
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST PROTEOME-SCALE PROTEIN INTERACTION RE- TRIEVAL VIA RESIDUE-LEVEL FACTORIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Protein-protein interactions (PPIs) are mediated at the residue level. Most sequence-based PPI models consider residue-residue interactions across two proteins, which can yield accurate interaction scores but are too slow to scale. At proteome scale, identifying candidate PPIs requires evaluating nearly *all possible protein pairs*. For N proteins of average length L , exhaustive all-against-all search requires $\mathcal{O}(N^2L^2)$ computation, rendering conventional approaches computationally impractical. We introduce RaftPPI, a scalable framework that approximates residue-level PPI modeling while enabling efficient large-scale retrieval. RaftPPI represents residue interactions with a Gaussian kernel, approximated efficiently via structured random Fourier features, and applies a low-rank factorized attention mechanism that admits pooling into a compact embedding per protein. Each protein is encoded once into an indexable embedding, allowing approximate nearest-neighbor search to replace exhaustive pairwise scoring, reducing proteome-wide retrieval from *months* to *minutes* on a single GPU. On the human proteome with the D-SCRIPT dataset, RaftPPI retrieves the top 20% candidate pairs ($\sim 200M$) in 6 GPU minutes, covering 75.1% of the true interacting pairs, compared to 4.9 GPU months for the best prior method (61.2%). Across seven benchmarks with sequence- and degree-controlled splits, RaftPPI achieves state-of-the-art PPI classification and retrieval performance, while enabling residue-aware, retrieval-friendly screening at proteome scale.

1 INTRODUCTION

Protein-protein interaction (PPI) is central to understanding cellular mechanisms and enabling applications in target discovery (Loscalzo, 2023), pathway reconstruction (Ritz et al., 2016), and functional annotation (Sharan et al., 2007). In practice, many discovery tasks require proteome-scale screening, scoring protein pairs within a species to surface plausible interactors (Humphreys et al., 2024; Zhang et al., 2024). However, proteome-scale PPI prediction remains time-consuming due to the quadratic number of candidate protein pairs. One high-accuracy route is to predict multimer structures with end-to-end structure predictors (Jumper et al., 2021; 2024; Evans et al., 2021). While accurate, these pipelines rely on MSAs/templates and require $\mathcal{O}(L^3)$ complexity to update pairwise representations of proteins with length L . This daunting cost makes per-complex structure prediction difficult to amortize across large candidate sets. An alternative frames PPI as binary classification from alignment-free PLM embeddings (Sledzieski et al., 2024; Ko et al., 2024; Liu et al., 2024). Although per-sequence encoding is $\mathcal{O}(L^2)$, these models must jointly encode each protein *pair* at inference; thus an exhaustive screen over the human proteome with $\sim 20,000$ proteins entails $\approx 2 \times 10^8$ candidate pairs, making large-scale screening computationally prohibitive. To illustrate, the state-of-the-art PPI classification model PLM-Interact (Liu et al., 2024) requires 148.47 A100 GPU-days (≈ 4.9 months) to screen the human proteome (see Table 3 and § 4.3).

In light of these limitations, we propose **R**esidue-interaction **A**pproximation with **F**ourier **F**eATures (RaftPPI), which models PPI by *approximating residue-level interactions while enabling scalable protein retrieval*. RaftPPI models residue–residue scores with a Gaussian kernel and aggregates them to a protein-level score (Fig. 1). The non-linear kernel is efficiently approximated via random Fourier features (Rahimi and Recht, 2007; Yu et al., 2016), and pooling uses a low-rank factorized attention that admits a linear-time approximation at inference. As a result, each protein is encoded once into a fixed-length representation amenable to approximate nearest-neighbor search, e.g., Hierarchical navigable small world (HNSW (Malkov and Yashunin, 2020)), to retrieve likely interactors—retaining

054 residue-level interactions while avoiding explicit per-pair computation. In practice, the dominant cost
055 is PLM encoding, giving overall $\mathcal{O}(NL^2)$ across a proteome; on a single A100, retrieving the top
056 20% of human-proteome pairs completes in minutes, achieving a 10^4 -fold speedup over prior art.
057

058 Besides model design, we also seek to mitigate challenges from the lack of reliable negative data
059 in PPI datasets. Experimentally confirmed non-interactions are rare, so negatives are typically
060 *constructed*, and their quality varies widely (Neumann et al., 2022; Zhao et al., 2022). Random or
061 compartment-based pairing often produces overly easy, biased examples that lead to overly optimistic
062 results, whereas co-localized, functionally related, or topology-aware sampling yields harder and
063 more informative ones (Ben-Hur and Noble, 2006; Park and Marcotte, 2011; 2012; Zhang et al., 2018).
064 These observations motivate our *adaptive negative weighting* loss, which applies self-adversarial
065 weights (Sun et al., 2019) based on model confidence so that harder negatives are assigned greater
066 weights, mitigating biases from easy constructed pairs.
067

068 **Contributions.** We introduce RaftPPI, a retrieval-friendly, residue-aware framework that
069 compresses each protein into an indexable embedding for efficient ANN search, reducing proteome-level
070 PPI screening from *GPU months* to *minutes*. With an adaptive negative-weighting loss that em-
071 phasizes hard negatives and mitigates the lack of reliable negative data, RaftPPI achieves strong
072 classification and retrieval performance under rigorous sequence- and degree-controlled benchmarks.
073

2 RELATED WORK

074 **Protein Language Models.** Transformer-based Protein Language Models (PLMs) pretrained on
075 large sequence corpora (e.g., ProtTrans (Elnaggar et al., 2021), ESM 1b (Rives et al., 2021), and ESM
076 2 (Lin et al., 2023)) learn residue-level embeddings that implicitly capture evolutionary and structural
077 priors. Generative PLMs such as ProGen and ProGen2 (Madani et al., 2020; Nijkamp et al., 2022)
078 use autoregressive modeling for controllable sequence design. Beyond sequence-only vocabularies,
079 Foldseek (van Kempen et al., 2024) introduces discrete 3D structure tokens that have been used to
080 augment PLMs with structure-aware vocabularies (SaProt (Su et al., 2023)) or to predict structure
081 tokens directly (ISM (Ouyang-Zhang et al., 2025)). These models provide transferable features that
082 support many modern PPI predictors, including our method.
083

