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ABSTRACT

Protein-protein interactions (PPIs) are mediated at the residue level. Most sequence-
based PPI models consider residue-residue interactions across two proteins, which
can yield accurate interaction scores but are too slow to scale. At proteome scale,
identifying candidate PPIs requires evaluating nearly all possible protein pairs. For
N proteins of average length L, exhaustive all-against-all search requires O (N2 L?)
computation, rendering conventional approaches computationally impractical. We
introduce RaftPPI, a scalable framework that approximates residue-level PPI mod-
eling while enabling efficient large-scale retrieval. RaftPPI represents residue
interactions with a Gaussian kernel, approximated efficiently via structured random
Fourier features, and applies a low-rank factorized attention mechanism that admits
pooling into a compact embedding per protein. Each protein is encoded once into
an indexable embedding, allowing approximate nearest-neighbor search to replace
exhaustive pairwise scoring, reducing proteome-wide retrieval from months to min-
utes on a single GPU. On the human proteome with the D-SCRIPT dataset, RaftPPI
retrieves the top 20% candidate pairs (~200M) in 6 GPU minutes, covering 75.1%
of the true interacting pairs, compared to 4.9 GPU months for the best prior method
(61.2%). Across seven benchmarks with sequence- and degree-controlled splits,
RaftPPI achieves state-of-the-art PPI classification and retrieval performance, while
enabling residue-aware, retrieval-friendly screening at proteome scale.

1 INTRODUCTION

Protein-protein interaction (PPI) is central to understanding cellular mechanisms and enabling
applications in target discovery (Loscalzol [2023)), pathway reconstruction (Ritz et al., 2016), and
functional annotation (Sharan et al., 2007). In practice, many discovery tasks require proteome-scale
screening, scoring protein pairs within a species to surface plausible interactors (Humphreys et al.}
2024} |Zhang et al.| 2024). However, proteome-scale PPI prediction remains time-consuming due
to the quadratic number of candidate protein pairs. One high-accuracy route is to predict multimer
structures with end-to-end structure predictors (Jumper et al.,|2021;2024; [Evans et al., 2021)). While
accurate, these pipelines rely on MSAs/templates and require O(L?) complexity to update pairwise
representations of proteins with length L. This daunting cost makes per-complex structure prediction
difficult to amortize across large candidate sets. An alternative frames PPI as binary classification
from alignment-free PLM embeddings (Sledzieski et al.| |2024; Ko et al., [2024; |Liu et al., [2024).
Although per-sequence encoding is O(L#), these models must jointly encode each protein pair
at inference; thus an exhaustive screen over the human proteome with ~ 20,000 proteins entails
~ 2x 108 candidate pairs, making large-scale screening computationally prohibitive. To illustrate,
the state-of-the-art PPI classification model PLM-Interact (Liu et al.| 2024} requires 148.47 A100
GPU-days (/24.9 months) to screen the human proteome (see Table E] and §@]).

In light of these limitations, we propose Residue-interaction Approximation with Fourier FeaTures
(RaftPPI), which models PPI by approximating residue-level interactions while enabling scalable
protein retrieval. RaftPPI models residue—residue scores with a Gaussian kernel and aggregates them
to a protein-level score (Fig.[I)). The non-linear kernel is efficiently approximated via random Fourier
features (Rahimi and Recht, 2007 [Yu et al.,[2016), and pooling uses a low-rank factorized attention
that admits a linear-time approximation at inference. As a result, each protein is encoded once into
a fixed-length representation amenable to approximate nearest-neighbor search, e.g., Hierarchical
navigable small world (HNSW (Malkov and Yashunin, [2020)), to retrieve likely interactors—retaining



residue-level interactions while avoiding explicit per-pair computation. In practice, the dominant cost
is PLM encoding, giving overall O(N L?) across a proteome; on a single A100, retrieving the top
20% of human-proteome pairs completes in minutes, achieving a 10*-fold speedup over prior art.

Besides model design, we also seek to mitigate challenges from the lack of reliable negative data
in PPI datasets. Experimentally confirmed non-interactions are rare, so negatives are typically
constructed, and their quality varies widely (Neumann et al.|[2022;|Zhao et al.| 2022). Random or
compartment-based pairing often produces overly easy, biased examples that lead to overly optimistic
results, whereas co-localized, functionally related, or topology-aware sampling yields harder and
more informative ones (Ben-Hur and Noble}, 2006; |Park and Marcotte, 201152012} |Zhang et al.| 2018)).
These observations motivate our adaptive negative weighting loss, which applies self-adversarial
weights (Sun et al.,|2019) based on model confidence so that harder negatives are assigned greater
weights, mitigating biases from easy constructed pairs.

Contributions. We introduce RaftPPI, a retrieval-friendly, residue-aware framework that com-
presses each protein into an indexable embedding for efficient ANN search, reducing proteome-level
PPI screening from GPU months to minutes. With an adaptive negative-weighting loss that em-
phasizes hard negatives and mitigates the lack of reliable negative data, RaftPPI achieves strong
classification and retrieval performance under rigorous sequence- and degree-controlled benchmarks.

2 RELATED WORK

Protein Language Models. Transformer-based Protein Language Models (PLMs) pretrained on
large sequence corpora (e.g., ProtTrans (Elnaggar et al.,[2021), ESM 1b (Rives et al.,2021), and ESM
2 (Lin et al.;2023)) learn residue-level embeddings that implicitly capture evolutionary and structural
priors. Generative PLMs such as ProGen and ProGen2 (Madani et al.,[2020; Nijkamp et al., 2022)
use autoregressive modeling for controllable sequence design. Beyond sequence-only vocabularies,
Foldseek (van Kempen et al.,2024) introduces discrete 3D structure tokens that have been used to
augment PLMs with structure-aware vocabularies (SaProt (Su et al.l 2023)) or to predict structure
tokens directly (ISM (Ouyang-Zhang et al.| 2025))). These models provide transferable features that
support many modern PPI predictors, including our method.

