optimal diversity threshold,
as too many languages diminishes performance
for well-supported pairs while still benefiting less-
represented languages. Our representational analy-
sis attributes the diversity improvements to specific
adaptations in middle layers, revealing increased
language-agnostic representations, which explains
the enhanced cross-lingual transfer.



Limitations

We evaluate on the FLORES-200 (Team et al.,
2022) devtest set, a multi-parallel benchmark
consisting of documents originally written in En-
glish and professionally translated into multiple
languages. While this may introduce some trans-
lationese effects, the multi-parallel nature enables
controlled comparison across language pairs.

Our findings are based on the TOWER model
family (Alves et al., 2024) (7B and 13B), built on
LLAMA 2 (Touvron et al., 2023). Further research
should verify whether these patterns generalize to
other model architectures and even larger model
sizes.
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A Language details

The selection of languages shown in Table 2, fol-
lowing the language selection from Richburg and
Carpuat (2024), enables evaluation across varied
typological properties and scripts while providing
a systematic comparison between supervised lan-
guages (seen during fine-tuning) and zero-shot lan-
guages that share linguistic features with the su-
pervised set. The languages in the zero-shot set
were chosen to represent both varying degrees of
resource support in the pre-training data and to
have relationships to languages in the supervised
set through language family, typological properties,
or orthography.

B Implementation details

B.1 Optimization

We conducted hyperparameter tuning on our devel-
opment set (FLORES-200 dev), exploring learn-
ing rate scheduler € {cosine, inverse square root},
batch size € {128,256}, and learning rate € {2 X
1075,2 x 1076},

For all experiments, we performed full fine-
tuning using the AdamW optimizer (Loshchilov
and Hutter, 2019) with 5% warm-up percentage
and trained for one epoch. Based on development
set performance, we selected the optimal configu-
ration: a cosine learning rate scheduler with batch
size of 256 and learning rate of 2 x 10~5. We imple-
mented our fine-tuning experiments using the Hug-
ging Face transformers library (Wolf et al., 2020)
with DeepSpeed (Rasley et al., 2020).

B.2 Inference

For both fine-tuning and zero-shot inference, we
used the prompt template shown in Table 3. We
mask out the prompt during fine-tuning. We em-
ployed greedy decoding (beam size 1) to balance
computational efficiency with comprehensive eval-
uation across all translation directions.
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Language ISO 639-1 Script LLaMA-2 support Similarity groups

Czech cs Latin 0.03% West Slavic

Polish pl Latin 0.09% West Slavic

Russian ru Cyrillic  0.13% East Slavic

Ukrainian  uk Cyrillic  0.07% East Slavic

German de Latin 0.17% West Germanic

English en Latin 89.70% West Germanic

Icelandic is Latin possibly unseen North Germanic

Dutch nl Latin 0.12% West Germanic

Swedish sV Latin 0.15% North Germanic

Japanese ja Kana 0.10% Kanji from Hanzi, SOV order
Korean ko Hangul  0.06% SOV order

Chinese zh Hanzi 0.13% Hanzi to Kanji, loanwords to ja and ko

Table 2: Evaluated languages with rationales for similarity grouping, following the language selection from Richburg
and Carpuat (2024). Languages marked in bold belong to the supervised set used in the original TOWER model

fine-tuning.

Translate this from {source_language} to {target_language}:

{source_language}:
{target_language}:

{source_sentence}
{target_sentence}

Table 3: Prompting template for fine-tuning and O-shot inference. For fine-tuning {target_sentence} is filled
with the corresponding target sentence, and for O-shot inference it is the empty string.

C Additional results

C.1 Scaling diversity to 272 languages

To investigate whether further increasing language
diversity yields additional benefits, we compared
our most diverse model from the main experiments
(FS+PS+UN with 132 directions) to an even more
diverse setup including 272 translation directions.
While maintaining a similar distribution of lan-
guage families as in our main experiments, we
added five additional languages:

¢ Germanic family: Danish (da, North Ger-
manic) and Afrikaans (af, West Germanic)

* Slavic family: Slovak (sk, West Slavic) and
Bulgarian (bg, South Slavic)

¢ East Asian languages: Vietnamese (vi, dif-
ferent writing system but shares vocabulary
with Chinese)

This selection maintains balanced representation
across language families while introducing con-
trolled diversity within each family. All additional
languages are represented in both NTREX and
FLORES-200.