084 **Protein–Protein Interaction Prediction.** An ideal way to assess PPIs is to predict the 3D structure
085 of protein complexes directly using end-to-end structure predictors such as AlphaFold2 (Jumper
086 et al., 2021), RoseTTAFold (Baek et al., 2021), AlphaFold-Multimer (Evans et al., 2021), and the
087 more recent AlphaFold3 (Jumper et al., 2024). These systems achieve remarkable accuracy but are
088 computationally intensive, often rely on multiple sequence alignments (MSAs) and/or structural
089 templates, and require explicit per-pair inference. Another line of work formulates PPI as a graph
090 machine learning problem (e.g., link prediction (Nasiri et al., 2021)) on residue- or protein-level
091 graphs. Examples include diffusion-state methods (Devkota et al., 2020) and GNN-based approaches
092 such as GNN-PPI (Lv et al., 2021), SGPPPI (Huang et al., 2023), PPI-GNN (Jha et al., 2022), and
093 HIGH-PPI (Gao et al., 2023). Although graph priors can be powerful, the performance of such models
094 depends on the availability and quality of the underlying network and can be vulnerable to degree
095 bias and data leakage (Bennett et al., 2024). These limitations prevent proteome-level screening. In
096 light of this, we focus on sequence-only methods, as they are alignment-free (no MSA needed) and
097 graph-free, while maintaining good performance.
098

099 Among sequence-only methods, early work such as SPRINT (Li and Ilie, 2017) computes pair-specific
100 similarities with spaced-seed k -mer hashing. Subsequent deep learning encoders include DeepFE-
101 PPI (Yao et al., 2019), the fully connected and LSTM models of Richoux et al. (Richoux et al., 2019),
102 and PIPR’s Siamese residual RCNN (Chen et al., 2019). Many later sequence models follow the
103 D-SCRIPT (Sledzieski et al., 2021) paradigm, computing residue–residue interaction scores and
104 aggregating them into a protein-level score; Topsy-Turvy (Singh et al., 2022) and TT3D (Sledzieski
105 et al., 2023) further extend this approach by incorporating graph priors (Devkota et al., 2020) and
106 structural embeddings (van Kempen et al., 2024). Recently, PLM-based approaches (Sledzieski
107 et al., 2024; Ko et al., 2024; Yang et al., 2024; Liu et al., 2024) leverage the strong performance
108 of pretrained PLMs (Lin et al., 2023; Elnaggar et al., 2021) to model interactions at residue-level
109 resolution. These approaches are typically accurate but *non-factorizable*: they jointly encode each
110 protein pair, which makes proteome-scale retrieval computationally prohibitive.
111

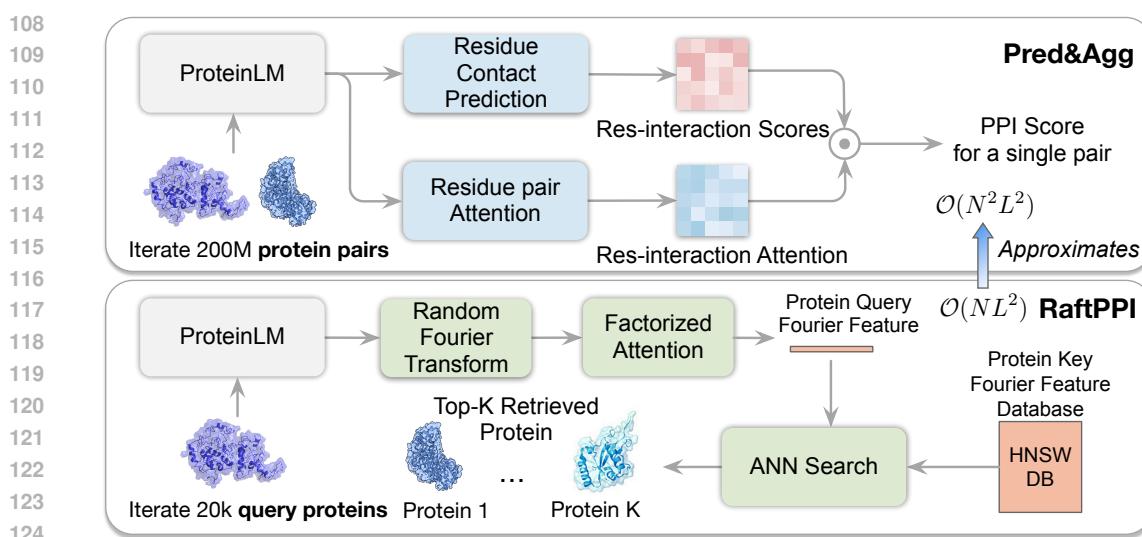


Figure 1: **Overview of RaftPPI.** RaftPPI approximates a standard PPI pipeline *Pred&Agg* (above) that *predicts* residue-level contact scores and *aggregates* them using attention to a final PPI score. The *Pred&Agg* pipeline costs $\mathcal{O}(N^2L^2)$ for proteome-wide retrieval. RaftPPI uses Random Fourier Features to approximate a Gaussian kernel and leverages separable attention. The pipeline is factorizable (below), enabling per-protein Fourier-feature embeddings and ultra-fast retrieval via approximate nearest neighbor search (e.g., HNSW) at proteome scale with $\mathcal{O}(NL^2)$ precomputation.

Proteome-level PPI Screening. Whole-proteome screening poses a computational challenge due to the quadratic number of protein pairs. Recent pipelines address this using multi-stage filters coupled with structure prediction. In RF2-style workflows (Humphreys et al., 2024; Zhang et al., 2024), GPU-accelerated coevolutionary analysis (DCA (Ekeberg et al., 2013)) first prunes hundreds of millions of candidates; top pairs are then rescored with a lightweight RoseTTAFold2-based contact predictor, and the highest-confidence subset is finally evaluated with full AlphaFold2. These efforts primarily focus on accelerating structure prediction; for example, RF2-Lite (Humphreys et al., 2024) streamlines refinement with a two-track network that is $\sim 20\times$ faster than AlphaFold2, yet still requires explicit per-pair inference after pre-screening.