Protein—Protein Interaction Prediction. An ideal way to assess PPIs is to predict the 3D structure
of protein complexes directly using end-to-end structure predictors such as AlphaFold2 (Jumper
et al., 2021), RoseTTAFold (Baek et al., [2021), AlphaFold-Multimer (Evans et al., [2021), and the
more recent AlphaFold3 (Jumper et al.|[2024)). These systems achieve remarkable accuracy but are
computationally intensive, often rely on multiple sequence alignments (MSAs) and/or structural
templates, and require explicit per-pair inference. Another line of work formulates PPI as a graph
machine learning problem (e.g., link prediction (Nasiri et al.l [2021))) on residue- or protein-level
graphs. Examples include diffusion-state methods (Devkota et al.,2020) and GNN-based approaches
such as GNN-PPI (Lv et al., 2021}, SGPPI (Huang et al.|, 2023)), PPI-GNN (Jha et al.; [2022), and
HIGH-PPI (Gao et al.,[2023)). Although graph priors can be powerful, the performance of such models
depends on the availability and quality of the underlying network and can be vulnerable to degree
bias and data leakage (Bernett et al.,2024). These limitations prevent proteome-level screening. In
light of this, we focus on sequence-only methods, as they are alignment-free (no MSA needed) and
graph-free, while maintaining good performance.

Among sequence-only methods, early work such as SPRINT (Li and Iliel |2017)) computes pair-specific
similarities with spaced-seed k-mer hashing. Subsequent deep learning encoders include DeepFE-
PPI (Yao et al., [2019), the fully connected and LSTM models of Richoux et al. (Richoux et al., 2019),
and PIPR’s Siamese residual RCNN (Chen et al.l [2019). Many later sequence models follow the
D-SCRIPT (Sledzieski et al.| [2021) paradigm, computing residue—residue interaction scores and
aggregating them into a protein-level score; Topsy-Turvy (Singh et al.| 2022) and TT3D (Sledzieski
et al., |2023)) further extend this approach by incorporating graph priors (Devkota et al., [2020) and
structural embeddings (van Kempen et al, 2024). Recently, PLM-based approaches (Sledzieski
et al., 2024} Ko et al., 2024} |Yang et al., [2024; |Liu et al., 2024)) leverage the strong performance
of pretrained PLMs (Lin et al.,[2023} |[Elnaggar et al., 2021) to model interactions at residue-level
resolution. These approaches are typically accurate but non-factorizable: they jointly encode each
protein pair, which makes proteome-scale retrieval computationally prohibitive.
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Figure 1: Overview of RaftPPI. RaftPPI approximates a standard PPI pipeline Pred&Agg (above)
that predicts residue-level contact scores and aggregates them using attention to a final PPI score.
The Pred&Agg pipeline costs O(N2L?) for proteome-wide retrieval. RaftPPI uses Random Fourier
Features to approximate a Gaussian kernel and leverages separable attention. The pipeline is
factorizable (below), enabling per-protein Fourier-feature embeddings and ultra-fast retrieval via
approximate nearest neighbor search (e.g., HNSW) at proteome scale with O( N L?) precomputation.

Proteome-level PPI Screening. Whole-proteome screening poses a computational challenge due
to the quadratic number of protein pairs. Recent pipelines address this using multi-stage filters
coupled with structure prediction. In RF2-style workflows (Humphreys et al.l [2024; Zhang et al.,
2024)), GPU-accelerated coevolutionary analysis (DCA (Ekeberg et al.||2013)) first prunes hundreds
of millions of candidates; top pairs are then rescored with a lightweight RoseTTAFold2-based contact
predictor, and the highest-confidence subset is finally evaluated with full AlphaFold2. These efforts
primarily focus on accelerating structure prediction; for example, RF2-Lite (Humphreys et al.| 2024)
streamlines refinement with a two-track network that is ~ 20x faster than AlphaFold2, yet still
requires explicit per-pair inference after pre-screening.

Our Position. RaftPPI is a residue-aware yet retrieval-friendly framework. It produces indexable
protein embeddings whose inner products approximate residue-level interaction scoring, enabling
ANN-based proteome screening without explicit per-pair inference. Compared with sequence-only
models, RaftPPI attains stronger PPI classification while scaling to whole-proteome retrieval via
precomputed embeddings. Compared with structure-prediction methods, it offers orders-of-magnitude
faster screening by narrowing candidates first, after which shortlisted pairs can be rescored with
accurate complex structure predictors.

3 METHODOLOGY

Figure [I] summarizes the RaftPPI framework. We first revisit a standard two-step pipeline for
sequence-based PPI prediction (§3.), then show how RaftPPI approximates residue-level modeling
while enabling scalable protein retrieval by coupling a Gaussian-kernel interaction with low-rank
(separable) attention and Structured Orthogonal Random Features (SORF) (@. We optimize the
model with an adaptive negative reweighting objective (§3.4) and enable proteome-scale search via
vector indices over precomputed embeddings (§3.3).

Throughout, we consider a candidate protein pair (A, B) with residues indexed 1,..., L4 and
1,..., Lp, respectively. Bold lowercase symbols (e.g., z) denote vectors, bold uppercase symbols
(e.g., W) denote matrices, o(-) is the logistic sigmoid, and || - || is the Euclidean norm.