Importantly, we evaluate both models on the
same set of languages and directions as used
throughout the paper. The additional languages
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are only used during fine-tuning to increase diver-
sity, allowing us to measure their impact on the
original set of translation directions.

I 132 directions (FS+PS+UN) BB 272 directions
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Figure 4: COMET-STRICT scores comparing models trained
on 132 directions and 272 directions. Both are evaluated on
the original test set with the same language pairs as used
throughout the paper. Unsupervised directions show clearest
benefits from increased diversity (+0.01), while fully super-
vised directions show a slight decrease (-0.003), suggesting
potential diversity trade-offs.

Figures 4 shows the performance comparison
between our 132-direction model (FS+PS+UN) and
the expanded 272-direction model.

For fully supervised pairs, we observe a slight
performance decrease (-0.003 COMET-STRICT)
when scaling to 272 directions. Partially super-
vised directions show almost identical performance
(+0.001), while unsupervised directions demon-



strate the clearest benefit (+0.01) from increased
language diversity.

These results suggest that language diversity ben-
efits may plateau or even slightly decline for al-
ready well-represented language pairs. The slight
reduction in fully supervised performance may in-
dicate a trade-off between focused optimization
and broader generalization, where extremely high
diversity can dilute the model’s effectiveness for
specific well-represented languages. Nonetheless,
the continued improvements for unsupervised di-
rections (with respect to the original TOWERBASE
model) demonstrate that higher diversity provides
additional benefits for these previously unseen lan-
guage combinations, even though both the 132 and
272 direction models include these pairs during
fine-tuning.

C.2 Regularization alone insufficient
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Figure 5: COMET-STRICT scores comparing FS models
with weight decay values of 0.01 (standard) and 0.10. Increas-
ing regularization strength shows minimal impact on fully
supervised and partially supervised directions, while actually
harming performance on unsupervised directions, suggesting
that regularization alone cannot replicate the benefits of in-
creased language diversity.

To investigate whether the performance benefits
observed with increased language diversity could
be achieved through explicit regularization tech-
niques, we conduct additional experiments using
stronger regularization on models with limited lan-
guage diversity. If increased language diversity
primarily functions as a form of regularization, we
hypothesize that similar improvements could be ob-
tained by directly increasing regularization strength
in less diverse models.

All our previous experiments use the AdamW
optimizer with weight decay set to 0.01 and gra-
dient clipping at 1.0. This aligns with common
practices in LLM fine-tuning, where dropout (Sri-
vastava et al., 2014) is rarely employed (neither
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the LLAMA nor TOWER papers mention dropout,
though both use weight decay). Notably, AdamW
applies weight decay directly to the weights rather
than through gradients, decoupling it from the
learning rate.

We tested this hypothesis by fine-tuning the FS
setup with increased weight decay values of 0.05
and 0.10 (compared to our standard 0.01). We
chose the FS setup to examine whether stronger
regularization would induce better cross-lingual
transfer to partially supervised and unsupervised
directions, potentially mimicking the benefits ob-
served in the more diverse FS+PS+UN model.

Figure 5 shows the COMET-STRICT scores
comparing FS models with weight decay values of
0.01 (standard) and 0.10.> Increasing the regular-
ization strength has minimal impact on translation
performance across all language categories. For
fully supervised directions, both models achieved
identical mean scores (0.875). For partially su-
pervised directions, the difference was negligible
(0.699 vs. 0.697). For unsupervised directions,
the model with stronger regularization actually per-
formed slightly worse (0.483 vs. 0.490).

We further explored alternative regularization ap-
proaches by implementing LoRA (Hu et al., 2022)
with rank 64, which constrains fine-tuning to a low-
dimensional subspace. This parameter-efficient
tuning method can be considered a form of regu-
larization as it restricts model updates to a much
smaller parameter space than full fine-tuning, po-
tentially preventing overfitting. Results from LoRA
experiments align with our weight decay findings:
performance for fully and partially supervised di-
rections remained comparable to full fine-tuning
with standard regularization, while unsupervised
directions showed slight degradation.