Our Position. RaftPPI is a residue-aware yet retrieval-friendly framework. It produces indexable protein embeddings whose inner products approximate residue-level interaction scoring, enabling ANN-based proteome screening without explicit per-pair inference. Compared with sequence-only models, RaftPPI attains stronger PPI classification while scaling to whole-proteome retrieval via precomputed embeddings. Compared with structure-prediction methods, it offers orders-of-magnitude faster screening by narrowing candidates first, after which shortlisted pairs can be rescored with accurate complex structure predictors.

3 METHODOLOGY

Figure 1 summarizes the RaftPPI framework. We first revisit a standard two-step pipeline for sequence-based PPI prediction (§3.1), then show how RaftPPI approximates residue-level modeling while *enabling scalable protein retrieval* by coupling a Gaussian-kernel interaction with low-rank (separable) attention and Structured Orthogonal Random Features (SORF) (§3.2). We optimize the model with an *adaptive negative reweighting* objective (§3.4) and enable proteome-scale search via vector indices over precomputed embeddings (§3.3).

Throughout, we consider a candidate protein pair (A, B) with residues indexed $1, \dots, L_A$ and $1, \dots, L_B$, respectively. Bold lowercase symbols (e.g., \mathbf{z}) denote vectors, bold uppercase symbols (e.g., \mathbf{W}) denote matrices, $\sigma(\cdot)$ is the logistic sigmoid, and $\|\cdot\|$ is the Euclidean norm.

162 3.1 A PIPELINE FOR TWO-STEP PPI PREDICTION
 163

164 Since protein interactions occur at the residue level, a standard approach is a two-step
 165 pipeline (Sledzieski et al., 2021; Singh et al., 2022; Sledzieski et al., 2023) as illustrated in the
 166 upper panel of Figure 1: *Predict* residue-pair contact scores, then *aggregate* them into a protein-pair
 167 score. We refer to this two-step pipeline as *Pred&Agg* and define it as follows:

168 **Residue-level contact matrix prediction.** Given residue embeddings $\mathbf{z}_{A,i}, \mathbf{z}_{B,j} \in \mathbb{R}^d$ from a
 169 pretrained protein language model (PLM) (Lin et al., 2023), we compute *contact scores*
 170

$$c_{i,j} = f(\mathbf{z}_{A,i}, \mathbf{z}_{B,j}) \in \mathbb{R}, \quad (1)$$

171 where $f(\cdot, \cdot)$ is typically an MLP or an inner product, producing a contact matrix $\mathbf{C} \in \mathbb{R}^{L_A \times L_B}$.
 172

173 **Protein-level interaction aggregation.** This residue-level score matrix is pooled into a scalar logit:
 174

$$\ell(A, B) = g(\mathbf{C}) \in \mathbb{R}, \quad (2)$$

175 where $g(\cdot)$ denotes a pooling operation (e.g., max/conv/2D attention).
 176

177 There are many instances of this *Pred&Agg* pipeline. For example, D-SCRIPT (Sledzieski et al.,
 178 2021) uses Bepler & Berger embeddings (Bepler and Berger, 2019) with element-wise transforms to
 179 predict \mathbf{C} , then pools to a pair score. TT3D (Sledzieski et al., 2023) and Topsy-Turvy (Singh et al.,
 180 2022) incorporate graph-based supervision (Devkota et al., 2020) and 3Di structure encodings (van
 181 Kempen et al., 2024). While effective, these methods are *non-factorizable*: they rely on dense
 182 nonlinear residue-pair computations, yielding $\mathcal{O}(N^2 L^2)$ complexity for N proteins of length L ,
 183 which is prohibitive for proteome-scale screening. Next we show how RaftPPI approximates this
 184 pipeline as a dot product between *single-protein* embeddings.
 185

186 3.2 KERNELIZED RESIDUE INTERACTIONS WITH LOW-RANK ATTENTION
 187

188 As noted above, the nonlinearity in *Pred&Agg* yields strong accuracy but hinders retrieval because it
 189 requires explicit *pairwise* inputs. Our idea is to approximate these steps with *factorizable* ones where
 190 protein interaction scores are computed via dot-product between protein embeddings.
 191

192 **Predict (kernelized residue-residue scoring).** We model residue-residue interactions with a
 193 Gaussian kernel
 194

$$k_{\hat{\sigma}}(\mathbf{z}_{A,i}, \mathbf{z}_{B,j}) = \exp\left(-\frac{\|\mathbf{z}_{A,i} - \mathbf{z}_{B,j}\|^2}{2\hat{\sigma}^2}\right), \quad (3)$$

195 where $\hat{\sigma}^2$ is the kernel bandwidth that controls how quickly the kernel decays with residue-embedding
 196 distance. Smaller $\hat{\sigma}$ emphasizes very local residue matches, while larger values blend information
 197 across a wider neighborhood (see Appendix B.2 for the quantitative sweep). The kernel corresponds
 198 to an inner product in an infinite-dimensional Reproducing kernel Hilbert space (RKHS), enabling
 199 rich nonlinear scoring.
 200

201 **Aggregate (attention-weighted pooling).** We aggregate the residue-level kernel scores into a
 202 protein-level logit via a weighted sum:
 203

$$\ell(A, B) = \sum_{i=1}^{L_A} \sum_{j=1}^{L_B} s_{i,j} k_{\hat{\sigma}}(\mathbf{z}_{A,i}, \mathbf{z}_{B,j}), \quad (4)$$

204 where $s_{i,j}$ is the *attention weight*, determining the set of residue pairs of interest.
 205

