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Abstract

The Spiral of Silence (SoS) theory posits that,
in human societies, fear of social isolation
drives individuals holding a minority opinion
to quieten down, allowing the majority opin-
ion to dominate public discourse. When agents
are large language models (LLMs) rather than
humans, the classic affective explanation no
longer applies because language models do not
have emotions or social anxiety. Therefore, a
fundamental question appears: Can purely sta-
tistical language generation mechanisms give
rise to SOS dynamics in collectives of LLM
agents? We introduce an evaluation framework
based on rating sequences and design four con-
trolled experimental conditions by varying the
presence of persona configurations and histor-
ical interaction signals. To measure opinion
dynamics, we employ concentration metrics, in-
cluding Interquartile Range and Kurtosis, along
with trend analysis methods such as the Mann-
Kendall test and Spearman rank correlation
coefficient. We experiment with six widely
used open-source models and a close-source
model. Experimental results reveal that, in the
absence of social signals, most models exhibit
a strong default bias. Introducing persona con-
figurations leads to greater opinion diversity,
whereas historical collective opinion serves as
an anchoring mechanism. In particular, when
both persona and history are present, the domi-
nance of the majority opinion tends to emerge
more frequently, even though the agents them-
selves lack affective capacities. These findings
challenge traditional affect-based explanations
of SoS and provide empirical evidence to un-
derstand and mitigate opinion convergence in
LLM-based agent systems.

1 Introduction

Social psychological dynamics often govern the for-
mation of public opinion in human societies. One
well-known phenomenon is the spiral of silence
(SoS) theory, which posits that individuals are less

likely to voice an opinion they perceive as unpopu-
lar due to fear of social isolation (Noelle-Neumann,
1974). As more people with minority opinions
choose silence, the dominant opinion appears even
more prevalent, further discouraging dissent and
creating a self-reinforcing cycle in which one opin-
ion increasingly dominates.

In contrast, agents powered by LLMs lack hu-
man emotions and social needs. LLM agents such
as GPT-4 (Al, 2023) or LLaMA (Touvron et al.,
2023) generate responses based on learned statisti-
cal correlations in text, not out of fear of exclusion
or desire for approval. Intuitively, one might ex-
pect that a collection of LLM agents would not re-
produce human-like conformity or self-reinforcing
dynamics, since they have no internal concept of
social isolation.

Nevertheless, some studies suggest that even
without emotions, LL.Ms may align their outputs
with trends or cues present in their input. Recent
research has shown that LLM-based agent assis-
tants sometimes tailor their responses to match the
user’s stated opinion (Sharma et al., 2023), and in-
teracting LLLM agents may converge toward shared
conventions through repeated communication (Ash-
ery et al., 2024). It is thus unclear whether an effect
analogous to the SoS could emerge in purely LLM
agent collectives, and if so, what would drive it in
the absence of human-like fear of isolation.

Could LLM agents exhibit opinion convergence
simply by responding to each other’s outputs or to
inferred majority signals, thus suppressing diver-
gent responses despite lack of social fear? This
question lies at the intersection of social psy-
chology and LLM-based systems. Understanding
whether SoS dynamics can emerge among LLM
agents would reveal the extent to which complex
social phenomena may arise purely from statistical
language generation.

To investigate whether populations of LLM
agents exhibit SoS opinion convergence in response



to collective signals, we simulate a multi-agent en-
vironment. Inspired by traditional rating platforms,
we design a virtual movie rating task: Many LLM
agents assign ratings to movies, where ratings are
considered positive and negative. We regard the
historical average rating of each round as the cur-
rent “collective majority opinion” signal and track
how the ratio and trend of positive versus negative
opinions evolve over multiple consecutive interac-
tion rounds. In our work, LLMs respond to the
prompts under different controlled conditions. We
employed two key signals inspired by the SoS sce-
nario:(1) A distinct initial persona gives each agent
to describe its background and style, and (2) histor-
ical average rating summarizes the “collective ma-
jority opinion” of past in each round. By crossing
these two signals, we obtain four experimental set-
tings that allow us to isolate the effect of individual
predispositions versus collective influence. Agents
with personas simulate a diverse population with
varying inherent initial opinions, and the historical
average rating gives agents a collective majority
opinion similar to a kind of social pressure.

Based on this setup, we hypothesize that if the
SoS effect can emerge in LLM agents, they will
increasingly conform to the perceived collective
majority opinion when both historical ratings and
varying initial predispositions are present. To quan-
tify convergence, we employ two complementary
classes of metrics: concentration statistics (In-
terquartile Range, Kurtosis) and trend diagnos-
tics (the Mann—Kendall test, Spearman p). We
mainstream open-source and closed-source LLMs:
DeepSeek-V2-Lite-Chat (Liu et al., 2024), Llama-
3.1-8B-Instruct (Grattafiori et al., 2024), Mistral-
8B-Instruct-2410, and Qwen-2.5-Instruct series
(1.5B, 3B, 7B) (Bai et al., 2023), covering cross-
family comparisons on a similar scale and within-
family scaling analyses for Qwen, and a close
source model GPT-4o-mini (Hurst et al., 2024).
The results show that in the absence of social sig-
nals, LLM agents default to positive movie ratings.
Introducing a persona encourages opinion hetero-
geneity, while historical average ratings exert an
anchoring influence. The SoS effect is significantly
more likely to emerge when both signals are pro-
vided.

Our contributions of this work are as follows:

* We explored SoS theory in a measurable frame-
work for LLM agents, introducing concentration
and trend metrics to quantify the convergence of
SoS.

* We conducted extensive experiments on main-
stream open-source and closed-source LLMs.
Our analysis covers both the performance of
individual models under different settings and
comparisons across model families—contrasting
similarly sized models between families and dif-
ferently scaled models within the same family.

