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A B S T R A C T

For individuals with Type-1 diabetes mellitus, accurate prediction of future blood glucose values is crucial to
aid its regulation with insulin administration, tailored to the individual’s specific needs. The authors propose a
novel approach for the integration of a neural architecture search framework with deep reinforcement learning
to autonomously generate and train architectures, optimized for each subject over model size and analytical
prediction performance, for the blood glucose prediction task in individuals with Type-1 diabetes. The authors
evaluate the proposed approach on the OhioT1DM dataset, which includes blood glucose monitoring records
at 5-min intervals over 8 weeks for 12 patients with Type-1 diabetes mellitus. Prior work focused on
predicting blood glucose levels in 30 and 45-min prediction horizons, equivalent to 6 and 9 data points,
respectively. Compared to the previously achieved best error, the proposed method demonstrates improvements
of 18.4 % and 22.5 % on average for mean absolute error in the 30-min and 45-min prediction horizons,
respectively, through the proposed deep reinforcement learning framework. Using the deep reinforcement
learning framework, the best-case and worst-case analytical performance measured over root mean square error
and mean absolute error was obtained for subject ID 570 and subject ID 584, respectively. Models optimized
for performance on the prediction task and model size were obtained after implementing neural architecture
search in conjunction with deep reinforcement learning on these two extreme cases. The authors demonstrate
improvements of 4.8 % using Long Short Term Memory-based architectures and 5.7 % with Gated Recurrent
Units-based architectures for patient ID 570 on the analytical prediction performance by integrating neural
architecture search with deep reinforcement learning framework. The patient with the lowest performance (ID
584) on the deep reinforcement learning method had an even greater performance boost, with improvements
of 10.0 % and 12.6 % observed for the Long Short-Term Memory and Gated Recurrent Units, respectively.
The subject-specific optimized models over performance and model size from the neural architecture search
in conjunction with deep reinforcement learning had a reduction in model size which ranged from 20 to 150
times compared to the model obtained using only the deep reinforcement learning method. The smaller size,
indicating a reduction in model complexity in terms of the number of trainable network parameters, was
achieved without a loss in the prediction performance.
1. Introduction

Diabetes mellitus is a medical condition marked by high Blood
Glucose (BG) levels [1]. If left untreated, individuals experiencing
uncontrolled high BG levels are susceptible to severe health com-
plications, escalating the risk of heart disease, diabetic retinopathy,
or kidney damage [2]. The International Diabetes Federation (IDF)
estimates that approximately 537 million adults aged 20 to 79 are
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affected by diabetes, with the year 2021 alone witnessing 6.7 million
deaths attributed to diabetes [3]. Diabetes manifests in various forms,
including Type-1, Type-2, gestational, pre-diabetes, monogenic, and
cystic fibrosis-related diabetes [4]. The authors in this paper specifically
delve into predicting future BG values based on historical BG values
for individuals with Type-1 Diabetes Mellitus (T1DM). T1DM is char-
acterized as an organ-specific autoimmune disease affecting pancreatic
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Table 1
Performance analysis of simple recurrent networks on OhioT1DM dataset, while predicting all BG values throughout the 30 min prediction horizon, with respect to RMSE and
MAE metrics.

Reference Subjects from Features Methods Analytical performance
OhioT1DM dataset RMSE (PH = 30 min)

[6] Testing: 584, 567, 596, 552, CGM, finger stick, LSTM 25.0
544, 540. Training: All subjects basal rate, galvanic skin BiLSTM 24.4

response, skin temp., Convolutional LSTMs 23.2
bolus dose Seq-2-Seq CNN-LSTM 21.0

Seq-2-Seq LSTM 20.8
Seq-2-Seq BiLSTM 20.6

[5] All subjects CGM LSTM 22.13
GRU 22.00
WaveNet 22.49
WaveNet+GRU 22.21
WaveNet+LSTM 22.35
GRU+LSTM 21.98

[14] All subjects CGM Regression 19.85
Vanilla LSTM 19.83
BiLSTM 20.05
Ensemble via stacking 19.63
Ensemble via Multi-variate 19.64
Ensemble via subsequence 19.62
𝛽 cells [1], wherein the 𝛽 cells eventually lose their capacity for insulin
synthesis.

The application of Recurrent Neural Networks (RNNs) for BG pre-
diction has been extensively explored in the literature [5–15]. In the
healthcare domain, where insulin delivery relies on predicted BG val-
ues, surpassing the state-of-the-art in analytical and clinical perfor-
mance is of paramount importance for the advancement of T1DM
care. However, RNNs such as Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRUs) exhibit inherent numerical instability in
time-series prediction tasks. Table 1 provides insights into the perfor-
mance of simple RNNs on the OhioT1DM dataset [16] for a Prediction
Horizon (PH) of 30-mins. OhioT1DM [16] includes Continuous Glu-
cose Monitoring (CGM) data for 12 patients with T1DM, recorded
at 5-min intervals over an 8-week duration. Bhimireddy et al. [6]
evaluated LSTM, BiLSTM, Convolutional LSTM, Sequence to Sequence
(Seq-2-Seq) LSTM, Seq-2-Seq BiLSTM, and Seq-2-Seq CNN-LSTM, con-
sidering six features for testing on a portion of the OhioT1DM dataset.
Consequently, Dudukcu et al. [5] considered one feature and trained
the simple LSTM to achieve a better performance than Bhimireddy
et al. [6]. Thus, this paper also defined the BG prediction task as
a univariate time series forecasting problem. Performance on other
simple RNNs like GRUs, and WaveNets were also evaluated by Dudukcu
et al. [5], wherein combining simple RNNs like GRU with LSTM led
to a performance boost. Nemat et al. [14] trained a simple regression
model to have comparable performance to Vanilla LSTM and BiLSTM
models, while ensembling the regression, Vanilla LSTM, and BiLSTM
models led to a performance boost. While the use of RNNs in time-series
prediction is predominantly studied [17], the role of RNNs in combina-
tion with feature extractors [18,19] has also shown promising results,
for time-series forecasting tasks. Additionally, Fu [20] discusses the ap-
plication of various Reinforcement Learning (RL) algorithms, including
actor-critic methods, in controlling energy consumption in buildings,
highlighting their relevance to time-series prediction problems.

The authors propose a network architecture that combines RNNs
with densely connected encoding-decoding networks as feature en-
coders within a Deep Reinforcement Learning (DRL) framework. Com-
bining RNNs with encoding-decoding networks offers several advan-
tages, such as improving the handling of long-term dependencies or
allowing continuous, real-time learning with customization for specific
individuals. Additionally, RL is robust to noise and anomalies in the
data as it learns from reward signals rather than direct supervision. Fur-
thermore, the proposed design can effectively manage varying sequence
lengths, maintaining performance over extended periods where simpler
or smaller models might fail. The DRL framework, introduced in [21],
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trains an architecture with a default number of densely connected
encoding-decoding layers, LSTM layers, and RL, as outlined in Fig. 1.
To elaborate, the input encoding network consists of densely connected
layers that harness their representational capabilities to extract in-
formative features for the subsequent LSTM network followed by an
output encoding network. The output of this encoding network, in
conjunction with the LSTM, is fed into a projection layer that generates
a probability distribution across prediction values, ensuring a non-zero
mean and bounded output to improve numerical stability. The authors
formulated BG prediction as a DRL learning task and integrated the Soft
Actor-Critic (SAC) in the DRL framework. The proposed DRL method
surpassed the state-of-the-art BG prediction approach in both Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) within 30-
min and 45-min PHs. Compared to the previous best error, when the
proposed method was evaluated over the entire OhioT1DM dataset [16]
and used only one feature for the prediction task, the proposed DRL
method demonstrated improvements of 18.4% and 22.5% on average
and for MAE in the 30-min and 45-min PH respectively, without
additional optimization of the network’s architectural structure. In the
30-min PH, patient ID 570 exhibited the best-case prediction perfor-
mance. In contrast, patient ID 584 represents the worst-case scenario
regarding the analytical performance measured over RMSE on the
prediction task using only the DRL method.

The default setting of the DRL framework is derived from human
intuition, which might lead to non-optimized network architectures. In
this paper, the authors propose a Neural Architecture Search (NAS)
framework, integrated with the DRL framework, which is designed
to autonomously generate optimal or highly efficient neural network
structures for the given BG prediction task. NAS with DRL eliminates
the necessity for manual intervention by human experts in constructing
network architectures based on domain knowledge and intuition. The
authors propose the introduction of the NAS framework with Bayesian
Optimization (BO). This provides a systemic approach for (a) designing
networks optimized for analytical prediction performance on the BG
prediction task, and model size for each patient, and (b) searching
through a large search space of network hyperparameters to design
optimized subject-specific models in terms of model complexity or
the number of trainable network parameters. The authors iteratively
generate candidate architectures using the NAS framework, train the
architectures using DRL, and assess their performance in the BG predic-
tion task. To accomplish this, the authors employ Optuna, a BO-based
framework [22], to pinpoint architectures with low complexity that
demonstrate high performance in BG prediction. In addition to the
NAS, the authors incorporate GRU into the NAS space, an extension
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Fig. 1. Overview of the proposed RNNs with densely connected encoding networks as feature extractors and the projection layer. The BG prediction task is formulated as a DRL
learning task. The DRL-based approach requires the need of human experts to manually craft network architectures based on domain knowledge and intuition.
of prior work [21] which only utilized LSTM over the DRL framework.
The efficacy of the proposed method is evaluated using the OhioT1DM
dataset [16]. The candidate architecture, generated by the NAS frame-
work, is evaluated on the BG prediction task. The performance of the
candidate architecture, or the prediction error, on the BG prediction
task for the particular subject, is used as a reward signal for the NAS
controller. The reward signal helps the NAS controller decide on how
well the generated candidate architecture performed on the prediction
task, thereby helping it generate a new candidate architecture to meet
the specific objective. Using a subject’s past six BG values as inputs, this
paper predicts future BG values in the forecasting prediction horizon of
30 and 45 min, corresponding to six and nine BG values respectively.