206 **Factorizable low-rank attention.** Low-rank (separable) attention is a standard strategy for reducing
 207 quadratic cost (e.g., Wang et al., 2020; Choromanski et al., 2021). We approximate the residue-pair
 208 attention with a rank- r separable form. Denote the residue embedding matrix as $\mathbf{Z}_A \in \mathbb{R}^{L_A \times d}$ and
 209 $\mathbf{Z}_B \in \mathbb{R}^{L_B \times d}$; for each $t \in \{1, \dots, r\}$ a lightweight per-residue scorer $h_{\theta}^{(t)} : \mathbb{R}^d \rightarrow \mathbb{R}$ is applied *row-wise*
 210 to produce unnormalized importances, which we normalize with a softmax to obtain per-chain
 211 weights:
 212

$$\mathbf{w}_A^{(t)} = \text{softmax}(h_{\theta}^{(t)}(\mathbf{Z}_A)), \quad \mathbf{w}_B^{(t)} = \text{softmax}(h_{\theta}^{(t)}(\mathbf{Z}_B)). \quad (5)$$

216 Collecting columns gives $\mathbf{W}_A = [\mathbf{w}_A^{(1)} \cdots \mathbf{w}_A^{(r)}] \in \mathbb{R}_{\geq 0}^{L_A \times r}$ and $\mathbf{W}_B = [\mathbf{w}_B^{(1)} \cdots \mathbf{w}_B^{(r)}] \in \mathbb{R}_{\geq 0}^{L_B \times r}$,
 217 with nonnegative entries and each column summing to 1. We then set
 218

$$219 \quad 220 \quad 221 \quad s_{i,j} = \sum_{t=1}^r w_{A,i}^{(t)} w_{B,j}^{(t)} \iff \mathbf{S} = \mathbf{W}_A \mathbf{W}_B^\top, \quad (6)$$

222 yielding a *factorizable* attention surface. In practice we instantiate $r=1$ (so $s_{i,j} = w_{A,i} w_{B,j}$), which
 223 achieves strong performance with minimal parameter cost.
 224

225 3.3 FAST INFERENCE WITH RANDOM FOURIER FEATURES AND VECTOR SEARCH
 226

227 **Kernel approximation with Random Fourier Features.** We approximate $k_{\hat{\sigma}}$ using Random
 228 Fourier Features (RFF) (Rahimi and Recht, 2007). Given d' target frequencies, let $\mathbf{W} \in \mathbb{R}^{d' \times d}$ and
 229 define
 230

$$231 \quad \psi(\mathbf{z}) = \frac{1}{\sqrt{d'}} [\cos(\mathbf{W}\mathbf{z}); \sin(\mathbf{W}\mathbf{z})] \in \mathbb{R}^{2d'}, \quad (7)$$

232 so that we have a factorized form to approximate the kernel as:
 233

$$234 \quad k_{\hat{\sigma}}(\mathbf{x}, \mathbf{y}) \approx \psi(\mathbf{x})^\top \psi(\mathbf{y}). \quad (8)$$

236 To construct \mathbf{W} efficiently, we use Structured Orthogonal Random Features (SORF) (Yu et al., 2016).
 237 A SORF block of size $d \times d$ is
 238

$$239 \quad 240 \quad \tilde{\mathbf{W}} = \frac{\sqrt{d}}{\hat{\sigma}} \mathbf{H} \mathbf{D}_1 \mathbf{H} \mathbf{D}_2 \mathbf{H} \mathbf{D}_3, \quad (9)$$

241 where \mathbf{H} is the normalized Walsh–Hadamard matrix and \mathbf{D}_i are diagonal Rademacher sign-flip
 242 matrices. The rows of $\tilde{\mathbf{W}}$ satisfy $\mathbb{E}[\mathbf{w}\mathbf{w}^\top] = \hat{\sigma}^{-2}\mathbf{I}$, matching the Gaussian second moment and
 243 providing a low-variance RFF approximation of the Gaussian kernel. To obtain d' frequencies, we
 244 generate independent SORF blocks and concatenate their first d' rows to form $\mathbf{W} \in \mathbb{R}^{d' \times d}$.
 245

246 **Fast retrieval via factorizable scoring.** Using Eq. 8 and the $r=1$ attention, we obtain
 247

$$248 \quad 249 \quad \ell(A, B) = \sum_{i=1}^{L_A} \sum_{j=1}^{L_B} s_{i,j} k_{\hat{\sigma}}(\mathbf{z}_{A,i}, \mathbf{z}_{B,j}) \\ 250 \quad 251 \quad \approx \sum_{i=1}^{L_A} \sum_{j=1}^{L_B} w_{A,i} w_{B,j} \psi(\mathbf{z}_{A,i})^\top \psi(\mathbf{z}_{B,j}) \\ 252 \quad 253 \quad = \left\langle \sum_{i=1}^{L_A} w_{A,i} \psi(\mathbf{z}_{A,i}), \sum_{j=1}^{L_B} w_{B,j} \psi(\mathbf{z}_{B,j}) \right\rangle. \quad (10)$$

254 Define the per-protein embeddings as
 255

$$256 \quad 257 \quad \hat{\mathbf{h}}_A = \sum_{i=1}^{L_A} w_{A,i} \psi(\mathbf{z}_{A,i}), \quad \hat{\mathbf{h}}_B = \sum_{j=1}^{L_B} w_{B,j} \psi(\mathbf{z}_{B,j}), \quad (11)$$

258 which yields the factorizable approximation that computes the logit $\ell(A, B)$ in a dot-product form:
 259

$$260 \quad 261 \quad \ell(A, B) := \langle \hat{\mathbf{h}}_A, \hat{\mathbf{h}}_B \rangle. \quad (12)$$

262 We fix the same SORF transform \mathbf{W} at training and inference for alignment, and store $\hat{\mathbf{h}}$ for
 263 approximate k -nearest neighbor search with HNSW (Malkov and Yashunin, 2020) (inner-product
 264 retrieval in the transformed space).
 265

270 3.4 TRAINING OBJECTIVE
 271

272 As noted in the Introduction, experimentally verified non-interactions are rare, so negatives are often
 273 *constructed* and vary widely in informativeness (Neumann et al., 2022; Zhao et al., 2022). Heuristic
 274 constructions (e.g., enforcing different cellular compartments) often produce overly easy, biased
 275 negatives, leading to overly optimistic results. Meanwhile, co-localized, functionally related, or
 276 topology-aware choices tend to be harder and more informative (Ben-Hur and Noble, 2006; Park and
 277 Marcotte, 2011; 2012; Zhang et al., 2018). Motivated by this, we adopt *adaptive negative weighting*,
 278 where the relative contribution of each negative is automatically determined by the model’s own
 279 confidence, allowing harder negatives to exert greater influence.
 280