* We highlighted the design and governance chal-
lenges posed by emerging opinion convergence
in LLM agent systems.

2 Approach

2.1 Problem Setup

We simulate a population of LLM agents tasked
with rating movies under controlled conditions to
examine SoS dynamics (Noelle-Neumann, 1974).
Consider an online rating system with a set of
LLM agents and set of items. Agents evalu-
ate the quality of items based on an M € N,

level cardinal rating metric denoted by M 2
{1,..., M}, where M € N,. A higher item
rating implies a agent is more satisfied with an

item. For example, the rating metric is M 2 {1=
“Awful/Abysmal”, ---, 5 = “Mediocre/Unsure”,
-+, 10 = “Perfect/Masterpiece”}. The rating
given by agent ¢ to item j is denoted by r; ; € M.
A a gen t will give a higher rating if the item is
more satisfied.

Collective opinion. Letr;; € M denote the k-
th observed rating of item j, where £ € N,. let
H; i, denote a set of all historical ratings of item j
up to the k-th rating, formally:

A
Hik =ATj15- - Tjk}s

Now, we model the formation of collective opin-
ions, that is, the function F(#;). agents may
form a climate of opinions from the aggregation
of historical ratings. Denote the collective opinion
summarized from the rating history H; ;. as

Vk € Ny.

A
hir=1[Pik1, s hjrnml,

where ;i € [0,1] and > o hjgm = 1. The
h; . is public to all agents. We consider a class of
weighted aggregation rules to summarize historical
ratings:
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where o € R denotes the weight associated with
k-th rating, and I is an indicator function. For
example, «; = 1,Vj, is deployed in many rating
systems, which corresponds to “average rating
rule”. Under this average rating rule, we have
hjoam = 311 I{R, =} /. Which is the fraction
of historical ratings equal to m. Note that h; j, is
displayed to all agents. We capture the collective
opinion formation as follows:

FMip)= > m-hjrm 2)
meM

Persona. To emulate realistic agent diversity,
each agent is assigned a different persona. Each
persona is characterized by brief descriptions of
occupations, backgrounds, and interests, allowing
agents to reflect various predispositions and value
judgments during the rating process. An example
is shown in Fig. A.1.

2.2 LLM Agents Design

We design four prompts as shown in the Appendix

A.2 conditions by crossing two binary signals: the

presence or absence of a persona, and the presence

or absence of historical average rating. All vari-
ants of prompts share a common structure: they
present the information of the movie (title, genres,
overview) followed by standardized instructions
defining the rating scale and requesting an output.

In all cases, agents are instructed to output only a

single rating from 1-10 based on a brief scale. The

four conditions are as follows:

* w/o Persona & w/o History: The baseline is
designed by only the movie information without
the current historical average rating and the rating
instructions. The agent has no persona context.
This setting represents an independent agent with
no social influence.

* w/ Persona & w/o History. With a persona de-
scription for the agent. This gives the agent a
fixed identity or background knowledge, but no
social influence from others’ opinions. Simulate
an agent with persona acting independently.

* w/o Persona & w/ History: The agent without
persona, but the movie information includes the
current historical average rating of the movie (on
the scale of 1-10) based on the ratings of previous
agents.

* w/ Persona & w/ History: Combine both sig-

nals, the agent is assigned a persona and shown
the current historical average rating from pre-

vious agents while meanwhile. This condition

models a persona-driven agent under social influ-

ence, where the agent’s intrinsic preferences (via
persona) may interact with pressure to conform
to the collective opinion displayed.

Under “w/ history” conditions, the ‘“historical
average rating” is updated in real time as the rating
progresses. By comparing these four setups, we
can disentangle the effect of an agent’s persona
from the effect of seeing others’ opinions on the
emergence of consensus or the silencing of minor-
ity opinion.

2.3 Rating Procedure

Each movie rating task is designed as a sequential
rating process by multiple independent agents for
the same movie, to observe how dominant opinions
evolve over multiple rounds. For a given movie,
agents take turns providing a rating one after an-
other in a random order. If persona are in use,
we randomly sample 100 unique persona from the
PersonaHub subset for that movie, assigning a dif-
ferent persona to each agent to ensure diversity of
backgrounds. If persona is not used, each agent is
effectively identical, but we still treat each rating
act as a separate agent instance.

Sequential rating update: In the sitting “w/ His-
tory”, within a movie’s 100 agent sequence, agents
take action one by one in all rounds, the prompt for
agent n includes the average ratings of all agents
from 1 to n — 1 (For the first agent, we initialize the
“current historical average rating” using the IMDb
average rating as an initial public collective opin-
ion). After agent n produces a rating, we update
the historical average rating to include that new
rating, and then agent n 4 1 could see this updated
collective opinion.

Multi-sample stable evaluation: Each agent’s
rating is obtained by averaging three independent
model outputs from identical prompts, then round-
ing to the nearest integer. This reduces stochastic
variance and yields a more stable estimate of the
agent’s opinion. The process is repeated for all 100
agents per movie. Each model follows this pro-
cedure across 80 movies under four experimental
settings.

2.4 How to quantify?

Our goal is to detect whether repeated sequential
ratings generated by LLLM agents display SoS ef-
fects: minority opinion fades, while the majority



opinion becomes increasingly dominant. For movie
J we obtain a sequence of 7'=100 integer ratings
Hjir = {rijr}_,, where i =i(j, k) indexes the
agent “w/ Persona” that produced the k-th rating.'
LetH;r = {rij1,--.,7ijk} denote the first k rat-
ings for movie j and let F () = % Zle Tijt
be the historical average rating.