Evaluation results prove that the method achieved additional im-
provements of 4.8% using LSTM-based architectures and 5.7% with
GRU-based architectures for patient ID 570, by integrating BO-based
NAS to the DRL framework. In the 30-min prediction horizon, patient
ID 570 exhibited the best-case prediction performance, while patient ID
584 represents the worst-case scenario in terms of the analytical perfor-
mance measured over RMSE on the prediction task using only the DRL
method. Patient ID 584 had an even greater performance boost, with
improvements of 10.0% and 12.6% observed for the LSTM and GRU,
respectively with the NAS combined with DRL approach. Moreover, the
BO approach excels in identifying more suitable hyperparameter sets.
With these sets, the authors achieve competitive results with recent
methods [21] while utilizing a fraction of trainable network param-
eters. Through the NAS approach, the authors achieved a decrease in
model size compared to solely employing the DRL method. The subject-
specific optimized models over performance and model size from the
NAS in conjunction DRL had a reduction in model size which ranged
from 20 to 150 times compared to the model obtained using only
the DRL method. The size reduction, indicating a reduction in model
complexity in terms of the number of trainable network parameters,
was achieved without a loss in the prediction performance compared
to the state-of-the-art [21]. The reduction varied depending on the
483 
specific patient and architecture. Compared with the state-of-the-art
results [5,14,21], wherein the same number of features, and all subjects
were considered for training and testing, the proposed NAS based
on Bayesian optimization framework, built on top of DRL, expressed
a very comparable performance in clinical settings, as elucidated in
Section 5. While evaluating clinically using Surveillance Error Grid
(SEG) [23], the NAS with DRL expressed only marginal changes in the
none and slight risk zones, within a range of ±3%, compared to the
state-of-the-art [5]. The key contributions of the paper are as follows:

• The paper proposes a novel approach for the integration of a
NAS framework with DRL to autonomously generate and train
architectures for predicting BG values in individuals with Type-1
diabetes.

• The authors train the proposed method on the OhioT1DM dataset.
In comparison to the baseline, the proposed Deep Reinforcement
Learning method outperforms their best results by 18.5% on Mean
Absolute Error and 16.3% on Root Mean Square Error for 30-min
prediction horizon, and by 22.5% Mean Absolute Error and 19.5%
on Root Mean Square Error for 45-min prediction horizon.

• The prediction results on best (patient ID 570) and worst case (pa-
tient ID 584) patients using only the Deep Reinforcement Learn-
ing method, were further enhanced by integrating the Bayesian
optimization-based Neural Architecture Search to the Deep Rein-
forcement Learning framework.

The rest of the paper is organized as follows: Section 2 talks about
the state-of-the-art approaches proposed in the literature. In Section 3,
the authors delve deeper into our proposed methodology. The ex-
perimental settings are detailed in Section 4. The evaluation results
are discussed in Section 5, while Section 6 concludes the paper. The
experimental results can be reproduced from the GitHub repository.2

2 https://github.com/SC-SGS/Optimization-of-DRL-based-BG-Prediction.
git

https://github.com/SC-SGS/Optimization-of-DRL-based-BG-Prediction.git
https://github.com/SC-SGS/Optimization-of-DRL-based-BG-Prediction.git
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2. Related prior work

Numerous studies have been conducted to predict BG for patients
diagnosed with T1DM [5–15,24]. Several external factors like insulin
and carbohydrate intake, exhaustion from physical activity, and stress
influence the fluctuation of BG levels in individuals with T1DM [25].
Accurate prediction of future BG levels helps in regulating insulin
intake and thus helps to avoid serious health complications. To predict
BG in T1DM, several techniques have been proposed in the literature
that involve both Machine Learning (ML) and Deep Learning (DL)
approaches [6,26,27]. The effectiveness of the devised techniques is
evaluated using datasets obtained from individuals with T1DM, as well
as through dataset from simulators. Development of simulators for
T1DM is also an active area of research. The subsequent subsections
discuss simulators, datasets, and concentrate on pertinent literature
concerning the OhioT1DM [16] dataset.

2.1. Simulators and datasets for Type-1 diabetes

Simulation environments such as the Diabetes Mellitus Metabolic Sim-
lator for Research (DMMS.R) [28] are designed for diabetes research.
MMS.R facilitates clinical studies on virtual subjects with Type- 1, 2,
r pre-diabetes, providing in silico environments for testing interven-
ions in diabetes treatment and monitoring, including modeling devices
nd exploring treatment protocols. It can be leveraged to create device
odels, apply comprehensive test protocols, analyze subject responses

o drug treatments, and evaluate sensor and pump performance in the
n silico environment before clinical trials. Moving on to the next, the
adova T1DM Simulator [29] was developed to model the glucose-
nsulin system during a meal based on closed-loop control [30]. It
elates plasma concentrations of glucose and insulin to various glucose
nd insulin fluxes, incorporating a 2-compartment model for the glu-
ose subsystem. This simulator has been further enhanced to account
or nonlinear increases in insulin-dependent utilization during hypo-
lycemia and includes models for glucagon kinetics, and secretion [29].
dditional simulation tools for modeling T1DM BG levels include the
eb-based Simulation Tool [31], Simglucose [32], and GluCoEnv [33].
Predictions on data from T1DM like [16,34–40] also contribute to

a significant portion of the relevant literature. OhioT1DM [16] in-
cludes an eight-week dataset capturing the CGM values, insulin records,
physiological sensor data, and self-reported life events for each of 12
individuals with T1DM. The OAPS [34] data collection, initiated in
2015, strives to improve accessibility and transparency of Artificial
Pancreas System technology for individuals with T1DM [12]. Partici-
pants voluntarily share their data, encompassing CGM-recorded glucose
levels, insulin rates, carbohydrate intake, physical activity, and other
physiological details. Tidepool [35,41] is another substantial collection
of CGM values and insulin pump data, encompassing around 100
participants with a total of 152 million data instances [42].

2.2. Relevant literature on the OhioT1DM dataset

In 2018, Zhu et al. [27] explored the combination of causal dilated
CNN layers with fast WaveNet for predicting BG on the OhioT1DM
dataset [16], for six subjects, using four different features. In 2020,
online Auto-Regressive Integrated Moving Average (ARIMA) with resid-
ual compensation network was proposed by Ma et al. [43]. Daniels
et al. [44] proposed the use of deep multitask networks and convo-
lutional RNNs, while dilated RNNs in the context of BG prediction for
T1DM individuals were explored by Zhu et al. [7]. In the same year,
deep residual networks, latent variable-based statistical modeling, and
shallow neural networks was explored by Rubin-Falcone et al. [42],
Sun et al. [45], and Pavan et al. [46] respectively, on the OhioT1DM
dataset [16]. Multi-scale LSTM with multi-lag structures, Convolutional
RNN (CRNN), Neural Networks (NN) and RNN in conjunction with
attention mechanisms were proposed by Yang et al. [8], Freiburghaus
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et al. [9], and Bevan et al. [10] respectively. In the same year, a
neural physiological encoder with LSTM, Seq-2-Seq models with RNNs,
knowledge distillation via RNN and Generative Adversarial Networks
(GAN) for time-series prediction on the OhioT1DM [16] were explored
by Gu et al. [11], Bhimireddy et al. [6], Hameed et al. [12], and Zhu
et al. [47] respectively.

In the following year, combinations of LSTM, GRU, WaveNets
combined in a weighted decision-level fusion, GRU-based consoli-
dated versus training models for individual subjects of the OhioT1DM
dataset [16], and recurrent self-attention network was explored by
Dudukcu et al. [5], Dudukcu et al. [24], and Cui et al. [13] respectively.
In 2022, Nemat et al. [14] explored ensembling of simple regression
model, vanilla LSTM and Bi-directional LSTM (BiLSTM). In 2023, Shuvo
et al. [15] explored deep multi-task learning with stacked LSTM for BG
prediction task. Chronologically listed in Table 2 is a comprehensive
overview of the prediction methods, preprocessing steps, features uti-
lized, and performance estimation techniques proposed in the literature
for the OhioT1DM dataset [16].

In general, throughout the literature, the popular metrics for ana-
lytical performance estimation on the prediction task were RMSE and
MAE, while SEG [23] and Clarkes’ Error Grid (CEG) [48] were the
most commonly used metrics for evaluating clinical accuracy. The pre-
processing was quite diverse, with some prior work considering interpo-
lation methods [7,11,14,15,27,43–45,47] and imputation methods [6,
12] to account for missing data. Depending on the research timeline
(6 more subjects were incorporated into the OhioT1DM dataset [16]
in 2020), the literature considers either 6 [7–11,27,42–46] or 12 sub-
jects [5,13–15,24]. Some work [7,11,12,42] opted to harness addi-
tional datasets like Padova T1DM simulator [29], TidePool [35], and
OAPS [34] dataset to bolster the prediction performance. Additionally,
commonly explored preprocessing techniques involves median [11,12]
and Gaussian [15] filtering, as well as data normalization [5,8,46].
Regarding features employed in the prediction task, aside from CGM,
carbohydrate intake, basal, and bolus insulin are frequently taken into
account [7–9,11,12,42,44]. While many studies used multiple features
for the prediction task, this paper consider only past CGM values to
predict future BG values, and evaluate over the entire OhioT1DM [16]
dataset, consistent with [5,14].

In this work, the authors propose a novel method of BO-based
NAS in conjunction with DRL, encompassing a dense encoder–decoder
network in combination with LSTM or GRU cells. The authors propose
z-score normalization on the training set and apply the normaliza-
tion score obtained from the training set to the test dataset, as the
only pre-processing step while considering only CGM values. The au-
thors evaluate the proposed method analytically using RMSE and MAE
metrics, and clinically via SEG and CEG. The results are compared
against the state-of-the-art, which involves weighted decision level
fusion across LSTM, WaveNet, and GRU [5] for the prediction task.