3.1 A PIPELINE FOR TWO-STEP PPI PREDICTION

Since protein interactions occur at the residue level, a standard approach is a two-step
pipeline (Sledzieski et al., 2021} Singh et al.| 2022} [Sledzieski et al., [2023) as illustrated in the
upper panel of Figure[I} Predict residue-pair contact scores, then aggregate them into a protein-pair
score. We refer to this two-step pipeline as Pred&Agg and define it as follows:

Residue-level contact matrix prediction. Given residue embeddings z4,;,2p,; € R¢ from a
pretrained protein language model (PLM) (Lin et al.l |2023)), we compute contact scores

cij = f(za4,28,;) €R, (D

where f(-, ) is typically an MLP or an inner product, producing a contact matrix C' € RLaxEz,

Protein-level interaction aggregation. This residue-level score matrix is pooled into a scalar logit:
((A,B) =g(C) R, @
where ¢(-) denotes a pooling operation (e.g., max/conv/2D attention).

There are many instances of this Pred&Agg pipeline. For example, D-SCRIPT (Sledzieski et al.,
2021) uses Bepler & Berger embeddings (Bepler and Berger}, 2019) with element-wise transforms to
predict C, then pools to a pair score. TT3D (Sledzieski et al., 2023)) and Topsy-Turvy (Singh et al.|
2022)) incorporate graph-based supervision (Devkota et al., [2020) and 3Di structure encodings (van
Kempen et al. 2024). While effective, these methods are non-factorizable: they rely on dense
nonlinear residue—pair computations, yielding O(N?L?) complexity for N proteins of length L,
which is prohibitive for proteome-scale screening. Next we show how RaftPPI approximates this
pipeline as a dot product between single-protein embeddings.

3.2 KERNELIZED RESIDUE INTERACTIONS WITH LOW-RANK ATTENTION

As noted above, the nonlinearity in Pred&Agg yields strong accuracy but hinders retrieval because it
requires explicit pairwise inputs. Our idea is to approximate these steps with factorizable ones where
protein interaction scores are computed via dot-product between protein embeddings.

Predict (kernelized residue-residue scoring). We model residue-residue interactions with a

Gaussian kernel | ”2
ZAi— ZB,j
ks(za,i,2B,;) = exp (—Z 552 1 ) )

where 62 is the kernel bandwidth that controls how quickly the kernel decays with residue-embedding
distance. Smaller 6 emphasizes very local residue matches, while larger values blend information
across a wider neighborhood (see Appendix [B.2]for the quantitative sweep). The kernel corresponds
to an inner product in an infinite-dimensional Reproducing kernel Hilbert space (RKHS), enabling
rich nonlinear scoring.

3)

Aggregate (attention-weighted pooling). We aggregate the residue-level kernel scores into a
protein-level logit via a weighted sum:

Li Lg
((A,B) = Z Z sijks(2a,is2B.5) “
i=1 j=1

where s; ; is the attention weight, determining the set of residue pairs of interest.

Factorizable low-rank attention. Low-rank (separable) attention is a standard strategy for reducing
quadratic cost (e.g.,|Wang et al., [2020; |(Choromanski et al., [2021). We approximate the residue—pair
attention with a rank-r separable form. Denote the residue embedding matrix as Z 4 € RL4*< and
ZpeREBX4; foreach t€{1,...,r} alightweight per-residue scorer hét) : R? R is applied row-
wise to produce unnormalized importances, which we normalize with a softmax to obtain per-chain
weights:

w']) = softmax(h(Z4)),  wl = softmax(h} (Zp)). 5)



Collecting columns gives W, = [wg)- . -wfp} € RLA* and Wy = [wg)- : -wg)] c RLs>*7,
with nonnegative entries and each column summing to 1. We then set -

sij =y wiiwy) = 8§=WaW], (6)
t=1

yielding a factorizable attention surface. In practice we instantiate r=1 (so s; ; = w4 ;wp,;), which
achieves strong performance with minimal parameter cost.

3.3 FAST INFERENCE WITH RANDOM FOURIER FEATURES AND VECTOR SEARCH

Kernel approximation with Random Fourier Features. We approximate ks using Random

Fourier Features (RFF) (Rahimi and Recht, 2007). Given d’ target frequencies, let W € R4 *d and
define

P(z) = \/167' [cos(W z);sin(Wz)] € R24" @)
so that we have a factorized form to approximate the kernel as:

ke (x,y) ~ v(x) T d(y). ®)

To construct W efficiently, we use Structured Orthogonal Random Features (SORF) (Yu et al.| 2016).
A SORF block of size d x d is

W =Y{HD HD,HDs, )

where H is the normalized Walsh—-Hadamard matrix and D; are diagonal Rademacher sign-flip

matrices. The rows of W satisfy E[ww ] = 621, matching the Gaussian second moment and
providing a low-variance RFF approximation of the Gaussian kernel. To obtain d’ frequencies, we

generate independent SORF blocks and concatenate their first d’ rows to form W € R *d,

Fast retrieval via factorizable scoring. Using Eq.[8|and the r=1 attention, we obtain

La Lp

(A, B) = Z Z sij ke (2ai,28,5)
=1 j=1
La Lp

~ Y wawp;(zaq) ¥(zs,)) (10)

i=1 j=1
LA LB
= < > wait(zaq), Y ws; 1/)(ZB,j)>~
i=1 j=1
Define the per-protein embeddings as
LA LB
ha=> wait(za:), hp=)Y wp;v(zs,) (11)
i=1 j=1

which yields the factorizable approximation that computes the logit £( A, B) in a dot-product form:

(A, B) := (ha, hp). (12)

We fix the same SORF transform W at training and inference for alignment, and store h for
approximate k-nearest neighbor search with HNSW (Malkov and Yashunin, |2020)) (inner-product
retrieval in the transformed space).



3.4 TRAINING OBJECTIVE

As noted in the Introduction, experimentally verified non-interactions are rare, so negatives are often
constructed and vary widely in informativeness (Neumann et al.| [ 2022; [Zhao et al.}2022)). Heuristic
constructions (e.g., enforcing different cellular compartments) often produce overly easy, biased
negatives, leading to overly optimistic results. Meanwhile, co-localized, functionally related, or
topology-aware choices tend to be harder and more informative (Ben-Hur and Noble, [2006} |Park and
Marcotte, [2011;|2012; Zhang et al.,|2018)). Motivated by this, we adopt adaptive negative weighting,
where the relative contribution of each negative is automatically determined by the model’s own
confidence, allowing harder negatives to exert greater influence.