Rating distance. For every individual rating we
measure its deviation from the current collective
opinion (historical average rating):

Dist(rijr) = |rije —FHin)|- )

Majority-opinion trend. Let pos;; and neg; ;.
denote the cumulative proportions of positive and
negative ratings for movie j up to step k, respec-
tively. They are defined as:

1
POS; ) = Z l[Ti,j,t > 6]7
t<k

1
% Z l[ri,j,t < 5] .

t<k

negj7k ==

where 1[-] is the indicator. We define the textit-
dynamic majority-conforming opinion (MCO) se-
quence as:

MCO; = max{posm, negm}, k=1,...,T.

To reduce the impact of early-stage fluctuations, all

the following trend statistics are computed starting

from round m = 11:

¢« Mann-Kendall Statistic (S) is used to detect
monotonic trends in the majority choice series
(Mann, 1945).

i = Yhom i—ks158n(MCO;MCO;),
where S;>0 indicates a monotone increase in
majority support.

* Spearman Rank Correlation (p) is used to
quantify rank-based reinforcement of the major-
ity choice (Spearman, 1904). The Spearman p;
between the index k = m:T and MCO; ;, cap-
tures the strength of the upward trend; p; — 1
implies nearly perfect reinforcement.

Rating concentration. If SoS develops, the late
portion of the rating sequence should be tight
around a majority value. We measure dispersion
on the final L rounds (L = 30 by default) with two
complementary statistics:

!Since each agent rates a movie at most once, 4 is uniquely
determined by (7, k).

* Inter-quartile Range (IQR) quantifies the cen-
tral spread of recent ratings, providing a robust
dispersion measure (Clark-Carter, 2005).
IQR;(7) = Q3 — Q1, where Q1 and Q3 are the
25th and 75th percentiles of the last L ratings
Hjr—p.7 for movie j.

» Kurtosis describes the tailedness of the rating
distribution, highlighting the presence of outliers
(Balanda and MacGillivray, 1988).

Tig,k—Hj

4
kurty, (7) I her—in o =3
where 11; and o; are the mean and standard devi-
ation of the same L ratings.

Smaller IQR; together with positive kurty, sig-
nals a sharp, concentrated majority.

Decision thresholds. A movie’s rating sequence
is marked True (i.e., “Spiral”) if all of the following
hold:?

* MCOj r > 0.65, the terminal majority opinion
comprises at least 65% of all ratings;

* S; > 50 or p; > 0.60, the series exhibits a
statistically salient upward trend, reflected either
by a slope of at least 50 or a Spearman correlation
no less than 0.60;

e kurtz,(j) > 0 or IQR.(j) < 2, late-stage rat-
ings are tightly clustered, indicated by positive
kurtosis or an inter-quartile range below 2.

Semantic match between persona and movie
overview. When personas are available, we ex-
amine how the semantic match between a user’s
persona and a movie influences deviations from
the collective rating. Specifically, for each agent ¢
and movie j, we compute a semantic match score,
defined as the cosine similarity sim (4, j) between
the TF-IDF embedding of the agent’s persona and
the movie overview. Each rating yields a data point
(sim(4, §), Dist(r; j)), where Dist denotes the
absolute deviation from the historical average rat-
ing for that movie. We analyze the correlation be-
tween semantic match and rating deviation across
all agent—movie instances.

3 Experiments

We investigate whether a SoS effect emerges in
LLM agents by rating movies under four configu-
rations: (1) w/o Persona & w/o History, (2) w/ Per-
sona & w/o History, (3) w/o Persona & w/ History,
and (4) w/ Persona & w/ History. In each setting,

*Thresholds were fixed a priori, then applied to every
model/condition.



we analyze the rating sequence for 80 movies using
both qualitative visualizations and statistical mea-
sures. We focus primarily on GPT-40-mini as a case
study model. To quantify the “spiral” formation,
we track the majority opinion fraction MCOj, k for
movie j after k rating rounds. We also calculate
the interquartile range (IQR) and kurtosis (to mea-
sure the dispersion and peakedness of the rating
distribution) of the final rating sequence, as well as
the Mann—Kendall (MK) statistic and Spearman’s
p to detect monotonic rating trends over rounds.

3.1 Setup

We evaluate a diverse set of LLM agents, includ-
hlg DeepSeek-V2-Lite-Chat, Llama-3.1-8B-Instruct,
Mistral-8B-Instruct-2410, Qwen-2.5 series (1.5B,
3B, and 7B), and GPT-4o-mini. For each combination
of model and condition, we randomly sampled 80
movies from our dataset to serve as rating tasks.
This yields a broad evaluation across different con-
tent. All generations were performed with a fixed
temperature of 0.1 to reduce randomness and im-
prove reproducibility. Experiments are conducted
on 4xNVIDIA A100 GPUs.

Each agent provides a movie rating on a 10-
point integer scale (1 = Awful/Abysmal, 5 =
Mediocre/Unsure, 10 = Perfect/Masterpiece).
For conceptual clarity, we treat the ratings > 6 as
a positive (favorable) opinion and < 5 as negative
(unfavorable). This binary split allows us to later
analyze majority vs. minority opinion formation.
We drew on two key datasets: personas and movies.
Agent personas are sampled from the top 10,000
entries of the elite_persona® subset from the Per-
sonaHub dataset (Ge et al., 2024), which provides
a textual profile and domain for each persona (for
example, a brief self-description or background).
These personas served as static agent attributes that
can influence an agent’s initial preferences.

For movie data, we compiled a dataset of films
released after January 12, 2025 by scraping IMDb*.
This cutoff date ensured that the movies are un-
likely to appear in the training data of our models
(preventing any memorization or prior knowledge).
For each movie, we collected its title, genres, a
brief overview (synopsis), the IMDb’s average rat-
ing (as of scraping time), and the number of IMDb
user ratings. We filtered out movies with fewer

3https://huggingface.co/datasets/proj-persona/
PersonaHub

4https://www.imdb.com/search/title/?title_
type=feature&release_date=2025-01-12,2025-12-31&
sort=release_date, asc

than 30 IMDb ratings to focus on films with an
established baseline of public opinion.