3. Methodology

The authors propose the design of a DRL architecture in conjunction
with a NAS framework to automatically derive architectures for pre-
dicting BG values for individuals affected with T1DM, as presented in
Fig. 2. The input encoding network consists of densely connected layers
that harness their representational capabilities to extract informative
features for the subsequent LSTM network. This is followed by an
output encoding network. The output of this encoding network is fed
into a projection layer that generates a probability distribution across
prediction values, ensuring a non-zero mean and bounded output to
improve numerical stability. The authors formulated BG prediction as a
DRL learning task, and integrated the Soft Actor-Critic (SAC) to the DRL
algorithm. A major drawback of using only DRL based approach is the
need of human experts to manually craft network architectures based
on domain knowledge and intuition. This indicates that the architecture
for the BG prediction models is built with a standard configuration
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Table 2
Summary of related research on Type-1 diabetes prediction for OhioT1DM Dataset.

Publication Reference Additional Subjects from Features Methods Preprocessing Performance
year dataset OhioT1DM dataset metrics

2018 [27] × 559, 563, 570, CGM, insulin, casual dilated CNN layers Interpolation, extrapolation
575, 588, 591 carbohydrate intake, normalized time index & fast WaveNet combination, Filtering RMSE

2020 [43] × 540, 544, 552, CGM Online ARMA & Residual Extrapolation, RMSE, MAE
567, 584, 596 Compensation Network Backward induction

2020 [44] × 540, 544, 552, CGM, insulin bolus, carbo- Deep Multitask Networks & Interpolation, Extra- RMSE, MAE
567, 584, 596 hydrate intake, exercise Convolutional RNN polation, Standardization

2020 [7] UVA/Padova 591, 570, 563, CGM, insulin doses, Dilated RNN Interpolation, Extrapolation, RMSE
T1DM Simulator [29] 559, 588, 575 carbohydrate intake Filtering, Combination

2020 [42] TidePool [35] 567, 544, 552, CGM, bolus insulin, Finger Deep Residual encode time to sine, cosine RMSE, MAE
596, 540, 584 Stick glucose, carbohydrate Time-Series forecasting embedding, variable of missingness, Clarke error grid

intake, sine & cosine of time, resampling, missing values as
CGM missingness indicator zero

2020 [45] × 540, 544, 552, CGM, basal insulin, bolus latent variable based Interpolation, statistical modeling of RMSE, MAE
567, 584, 596 insulin, insulin on board statistical modeling glucose dynamics for missing values Clarke error grid

2020 [46] × 540, 544, 552, CGM, Insulin on board, Shallow Neural Network Normalization by mean & RMSE, MAE,
567, 584, 596 carbohydrate on board, slope of CGM Error imputation module standard deviation COD, delay

2020 [8] × 540, 544, 552, CGM, basal insulin, bolus insulin, multi-scale LSTM with Data alignment, Outlier detection & RMSE, MAE
567, 584, 596 carbohydrate intake, timestamp multi-lag structure reconciliation, extrapolation,

data normalization

2020 [9] × 540, 544, 552, CGM, basal insulin, bolus CRNN Data alignment, imputation, RMSE, MAE
567, 584, 596 insulin, carbohydrate intake interpolation, resampling

2020 [10] × 540, 544, 552, CGM linear model, NN, RNN, Standardization, replace missing RMSE, MAE
567, 584, 596 RNN + attention mechanisms values with zero

2020 [11] TidePool [35] 559, 563, 570 CGM, basal insulin, bolus Neural Physiological interpolation, extrapolation RMSE
575, 588, 591 insulin, carbohydrate intake Encoder, LSTM median filtering

2020 [6] × Testing: 584, 567, 596, CGM, finger stick, LSTM, BiLSTM, Convolu- Imputation, RMSE, MAE
552, 544, 540, Training: basal rate, galvanic skin tional LSTMs, TCN, & Resampling,
12 subjects response, skin temp., sequence-to-sequence Parameter

bolus dose models merging

2020 [12] OAPS [34] Training: All 12 subjects, CGM values, insulin Knowledge Imputation, RMSE, MAE
Testing: 540, 544, 552, 567, basal rate, bolus amount, Distillation: Median Filtering
584, 596 subjects. Validation: carbs intake & difference RNN
559, 563, 570, 575, between consecutive
588, 591 subjects CGM

2020 [47] × Pre-train: 559, 563, CGM, insulin, meal, GAN, Gated RNN, Interpolation, RMSE, MAE
570, 575, 588, 591 work, sleep, psycho- CNN Extrapolation, Clarke error grid
subjects. Testing: 540, logical stress, physical Data resolution
544, 552, 567, 584, exercise matching
596 subjects

2021 [5] × All 12 CGM LSTM, WaveNet, GRU & Normalization, missing SEG, RMSE, MSA,
subjects weighted decision-level fusion data intervals dropped MAPE, RMSPE

2021 [24] × All 12 CGM GRU-based consolidated Missing data RMSE, MAE,
subjects & individual training intervals dropped MAPE, RMSPE

2021 [13] × All 12 basal rate, bolus intake, Recurrent Self- Missing data RMSE, T-test
subjects carbohydrate intake, CGM Attention Network intervals dropped

2022 [14] × All 12 CGM Regression, Vanilla LSTM, Interpolation, data RMSE, MAE, MCC,
subjects BiLSTM, Stacking, Multi- scaling, reframing for SEG, Friedman test,

variate, Subsequence ensemble supervised learning task Wilcoxon test, CDD

2023 [15] × All 12 CGM, Finger stick Deep Multi-task learning, Interpolation, Missing data RMSE, MAE,
subjects glucose, bolus insulin, Stacked LSTM intervals dropped, Clarke error grid

carbohydrate intake Extrapolation, Gaussian filtering

2024 Our × All 12 CGM NAS, DRL, Pruning, z-score RMSE, MAE,
work subjects LSTM, GRU normalization SEG
Fig. 2. Overview of the proposed approach. The Neural Architecture Search samples an architecture from the search space, trains it using the Deep Reinforcement Learning loop,
and receives the prediction error on the train dataset as feedback. The Deep Reinforcement Learning agent and Neural Architecture Search are updated using the Soft-actor critic
model and Bayesian optimization framework, respectively.
485 
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Fig. 3. Using a subject’s past six BG values as inputs, the proposed method predicts future BG values in the forecasting prediction horizon of 30 and 45 min, corresponding to
six (as shown in this fig.) and nine BG values respectively, in a moving window fashion.
of densely connected encoding-decoding layers, LSTM layers, and RL
parameter settings. However, relying solely on human intuition for
this default setup may result in sub-optimal network architecture. In
this work, the introduction of the NAS framework alongside BO offers
a systematic method for (a) crafting tailored networks optimized for
predicting future BG levels for individual patients, and (b) efficiently
navigating through a vast search space to converge on a patient-specific
optimal model. The NAS framework starts with the architecture pro-
posed in prior work [21] iteratively generating candidate architectures
that are optimized in network architecture, prediction performance,
and model size. The candidate architecture, generated by the NAS
framework, is evaluated on the BG prediction task. The performance of
the candidate architecture, or the prediction error, on the BG prediction
task for the particular subject, is used as a reward signal for the NAS
controller. The feedback signal helps the NAS controller decide on how
well the generated candidate architecture performed on the prediction
task, thereby helping it generate a new candidate architecture to meet
the specific objective. This work uses a BO-based framework called
Optuna [22] to find architectures with a low complexity that achieve
high performance in the BG prediction task, optimized in a subject-
specific manner. In addition to the prior work [21] which only involved
DRL with LSTM as the sole variant of the RNN, this paper includes GRUs
as an additional variant of the RNNs, alongside the major contribution
to the design of NAS with Bayesian optimization framework on top of
the DRL. Fig. 3 elucidates the model predictions in a moving window
fashion.

Consistent with the state-of-the-art baseline [5], this work uses only
CGM values for the prediction task. Using a patient’s past six BG values
as inputs, we predict future BG values in the forecasting prediction
horizon of 30 and 45 min, corresponding to six and nine BG values
respectively. The models are trained and evaluated on all 12 subjects.
In the 30-min prediction horizon, patient ID 570 exhibited the best-case
prediction performance, while patient ID 584 represents the worst-case
scenario in terms of the analytical performance measured over RMSE on
the prediction task using only the DRL method. Therefore, the selection
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of patient ID 570 and ID 584 for the NAS with DRL experiments is based
on their representation of extreme cases. By focusing on these two
scenarios, the authors aim to comprehensively assess the effectiveness
of the NAS with DRL approach in improving prediction accuracy across
a wide spectrum of patient scenarios. Comprehensive details regarding
the network architecture are provided in the following sections.

3.1. Deep neural networks

Prior work identified DNNs as promising models for BG predic-
tion [27,44] on the OhioT1DM dataset [16]. Variants of the same
including CNN [27] and CRNN [9] were also studied. In our work,
we combine densely connected neural networks with LSTM or GRU,
within a DRL framework. Diverging from other studies, we propose a
DRL and NAS approach over supervised learning, thereby adapting both
the architecture search space and strategy to aid the training process.

3.1.1. Densely connected encoding networks
Densely connected networks are a type of neural network archi-

tecture where each neuron in one layer is linked to every neuron in
the subsequent layer. Reasons for utilizing these networks include their
high representational power, flexibility, and effective feature learning,
incorporating multiple levels of abstraction. In several applications,
they have proven to be effective when integrated with convolutional
networks, serving as feature extractors, as exemplified in architectures
like DenseNet [49] and similar other models.