Let /(A, B) = (ha, hg) denote the logit for a pair (A, B). Over a minibatch, let P and A be
the index sets of positive and negative pairs, respectively. Inspired by self-adversarial training in
knowledge-graph reasoning (Sun et al.l 2019), we define temperature-scaled weights over negatives

exp (T Ei)

bi= > exp(Tﬁj) ’

JEN

ieN, T3>0, (13)

and stop gradients through p; in practice. Intuitively, p; reflects the model’s (normalized) confidence
that a negative pair is actually positive, i.e. higher p; thus identifies harder negatives. We then
combine a standard positive term with an adaptively reweighted negative term:

1 1
L == _W Z ]ogo’(gp) — sz lOgU(—fi) . (14)

2 peEP iEN

When 7 = 0, Eq. [E]reduces to balanced BCE; as 7 — o0, it focuses on the hardest negative. In
practice, 7 = 4 offers a good trade-off, as shown in Appendix [B.4}

3.5 COMPUTATIONAL COMPLEXITY

Consider a proteome with N proteins of average length L. PLM embedding dominates at O(N L?).
Our mapping/aggregation adds O(L (dlog d + d’)) per protein (vs. O(Ldd’) for dense RFF), which

is linear in L and minor in practice. After caching h, HNSW indexing is O(N log N), queries grow
polylogarithmically in N, and memory is O(N). Hence the end-to-end complexity is O(N L?), with
indexing/search negligible; empirically, top-20% retrieval completes in ~6 minutes for N ~10* (see

§4.3] Table[3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. As discussed in (Bernett et al., [2024), naive PPI splits and datasets are prone to data
leakage and confounding from sequence similarity and node-degree biases, which can yield over-
optimistic performance and poor transfer. We therefore adopt the 7 processed datasets/splits in
(Bernett et al.| [2024])) that (i) remove near-duplicate or homologous sequences across train/validation
and test sets, minimizing the impact of raw sequence similarity, and (ii) control protein occurrence
frequency so that hub proteins do not trivially inflate accuracy via degree priors. This setting makes
PPI prediction more realistic and challenging. The datasets span two species: yeast (Guo, Du)
and human (Huang, D-SCRIPT, Pan, Richoux, Gold). Their statistics are shown in Table E} In
Appendix [B.6] we further evaluate RaftPPI and baselines on the larger-scale PINUI-human and
PiNUI-yeast datasets (Dubourg-Felonneau et al., |[2023).

Baselines. We evaluate 10 PPI classifiers spanning classical sequence models (D-SCRIPT (Sledzieski
et al) [2021), DeepFE (Yao et all [2019), Richoux-FC/LSTM (Richoux et al) [2019),
Topsy—Turvy (Singh et al., 2022), SPRINT (Li and Ilie} [2017)) and PLM-based methods (ESM?2-
MLP (Sledzieski et al.| [2024)), TUnA (Ko et al., [2024), PLM-Interact (Liu et al., [2024)). For all
PLM baselines and for RaftPPI, we use ESM2-8M as the backbone; we also include an unsupervised
ESM2-NoFT baseline (dot product over [CLS] embeddings). Prior work (Fournier et al., [2024)



Table 1: Dataset statistics of seven PPI datasets spanning two species (human and yeast).

Dataset Species Train Val Test Total
Pos Neg Total Pos Neg Total Pos Neg Total
Guo Yeast 2,088 2,088 4,176 232 232 464 861 861 1,722 6,362
Du Yeast 6,536 6,486 13,022 698 748 1,446 2421 2421 4842 19,310
HUANG Human 1,094 1,075 2,169 111 130 241 713 713 1,426 3,836
D-SCRIPT Human 12,218 122,165 134,383 1,356 13,575 14,931 8467 84,670 93,137 242451
PAN Human 14,069 14,022 28,091 1,537 1,584 3,121 4,575 4575 9,150 40,362
RICHOUX Human 17,873 17,798 35,671 1,944 2,019 3963 5167 5,167 10,334 49,968
GOLD Human 81,596 81,596 163,192 29,630 29,630 59,260 26,024 26,024 52,048 274,500

and our analysis at Appendix [B.T|show that scaling ESM2 (35M/150M/650M) does not consistently
improve these tasks; moreover, proteome-scale retrieval with per-pair PLM inference is already
expensive at the 8M scale, consuming GPU-months computation time (see Table[3)). In this case, we
use ESM2-8M for the best performance/throughput trade-off in our evaluations.

4.2 PROTEIN-PROTEIN INTERACTION CLASSIFICATION

Table 2: Test AUROC Performance (%) of competing methods on the seven PPI datasets. Higher is
better; the rightmost column shows the mean across collections.

Method D-SCRIPT Huang Pan Richoux Gold Guo Du Average
D-SCRIPT (Sledzieski et al.|[2021) 81.99 65.72  68.44 59.15 4991 47.14 50.92 60.47
DeepFE (Yao et al.[[2019) 61.66 56.93  53.70 57.43 5321 5821 56.05 56.74
Richoux-FC (Richoux et al.|2019) 47.53 59.06  52.39 59.72 5353 5581 59.89 55.42
Richoux-LSTM (Richoux et al.[|2019) 50.67 56.56  47.81 50.37 49.16 5155 56.37 51.78
SPRINT (Li and Ilie][2017) 64.62 46.71 4339 55.71 51.50 48.80 51.80 51.79
Topsy-Turvy (Singh et al.[[2022) 75.38 5552 65.80 48.67 58.74 43.65 61.60 58.48
ESM2-NoFT (Lin et al.|[2023) 75.01 58.63  59.51 63.26 5785 62.87 57.36 62.07
ESM2-MLP (Sledzieski et al.|[2024) 82.83 73.34  72.89 77.48 56.35 83.54 73.34 74.25
TUnA (Ko et al.[|2024) 83.38 66.66  77.06 76.73 5255 69.81 69.37 70.79
PLM-Interact (Liu et al.}|[2024) 84.77 69.69  73.03 78.66 65.00 79.60 75.20 75.14
RaftPPI 82.06 7220 74.21 69.88 68.69 8493 75.06 75.29