3.2 Scenario I: w/o Persona & w/o History -
Prior Positivity Bias

In this condition, see Fig.10 in Appendix A.4, the
trend plots of the opinion proportion for each movie
(where the uppermost line is equivalent to the MCO
curve) reveal a highly static and extreme state:
for almost all samples, the positive opinion pro-
portion (orange line) keeps to 1.0 from the first
round onward, while the negative opinion propor-
tion (blue line) hovers near 0. In addition, as shown
in Fig.1 (a), Mann-Kendall statistic and Spearman
concentrate at the extreme positive end, indicating
a strongly monotonic sequence with no reversals.
Kurtosis is mostly positive and IQR is extremely
low, suggesting that the ratings are tightly clus-
tered with minimal divergence at the final round
rating. Taken together, these trends and statistics
suggest that the "majority opinion"” in this setting is
not the result of genuine group evolution or social
influence, but rather reflects a "positivity prior" em-
bedded in the model training data. In the absence
of agent diversity or historical anchors, the model
output defaults to a static and monolithic majority.

3.3 Scenario II: w/ Persona & w/o History -
Anchoring and Adjustment

As shown in Fig.11 in Appendix A.4, the opinion
proportion trend plots (MCO curves) show a differ-
ent but equally extreme phenomenon, the positive
or negative (orange or blue line) randomly dom-
inates at the start of the sequence, then remains
highly stable throughout all rounds, with almost
no cross-over or reversal. That is, the majority
opinion is anchored by the historical average rat-
ing, without further adjustment. We can see from
Fig.1 (b), the corresponding trend statistics metrics
Mann_Kendall and Spearman are similarly skewed
toward the positive extreme, indicating that once
a "dominance" side is established, there is no fur-
ther trend shift. IQR and Kurtosis concentration
metrics show that late-stage ratings are highly con-
centrated. Notably, a small minority of movies
show rare jumps (occasional crossovers between
positive and negative lines), but such cases are ex-
ceedingly rare. This behavior exemplifies the clas-
sic "Anchoring and Adjustment" cognitive bias:
The historical average serves as an anchor for the
initial rating, and all subsequent ratings are minor
adjustments around this anchor. In the absence
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Figure 1: Distributions of Mann—Kendall Statistic, Spearman Rank Correlation, Kurtosis, Inter-quartile Range for

All Movie Rating Sequences on GPT-40-mini.

of individual differences or external shocks, the
model automatically locks onto the anchor point,
severely dampening the conditions necessary for a
or dynamic opinion change.

3.4 Scenario III: w/o Persona & w/ History -
Competing Perspectives

In Fig.2 (a), a case shows that the majority-
conforming opinion (MCO) curves for the movies
exhibit marked fluctuations: both the positive (or-
ange line) and negative (blue line) opinion pro-
portion curves oscillate persistently throughout the
rating rounds, with neither side achieving sustained
dominance. As shown in Fig.1 (c), the distribu-
tion of trend and concentration metrics further sup-
ports this observation. The distributions of Mann-
Kendall statistic and Spearman are centered near
zero, indicating little to no overall monotonic trend.
Likewise, the Kurtosis tends to be close to zero or
negative, and the interquartile range (IQR) remains
moderate to high, reflecting a relatively flat or dis-
persed final rating distribution. This result suggests

that the introduction of diverse agent personas, in
the absence of historical average rating as anchor,
injects substantial heterogeneity into the system.
Each agent rates the same movie from distinct in-
ternal and initial perspectives, leading to persistent
competition between the majority opinions. Under
these circumstances, the formation of the SoS is
rare; the emergence of majority dominance might
require additional socially influential mechanisms.

3.5 Scenario IV: w/ Persona & w/ History -
Emergence of Spiral of Silence

As shown in Fig.2 (a), in this setting, the trend
of the positive / negative opinion proportions for
typical movies displays a clear pattern of conver-
gence of the majority opinion. Regardless of the
initial disagreement, once one side gains an ad-
vantage in the early rounds, its dominance con-
tinues to strengthen and quickly becomes stable,
suppressing the minority. This echoes the : the
majority collective opinion becomes increasingly
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entrenched, while dissenting voices silence. From
the distribution of four metrics shown in Fig.1 (d),
the Mann-Kendall Statistic and Spearman are pre-
dominantly positive, Kurtosis is mostly above zero,
and IQR is sharply reduced. This indicates that for
most movies, final ratings are highly concentrated
around the majority opinion, with the convergence
trend being both monotonic and statistically signif-
icant. Mechanically, two signals are at play: Per-
sona diversity injects initial disagreement, ensuring
opinion plurality among agents; the history average
rating as anchor amplifies social pressure, so once
a majority emerges, subsequent agents conform
more easily, and dissent quickly fell silent. The
result: monotonic changes in the positive/negative
opinion proportion, stable majority dominance, and
spontaneous emergence of the spiral.

Semantic Similarity vs. Rating Distance To fur-
ther investigate the micro-mechanisms underlying
the , we examine the relationship between the
semantic similarity of agent personas and movie
overviews (measured by TF-IDF (Salton and Buck-
ley, 1988; Pedregosa et al., 2011) cosine similar-
ity) and the rating distance was defined in Eq.??
under the “w/ Persona & w/ History” condition.
As shown in Fig.3, when persona—history simi-
larity is low, large rating distances frequently oc-
cur; when similarity is high, substantial deviations
are rare. Here, similarity refers to the semantic
match between the agent’s persona and the movie
overview. This suggests that when an agent’s per-
sona is highly aligned with the overview of a movie,
the model was much more likely to give consensus-
conforming ratings, rarely deviating from the ma-
jority opinion; while low similarity increases the
agent’s propensity to dissent, leading to a large
rating distance even in the presence of strong so-
cial influence. This observation provides additional
support for the notion that semantic consistency
between persona and movie overview is a criti-
cal prerequisite for the emergence of the SoS in
persona-conditioned settings.