Encoding networks: The input encoding network comprises a
densely connected neural network with three layers (256, 512, and
256 neurons per layer with ReLU as the activation function). This ar-
chitecture leverages their representational power to extract informative
features for the subsequent LSTM or GRU network. Likewise, the output
encoding networks capture features from the LSTM or GRU for the final
BG prediction through the projection layer.

Projection layer: It performs the prediction of the BG values. The
size of the (densely connected) layer aligns with the number of time
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steps in the prediction horizon. Employing a tanh normal projection,
the projection layer transforms the output to create a normal dis-
tribution with a mean and standard deviation, which represents the
probability distribution across prediction values (referred to as actions)
in the DRL framework, as discussed in Section 3.2. The use of tanh
normal projection ensures an efficient distribution with a non-zero
mean, promoting bounded output and enhancing numerical stability.

3.1.2. Long short-term memory
An RNN variant specifically crafted for handling sequential data,

such as time-series data, employs a feedback mechanism (referred to as
memory) to incorporate prior network outputs for current predictions.
Illustrated in Fig. 1, the LSTM structure features multiple gates (input,
forget, and output gates) regulating information flow through time
within the memory [50]. The LSTM cell processes the input 𝑥𝑡 at time
tep 𝑡, the previous cell memory 𝑐𝑡−1, and the previous output ℎ𝑡−1 of the
ell to produce the outputs 𝑐𝑡 and ℎ𝑡 respectively. The input gate in (1)
nd the forget gate in (2) govern the cell state 𝑐𝑡, as seen in (4), wherein
he operator ⊙ denotes the Hadamard product. Along with the outcome
f the output gate in (3), the hidden state ℎ𝑡 of the cell is determined
n (5).

𝑖𝑡 = sigmoid
(

𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖
)

(1)

𝑓𝑡 = sigmoid
(

𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓
)

(2)

𝑜𝑡 = sigmoid
(

𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜
)

(3)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh
(

𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐
)

(4)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh
(

𝑐𝑡
)

(5)

The presence of these gates and the recurrent structure within the
network enables us to mitigate the vanishing gradients problem and
enhance the learning of long-term dependencies, as discussed in [51].

3.1.3. Gated recurrent unit
A GRU is similar in structure to LSTMs but without a forget gate,

thus consisting only of a reset and an update gate [52]. Therefore, GRUs
have fewer trainable parameters than LSTMs and are widely used in
tasks involving natural language processing, speech recognition, and
time series prediction. The general structure of a GRU cell is given in
Fig. 1. As shown, the input at a given time 𝑡 is 𝑥𝑡, and the output of the
previous time step is ℎ𝑡−1. The resulting hidden state ℎ𝑡 is calculated as
given in Eqs. (8)–(9), including the calculations of the reset and update
gates in Eqs. (6)–(7). In the following equations 𝑊𝑧, 𝑈𝑧, and 𝑏𝑧 are
(trainable) parameter matrices or vectors, respectively.

𝑧𝑡 = sigmoid
(

𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧
)

(6)

𝑟𝑡 = sigmoid
(

𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟
)

(7)

ℎ̃𝑡 = tanh
(

𝑊ℎ𝑥𝑡 + 𝑈ℎ
(

𝑟𝑡 ⊙ ℎ𝑡−1
)

+ 𝑏ℎ
)

(8)

ℎ𝑡 =
(

1 − 𝑧𝑡
)

⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (9)

Despite the widespread adoption of GRUs, the effectiveness of GRUs
and LSTMs depends on the specific application [53].

3.2. Deep reinforcement learning

DRL merges the representational capabilities of DL with the
decision-making proficiency of RL. It constitutes a subset of ML tailored
for complex, high-dimensional decision-making tasks, where an agent
learns optimal behavior by interacting with its environment, receiving
rewards or penalties based on the outcomes of its actions [54]. DRL
tasks are conceptualized as Markov Decision Processes, defining the
spaces of states , agent actions , and a scalar training signal 
(reward). At each time step 𝑡, the agent gets a state 𝑠𝑡 ∈  and chooses
an action 𝑎𝑡 ∈  following a policy 𝜋

(

𝑎𝑡|𝑠𝑡
)

. Consequently, the agent

receives a reward 𝑟𝑡 ∈  and transitions to the next state 𝑠𝑡+1 ∈ .
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We parameterize the policy 𝜋 using a DNN and aim to maximize the
cumulative reward (return) during training. Analogous to the approach
in [55], we adopt Actor-Critic training algorithms. These algorithms
employ a value function to predict future rewards, where the value
function in Eq. (10) denotes the anticipated total (discounted) reward
originating from state 𝑠, with 𝛾 representing the discount factor.

𝑉 (𝑠) = E𝜋

[ ∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

]

(10)

Hereafter, our emphasis is on the Soft Actor-Critic (SAC) algo-
rithm [56], identified as the most effective among the algorithms
studied in [55].

Soft Actor-Critic: The DRL algorithm designed for continuous con-
trol tasks adheres to the Actor-Critic framework [57]. This algorithm
incorporates two networks – the actor and the critic network – to learn
the policy and estimate a soft value function akin to Eq. (10). The
soft value function is employed to update the policy using Temporal
Difference (TD) error. SAC’s value function and entropy regularization
enhance exploration and prevent the policy from becoming overly
deterministic. Additionally, the automatic temperature tuning simpli-
fies the hyperparameter adjustment process, promoting stability and
robustness in training [56]. Nevertheless, the training process may de-
mand more computational resources, potentially extending the training
time compared to conventional supervised approaches.

In the subsequent experiments, we employ an actor and a critic net-
work with a structure illustrated in Fig. 1. To frame the BG prediction
as a DRL task, we define the state  at time 𝑡 as a vector:

(𝑡) =
[

𝐵𝐺𝑡−5, 𝐵𝐺𝑡−4, 𝐵𝐺𝑡−3, 𝐵𝐺𝑡−2, 𝐵𝐺𝑡−1, 𝐵𝐺𝑡
]𝑇 . (11)

he reward is determined as described in Eq. (12), and actions are
epresented by continuous BG values within the range of 35 to 500
g/dL for a given prediction horizon. Throughout the training process,

he agent generates continuous BG values from 35 to 500 based on the
bserved state of the environment.

𝑡+1 = −|𝐵𝐺𝑡 − 𝑎𝑡| (12)

The reward is formulated in a way that it approaches zero when the
utput action 𝑎𝑡 closely aligns with the ground truth BG value 𝐵𝑡 and

deviates significantly from zero (in the negative direction) otherwise.

3.3. Automated machine learning

Automated Machine Learning (AutoML) is a subfield of ML that fo-
cuses on algorithms, techniques, and systems to automate and optimize
ML pipelines [58]. AutoML encompasses various areas and aspects of
ML pipelines to make AI more accessible, efficient, and accountable
in different applications, e.g., healthcare [59]. In this work, we focus
on hyperparameter optimization, NAS, and resource efficiency, e.g., for
resource-constrained environments like edge devices. In the following
experiments, we use model-based Bayesian optimization for NAS to
optimize resource efficiency.

3.3.1. Neural architecture search
NAS is used to automatically design optimal or highly efficient

neural network structures for a given task. It aims to optimize the
network parameters and topology, such as the number of layers or
units per layer, to maximize the performance on the given task. The
process of NAS involves multiple components where key considerations
are the definition of the search space, the scoring metric to evaluate
the quality of different architectures, and the search algorithm to
explore the search space. Whereas the search space encodes a set of
task-specific architectural hyperparameters and the scoring metric a
task-specific quality measure, different search algorithms exist [60]. In
this work, the author opt for BO, which is a probabilistic, model-based

optimization technique that uses a surrogate model (usually a Gaussian
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Table 3
Description of the OhioT1DM dataset properties [16].

Patient ID Gender Age range Pump model Sensor band Training samples Test samples

540 Male 20–40 630G Empetica 11 947 2884
544 Male 40–60 630G Empetica 10 623 2704
552 Male 20–40 630G Empetica 9080 2352
567 Female 20–40 630G Empetica 10 858 2377
584 Male 40–60 530G Empetica 12 150 2653
596 Male 60–80 530G Empetica 10 877 2731
559 Female 40–60 530G Basis 10 796 2514
563 Male 40–60 530G Basis 12 124 2570
570 Male 40–60 530G Basis 10 982 2745
575 Female 40–60 530G Basis 11 866 2590
588 Female 40–60 530G Basis 12 640 2791
591 Female 40–60 530G Basis 18 847 2760
t

𝑥

process) of the objective function and a corresponding acquisition
function iteratively to guide the selection of new samples in the search
space. After each iteration, the surrogate model and acquisition func-
tion are updated to select the next configuration. BO is commonly used
in AutoML frameworks and other applications, e.g., drug discovery.
Thus, many software packages for BO are available. The authors use
Optuna [22] with a Tree-structured Parzen Estimator (TPE) to perform
NAS. Among other methods such as RL or genetic algorithms, BO is
especially appealing to the authors as:

• BO is particularly efficient in scenarios where the evaluation of
the objective function is time-consuming or expensive. This is true
in our case because the DRL training needs to be performed in
every iteration.

• BO is designed to find global optimum, making it less likely to
get stuck in local optima.

• BO can adaptively balance exploration and exploitation in hy-
perparameter optimization. Additionally, BO provides room for
iterative refinement.

• BO can also handle black-box and noisy objective functions.