281 Let $\ell(A, B) = \langle \hat{h}_A, \hat{h}_B \rangle$ denote the logit for a pair (A, B) . Over a minibatch, let \mathcal{P} and \mathcal{N} be
 282 the index sets of positive and negative pairs, respectively. Inspired by self-adversarial training in
 283 knowledge-graph reasoning (Sun et al., 2019), we define temperature-scaled weights over negatives
 284 285 286

$$p_i = \frac{\exp(\tau \ell_i)}{\sum_{j \in \mathcal{N}} \exp(\tau \ell_j)}, \quad i \in \mathcal{N}, \quad \tau \geq 0, \quad (13)$$

287 and stop gradients through p_i in practice. Intuitively, p_i reflects the model’s (normalized) confidence
 288 that a negative pair is actually positive, i.e. higher p_i thus identifies *harder* negatives. We then
 289 combine a standard positive term with an adaptively reweighted negative term:
 290 291 292 293

$$\mathcal{L} = \frac{1}{2} \left[-\frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \log \sigma(\ell_p) - \sum_{i \in \mathcal{N}} p_i \log \sigma(-\ell_i) \right]. \quad (14)$$

294 When $\tau = 0$, Eq. 14 reduces to balanced BCE; as $\tau \rightarrow \infty$, it focuses on the hardest negative. In
 295 practice, $\tau = 4$ offers a good trade-off, as shown in Appendix B.4.
 296 297

3.5 COMPUTATIONAL COMPLEXITY

298 Consider a proteome with N proteins of average length L . PLM embedding dominates at $\mathcal{O}(NL^2)$.
 299 Our mapping/aggregation adds $\mathcal{O}(L(d \log d + d'))$ per protein (vs. $\mathcal{O}(Ldd')$ for dense RFF), which
 300 is linear in L and minor in practice. After caching \hat{h} , HNSW indexing is $\mathcal{O}(N \log N)$, queries grow
 301 polylogarithmically in N , and memory is $\mathcal{O}(N)$. Hence the end-to-end complexity is $\mathcal{O}(NL^2)$, with
 302 indexing/search negligible; empirically, top-20% retrieval completes in ~ 6 minutes for $N \approx 10^4$ (see
 303 §4.3, Table 3).
 304

305 4 EXPERIMENTS

306 4.1 EXPERIMENTAL SETUP

307 **Datasets.** As discussed in (Bennett et al., 2024), naïve PPI splits and datasets are prone to *data*
 308 *leakage* and confounding from sequence similarity and node-degree biases, which can yield over-
 309 optimistic performance and poor transfer. We therefore adopt the 7 processed datasets/splits in
 310 (Bennett et al., 2024) that (i) remove near-duplicate or homologous sequences across train/validation
 311 and test sets, minimizing the impact of raw sequence similarity, and (ii) control protein occurrence
 312 frequency so that hub proteins do not trivially inflate accuracy via degree priors. This setting makes
 313 PPI prediction more realistic and challenging. The datasets span two species: yeast (Guo, Du)
 314 and human (Huang, D-SCRIPT, Pan, Richoux, Gold). Their statistics are shown in Table 1. In
 315 Appendix B.6 we further evaluate RaftPPI and baselines on the larger-scale PiNUI-human and
 316 PiNUI-yeast datasets (Dubourg-Feronneau et al., 2023).
 317 318

319 **Baselines.** We evaluate 10 PPI classifiers spanning classical sequence models (D-SCRIPT (Sledzieski
 320 et al., 2021), DeepFE (Yao et al., 2019), Richoux-FC/LSTM (Richoux et al., 2019),
 321 Topsy-Turvy (Singh et al., 2022), SPRINT (Li and Ilie, 2017)) and PLM-based methods (ESM2-
 322 MLP (Sledzieski et al., 2024), TUNA (Ko et al., 2024), PLM-Interact (Liu et al., 2024)). For all
 323 PLM baselines and for RaftPPI, we use ESM2-8M as the backbone; we also include an unsupervised
 324 ESM2-NoFT baseline (dot product over [CLS] embeddings). Prior work (Fournier et al., 2024)

324 Table 1: Dataset statistics of seven PPI datasets spanning two species (human and yeast).
325

326 Dataset	327 Species	328 Train			329 Val			330 Test			331 Total
		332 Pos	333 Neg	334 Total	335 Pos	336 Neg	337 Total	338 Pos	339 Neg	340 Total	
GUO	Yeast	2,088	2,088	4,176	232	232	464	861	861	1,722	6,362
DU	Yeast	6,536	6,486	13,022	698	748	1,446	2,421	2,421	4,842	19,310
HUANG	Human	1,094	1,075	2,169	111	130	241	713	713	1,426	3,836
D-SCRIPT	Human	12,218	122,165	134,383	1,356	13,575	14,931	8,467	84,670	93,137	242,451
PAN	Human	14,069	14,022	28,091	1,537	1,584	3,121	4,575	4,575	9,150	40,362
RICOUX	Human	17,873	17,798	35,671	1,944	2,019	3,963	5,167	5,167	10,334	49,968
GOLD	Human	81,596	81,596	163,192	29,630	29,630	59,260	26,024	26,024	52,048	274,500

334
335 and our analysis at Appendix B.1 show that scaling ESM2 (35M/150M/650M) does not consistently
336 improve these tasks; moreover, proteome-scale retrieval with per-pair PLM inference is already
337 expensive at the 8M scale, consuming GPU-months computation time (see Table 3). In this case, we
338 use ESM2-8M for the best performance/throughput trade-off in our evaluations.
339

340 4.2 PROTEIN-PROTEIN INTERACTION CLASSIFICATION

341
342 Table 2: Test AUROC Performance (%) of competing methods on the seven PPI datasets. Higher is
343 better; the rightmost column shows the mean across collections.
344