These experiments demonstrate that our initial
weight decay value of 0.01 already provides an
appropriate balance between overfitting preven-
tion and model flexibility. More importantly, they
confirm that the cross-lingual transfer benefits ob-
served in more diverse models cannot be replicated
merely by increasing explicit regularization in less
diverse models. The language diversity benefits we
observe go beyond simple explicit regularization
effects, providing specialized cross-lingual knowl-
edge transfer. Our findings align with Aharoni et al.
(2019), who suggest that multilingualism provides

SThe results for weight decay at 0.05 were very similar to
0.10 and are omitted for clarity.
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Figure 6: COMET-STRICT scores for 7B models fine-tuned on filtered NLLB dataset: BASE (no fine-tuning), FSEC (English-
centric), FS (seen directions), FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised
(csfis/ja/pl/sv/uk pairs), and partially supervised (combining supervised and unsupervised) language pairs. Numbers above bars
show mean scores. Training on more diverse sets improves all categories, with FS+PS+UN achieving best results even for fully
supervised pairs. FS substantially reduces off-target rates for unsupervised directions compared to BASE and FSEC, despite these

pairs being absent from its fine-tuning data.

benefits beyond what can be achieved through ex-
plicit regularization methods.

C.3 Results not due to multi-parallel data

To verify our findings are not artifacts of using
multi-parallel data, we constructed a non-multi-
parallel dataset from the NLLB corpus (Team et al.,
2022). We maintained the same 132 language
directions as in our main experiments but elimi-
nated the multi-parallel property Following Koehn
(2024), we extract examples with LASER (Artetxe
and Schwenk, 2019) scores above 1.05. We then
removed sentences that appeared in multiple lan-
guage pairs and sampled the remaining data to en-
sure exactly 2,000 examples per direction, creating
a completely non-multi-parallel dataset of equiva-
lent size to our NTREX experiments.

Figure 6 shows COMET-STRICT (left) and
off-target (right) results from experiments con-
ducted using the filtered NLLB dataset rather than
NTREX, allowing us to verify that our findings
are not artifacts of using multi-parallel data.

The results demonstrate that our core find-
ing—increased language diversity during fine-
tuning leads to better performance—holds when us-
ing non-multi-parallel data as well. The FS+PS+UN
model still achieves the highest COMET-STRICT
scores across all language categories, including for
fully supervised language pairs. This confirms that
the benefits of diverse fine-tuning extend beyond
the multi-parallel setting described in our main ex-
periments.

When comparing performance between models
fine-tuned on NLLB versus NTREX data, we
observe identical ranking patterns across differ-
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ent fine-tuning setups, though the NTREX-trained
models show slightly better overall performance.
This marginal improvement is likely attributable to
NTREX’s higher data quality, as it consists of pro-
fessionally translated content specifically designed
for machine translation evaluation.

C.4 Invariance to model scale

Figure 7 demonstrates that our findings about lan-
guage diversity benefits persist when scaling to 13B
parameters.

For translation quality (Figure 7, left), the most
diverse setup (FS+PS+UN) consistently achieves
the best results across all language categories, in-
cluding fully supervised pairs. While most 13B
models show higher scores than their 7B counter-
parts (Figure 1, left), the FSEC model unexpect-
edly performs worse than BASE in partially super-
vised and unsupervised settings (0.557 vs 0.558
and 0.154 vs 0.465), unlike in the 7B configuration
where FSEC outperformed BASE.

For off-target rates (Figure 7, right), the most di-
verse setup again eliminates off-target translations
completely. No model produces off-target trans-
lations for fully supervised pairs. The FSEC 13B
model shows substantially worse performance for
partially supervised (0.34) and unsupervised (0.80)
pairs compared to its 7B version (Figure 1, right).
Though BASE and FS 13B models show improved
off-target rates compared to 7B, the problem re-
mains significant (BASE: 39% for unsupervised,
FS: 22%).

The decrease in performance for the FSEC 13B
model can likely be attributed to overfitting to the
limited English-centric training data.
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Figure 7: COMET-STRICT scores for 13B models: BASE (no fine-tuning), FSEC (English-centric), FS (seen directions),
FS+PS+UN (all directions), evaluated on fully supervised (de/en/ko/nl/ru/zh pairs), unsupervised (cs/is/ja/pl/sv/uk pairs), and
partially supervised (combining supervised and unsupervised) language pairs. Numbers above bars show mean scores. Training
on more diverse sets improves all categories, with FS+PS+UN achieving best results even for fully supervised pairs. FS
substantially reduces off-target rates for unsupervised directions compared to BASE and FSEC, despite these pairs being absent
from its fine-tuning data.

These results confirm that language diversity
benefits during fine-tuning are robust across model
scales, consistently improving both translation
quality and target language fidelity.
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