Model sos (%)
GPT-40-mini 27.5
DeepSeek-V2-Lite 15.0
Mistral-8B-Instruct-2410 27.5
Qwen-2.5-Instruct-1.5B 11.3
Qwen-2.5-Instruct-3B 16.3
Qwen-2.5-Instruct-7B 28.8

Table 1: Proportion (%) of SoS under w/ Persona & w/
History setting for different model.

3.6 Cross-Model Comparing

The above findings for GPT-40-mini raise the fol-
lowing question: Do other LLMs exhibit similar
SoS tendencies under the same conditions? We
examined under the w/ Persona & w/ History set-
ting in several models and found a noticeable vari-
ation in the prevalence of SoS. In particular, we
compared GPT-4o0-mini with DeepSeek-V2-Lite-Chat,
Mistral-8B-Instruct-2410, Qwen-2.5-1.5B-Instruct,
Qwen-2.5-3B-Instruct, Qwen-2.5-7B-Instruct. All
models were given identical persona prompts and
rating tasks. We reported the incidence rates
of the SoS under the w/ Persona & w/ History
setting for different models, as shown in Table
1. Cross-family Compared to DeepSeek-v2-Lite,
models such as GPT-40-mini, Mistral-8B-Instruct,



and Qwen-2.5-7B-Instruct were more likely to
converge to a unified opinion, indicating that
DeepSeek-V2-Lite is less prone to fully suppress-
ing dissenting views. This observation may be at-
tributed to differences in pre-training data, training
paradigm, or the degree of instruction tuning across
models. Detailed results for these open source mod-
els are provided in Appendix A. Within-family
Across the Qwen-2.5 series (1.5B to 3B to
7B), as the model size increases, both monotonicity
and the strength of majority convergence are en-
hanced: larger models consistently exhibit higher
values of the Mann-Kendall statistic and Spear-
man, reflecting stronger and more persistent rein-
forcement of majority opinions. In parallel, the
concentration of the final scores increases, as indi-
cated by lower IQR values, suggesting a stronger
consensus between the agents. These trends im-
plied that scaling up the model size amplifies both
the tendency toward monotonic majority domi-
nance and the eventual unanimity of group rat-
ings. Detailed results for each Qwen model are
provided in the Appendix. Surprisingly, the model
Llama-3.1-8B-Instruct behaves quite unlike the
others: it almost never exhibits SoS convergence
and, even without any persona cues, frequently os-
cillates between opposing opinions. A detailed
discussion of this unexpected pattern is provided
in the Appendix A.6.

4 Related Work

The SoS theory, introduced by Noelle-Neumann
(1974), posits that individuals suppress minority
opinions due to fear of social isolation. Subsequent
work has tested these ideas online. For example, a
Pew survey Hampton et al. (2014) shows social me-
dia users are far more likely to voice opinions when
they believe their network agrees with them, and
Porten-Cheé and Eilders (2015) demonstrates that
anonymity and low-effort feedback significantly
increase willingness to express unpopular views
in online forums. More recently, researchers have
explored how LLM agents can simulate such social
dynamics (Chuang et al., 2023). Park et al. (2023)
use generative agents in a simulated town; these
agents exhibit emergent social behaviors. Simi-
larly, Nasim et al. (2025) presents Gensim, a gen-
eral social-simulation platform with LLM agents,
and Light et al. (2023) studies a community of
LLMs playing the social-deduction game Avalon.
Akata et al. (2025) use behavioral game theory
to let LLMs agents play finitely repeated games,

finding that models develop consistent coopera-
tive or defection strategies. Sarkadi et al. (2019)
introduces the Traitors framework for LLMs to
study trust and deceit. Leng and Yuan (2023)
analyzes LLLM responses in canonical economics
games via a probabilistic SUVA framework and re-
ports that most models’ decisions reflect social wel-
fare and reciprocity considerations rather than pure
self-interest. Other recent work focuses on how
LLMs represent majority opinions (Weng et al.,
2025). For example, Ye et al. (2024) systematically
quantifies biases in “LLM-as-judge” scenarios and
identifies a strong bandwagon effect. To explore
opinion dynamics, Nasim et al. (2025) proposes
a simulator that embeds LLM-based agents into
networked opinion-spread models. By integrating
classic social-influence theories (Kelman, 1958;
Munroe, 2013) with LLM communication, their
framework lets researchers study how LLM agents
propagate influence. Likewise, (Yang et al., 2024)
presents OASIS, an open-scale social-media simu-
lator with up to a million LLM agents, and shows
that larger simulated populations yield richer group
dynamics and greater opinion diversity, and Zhao
et al. (2024) shows the diversity of LLM agents.
These LLM-based platforms connect directly to
prior work on collective behavior: classical agent-
based models by (Deffuant et al., 2002; Rainer and
Krause, 2002; Friedkin and Johnsen, 2011) demon-
strate how repeated local interactions can produce
global consensus or polarization.

5 Conclusion

Our study show that LLM-based movie rating
agents exhibit a clear positivity bias by default,
yet develop a richer spectrum of opinions when
given distinct personas, and increasingly conform
to prior context when a historical collective opin-
ion is provided. By crossing binary signals design
(persona x history), we isolate the influence of each
signal : persona alone induces opinion diversity,
history alone imposes an anchoring consistency,
and only their combination triggers a pronounced
SoS. These results highlight that a SoS can sponta-
neously emerge in LLM agents without any emo-
tional drive: purely from the interplay between
internalized statistical biases and externally pre-
sented collective signals. This insight underscores
the power of social context in shaping Al behav-
ior and reminds us to remain alert to the social
biases embedded in LLMs that can influence such
simulations.