The PPI classification results across the seven datasets are reported in Table 2] We observe that
methods without pretrained PLMs—D-SCRIPT, DeepFE, Richoux-FC/LSTM, Topsy-Turvy, and
SPRINT—perform substantially worse than ESM2-based models, all falling below even the unsuper-
vised ESM2-NoFT baseline. This is because they rely largely on sequence similarity and node-degree
information, which fails under controlled splits (Bernett et al.,2024), whereas ESM-based models
benefit from large-scale pretraining, where structural properties such as secondary structure can be
inferred from embeddings (Rives et al.| 2021).

For ESM2-based baselines, all models finetuned for PPI outperform ESM2-NoFT. PLM-Interact
achieves the strongest results, likely due to its early-fusion design, which allows deeper layers to
jointly model cross-protein interactions. In contrast, TUnA and ESM2-MLP fuse only at intermediate
or final layers, limiting their ability to capture joint interactions. This echoes the early-fusion
advantage reported in other domains (Snoek et al.,|2005). Meanwhile, RaftPPI attains the best average
performance, attributable to residue-level interaction modeling and adaptive negative weighting,
which we further discuss in §4.4]

4.3 PROTEOME INTERACTION RETRIEVAL

Compared with binary PPI classification, PPI retrieval more closely reflects real-world applications:
interactions in proteomes are sparse and highly imbalanced (negatives dominate), and one must
screen an entire candidate proteome to identify true interactors for a query protein. For computational
tractability, we sample 100 query proteins per dataset and use the models trained in Section to
retrieve positives on the test split. We compare RaftPPI to PLM (ESM2) baselines (ESM2-NoFT,
TUnA, PLM-Interact, ESM2-MLP) and to RaftPPI-P, a special version that removes the residue-level
design of RaftPPI, which predicts PPI using the dot-product of [CLS] token embeddings.
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Figure 2: Proteome retrieval with residue-level fidelity and scalable retrieval. Heatmaps report
Recall@ K% for K € {1,3,5,10,20} across methods and datasets, with per-dataset normalized
color scales (best=100%, worst=0%). Red rectangles mark the best method; purple rectangles mark
the second best. The sixth panel shows average recall curves across datasets.

Type Model Encoding (s) Recall@1/3/5/10/20% (s) AUROC (%) Recall@20% est. / full (%)
ESM2-MLP NA 1766576 74.25 27.77 I NA
Unfactorizable TUnA NA 3833646 70.79 30.44 / NA
PLM-Interact NA 12827660 75.14 30.81 /NA
ESM2-NoFT 105 54/74/99/170/259 62.07 42.37/41.72
Factorizable RaftPPI-P 54 40/48/75/118 /187 71.90 45.73 /1 43.83
RaftPPI 102 49/70/98 /157 /241 75.29 48.33/47.91

Table 3: Human proteome retrieval efficiency (Recall@K% end-to-end time) and average classifica-
tion/retrieval performance. Factorizable methods that reuse single-protein embeddings can build an
index once and then retrieve via HNSW (Encoding time shows the one-time cost). Due to intractable
computing time for unfactorizable methods, we estimate the recall performance (denoted as est.) and
inference time using 100 query proteins. Times are estimated total seconds for the full set of queries
on proteome; measured on an A100 GPU.

Retrieval performance. As shown in Figure 2] non-factorizable methods—i.e., models that jointly
encode protein pairs such as ESM2-MLP, TUnA, and PLM-Interact—achieve strong binary PPI
classification but do not outperform the simple ESM2-NoFT baseline in retrieval. We hypothesize that
this gap arises because the data splits are explicitly designed to minimize sequence similarity
2024), limiting the models’ ability to exploit correlations between sequence similarity and
structural interaction. In contrast, factorizable approaches naturally capture sequence similarity
through embedding dot products. Among these, RaftPPI consistently ranks first or second across
datasets and recall thresholds, and its improvements over RaftPPI-P highlight the benefit of explicitly
modeling residue-level interactions.

Retrieval efficiency. Table [3|reports runtime comparisons. Non-factorizable methods—ESM2-MLP,
TUnA, and PLM-Interact—are prohibitively slow because they require per-pair inference. The
strongest of these, PLM-Interact, performs well on both classification and retrieval, yet demands
148.47 A100 GPU-days (/4.9 months) to screen the human proteome, underscoring the impracticality
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Figure 3: Ablation Study. Scores are normalized to the best method per dataset (100%=peak). Top:
classification AUROC. Bottom: retrieval Recall@20%. The full model (RaftPPI) attains the best or
second—best performance in every case; removing any single design choice causes a clear drop.

of exhaustive search. By contrast, RaftPPI compresses each protein once and performs approximate
nearest-neighbor search, reducing proteome retrieval from GPU months to minutes. Overall, RaftPPI
delivers the best balance of retrieval accuracy, classification performance, and efficiency.

4.4 ABLATION STUDY

We focus on four research questions and validate our core designs. RQ1 (residue-level modeling):
Does explicit residue-level modeling help? RQ2 (kernel): Does replacing a linear dot product with a
Gaussian kernel (approximated via SORF) improve performance? RQ3 (aggregation): How should
residue scores be aggregated most effectively? RQ4 (adaptive negative weighting): Is adaptive
negative weighting effective in helping the model assign greater weight to harder negatives?