. Experimental setup

.1. Dataset

This paper utilizes the widely used OhioT1DM dataset [16], a key
esource in Blood Glucose Level Prediction (BGLP) research. After
he 2020 BGLP Challenge, the dataset now includes data from 12
ubjects managing T1DM with insulin pump therapy. Collected over
ight weeks per individual, the dataset incorporates CGM, insulin,
hysiological sensors, and self-reported life-event data. Participants
sed Medtronic 530G or 630G insulin pumps and Medtronic Enlite CGM
ensors, ensuring complete anonymization with randomly assigned ID
umbers. Six subjects used Empetica sensor band, while the other
ix used Basis peak sensor to monitor real-time physiological signals.
he dataset comprises 19 features, including CGM values monitored
t 5-min intervals. Notably among those features are BG values from
eriodic self-monitoring of BG via finger sticks, insulin doses involving
oth bolus and basal separately, self-reported meal times with esti-
ated carbohydrate intake, self-reported times of exercise, sleep, work,

tress, and illness. Demographically, it involves 7 male and 5 female
ubjects, aged between 20 to 80 years. Table 3 provides a detailed
verview of the dataset characteristics. Consistent with the state-of-the-
rt baseline [5], the authors use only CGM values for the prediction
ask.

.2. Preprocessing

To standardize the data, the authors employ z-score normalization
n the training set and apply the normalization score obtained from the
raining set to the test dataset. This method rescales the values of each
488 
feature within the data to achieve zero mean and unit variance. The
computation of z-score normalization on the considered CGM feature
is outlined in Eq. (13). It requires the determination of the distribution
mean (𝜇𝑥) and standard deviation (𝜎𝑥) for the specific feature (𝑥) on
he training dataset.
′ =

𝑥 − 𝜇𝑥
𝜎𝑥

(13)

The rationale behind employing z-score normalization lies in the
correlation between average BG values and key indicators such as
HbA1C (A1C) a metric to measure the amount of blood glucose at-
tached to haemoglobin and conditions like hyperglycemia. In this
paper, the z-score normalization is done on the training set, and the
normalization score obtained from the training set is applied to the test
dataset, as the only pre-processing step while considering CGM values.
Z-score normalization centrally revolves around the mean, and clini-
cally speaking, differences in A1C and mean glucose levels have been
noted among different racial groups, and these variations are even more
pronounced among individuals belonging to the same racial group [61,
62]. Additionally, this normalization method prioritizes identifying
potentially risky fluctuations in BG values while disregarding statistical
aspects in the data that do not contribute meaningful information for
accurate CGM prediction [63].

4.3. Evaluation metrics

Evaluation metrics serve as tools for quantifying the error of a sys-
tem. Numerous metrics are available to assess the error of BG prediction
tasks. Analytical error evaluation involves quantitative approaches to
depict the proximity of predictions to the ground truth. In contrast,
clinical error serves as a qualitative measure, assessing the clinical
outcome of the prediction results. As such, its definition encompasses
statistical metrics and the expertise of clinicians.

Analytical error: The primary numerical metric employed is the
RMSE, as outlined in Eq. (14). Furthermore, for assessing the analytical
error of BG prediction in this study, the MAE, detailed out in Eq. (15)
is also used.

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦predicted − 𝑦measured
)2 (14)

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

𝑦predicted − 𝑦measured
|

|

|

(15)

Clinical error: The SEG [23] is a recently adopted grid-based visual-
ization method for assessing clinical error. It serves as a metric for both
error and clinical risk evaluation in BG measurements [23]. Generally,
the error grid displays a series of risk zones with assigned scores (risk
levels) reflecting clinical impact, ranging from 0 (none) to 4 (extreme).
In Fig. 4(a), a simplified SEG [23] is presented, discretely structured
with limits spanning from 0 to 600 mg/dL and risk zones separated by

120 mg/dL intervals. The predictions are overlaid on a continuously
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Fig. 4. Visualization of risk zones for two different metrics to evaluate the performance of the predicted BG values in clinical settings.
color-coded SEG. The color indicates the average risk rating determined
by clinician respondents in a survey [23]. It represents the collective
decision of experts, reflecting the mean group consensus. Furthermore,
CEG [48], which was developed in 1987 to assess the clinical risk,
is used by the authors to assess the clinical risk for the predicted BG
values to the ground truth in the test set. The visualization of the CEG
risk zones is presented in Fig. 4(b).

4.4. Automated machine learning

The authors implement a fully automated AutoML pipeline using
model-based Bayesian optimization in Optuna. It focuses on optimizing
the hyperparameter and topological structures of model architectures.
Still, the proposed framework supports the manual optimization of
hyperparameters or to apply random search as in previous works [21].

Neural Architecture Search: Hyperparameter optimization is a
fundamental component of AutoML and usually plays a crucial role
in the context of (automatic) training and fine-tuning ML models.
Therefore, applying models successfully to a given task requires a
suitable selection of hyperparameters. However, the hyperparameters
are not learned but set prior to training. They control various aspects
of the model’s behavior, including the structure and properties of
architectures or algorithms, and thus are suitable for NAS. The search
space of hyperparameters for NAS is given in Table 4. The hyperparam-
eters can be categorized in two different ways. First, in the proposed
implementation, the authors differ the parameters for the actor and
critic network, which are both part of the SAC algorithm. Second,
this work categorizes the parameters as those that affect the model’s
topology (network structures) and those that influence the training
process.

The authors define the hyperparameter such that the symmetrical
network structure of the encoding networks shown in Fig. 1 is pre-
served. In this work, the authors extend the approach of manually
applying a random search for hyperparameter optimization and replace
it with an automatized, model-based Bayesian methodology using Op-
tuna. Therefore, the authors define the objective metric as given in
Eq. (16).

𝑓NAS =
RMSEtrain, NAS
RMSEtrain, initial

+ model size
initial model size (16)

The objective function 𝑓NAS is defined in a multi-objective manner
where the first term aims to minimize the RMSE on the training data,
and the second aims to reduce the overall model size. To balance
the optimization of both terms and thus find the best models with
low error and small model size, the authors normalize the terms with
489 
the initial values of the baseline. Initially, the proposed architecture
(actor network) has a size of around 1.39M trainable parameters and
a test RMSE error of approximately 20, depending on the patient. The
authors chose the value ranges of individual hyperparameters in align-
ment with existing literature [21]. In the following, if not mentioned
otherwise, the authors generate 100 candidate architectures for every
NAS iteration, considering the time and computing expenses associated
with conducting experiments. The individual candidate architectures
are evaluated concerning the performance of the training data and
model size to determine the best hyperparameters.

5. Results

5.1. Model performance

The proposed DRL and NAS algorithms are trained on the OhioT1DM
dataset [16], which includes continuous BG level monitoring at 5-
min intervals for 12 patients. During the training phase, the authors
utilize only the BG recordings of each patient from the OhioT1DM
dataset, in an 80–20 train-test split ratio. For each patient, training is
conducted over 30-min intervals (equivalent to 6 consecutive BG level
recordings), followed by a multi-step prediction for the BG level in the
subsequent 30 or 45 min. The obtained results are clinically evaluated
using SEG and CEG, and compared analytically to the baseline [5] in
terms of RMSE and MAE. The rest of the section analyzes the prediction
results for the entire dataset spanning 250 h, focusing on multi-step
predictions.

Multi-Step Predictions for 30 min using DRL framework: The
SAC model proposed in this paper predicts the BG level for 6 consec-
utive steps using a batch size of 1024 and undergoes 50,000 training
steps, considering input data over a 30-min duration. The evaluation
of RMSE and MAE for all 12 patients is presented in Table 5 along
with the standard deviation, for predicting all values throughout the
30 min prediction interval, corresponding to 6 data points. Comparative
results with prior work which uses the same number of features, and
all subjects for train and test cases, including LSTM, WaveNet, GRU,
ensemble methods, and a potential combination of these approaches,
are highlighted in Table 6. It is evident that our proposed method con-
sistently demonstrates significant improvement over the baseline [5]
across all patients, as indicated by both metrics. On average, for all
12 patients, our proposed method enhances RMSE by 16.34% and
MAE by 18.4%. Additionally, the BG prediction regression task was
translated to a classification task using data labeling approach [64],
for hypoglycemia, normoglycemia, and hyper-glycemia for BG values
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Table 4
Description of hyperparameter search space for NAS.

Parameter Category Values

Cell type Actor/Critic structure {LSTM, GRU}

Cell size Actor/Critic structure {4, 8, 16, 32, 64, 128, 256}

Observation FCN Layers Critic structure {1, 2, 3}
Neurons Critic structure {4, 8, 16, 32, 64, 128, 256, 512}

Input FCN Layers Actor structure {1, 2, 3}
Neurons Actor structure {4, 8, 16, 32, 64, 128, 256, 512}

Action FCN Critic structure {4, 8, 16, 32, 64, 128, 256, 512}

Joint FCN Layers Critic structure {1, 2, 3}
Neurons Critic structure {4, 8, 16, 32, 64, 128, 256, 512}

Output FCN Layers Actor/Critic structure {1, 2, 3}
Neurons Actor/Critic structure {4, 8, 16, 32, 64, 128, 256, 512}

Activation function Actor/Critic structure {ReLU, Tanh, Sigmoid}

Target update period Training [1, 100]

Target update 𝜏 Training [0.001, 1.0]
Table 5
Evaluation of the proposed SAC-based DRL approach for all twelve subjects, while predicting BG values throughout the 30 min prediction horizon, with respect to RMSE and MAE
metrics.