6 Limitations and Potential Risks

Limitations. Our study is subject to several prac-
tical constraints. First, due to available com-
putational resources, our experiments focus on
lightweight and midsized open-source models,
rather than very large-scale models, which may
exhibit different emergent dynamics. Second, our
simulation of social feedback adopts a simplified
agent, that is, providing agents only with the histor-
ical average rating as a stand-in for social influence.
Although this abstraction enables controlled inves-
tigation of majority dynamics, it does not capture
the full range of factors shaping opinion formation
in real-world societies, such as emotion, network
structure, or identity effects. However, we believe
that these design choices allow us to isolate and
systematically analyze the core mechanisms of the
emergence of the spiral of silence in collectives of
LLM-based agents, and we leave more complex
extensions for future work.

Potential Risks. Our study shows that purely al-
gorithmic LLM agents can reproduce “Spiral of
Silence”. Although this advances scientific under-
standing, it also entails several risks: Malicious
actors could adapt our protocol to build large-scale
“astroturf” campaigns or persuasive LLM-based
chatbots that systematically nudge users toward
the perceived majority, thus suppressing dissenting
voices; If the initial prompt or training data carry
demographic, political, or cultural biases, the SoS
mechanism may magnify those biases and further
marginalize minority opinions.

Licenses. All models and tools used in this study
are released under open-source or research li-
censes.
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A Appendix

A.1 Persona Example

A computer enthusiast who is interested in optimizing the performance of their system,
particularly the CPU, GPU, and RAM. They are looking for software tools that can help them
monitor and control the performance of their system, and they are willing to invest time
in learning how to use these tools effectively. They are not necessarily looking for a
professional-grade software tool, but rather a user-friendly and easy-to-use software that
can provide comprehensive information about their system’s performance and help them optimize
it. They are also interested in software tools that can help them monitor the stability of
their system after overclocking, as they want to avoid damaging their system.

Figure 4: An Persona Example

A.2 Rating Prompts

We present the four distinct prompts employed in our experiments. Each prompt corresponds to one of the
four experimental settings explored in the study, differing by the presence or absence of historical average
rating information (history) and character profile information (persona). These prompts were designed to
isolate and evaluate the specific contributions of social influence and persona-based individual differences
to the emergence of the SoS effect.

Prompt: w/o Persona & w/o History

Please provide your rating for the movie.

# Movie Information

Title: [Movie Title]
Genres: [Genres]

Overview: [Movie Overview]

# Rating Principle
Rate the above movie on an integer scale from 1 to 10, where:

-1 Awful/Abysmal (unwatchable)
- 5 = Mediocre/Unsure (forgettable)
- 10 = Perfect/Masterpiece (flawless)

# Output Principle
Provide only a single integer (1-10) without extra text.

}
Prompt: w/o Persona & w/ History

Please provide your rating for the movie.

# Movie Information

Title: [Movie Titlel]

Genres: [Genres]

Overview: [Movie Overview]

Movie average rating: [Historical Avg]l (1-10)

# Rating Principle
Rate the above movie on an integer scale from 1 to 10, where:

- 1 = Awful/Abysmal (unwatchable)
- 5 = Mediocre/Unsure (forgettable)
- 10 = Perfect/Masterpiece (flawless)

# Output Principle
Provide only a single integer (1-10) without extra text.




Prompt: w/ Persona & w/o History

Please provide your rating for the movie.

# Your Character Profile
You are [persona]

# Movie Information

Title: [Movie Title]
Genres: [Genres]

Overview: [Movie Overview]

# Rating Principle
Rate the above movie on an integer scale from 1 to 10, where:

- 1 = Awful/Abysmal (unwatchable)
- 5 = Mediocre/Unsure (forgettable)
- 10 = Perfect/Masterpiece (flawless)

# Output Principle
Provide only a single integer (1-10) without extra text.

Prompt: w/ Persona & w/ History

Please provide your rating for the movie.

# Your Character Profile
You are [persona]

# Movie Information

Title: [Movie Titlel]

Genres: [Genres]

Overview: [Movie Overview]

Movie average rating: [Historical Avg]l (1-10)

# Rating Principle
Rate the above movie on an integer scale from 1 to 10, where:

- 1 = Awful/Abysmal (unwatchable)
- 5 = Mediocre/Unsure (forgettable)
- 10 = Perfect/Masterpiece (flawless)

# Output Principle
Provide only a single integer (1-10) without extra text.

\

A.3 Metrics Distributions for Other Models

To provide a comprehensive comparison beyond the main case study (GPT-40-mini), we report the
distribution of statistical metrics for all models under each four settings. For each model, we visualize and
summarize four key statistics across all movies: Mann—Kendall statistic (.S), Spearman’s p, late-stage
interquartile range (IQR), and late-stage kurtosis (Kurtosis) . These results complement the qualitative
and quantitative analyses in the main text and highlight model-specific tendencies regarding majority
convergence, opinion monotonicity, and rating concentration.

A.3.1 Experimental Settings
For each of the following models, we conducted the movie rating under each four settings. For each model
and condition, we explore the distribution of the four metrics.

A.3.2 Results for Open-Source Models

For each setting, the metrics reflect the model’s tendency (or lack thereof) to form persistent majority
opinions and converge to collective opinion.