We perform ablation studies on these research questions and show the results in Figure 3] RQ1
(residue-level modeling): The coarse ESM2-MLP baseline encodes proteins and predicts interactions
from concatenated embeddings. Even when augmented with our adaptive loss (ESM2-MLP-ANW-
Loss), it competes on small classification splits but collapses on retrieval (e.g., —46% Recall@20%
on Gold), confirming the necessity of residue-level reasoning for large-candidate screening. RQ2
(kernel): Replacing the Gaussian kernel with a linear dot product (Raft-WoSORF) consistently
reduces AUROC and Recall @20%, showing the benefit of kernelized interactions. We additionally
discuss the impact of Gaussian bandwidth & in Appendix [B.2] RQ3 (aggregation): Averaging (Raft-
Avg-Agg) or using a [CLS] score (Raft-CLS-Agg) are slightly weaker than attention, indicating
that attention helps identify PPIs. RQ4 (adaptive negative weighting): Switching to uniform BCE
(Raft-BCE) degrades AUROC and Recall@20%, especially on the D-SCRIPT dataset where negatives
outnumber positives by roughly 10x, highlighting the value of prioritizing hard negatives (we provide
a detailed ablation study of the temperature 7 in Appendix [B.4). Collectively, these ablations validate
each design choice in RaftPPI, demonstrating the effectiveness of kernelized residue interactions,
SORF-based kernels, attention-based aggregation, and adaptive negative weighting.

5 CONCLUSION

Conclusion. We introduced RaftPPI, a residue-level framework for scalable proteome-wide PPI
retrieval. By combining a kernelized interaction module with low-rank attention aggregation, RaftPPI
approximates residue-level interactions in a factorizable form, producing compact indexable protein
embeddings that support efficient retrieval. In addition, we incorporate adaptive negative weighting,
which prioritizes harder negatives during training and further strengthens model performance. RaftPPI



achieves state-of-the-art performance on both PPI classification and retrieval, while enabling residue-
aware and retrieval-friendly screening at proteome scale.

Limitation. Although RaftPPI achieves strong retrieval efficiency, the kernel approximation and
rank-r attention introduce inductive biases that simplify residue—residue interactions into a low-
rank form, which may under-represent subtle allosteric effects or conformational rearrangements
at complex interfaces. Moreover, RaftPPI is trained as a sequence-based PPI classifier on pairwise
labels without complex-level structural supervision, so it does not directly observe ground truth
residue contact patterns and may inherit dataset biases in assay type, species coverage, and interaction
density.

Future work. An important next step is to develop structure-aware pretraining that incorporates
complex-level geometric signals (e.g., residue contact maps, interface distances, or docking poses),
allowing the kernel and attention to learn physically grounded interaction patterns while preserving a
factorizable retrieval head. Beyond supervision, integrating structure-backed retrieval, where coarse
vector search proposes candidates that are subsequently refined or rescored by structure prediction
models such as AlphaFold3, could couple RaftPPI-style screening with more accurate yet expensive
structural modeling. Finally, extending our framework to capture condition- or state-specific PPIs
(e.g., tissue, perturbation, or disease context) and to operate over even larger cross-species proteomes
with dynamic, updatable indices are promising directions toward truly comprehensive, context-aware
proteome-wide PPI retrieval.
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A IMPLEMENTATION DETAILS

All experiments use five random seeds ({0, 1, 2, 3, 4} ); unless noted, we report the mean (and
standard deviation when available) across seeds. Results for D-SCRIPT (Sledzieski et al.| [2021)),
DeepFE (Yao et al.l 2019), Richoux-FC/LSTM (Richoux et al.}2019), and Topsy-Turvy (Singh et al.|
2022) are taken from the benchmarking study of [Bernett et al.| (2024)) ; following their guidance,
we apply minimal tuning to baselines based on validation performance. For our method, we use a
single configuration across datasets: AdamW with learning rate 1e-4, 2048 random Fourier features,
Gaussian kernel bandwidth 6 = 0.5 (selected via Appendix [B.2)), and adversarial temperature
T = 4 (see Appendix [B.4]). Software environment: Python 3.10; PyTorch 2.5 with CUDA 11.8.
Anonymized code and data to reproduce the results are included in the supplementary materials.

B ADDITIONAL EXPERIMENTS

B.1 MODEL-SCALE SELECTION

ESM Model Scaling Analysis - Classification (Test AUROC)
Dscript Huang Pan Richoux
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Figure 4: ESM2 model-scaling analysis for PPI binary-classification (Test AUROC) across model
sizes and datasets. Increasing the parameter count beyond 8M does not consistently improve
performance.

Following the observation of [Fournier et al.| (2024)) that larger protein LMs do not necessarily yield
better results, we conduct a systematic scaling study on ESM2 (Lin et al.| 2023)). We evaluate four
checkpoints: 8M, 35M, 150M, and 650M parameters across seven PPI datasets spanning human
and yeast. Protein pairs are scored by the dot product of their [CLS] embeddings, providing an
unsupervised measure of scaling performance. As shown in Figures [ and[5] both Test AUROC and
Recall@K% change little with model size on nearly all datasets.

Given that inference time for pairwise-encoding models rises steeply with both model size and
quadratic pairwise scoring (e.g., PLM-Interact (Liu et al.| 2024)) requires GPU-months to search the
human proteome even with an 8M model due to its pairwise encoding; see Table 3] ), we adopt the 8M
ESM?2 checkpoint as the backbone for all PLM-based baselines and for RaftPPI, balancing predictive
performance and efficiency.