Patient ID Root mean square error Mean absolute error

Our proposed Baseline [5] % Improvement Our proposed Baseline [5] % Improvement
method (LSTM + WaveNet + GRU) over baseline method (LSTM + WaveNet + GRU) over baseline

540 19.25 ± 10.49 25.28 23.83 13.80 ± 9.58 18.77 12.99
544 15.28 ± 7.33 19.76 22.63 11.34 ± 6.45 14.36 12.99
552 14.49 ± 7.14 19.43 25.37 10.58 ± 6.42 14.66 27.83
559 19.37 ± 11.02 21.78 19.77 13.47 ± 9.83 15.35 12.22
563 17.77 ± 10.09 20.43 12.97 12.30 ± 9.34 14.39 14.46
567 22.20 ± 14.17 23.96 7.32 14.68 ± 12.74 17.41 12.62
570 15.80 ± 7.69 18.06 12.49 11.71 ± 6.97 12.85 8.83
575 20.37 ± 12.21 25.02 18.58 14.01 ± 11.16 16.77 16.45
584 24.30 ± 14.33 24.84 3.23 16.60 ± 12.76 18.57 10.57
588 15.02 ± 7.55 21.26 29.33 11.04 ± 6.77 15.55 29.00
591 18.09 ± 9.74 23.76 23.83 12.99 ± 8.82 18.61 28.43
596 17.31 ± 9.28 19.23 9.93 12.62 ± 8.47 13.58 7.03
BG ≤ 70 mg/dL, 70 mg/dL < CGM < 180 mg/dL, and BG ≥ 180
g/dL respectively. For the predictions of all the BG values throughout

he 30-min prediction interval, corresponding to 6 data points, the
lassification results are presented in Table 7. Table 8 highlights our
rediction results in terms of RMSE and MAE for all patients for
redicting only BG values at 30-min prediction interval.
Multi-Step Predictions for 45 min using DRL framework: The

roposed SAC model predicts the BG level for 9 consecutive steps,
tilizing a batch size of 1024 and undergoing 50,000 training steps,
onsidering input data over a 30-min interval. The evaluation of RMSE
nd MAE for all 12 patients is detailed in Table 9. Table 10 provides a
omparative analysis of the proposed method against the baseline [5],
hich is a combination of LSTM, WaveNet, and GRU. Notably, the pro-
osed method exhibits significant improvement over the baseline [5],
s reflected in both metrics. On average, across all 12 patients, the
roposed method enhances RMSE by 19.53% and MAE by 22.5%. For
visual representation of the proposed model’s fitting to the data,

ig. 5 depicts the ground truth compared to the prediction results for a
epresentative test dataset spanning 30 h for patient IDs 570 and 584.
aussian filtering with varying 𝜎 is used to reduce the fluctuations aris-

ng from sensor faults, connectivity problems, electrical interference,
nd manufacturing variability [15,65,66], see Fig. 5. Additionally, the
G prediction regression task was translated to a classification task
sing data labeling approach [64], for hypoglycemia, normoglycemia,
nd hyper-glycemia for BG values BG ≤ 70 mg/dL, 70 mg/dL < CGM <
180 mg/dL, and BG ≥ 180 mg/dL respectively. For the predictions of all
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Table 6
Comparison of the proposed SAC-based DRL approach with prior work which uses
only historical CGM values to predict future BG values for all twelve subjects, while
predicting all values throughout the 30 min prediction horizon.

Method Avg. root mean Avg. mean
square error absolute error

LSTM [5] 22.13 16.02
BiLSTM [14] 20.05 14.29
Vanilla LSTM [14] 19.83 14.09
Ensemble via stacking [14] 19.63 13.88
Ensemble via multi-variate [14] 19.64 13.92
Ensemble via subsequences [14] 19.62 13.88
GRU-NN [24] 21.54 15.39
WaveNet [5] 22.49 16.47
GRU [5] 22.00 15.91
WaveNet + LSTM [5] 22.35 16.29
WaveNet + GRU [5] 22.21 16.15
LSTM + GRU [5] 21.98 15.86
LSTM + WaveNet + GRU [5] 21.90 15.87

Deep RL (Proposed method) 18.32 12.93

the BG values throughout the 45-min prediction interval, corresponding
to 9 data points, the classification results are presented in Table 11.
Also, a comparative analysis of the proposed method against prior work
is highlighted in Table 12, many of which use additional datasets to
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Table 7
Classification results of the proposed SAC-based DRL approach in terms of accuracy, precision, recall, and F1-score for hypoglycemic, normoglycemic, and hyperglycemic range,
for all twelve subjects, corresponding to all predicted BG values throughout the 30 min prediction horizon.

Patient Accuracy Hypoglycemia Normoglycemia Hyperglycemia

ID Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

540 0.885 0.546 0.528 0.545 0.915 0.896 0.906 0.875 0.916 0.895
544 0.918 0.243 0.273 0.257 0.920 0.963 0.941 0.946 0.845 0.893
552 0.923 0.581 0.507 0.541 0.950 0.951 0.951 0.861 0.872 0.867
559 0.909 0.671 0.662 0.667 0.921 0.922 0.922 0.909 0.908 0.908
563 0.885 0.300 0.167 0.214 0.912 0.891 0.902 0.851 0.887 0.869
567 0.869 0.879 0.437 0.584 0.870 0.946 0.906 0.864 0.807 0.834
570 0.947 0.333 0.091 0.143 0.894 0.928 0.911 0.971 0.959 0.965
575 0.896 0.704 0.496 0.582 0.914 0.922 0.918 0.884 0.913 0.898
584 0.888 0.667 0.074 0.133 0.903 0.917 0.910 0.864 0.864 0.864
588 0.895 1.000 0.250 0.400 0.876 0.936 0.905 0.920 0.849 0.883
591 0.881 0.575 0.615 0.595 0.894 0.931 0.912 0.912 0.812 0.859
596 0.900 0.635 0.446 0.524 0.897 0.976 0.935 0.942 0.718 0.815

Average 0.899 0.594 0.378 0.432 0.905 0.931 0.918 0.899 0.862 0.879
Table 8
Evaluation of the proposed SAC-based DRL approach for all twelve subjects, while
predicting BG values at the 30 min prediction mark, with respect to RMSE and MAE
metrics.

Patient Root mean square error Mean absolute error
ID our proposed method our proposed method

540 27.48 21.19
544 20.23 14.89
552 19.72 14.82
559 25.38 18.61
563 22.61 16.79
567 28.85 20.41
570 20.56 15.64
575 26.03 18.76
584 32.04 22.53
588 21.11 15.84
591 24.41 17.69
596 23.06 17.23

Table 9
Evaluation of the proposed SAC-based DRL approach for all twelve subjects, while
predicting BG values throughout the 45 min prediction horizon, with respect to RMSE
and MAE metrics.

Patient Root mean square error Mean absolute error
ID our proposed method our proposed method

540 24.99 ± 13.21 18.02 ± 11.67
544 20.52 ± 10.90 14.84 ± 9.87
552 19.82 ± 10.29 14.42 ± 9.28
559 24.83 ± 13.72 17.60 ± 12.23
563 20.88 ± 12.40 14.35 ± 11.29
567 27.87 ± 17.54 18.49 ± 15.72
570 19.32 ± 9.50 14.15 ± 8.53
575 25.15 ± 14.97 17.24 ± 13.66
584 31.51 ± 16.10 22.68 ± 14.70
588 20.45 ± 10.92 14.70 ± 9.91
591 23.08 ± 12.78 16.38 ± 11.50
596 22.72 ± 10.35 16.94 ± 9.35

Average 23.43 ± 12.72 16.65 ± 11.47

train the model, perform testing on six out of the twelve OhioT1DM
subjects, and harness more than one feature to predict the future BG
values.

Clinical Evaluation for Multi-Step Prediction: Utilizing SEG, the
uthors evaluate the clinical error between predicted and ground truth
G levels for all 12 patients. SEG calculates the percentage of predic-
ions within predefined risk zones, as outlined by clinical practices.
able 13 presents the SEG results for all the subjects of the OhioT1DM
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Table 10
Comparison of the proposed SAC-based DRL approach with prior work which uses
only historical CGM values to predict future BG values for all twelve subjects, while
predicting all values throughout the 45 min prediction horizon.

Method Root mean Mean absolute
square error error

LSTM [5] 29.28 21.61
WaveNet [5] 29.68 22.19
GRU [5] 29.22 21.50
WaveNet + LSTM [5] 29.46 21.87
WaveNet + GRU [5] 29.44 21.83
LSTM + GRU [5] 29.26 21.56
LSTM + WaveNet + GRU [5] 29.12 21.52

Deep RL (Proposed method) 23.43 16.66

dataset, followed by the comparison to prior work in Table 14, for
the 30-min PH, wherein six BG values are predicted. Additionally,
Fig. 6 reports the clinical error using the CEG metric for patient ID
570 and patient ID 584 corresponding to the best case and worst case,
respectively. Table 15 presents the SEG results for all the subjects of
the OhioT1DM dataset, followed by the comparison to prior work in
Table 16, for the 45-min PH, wherein nine BG values are predicted.
Fig. 7 visualizes the clinical error using the SEG metric for patient
ID 570 and patient ID 584 corresponding to the best case and worst
case, respectively. In general, through SEG analysis, it is evident that a
substantial proportion of the prediction results fall within the no risk
to slight risk zone, with a few outliers. Furthermore, the predictions
consistently either outperform or align with the baseline.

To prove the effectiveness of the proposed method over other
datasets, the authors accessed S1 dataset [37], and D1NAMO dataset
[38], and used the historical CGM values to predict BG values through-
out the prediction horizon of 30 mins, corresponding to six BG values.
Both the S1 dataset [37] and the D1NAMO dataset [38] have CGM
values recorded from individuals with Type-2 Diabetes Mellitus (T2DM)
and T1DM individuals respectively, at an interval of 5 min. Table 17
reports RMSE and MAE for five selected patients from both datasets. A
low RMSE and MAE proves the efficacy of the proposed method.

5.2. Performance optimization

In all prior work [5,21], hyperparameters and network architectures
were manually defined which often necessitated a significant depth of
domain knowledge. Moreover, these models were not optimized for
performance on analytical and clinical accuracy, network architecture,
and model size, in a subject specific manner. This paper proposes a NAS
approach using sequential, model-based BO. The authors implement
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Fig. 5. BG ground truth in comparison to the predictions and Gaussian smoothing for a representative sample of the testing dataset of 30 h for patient ID 570 and patient ID 584.
Table 11
Classification results of the proposed SAC-based DRL approach in terms of accuracy, precision, recall, and F1-score for hypoglycemic, normoglycemic, and hyperglycemic range,
for all twelve subjects, corresponding to all predicted BG values throughout the 45 min prediction horizon.