345 Method	346 D-SCRIPT	347 Huang	348 Pan	349 Richoux	350 Gold	351 Guo	352 Du	353 Average
D-SCRIPT (Sledzieski et al., 2021)	81.99	65.72	68.44	59.15	49.91	47.14	50.92	60.47
DeepFE (Yao et al., 2019)	61.66	56.93	53.70	57.43	53.21	58.21	56.05	56.74
Richoux-FC (Richoux et al., 2019)	47.53	59.06	52.39	59.72	53.53	55.81	59.89	55.42
Richoux-LSTM (Richoux et al., 2019)	50.67	56.56	47.81	50.37	49.16	51.55	56.37	51.78
SPRINT (Li and Ilie, 2017)	64.62	46.71	43.39	55.71	51.50	48.80	51.80	51.79
Topsy-Turvy (Singh et al., 2022)	75.38	55.52	65.80	48.67	58.74	43.65	61.60	58.48
ESM2-NoFT (Lin et al., 2023)	75.01	58.63	59.51	63.26	57.85	62.87	57.36	62.07
ESM2-MLP (Sledzieski et al., 2024)	82.83	73.34	72.89	<u>77.48</u>	56.35	<u>83.54</u>	73.34	74.25
TUNA (Ko et al., 2024)	83.38	66.66	77.06	76.73	52.55	69.81	69.37	70.79
PLM-Interact (Liu et al., 2024)	84.77	69.69	73.03	78.66	65.00	79.60	75.20	<u>75.14</u>
RaftPPI	82.06	72.20	74.21	69.88	68.69	84.93	<u>75.06</u>	75.29

355
356 The PPI classification results across the seven datasets are reported in Table 2. We observe that
357 methods without pretrained PLMs—D-SCRIPT, DeepFE, Richoux-FC/LSTM, Topsy-Turvy, and
358 SPRINT—perform substantially worse than ESM2-based models, all falling below even the unsupervised
359 ESM2-NoFT baseline. This is because they rely largely on sequence similarity and node-degree
360 information, which fails under controlled splits (Bennett et al., 2024), whereas ESM-based models
361 benefit from large-scale pretraining, where structural properties such as secondary structure can be
362 inferred from embeddings (Rives et al., 2021).

363 For ESM2-based baselines, all models finetuned for PPI outperform ESM2-NoFT. PLM-Interact
364 achieves the strongest results, likely due to its early-fusion design, which allows deeper layers to
365 jointly model cross-protein interactions. In contrast, TUNA and ESM2-MLP fuse only at intermediate
366 or final layers, limiting their ability to capture joint interactions. This echoes the early-fusion
367 advantage reported in other domains (Snoek et al., 2005). Meanwhile, RaftPPI attains the best average
368 performance, attributable to residue-level interaction modeling and adaptive negative weighting,
369 which we further discuss in §4.4.

370 4.3 PROTEOME INTERACTION RETRIEVAL

371
372 Compared with binary PPI classification, PPI retrieval more closely reflects real-world applications:
373 interactions in proteomes are *sparse* and highly *imbalanced* (negatives dominate), and one must
374 screen an entire candidate proteome to identify true interactors for a query protein. For computational
375 tractability, we sample 100 query proteins per dataset and use the models trained in Section 4.2 to
376 retrieve positives on the test split. We compare RaftPPI to PLM (ESM2) baselines (ESM2-NoFT,
377 TUNA, PLM-Interact, ESM2-MLP) and to RaftPPI-P, a special version that removes the residue-level
378 design of RaftPPI, which predicts PPI using the dot-product of [CLS] token embeddings.

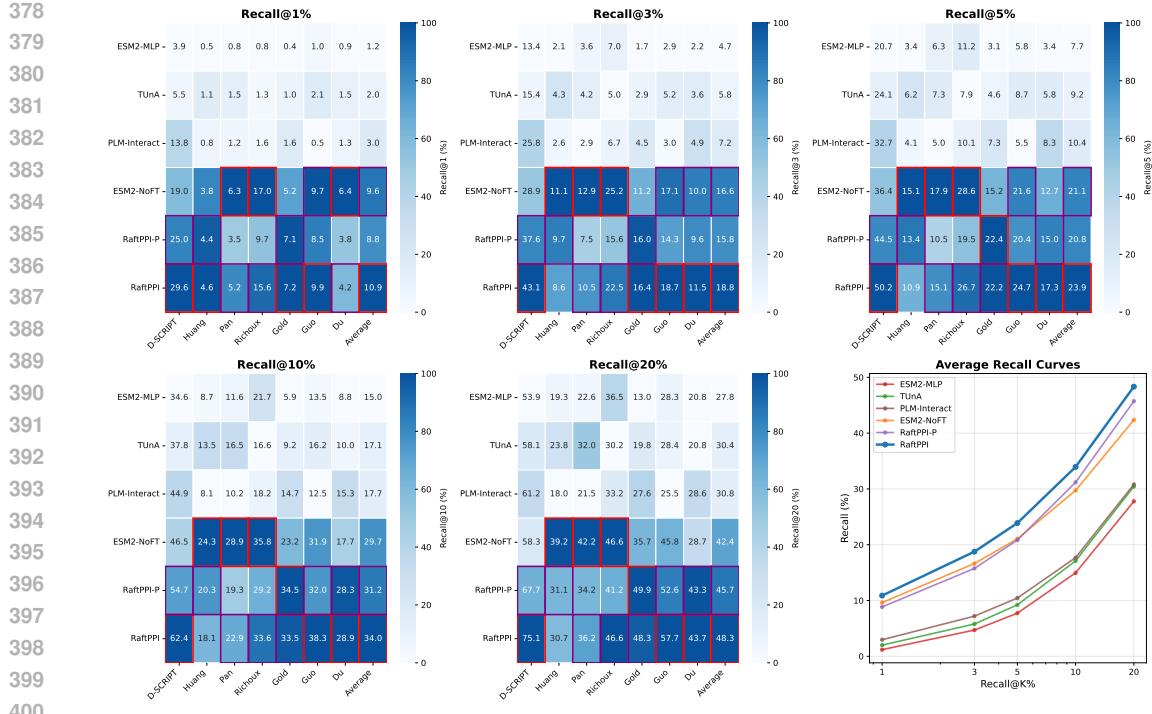


Figure 2: **Proteome retrieval with residue-level fidelity and scalable retrieval.** Heatmaps report Recall@ $K\%$ for $K \in \{1, 3, 5, 10, 20\}$ across methods and datasets, with per-dataset *normalized* color scales (best=100%, worst=0%). Red rectangles mark the best method; purple rectangles mark the second best. The sixth panel shows average recall curves across datasets.