B.2 ABLATION ON GAUSSIAN KERNEL BANDWIDTH

The Gaussian kernel in Eq. [3]controls how strictly residue-level interactions are determined: smaller
o values confine each residue to interact only with very close neighbors (capturing sharp, local
interfaces), whereas larger ¢ allows larger interaction scores over a broader neighborhood. Figure|[6]
sweeps 6 € {0.125,0.25,0.5,1, 2,4, 8} and averages the metrics within human and yeast datasets.
From the results of both PPI classification and retrieval tasks, both very small and very large
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ESM Model Scaling Analysis - Proteome PPI Retrieval
Dscript Huang Pan Richoux
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Figure 5: Scaling analysis of ESM2 checkpoints on proteome-level PPI retrieval tasks (Recall@K%).
Performance remains largely unchanged when increasing model size.

Gaussian-Bandwidth (G) Ablation Study
Classification - Human datasets Classification - Yeast datasets Retrieval - Human datasets Retrieval - Yeast datasets
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Figure 6: Gaussian-bandwidth ablation: We vary the kernel width & from 0.125 to 8 (log-scale x-axis)
and report the averaged AUROC/Recall@20% across human and yeast datasets.

bandwidths degrade performance. For example, tiny ¢ encourages sparse interactions, yet leads
to a clear drop in performance when the bandwidth is too small; very large & over-smooths the
residue-level structure and significantly hurts both PPI classification and retrieval performance. As
¢ = 0.5 consistently achieves good performance across species, we adopt this value for all reported
experiments.

B.3 ABLATION ON LOW-RANK ATTENTION

Section [3.2] defines rank-r attention as r independent softmax pools (columns sum to one), and
Eq. [d] combines the pooled descriptors with the Gaussian feature map in Eq.[3]. For completeness,
we derive the rank-r retrieval formulation implied by that construction. Let ¥ 4 € RE4 *2d" and
Uy e REB x2d" gtack the Random Fourier Features for proteins A and B, and let the attention
matrices be W € RL4*™ and W € REE X" with columns that sum to one. The pooled embeddings

for each rank are the rows of
Hy=W)¥,cR**  Hp=W,¥zecR*>, (15)
and the proteome-scale logit becomes

T

UA,B) =Y (Y, hY) = t{ HAH}) = (vec(H ), vec(Hp)), (16)

t=1

where vec(-) denotes vectorization. Computing retrieval scores for » > 1 therefore amounts to
concatenating the r heads into a single embedding of dimension 2d'r per protein. Higher ranks can
provide stronger expressiveness, but the embedding dimension, memory footprint, and dot-product

17



Table 4: Impact of attention rank on AUROC and retrieval (macro-average across seven benchmarks).
Higher is better; bold marks the best value and underline the second best per metric.

Rank AUROC (%) Recall@1% Recall@3% Recall@5% Recall@10% Recall@20%

1 75.29 10.89 18.19 23.31 33.95 48.33
2 74.56 11.33 18.89 24.28 33.72 47.24
4 69.49 10.23 17.12 22.10 31.47 43.89
8 66.13 8.00 13.95 18.65 27.84 40.39
16 63.86 7.08 12.86 17.16 25.50 37.91
32 64.71 7.46 12.98 17.37 25.76 38.19

cost all grow linearly with r because each additional head contributes another 2d’ Random Fourier
Features (d’ for each sin/cos feature).

Table[]reports the seven-dataset macro-average. Rank 1 already achieves the best AUROC (75.29) and
Recall@20% (48.33). Moving to rank 2 mildly improves the very top of the ranking—Recall@ 1%,
Recall@3%, and Recall@5% increase by less than 1% without enhancing AUROC, indicating that
the extra head enables slightly stronger early recall capabilities. Larger ranks, however, consistently
overfit: AUROC drops below 70 at rank 4 and to 63.86 at rank 16, while Recall@20% degrades from
48.33 (rank 1) to 37.91 (rank 16) despite the 16 x increase in memory footprint. Rank 32 further
underperforms on every metric. Since rank-one attention is effective enough while achieving the best
efficiency compared to higher ranks, we keep r = 1 as the default.

B.4 ABLATION ON ADAPTIVE NEGATIVE WEIGHTING LOSS

Adversarial Temperature (7) Ablation Study
Classification - Human Datasets Classification - Yeast Datasets Retrieval - Human Datasets Retrieval - Yeast Datasets
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Average Test AUROC

Average Test AUROC
Average Recall@20%

74

5
0125 025 05 1 2 4 8 16 @ 0125 025 05 1 2 4 8 16 @ 015025 05 1 2 4 8 1 @ 0125025 05 1 2 4 8 16 @
Adversarial Temperature T Adversarial Temperature T Adversarial Temperature T Adversarial Temperature

Figure 7: Adversarial-temperature ablation. We vary the temperature 7 in the adaptive negative
weighting loss (Eq.[T4) from 0.125 to 32 (log-scale z-axis). Each panel reports the average metric
over the indicated datasets. A moderate value of 7 = 4 (vertical peak) consistently maximizes both
classification AUROC (left two panels) and retrieval Recall@20% (right two panels) on human and
yeast benchmarks.

Sensitivity Analysis of 7.  As introduced in §[3.4], we adopt adaptive negative weighting to mitigate
the challenge of constructed negatives in PPI datasets. We use a weighted BCE loss that softly
prioritizes harder negatives through a temperature parameter (Eq.[I3]). When 7 — 0, the objective
reduces to uniform BCE; when 7 — oo , it focuses entirely on the single hardest negative in the batch.
Figure [7]shows that neither extreme is optimal. Across species and protocols, performance peaks
around 7 = 4: increasing 7 from 0.125 to 4 improves average test AUROC by ~ 2-3 points and
Recall@20% by =~ 3 points, while larger values degrade results by overfitting to outliers. This ablation
highlights that moderately emphasizing harder negatives can improve proteome-scale retrieval.