Patient ID Accuracy Hypoglycemia Normoglycemia Hyperglycemia

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

540 0.868 0.614 0.370 0.462 0.850 0.955 0.899 0.940 0.779 0.852
544 0.888 0.222 0.077 0.114 0.879 0.969 0.922 0.929 0.745 0.827
552 0.901 0.411 0.550 0.471 0.940 0.933 0.936 0.850 0.825 0.837
559 0.870 0.522 0.541 0.532 0.896 0.879 0.887 0.859 0.881 0.870
563 0.874 0.342 0.52 0.413 0.913 0.871 0.892 0.834 0.884 0.858
567 0.835 0.798 0.553 0.654 0.861 0.900 0.880 0.767 0.753 0.760
570 0.934 0.182 0.125 0.148 0.883 0.894 0.888 0.959 0.956 0.957
575 0.875 0.669 0.573 0.617 0.872 0.940 0.905 0.918 0.800 0.855
584 0.857 0.294 0.143 0.192 0.889 0.878 0.883 0.814 0.841 0.827
588 0.866 0.125 0.167 0.143 0.849 0.911 0.879 0.891 0.815 0.852
591 0.851 0.615 0.417 0.497 0.866 0.918 0.891 0.845 0.776 0.809
596 0.877 0.525 0.294 0.376 0.891 0.949 0.919 0.849 0.722 0.781

Average 0.875 0.443 0.361 0.385 0.882 0.916 0.898 0.871 0.815 0.840
Fig. 6. CEG for BG predictions in comparison to measurements for a representative sample of the testing dataset of 30 h for patient ID 570 and patient ID 584.
Optuna as a BO framework and optimize the model obtained from the
DRL framework with respect to performance and model size respec-
tively. The authors perform 100 trials using the defined hyperparameter
search space in 4.4. In each trial, the NAS generates candidate archi-
tectures, which are trained using the DRL framework. The parameters
Target Update Period and Target Update 𝜏 are used as the feedback to
he NAS controller in each trial since they strongly affect the training of
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SAC. The remaining hyperparameters are used to optimize the model’s
structure and performance.

5.2.1. Neural architecture search
Fig. 8 shows the performance and model size of the individual

candidate architectures proposed by the NAS framework. The authors
investigate the trade-off between RMSE on the test data and the size
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Table 12
Comparison for all predictions made throughout the PH of 30 min and 45 min over average RMSE and average MAE.

Reference Additional Subjects from Number of PH = 30 min PH = 45 min
dataset OhioT1DM dataset features used Avg. RMSE Avg. MAE Avg. RMSE Avg. MAE

[12] Yes Train: 12 subjects CGM, insulin bolus rate, bolus amount, carbohydrate intake, 20.10 13.63 N/A N/A
Test: 6 subjects difference between consecutive glucose values

[6] No Train: 12 subjects finger stick value, basal rate value, galvanic skin response 20.6 18.3 N/A N/A
Test: 6 subjects value, skin temperature value, bolus dose value, CGM

[27] No Train: 6 subjects, CGM, bolus amount, carbohydrate intake, 21.72 N/A N/A N/A
Test: 6 subjects time index normalized to the unit for each day

[14] No Train: 12 subjects, CGM 19.63 13.88 N/A N/A
Test: 6 subjects

[5] No Train: 12 subjects, CGM 21.90 15.86 29.12 21.50
Test: 12 subjects

[24] No Train: 12 subjects, CGM 21.54 15.39 N/A N/A
Test: 12 subjects

[11] Yes Train: 6 subjects CGM, basal insulin dose, bolus insulin dose, 17.80 N/A N/A N/A
Test: 6 subjects carbohydrate intake

[13] No Train: 12 subjects, interstitial fluid glucose concentration from CGM recordings, basal insulin 18.90 N/A N/A N/A
Test: 6 subjects infusion rate, insulin bolus delivery, carbohydrate oral intake

[47] No Train: 6 subjects CGM, carbohydrate intake, bolus insulin 18.34 13.37 N/A N/A
Test: 6 subjects

[15] No Train: 12 subjects, CGM, carbohydrate intake, 16.06 10.64 N/A N/A
Test: 12 subjects bolus insulin, finger stick glucose

[43] No Train: 6 subjects, CGM 20.03 14.52 N/A N/A
Test: 6 subjects

[44] No Train: 6 subjects, CGM, insulin, carbohydrate intake, exercise 19.79 13.62 N/A N/A
Test: 6 subjects

[7] Yes Train: 6 subjects, sampling time, CGM values, meal intake and insulin dose 18.90 N/A N/A N/A
Test: 6 subjects

[42] Yes Train: 6 subjects, CGM, finger stick, bolus dose, carbohydrate input, time of day 18.22 12.83 N/A N/A
Test: 6 subjects encoded using sine and cosine embeddings

[45] No Train: 6 subjects, CGM, basal insulin, bolus insulin, insulin on board 19.37 13.76 N/A N/A
Test: 6 subjects

[46] No Train: 6 subjects, CGM, insulin on board, carbohydrates on board, exercise on board, 18.69 10.08 N/A N/A
Test: 6 subjects slope of CGM, time of day

[8] No Train: 6 subjects, CGM, basal insulin dosage, bolus insulin dosage, 19.05 13.50 N/A N/A
Test: 6 subjects carbohydrate intake, time stamp

[9] No Train: 6 subjects, basal insulin, bolus insulin, carbohydrates, CGM 17.45 23.25 N/A N/A
Test: 6 subjects

[10] No Train: 6 subjects, CGM 18.23 14.37 N/A N/A
Test: 6 subjects

Our No Train: 12 subjects, CGM 18.32 12.93 23.43 16.66
work Test: 12 subjects
Table 13
Evaluation of the proposed SAC-based DRL approach for all twelve subjects, while predicting BG values throughout the 30 min prediction
horizon, with respect to SEG metric.

Patient ID None (0) Slight (1) Moderate (2) Great (3) Extreme (4)

540 85.104 14.896 0.000 0.000 0.000
544 90.815 9.185 0.000 0.000 0.000
552 89.541 10.459 0.000 0.000 0.000
559 89.928 9.952 0.120 0.000 0.000
563 89.085 10.915 0.000 0.000 0.000
567 86.869 12.963 0.168 0.000 0.000
570 90.367 9.560 0.073 0.000 0.000
575 89.161 10.801 0.039 0.000 0.000
584 85.332 14.517 0.075 0.075 0.000
588 91.361 8.531 0.108 0.000 0.000
591 89.592 10.408 0.000 0.000 0.000
596 89.011 10.989 0.000 0.000 0.000

Average 88.847 11.098 0.048 0.000 0.000
Table 14
Comparison of the proposed SAC-based DRL approach with prior work which uses only historical CGM values to predict future BG values for all twelve subjects, while predicting
all values throughout the 30 min prediction horizon, with respect to the SEG metric.

Method None (0) Slight (1) Moderate (2) Great (3) Extreme (4)

LSTM [5] 86.42 13.56 0.02 0.00 0.00
WaveNet [5] 85.91 14.06 0.03 0.00 0.00
GRU [5] 86.41 13.55 0.04 0.00 0.00
WaveNet + LSTM [5] 86.43 13.54 0.03 0.00 0.00
WaveNet + GRU [5] 86.39 13.57 0.04 0.00 0.00
LSTM + GRU [5] 86.52 13.44 0.04 0.00 0.00
LSTM + WaveNet+ GRU [5] 86.53 13.45 0.02 0.00 0.00

Deep RL (Proposed method) 88.85 11.10 0.05 0.00 0.00
493 
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Table 15
Evaluation of the proposed SAC-based DRL approach for all twelve subjects, while predicting BG values throughout the 45 min prediction
horizon, with respect to SEG metric.

Patient ID None (0) Slight (1) Moderate (2) Great (3) Extreme (4)

540 86.343 13.542 0.116 0.000 0.000
544 89.605 10.395 0.000 0.000 0.000
552 89.344 10.656 0.000 0.000 0.000
559 89.022 10.951 0.027 0.000 0.000
563 91.111 8.863 0.0261 0.000 0.000
567 85.035 14.515 0.366 0.084 0.000
570 92.015 7.790 0.195 0.000 0.000
575 86.817 13.157 0.0259 0.000 0.000
584 82.212 17.611 0.151 0.025 0.000
586 90.380 9.620 0.000 0.000 0.000
591 86.847 13.153 0.000 0.000 0.000
596 87.151 12.849 0.000 0.000 0.000
Table 16
Comparison of the proposed SAC-based DRL approach with prior work which uses only historical CGM values to predict future BG values for all twelve subjects, while predicting
all values throughout the 45 min prediction horizon, with respect to the SEG metric averaged for all twelve subjects.

Method None (0) Slight (1) Moderate (2) Great (3) Extreme (4)

LSTM [5] 80.95 18.98 0.07 0.00 0.00
WaveNet [5] 79.88 20.07 0.05 0.00 0.00
GRU [5] 81.08 18.85 0.07 0.00 0.00
WaveNet + LSTM [5] 81.04 18.90 0.06 0.00 0.00
WaveNet + GRU [5] 81.01 18.92 0.07 0.00 0.00
LSTM + GRU [5] 81.10 18.83 0.07 0.00 0.00
LSTM + WaveNet+ GRU [5] 81.14 18.80 0.06 0.00 0.00

Deep RL (Proposed method) 87.99 11.93 0.08 0.01 0.00
Table 17
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) evaluation of the proposed method for BG predictions in
T2DM individuals [37] and BG predictions on T1DM for D1NAMO dataset [38] for a prediction horizon of 30 min.