Type	Model	Encoding (s)	Recall@1/3/5/10/20% (s)	AUROC (%)	Recall@20% est. / full (%)
Unfactorizable	ESM2-MLP	NA	1766576	74.25	27.77 / NA
	TUnA	NA	3833646	70.79	30.44 / NA
	PLM-Interact	NA	12827660	75.14	30.81 / NA
Factorizable	ESM2-NoFT	105	54 / 74 / 99 / 170 / 259	62.07	42.37 / 41.72
	RaftPPI-P	54	40 / 48 / 75 / 118 / 187	71.90	45.73 / 43.83
	RaftPPI	102	49 / 70 / 98 / 157 / 241	75.29	48.33 / 47.91

Table 3: Human proteome retrieval efficiency (Recall@K% end-to-end time) and average classification/retrieval performance. Factorizable methods that reuse single-protein embeddings can build an index once and then retrieve via HNSW (Encoding time shows the one-time cost). Due to intractable computing time for unfactorizable methods, we estimate the recall performance (denoted as est.) and inference time using 100 query proteins. Times are estimated total seconds for the full set of queries on proteome; measured on an A100 GPU.

Retrieval performance. As shown in Figure 2, non-factorizable methods—i.e., models that jointly encode protein pairs such as ESM2-MLP, TUnA, and PLM-Interact—achieve strong binary PPI classification but do not outperform the simple ESM2-NoFT baseline in retrieval. We hypothesize that this gap arises because the data splits are explicitly designed to minimize sequence similarity (Bennett et al., 2024), limiting the models’ ability to exploit correlations between sequence similarity and structural interaction. In contrast, factorizable approaches naturally capture sequence similarity through embedding dot products. Among these, RaftPPI consistently ranks first or second across datasets and recall thresholds, and its improvements over RaftPPI-P highlight the benefit of explicitly modeling residue-level interactions.

Retrieval efficiency. Table 3 reports runtime comparisons. Non-factorizable methods—ESM2-MLP, TUnA, and PLM-Interact—are prohibitively slow because they require per-pair inference. The strongest of these, PLM-Interact, performs well on both classification and retrieval, yet demands 148.47 A100 GPU-days (≈ 4.9 months) to screen the human proteome, underscoring the impracticality

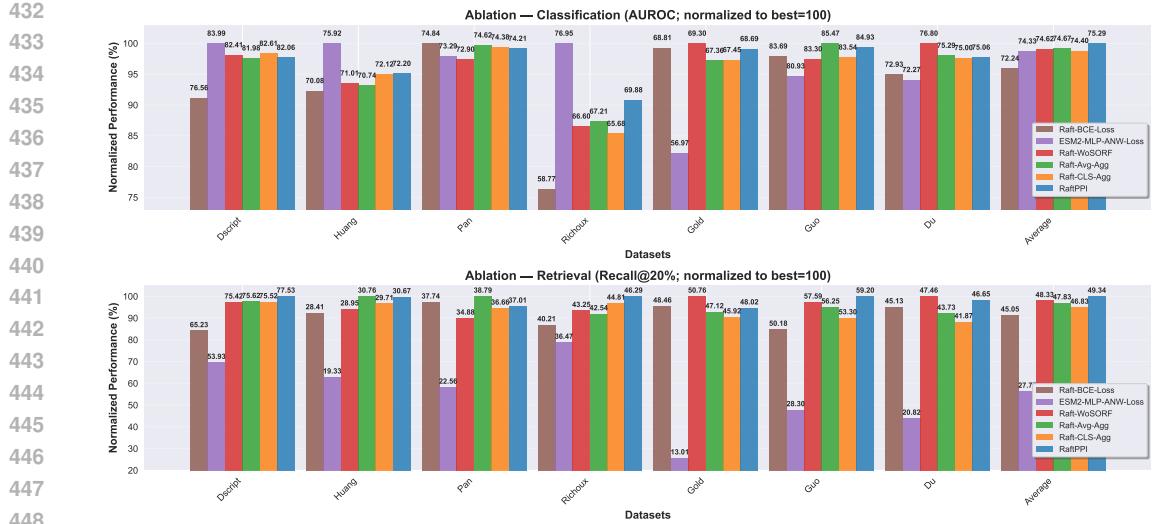


Figure 3: **Ablation Study.** Scores are normalized to the best method per dataset (100% = peak). *Top*: classification AUROC. *Bottom*: retrieval Recall@20%. The full model (RaftPPI) attains the best or second-best performance in every case; removing any single design choice causes a clear drop.

of exhaustive search. By contrast, RaftPPI compresses each protein once and performs approximate nearest-neighbor search, reducing proteome retrieval from *GPU months* to *minutes*. Overall, RaftPPI delivers the best balance of retrieval accuracy, classification performance, and efficiency.

4.4 ABLATION STUDY

We focus on four research questions and validate our core designs. **RQ1 (residue-level modeling):** Does explicit residue-level modeling help? **RQ2 (kernel):** Does replacing a linear dot product with a Gaussian kernel (approximated via SORF) improve performance? **RQ3 (aggregation):** How should residue scores be aggregated most effectively? **RQ4 (adaptive negative weighting):** Is adaptive negative weighting effective in helping the model assign greater weight to harder negatives?