Comparison to Focal Loss In real-world PPI data, samples can vary substantially in difficulty and
reliability. Therefore, we propose reweighting them rather than treating all positives and negatives
equally. Focal Loss (Lin et al.,[2017) was originally proposed for addressing the problem of class
imbalance in standard classification settings, where it modulates and balances positive and negative
samples using the («) parameter and further obtains different sample weights based on the (1 — p)?
term. Our adaptive negative sample weighting, inspired by [Sun et al.| (2019) , comes from the
knowledge graph reasoning (KGR) domain, which typically features (1) sparse ground truth pairs
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Model Test AUROC  Recall@20%

RaftPPI-AdaptiveNegLoss 75.29 49.34
RaftPPI-FocalLoss 74.16 47.60
RaftPPI-BCE 72.24 45.05

Table 5: Adaptive weighting vs. focal loss. Macro-average AUROC and Recall@20 % (means over
the seven PPI benchmarks in Table[T).

and (2) ranking-style objectives where the observed positive pair is encouraged to have a higher
score compared with many sampled (unreliable) negative pairs. In this setting, it is natural to only
reweight negative samples based on their relative hardness within a batch. We view our PPI retrieval
scenario as more closely aligned with the KGR setting (as PPI retrieval aims to find the interacting
pairs in the proteome and negative PPIs are often constructed as pseudo-negatives by sampling) than
with conventional CV classification. Performance-wise, both adaptive negative loss and Focal Loss
improve over standard BCE, indicating that PPI samples indeed have different effective quality, and
our adaptive negative loss is slightly better on average.

B.5 ABLATION ON RANDOM FOURIER FEATURES DIMENSION

Random Fourier Features Dimension Ablation Study
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Figure 8: Random Fourier Features dimension ablation. We vary the RFF embedding dimension
d’ from 256 to 4096 (log-scale z-axis; the corresponding sin/cos feature dimension is 2d’) and
report the averaged AUROC/Recall@20% across human and yeast datasets. In contrast to other
hyperparameters, performance remains remarkably stable across all tested dimensions, with changes
of less than 1.1 points, demonstrating that d’ is not an important parameter.

The Random Fourier Features (RFF) embedding dimension d’ (where d’ is the number of frequencies
in Eq. [8) controls the expressiveness of the Gaussian kernel approximation. Higher dimensions
provide more accurate kernel approximation but increase computational cost and memory footprint
linearly with the embedding dimension (the sin/cos feature dimension scales as O(2d’) and storage
scales as O(Nd') for N proteins). Figure8]sweeps d' € {256,512, 1024, 2048, 4096} and averages
the metrics within human and yeast datasets.

Compared to the previous hyperparameter ablations, the RFF dimension d’ is not a sensitive parameter
within our tested range. Performance remains remarkably stable across all tested dimensions: varying
d’ from 256 to 4096 changes average AUROC by less than 1.1 points and Recall@20% by less than
1.1 points on human datasets, with similarly small variations on yeast datasets. These variations are
substantially smaller than the change in performance when varying 6 (Appendix and varying
7 (Appendix [B.4): for example, on human datasets, & = 0.5 achieves 73.1 AUROC while 6 = 8.0
drops to 56.5 AUROC, a 16.7 point difference. The stability of RFF dimension across a 16x range
demonstrates that RaftPPI is robust to the RFF dimension choice, and any reasonable value (e.g.,
512-2048) works well in practice.

B.6 EVALUATION ON PINUI DATASETS
We additionally evaluate our method on the PiNUI datasets (Dubourg-Felonneau et al.|[2023)) , which

provide additional large-scale PPI classification benchmarks for human and yeast. After cleaning,
PiNUI-human contains 684,448 protein pairs (228,317 positive, 456,131 negative) and PiNUI-yeast
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Dataset Species Train Val Test Total
Pos Neg Total Pos Neg Total Pos Neg Total
PINUI-HUMAN  Human 136,812 273,858 410,670 45,684 91,205 136,889 45821 91,068 136,889 684,448
PINUI-YEAST Yeast 31,797 62,424 94,221 10,569 20,838 31,407 10,671 20,736 31,407 157,035
Table 6: Dataset statistics for PINUI-human and PiNUI-yeast.
Model PiNUI-human PiNUI-yeast
AUROC AUPRC AUROC AUPRC

ESM2-NoFT 59.14 £ 0.00 42.45 £ 0.00 51.90 + 0.00 38.74 £ 0.00

ESM2-MLP 75.37 £ 0.66 61.97 £1.03 77.524+0.76 63.01 £ 0.81

PLM-Interact  76.04 +0.18 62.71 £0.35 76.77 £ 0.96 61.97£1.71

TUnA 64.53 £ 0.34 47.31 £0.55 69.79 £1.08 54.29 £ 0.67

RaftPPI-P 73.61 +0.31 61.06 £ 0.31 72.53 + 0.62 58.64 £ 0.67

RaftPPI 7792+039 6933+034 7787+041 69.244+047

Table 7: Test AUROC and AUPRC performance (%) on PiNUI datasets.

contains 157,035 pairs (53,037 positive, 103,998 negative). Both datasets are split randomly into
train/validation/test sets with a 60/20/20 ratio; Table [6] summarizes these statistics.

Table [/| reports Test AUROC and AUPRC results across competing methods. The unsupervised
ESM2 baseline, i.e., ESM2-NoFT, performs poorly on both datasets, highlighting the importance of
fine-tuning for PPI prediction. RaftPPI achieves the best performance on both datasets. These results
are consistent with our findings on the seven-dataset benchmark discussed in §, demonstrating
that the proposed residue-level interaction modeling and adaptive negative weighting in RaftPPI
generalize well to larger-scale PPI datasets. PLM-Interact and ESM2-MLP appear to also have strong
performance. Besides, the improvements of RaftPPI v.s. RaftPPI-P (protein-level interaction only)
further demonstrate the effectiveness of our design that considers residue-level interaction.

C USE OF LARGE LANGUAGE MODELS

We used a large language model to help polish the writing. We take full responsibility for all content
in this paper.
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