60

Count

20

20

Distribution of MK_stat Distribution of Spearman

Distribution of MK_stat Distribution of Spearman

Kurtosis_late

60 60
60 50
o < 40 -
40
540 5 2
8] G 30 o
20 20 20
/ 10
- — 0 [
—2000 [ 2000 4000 -1.0 =05 0.0 0.5 1.0 —4000 —2000 0 2000 4000 -1.0 -0.5 0.0 0.5 1.0
MK _stat Spearman MK _stat Spearman
Distribution of Kurtosis_late Distribution of IQR_late Distribution of Kurtosis_late Distribution of IQR_late
60
60
40 50
o = 30 = 40
g 40 g é
o O 20 830
20 20
10
k_,# 10
0 — 0 — [ -
0 10 20 30 00 05 10 15 20 25 3.0 0 10 20 30 0 1 2 3 4 5
Kurtosis_late IQR_late Kurtosis_late IQR _late
« : Lt « : Lt
(a) “w/o Persona & w/o History (b) “w/o Persona & w/ History
Distribution of MK_stat Distribution of Spearman Distribution of MK_stat Distribution of Spearman
20
20
15
15
15
€ €10 €
S S S
8™ 8 810
/\ 5 5 5
Bl B 5 /'\_/—
0 0 [
—2000 0 2000 4000 -1.0 -0.5 0.0 0.5 1.0 —4000 —2000 0 2000 4000 -1.0 -0.5 0.0 0.5 1.0
K_stat Spearman MK _stat Spearman
Distribution of Kurtosis_late Distribution of IQR_late Distribution of Kurtosis_late Distribution of IQR_late
30
25 20
25
20
w20 o 15
H] S1s 5
515 8 810
10 10
5 5 >
0 0 [
0 10 20 30 0 2 4 6 8 0 10 20 30 0 1 2 3 4 5 6
Kurtosis_late IQR_late IQR_late

(c) “w/ Persona & w/o History”

(d) “w/ Persona & w/ History”
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All Movie Rating Sequences on DeepSeek-V2-Lite-Chat.
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Figure 8: Distributions of Mann—Kendall Statistic, Spearman Rank Correlation, Kurtosis, Inter-quartile Range for
All Movie Rating Sequences on Qwen2.5-3B-Instruct.
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Figure 9: Distributions of Mann—Kendall Statistic, Spearman Rank Correlation, Kurtosis, Inter-quartile Range for
All Movie Rating Sequences on Qwen2.5-7B-Instruct.

A.4 Positive and Negative Opinion Proportion Trends (MCO Trend)

(Note: It should be emphasized that, in all visualizations, the trajectory of the opinion proportion
that occupies the upper position (be it positive or negative) is, by definition, equivalent to the MCO
(majority-conforming opinion) curve for that sequence.)

In this section, we present the results of positive and negative opinion proportion trends (i.e. MCO
curves) for each language model under four experimental settings.

For each combination of model and setting, we include 80 trend plots (one per movie) showing the
proportion of positive vs. negative opinions across 100 rating rounds. In these plots, a “positive” opinion
is defined as a movie rating > 6, while a “negative” opinion corresponds to a rating < 5. Each subplot
thus traces the fraction of positive opinions (and implicitly, negative opinions) over time for a single
movie. The 80 subplots are arranged in a compact grid of 16 rows x 5 columns per page.

These visualization figures provide raw visual evidence of possible SoS emerging over time. In
particular, one can observe whether initially minority opinions tend to diminish as rounds progress (which
would be indicative of a SoS effect) or whether they persist.
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Figure 10: Trend of Positive and Negative Opinion Proportions on GPT-40-mini under the “w/o Persona & w/o

History” Setting.
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Figure 11: Trend of Positive and Negative Opinion Proportions on GPT-40-mini under the “w/o Persona & w/

History” Setting.
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Figure 14: Trend of Positive and Negative Opinion Proportions on DeepSeek-V2-Lite-Chat under the “w/o Persona
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Figure 17: Trend of Positive and Negative Opinion Proportions on DeepSeek-V2-Lite-Chat under the “w/ Persona
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Figure 18: Trend of Positive and Negative Opinion Proportions on Ministral-8B-Instruct-2410 under the “w/o
Persona & w/o History” Setting.

26



Fging (526) rande (322) wy 210) e ese) i 347)
oo oo Sos oo oo
H g I 1 H
HY Eas Eoa Eoa Eoa
shata572) e 540 et 256) atore @781 weaon)
Tempted 4151 oo 41) Painctnes 168 sotaraima 539
o ot Lo k.
oot 643 s Taro 46 o571
rera) Pt 239) Unstraman o7 chn 26 sabar a7
toveaa0) Ao ) s 709, Gong 6721
\
for for £or §
N —.
asing 01 s 521 o 20 o361
§or for for £or
s 061 sesy 130 Connstenc, 473) ingston (526 eavig 736
H H H H H
H Eos Eoa Eoa H
o en 10 sap s s anasonda 638)
£os Soe fos Eos £oe
i i 1 1] i
Shandar @161 o e unarem sosa 613
oo Sos Sos oo oo
i i 1 1] i
s 75) poiet 145) oreamers 475) sk ) pena (269
oo oo Sos oo oo
H i 1 1 H
HY Eas Eoa Eoa Eoa
ong (550 oeatn 632) ontne 623) omettery s
Marada 520 sy 00 roas sospl 1) ety 433
et . . .
et (181 Uoack 6541 Curi545) Shaken (735) v (516
Comucopia 103 Shiver 5471 ot 261 seng 207) s
nsin278) Suntsh @741 oo (804 [ was
for for £or $

Figure 19: Trend of Positive and Negative Opinion Proportions on Ministral-8B-Instruct-2410 under the “w/o

Persona & w/ History” Setting.
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Figure 20: Trend of Positive and Negative Opinion Proportions on Ministral-8B-Instruct-2410 under the “w/ Persona