Dataset Patient RMSE MAE
ID our proposed method our proposed method

1636 - 69 - 001 11.01 7.98
1636 - 69 - 026 12.62 8.57

S1 Dataset [37] 1636 - 69 - 028 17.41 12.62
1636 - 69 - 048 8.88 6.37
1636 - 69 - 053 18.57 14.37

001 22.71 17.31
002 27.54 21.21

D1NAMO [38] 003 14.91 12.00
005 18.86 14.59
007 15.93 11.710
Fig. 7. SEG for BG predictions in comparison to measurements for a representative sample of the testing dataset of 30 hours for patient ID 570 and patient ID 584, while predicting
all values throughout the 45-minute prediction horizon..
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Fig. 8. Model size vs. test performance (RMSE) for candidate architectures proposed by our NAS framework. The scatter plots 8(a) and 8(b) show the result on patient ID 570
for different architecture types. Similarly, the plots 8(c) and 8(d) show results on patient ID 584, respectively.
(number of trainable parameters) of the actor network (critic network
is only necessary for training). For both patients, comparative results
of LSTM-based and GRU-based candidate architectures with prior work
in [21] indicated by the red dashed lines. Both architecture types show
a high sensitivity to different hyperparameter settings, including out-
liers with respect to test performance with an RMSE up to 140 (training
is no longer converging). However, Fig. 8 visualizes that the BO based
approach can identify higher amounts of suitable hyperparameter sets,
as shown by the clusters in the scatter plots. With these hyperparameter
sets, the authors achieve competitive results but using a fraction of
network parameters. Depending on the specific patient and type of
architecture, the proposed approach reduces the model size by a factor
between 20 and 150 without sacrificing performance w.r.t. RMSE. A
more detailed analysis with respect to test performance and model
size is given in Table 18 and Table 19 respectively. In Table 18, the
authors show the top 5 candidate architectures with respect to their
performance on the test data. In the given experimental setting, our
framework prefers network architectures with high performance over
a small model size. Therefore, the authors select architectures that
improve previous results, e.g., in [21], between 5% and 12% while
sacrificing a possible reduction in model size by a factor of up to
4500. Depending on the patient, GRU-based architectures outperform
LSTM-based structures but do not always show better scaling behavior
with respect to test performance and small model sizes, see Fig. 8 and
Table 19.

Additionally, the BG prediction regression task was translated to a
classification task using data labeling approach [64], for hypoglycemia,
normoglycemia, and hyper-glycemia for BG values BG ≤ 70 mg/dL, 70

g/dL < CGM < 180 mg/dL, and BG ≥ 180 mg/dL respectively. For
the predictions of all the BG values throughout the 30-min prediction
interval, corresponding to 6 data points, the classification results are
presented in Table 20.

Fig. 9 visualizes the distribution of the model parameters across the
individual architectural components. Interestingly, the input encoding
seems less relevant and thus typically requires less trainable parame-
ters. The remaining parameters are almost equally distributed across
the output encoder and the RNN, with a slight preference for one of

the two depending on the network type and patient in the dataset.
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Table 18
Overview of Top 5 candidate architectures sorted by test performance (here: RMSE).
Additionally, we specify the number of parameters to show the different scaling
behavior of the architecture types.

Top 5
architectures
(RMSE)

LSTM-based architecture GRU-based architecture

Parameters Error (RMSE) Parameters Error (RMSE)

Patient ID 570

9428 15.050 19212 14.898
7552 15.175 1 192 460 15.594
148 980 15.267 279 436 15.625
17 076 15.291 101 516 15.909
18 716 15.335 224 524 15.926

Patient ID 584

65884 21.876 37920 21.246
4668 22.384 21 428 21.809
30 556 22.479 37 920 21.839
28 096 22.503 21 716 22.220
338 316 22.580 21 408 22.224

Table 19
Overview of Top 5 candidate architectures sorted by the number of parameters.
Additionally, we specify the test RMSE to show the different scaling behavior of the
architecture types.

Top 5
architectures
(complexity)

LSTM-based architecture GRU-based architecture

Parameters Error (RMSE) Parameters Error (RMSE)

Patient ID 570

1672 19.557 308 16.176
2348 16.922 308 16.179
2620 19.141 308 17.257
2620 16.556 308 16.680
2620 17.060 308 16.517

Patient ID 584

472 25.940 1320 131.642
520 80.117 1492 52.776
588 24.336 1508 25.458
588 26.125 1920 22.226
956 23.756 1920 26.814
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Table 20
Classification results on patient ID 570 and patient ID 584 for the proposed NAS in conjunction to DRL approach in terms of accuracy, precision, recall, and F1-score for
hypoglycemic, normoglycemic, and hyperglycemic range, for all twelve subjects, corresponding to all predicted BG values throughout the 30 min prediction horizon.

Patient ID Accuracy Hypoglycemia Normoglycemia Hyperglycemia

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

570 (LSTM architecture) 0.949 0.235 0.364 0.286 0.925 0.898 0.912 0.965 0.973 0.969
570 (GRU architecture) 0.949 0.364 0.364 0.364 0.912 0.913 0.913 0.968 0.967 0.967
584 (LSTM architecture) 0.891 0.5 0.074 0.129 0.912 0.911 0.911 0.86 0.881 0.87
584 (GRU architecture) 0.922 0.583 0.259 0.359 0.931 0.942 0.937 0.91 0.906 0.908
Fig. 9. The box plots show the distribution of (trainable) model parameters across the individual model components: the input encoder, the output encoder, and the RNN.
Multi-Step Predictions for 30 minutes: In the following, the au-
thors predict BG values for six consecutive time steps while considering
input data with a time frame of 30 min using the best model of the
NAS run for LSTM-based and GRU-based architectures and patient ID
570 as well as 584. For patient ID 570, the proposed method achieved
improvements of 4.8% (RMSE: 15.050) using LSTM-based architectures
and 5.7% (RMSE: 14.898) with GRU-based architectures, respectively.
Furthermore, increasing improvement for patient ID 584 with 10.0%
(RMSE: 21.876) and 12.6% (RMSE: 21.246), respectively was observed.
Fig. 10 shows how well the selected candidate architectures fit the test
data. Therefore, it visualizes the ground truth BG values compared to
the model predictions for a representative test data of 30 h for both
patients. Similar to Fig. 5, we observe that both architecture types fit
the data well but show small imprecision predictions at sudden changes
in BG values. Gaussian filtering with varying 𝜎 is used to reduce the
luctuations arising from sensor faults, connectivity problems, electrical
nterference, and manufacturing variability [15,65,66], see Fig. 10.
SEG for Multi-Step Prediction: The authors assess the risk between

sing the prediction of the selected candidate architectures and the
round truth BG values. The SEG visualizations of patient ID 570 and ID
84 for the different architecture types are shown in Fig. 11. Using the
EG metric to evaluate clinical risks, the authors conclude that most
496 
predictions are in no risk to slight risk zones. Moreover, the results
remain consistent with state-of-the-art [5,21]. Thus, the proposed ar-
chitectures effectively reduce the model size without increasing clinical
risks severely.

In Table 21, the authors present the average SEG values in multi-
step prediction of 30 min using the proposed architectures of the
NAS framework. Compared with the latest results in [21], the authors
encounter only small changes in the none and slight risk zones in a
range of ±3% (see Table 21).

6. Conclusion

The authors proposed a novel methodology for time series modeling
of BG levels in T1DM using a densely connected encoder–decoder net-
work and an LSTM or GRU formulated as a DRL problem. The authors
have evaluated the results for the OhioT1DM dataset benchmark. Fur-
thermore, the authors proposed an automatized optimization workflow,
effectively introducing NAS in BG prediction tasks. Compared to the
prior work that achieved the best prediction error, on average and for
the MAE the proposed method have improved by 18.4% and 22.5%
in 30-min and 45-min prediction horizons without applying additional
optimization of the network’s architectural structure. The prediction
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Fig. 10. BG ground truth in comparison to the predictions and Gaussian smoothing for a representative sample of the testing dataset of 30 h for patient ID 570 and patient ID
584, for our proposed method of DRL in conjunction with NAS.
Table 21
Average SEG in NAS-based multi-step prediction results (PH = 30 min).

Patient ID None (0) Slight (1) Moderate (2) Great (3) Extreme (4)

[21] NAS [21] NAS [21] NAS [21] NAS [21] NAS

LSTM GRU LSTM GRU LSTM GRU LSTM GRU LSTM GRU

570 90.367 89.267 91.575 9.560 10.659 8.425 0.073 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000
584 85.332 88.311 86.953 14.517 11.614 12.971 0.075 0.075 0.075 0.075 0.000 0.000 0.000 0.000 0.000
results on the best (ID 570) and worst case (ID 584) patients using only
the DRL method were further enhanced by integrating the BO-based
NAS to the DRL framework. The proposed method achieved additional
improvements of 4.8% using LSTM-based architectures and 5.7% with
GRU-based architectures for patient ID 570 by integrating NAS. The
patient with the lowest performance (ID 584) on the DRL method shows
an even greater performance boost, with improvements of 10.0% and
12.6% observed for the LSTM or GRU, respectively. Moreover, for risk
assessment in our predictions, the authors have visualized the error and
evaluated clinical risk through an SEG and CEG approach. The authors
have shown that we outperform or remain consistent with the results of
the previous risk assessments and that NAS can reduce the model size
by a significant factor without increasing clinical risks to unacceptable
levels.

For future work, the successful compression of the model sizes paves
the way for applying selected candidate architectures on resource-
constrained devices, e.g., edge or smart devices. Therefore, deploying
the model efficiently on edge devices will be another goal of the future
work.
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Fig. 11. SEG for NAS-based BG predictions in comparison to the measurements for a representative sample of the testing dataset of 30 h for patient ID 570 (11(a), 11(b)) and
patient ID 584 (11(c), 11(d)).
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Fig. 12. SEG for NAS-based BG predictions in comparison to the measurements for a representative sample of the testing dataset of 30 h for patient ID 570 (12(a), 12(c)) and
atient ID 584 (12(b), 12(d)).
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