& w/o History” Setting.
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Figure 21: Trend of Positive and Negative Opinion Proportions on Ministral-8B-Instruct-2410 under the “w/ Persona

& w/ History” Setting.
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Figure 22: Trend of Positive and Negative Opinion Proportions on Qwen2.5-1.5B-Instruct under the “w/o Persona

& w/o History” Setting.
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Figure 23: Trend of Positive and Negative Opinion Proportions on Qwen2.5-1.5B-Instruct under the “w/o Persona

& w/ History” Setting.
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Figure 24: Trend of Positive and Negative Opinion Proportions on Qwen2.5-1.5B-Instruct under the “w/ Persona &

w/o History” Setting.
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Figure 25: Trend of Positive and Negative Opinion Proportions on Qwen2.5-1.5B-Instruct under the “w/ Persona &

w/ History” Setting.
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Figure 26: Trend of Positive and Negative Opinion Proportions on Qwen2.5-3B-Instruct under the “w/o Persona &

w/o History” Setting.
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Figure 27: Trend of Positive and Negative Opinion Proportions on Qwen2.5-3B-Instruct under the “w/o Persona &

w/ History” Setting.
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Figure 28: Trend of Positive and Negative Opinion Proportions on Qwen2.5-3B-Instruct under the “w/ Persona &

w/o History” Setting.
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Figure 29: Trend of Positive and Negative Opinion Proportions on Qwen2.5-3B-Instruct under the “w/ Persona &

w/ History” Setting.
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Figure 30: Trend of Positive and Negative Opinion Proportions on Qwen2.5-7B-Instruct under the “w/o Persona &

w/o History” Setting.
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Figure 31: Trend of Positive and Negative Opinion Proportions on Qwen2.5-7B-Instruct under the “w/o Persona &

w/ History” Setting.
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Figure 32: Trend of Positive and Negative Opinion Proportions on Qwen2.5-7B-Instruct under the “w/ Persona &

w/o History” Setting.
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Figure 33: Trend of Positive and Negative Opinion Proportions on Qwen2.5-7B-Instruct under the “w/ Persona &
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A.5 Semantic Similarity vs. Rating Distance (w/ Persona & w/ History)

In the “w/ Persona & w/ History” setting, we examined scatter plots of TF-IDF semantic similarity vs.
rating distance. With the x-axis showing the TF-IDF similarity between the agent’s persona description
and the movie overview, and the y-axis showing the rating distance (absolute deviation of the agent’s
rating from its historical average rating for movies). Across all evaluated language models (except
LLaMA-3.1-8B-Instruct), we observe a consistent inverse relationship between persona—movie similarity
and rating distance. Specifically, lower persona—movie similarity scores correspond to higher rating
distances (that is, when an agent’s persona is less aligned with a movie, the agent’s rating tends to deviate
more from its usual average). In contrast, movies that are more similar to the persona of the agent yield
ratings closer to the historical average of the agent (smaller deviation on the y axis). This same pattern is
evident for every model tested — including DeepSeek-V2-Lite-Chat, Mistral-8B-Instruct-2410, and the
Qwen-2.5-Instruct series — mirroring the trend originally observed with GPT-40-mini.
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Figure 34: The relation between Semantic Similarity vs. Rating Distance on DeepSeek-V2-Lite-Chat.
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Figure 35: The relation between Semantic Similarity vs. Rating Distance on Ministral-8B-Instruct-2410.
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Figure 36: The relation between Semantic Similarity vs. Rating Distance on Qwen2.5-1.5B-Instruct.
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Figure 37: The relation between Semantic Similarity vs. Rating Distance on Qwen2.5-3B-Instruct.
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Figure 38: The relation between Semantic Similarity vs. Rating Distance on Qwen2.5-7B-Instruct.

A.6 Anomalous Case: Llama-3.1-8B-Instruct

This section summarizes the results of abnormal cases for model Llama-3.1-8B-Instruct. Llama-3.1-8B-
Instruct exhibits a strikingly different pattern from the closed and most open-source models. In the with
persona setting, it almost never forms a SoS: The MCO trend displays persistent fluctuations or coexistence
of positive and negative views, with statistical indicators remaining dispersed and rarely showing the
monotonic trends or sharp late-stage concentration found in other models. Even more surprisingly, in
the “No Persona” setting , LLaMA-3.1-8B often shows strong fluctuations and sudden switches between
positive and negative opinions. This atypical behavior may be due to multiple factors: greater diversity or
stochasticity in the sampling of the model, weaker persona conditioning, an insufficient anchoring effect
of persona / history inputs. Detailed results of the LLaMA-3.1-8B model are

A.6.1 Metrics Distributions
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Figure 39: Distributions of Mann—Kendall Statistic, Spearman Rank Correlation, Kurtosis, Inter-quartile Range for
All Movie Rating Sequences on Llama-3.1-8B-Instruct.

A.6.2 Positive and Negative Opinion Proportion Trends (MCO Trend)
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Figure 40: Trend of Positive and Negative Opinion Proportions on Llama-3.1-8B-Instruct under the “w/o Persona &

w/o History” Setting.
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Figure 41: Trend of Positive and Negative Opinion Proportions on Llama-3.1-8B-Instruct under the “w/o Persona &

w/ History” Setting.
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Figure 42: Trend of Positive and Negative Opinion Proportions on Llama-3.1-8B-Instruct under the “w/ Persona &

w/o History” Setting.
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Figure 43: Trend of Positive and Negative Opinion Proportions on Llama-3.1-8B-Instruct under the “w/ Persona &

w/ History” Setting.
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A.6.3 Semantic Similarity vs. Rating Distance (w/ Persona & w/ History)

Similarity vs. Distance
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Figure 44: The relation between Semantic Similarity vs. Rating Distance on Llama-3.1-8B-Instruct.
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