We perform ablation studies on these research questions and show the results in Figure 3. **RQ1 (residue-level modeling):** The coarse ESM2-MLP baseline encodes proteins and predicts interactions from concatenated embeddings. Even when augmented with our adaptive loss (ESM2-MLP-ANW-Loss), it competes on small classification splits but collapses on retrieval (e.g., -46% Recall@20% on Gold), confirming the necessity of residue-level reasoning for large-candidate screening. **RQ2 (kernel):** Replacing the Gaussian kernel with a linear dot product (Raft-WoSORF) consistently reduces AUROC and Recall@20%, showing the benefit of kernelized interactions. We additionally discuss the impact of Gaussian bandwidth $\hat{\sigma}$ in Appendix B.2. **RQ3 (aggregation):** Averaging (Raft-Avg-Agg) or using a [CLS] score (Raft-CLS-Agg) are slightly weaker than attention, indicating that attention helps identify PPIs. **RQ4 (adaptive negative weighting):** Switching to uniform BCE (Raft-BCE) degrades AUROC and Recall@20%, especially on the D-SCRIPT dataset where negatives outnumber positives by roughly 10 \times , highlighting the value of prioritizing hard negatives (we provide a detailed ablation study of the temperature τ in Appendix B.4). Collectively, these ablations validate each design choice in RaftPPI, demonstrating the effectiveness of kernelized residue interactions, SORF-based kernels, attention-based aggregation, and adaptive negative weighting.

5 CONCLUSION

Conclusion. We introduced RaftPPI, a residue-level framework for scalable proteome-wide PPI retrieval. By combining a kernelized interaction module with low-rank attention aggregation, RaftPPI approximates residue-level interactions in a factorizable form, producing compact indexable protein embeddings that support efficient retrieval. In addition, we incorporate adaptive negative weighting, which prioritizes harder negatives during training and further strengthens model performance. RaftPPI

486 achieves state-of-the-art performance on both PPI classification and retrieval, while enabling residue-
487 aware and retrieval-friendly screening at proteome scale.
488

489 **Limitation.** Although RaftPPI achieves strong retrieval efficiency, the kernel approximation and
490 rank- r attention introduce inductive biases that simplify residue–residue interactions into a low-
491 rank form, which may under-represent subtle allosteric effects or conformational rearrangements
492 at complex interfaces. Moreover, RaftPPI is trained as a sequence-based PPI classifier on pairwise
493 labels without complex-level structural supervision, so it does not directly observe ground truth
494 residue contact patterns and may inherit dataset biases in assay type, species coverage, and interaction
495 density.

496 **Future work.** An important next step is to develop *structure-aware pretraining* that incorporates
497 complex-level geometric signals (e.g., residue contact maps, interface distances, or docking poses),
498 allowing the kernel and attention to learn physically grounded interaction patterns while preserving a
499 factorizable retrieval head. Beyond supervision, integrating *structure-backed retrieval*, where coarse
500 vector search proposes candidates that are subsequently refined or rescored by structure prediction
501 models such as AlphaFold3, could couple RaftPPI-style screening with more accurate yet expensive
502 structural modeling. Finally, extending our framework to capture condition- or state-specific PPIs
503 (e.g., tissue, perturbation, or disease context) and to operate over even larger cross-species proteomes
504 with dynamic, updatable indices are promising directions toward truly comprehensive, context-aware
505 proteome-wide PPI retrieval.

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541

542 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
543 Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. David Schaeffer, Claudia Millán, Hahnbeom
544 Park, Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose Henrique Pereira, Andrew V.
545 Rodrigues, Albertha A. van Dijk, Anna C. Ebrecht, Daren J. Opperman, Thomas Sagmeister,
546 Christoph Buhlheller, Tea Pavkov-Keller, Manoj K Rathinaswamy, Prajwal Dalwadi, Colin K. Yip,
547 John E. Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David
548 Baker. Accurate prediction of protein structures and interactions using a three-track neural network.
549 *Science*, 373(6557):871–876, 2021. doi: 10.1126/science.abj8754.

550 Asa Ben-Hur and William Stafford Noble. Choosing negative examples for the prediction of protein–
551 protein interactions. *BMC Bioinform.*, 7(S-1), 2006. doi: 10.1186/1471-2105-7-S1-S2. URL
552 <https://doi.org/10.1186/1471-2105-7-S1-S2>.

553 Tristan Bepler and Bonnie Berger. Learning protein sequence embeddings using information from
554 structure. In *Proceedings of the International Conference on Learning Representations (ICLR)*
555 2019, 2019.

556 Judith Bennett, David B Blumenthal, and Markus List. Cracking the black box of deep sequence-based
557 protein–protein interaction prediction. *Briefings in Bioinformatics*, 25(2):bbae076, 03 2024. ISSN
558 1477-4054. doi: 10.1093/bib/bbae076. URL <https://doi.org/10.1093/bib/bbae076>.

559 Muhaoy Chen, Chelsea J.-T. Ju, Guangyu Zhou, Xuelu Chen, Tianran Zhang, Kai-Wei Chang, Carlo
560 Zaniolo, and Wei Wang. Multifaceted protein–protein interaction prediction based on Siamese
561 residual RCNN. *Bioinformatics*, 35(14):i305–i314, July 2019. ISSN 1367-4803. doi: 10.1093/
562 bioinformatics/btz328.

563 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane,
564 Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
565 jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In *9th*
566 *International Conference on Learning Representations, ICLR 2021*. OpenReview.net, 2021. URL
567 <https://openreview.net/forum?id=Ua6zuk0WRH>.

568 Kapil Devkota, James M. Murphy, and Lenore J. Cowen. GLIDE: Combining local methods and
569 diffusion state embeddings to predict missing interactions in biological networks. *Bioinformatics*,
570 36:i464–i473, July 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btaa459.

571 Geoffroy Dubourg-Felonneau, Daniel Mitiku Wesego, Eyal Akiva, and Ranjani Varadan. PiNUI:
572 A dataset of protein–protein interactions for machine learning. In *NeurIPS 2023 Workshop on*
573 *New Frontiers of AI for Drug Discovery and Development*, 2023. doi: 10.1101/2023.12.12.571298.
574 bioRxiv preprint 10.1101/2023.12.12.571298.

575 Magnus Ekeberg, Cecilia Lökvist, Yueheng Lan, Martin Weigt, and Erik Aurell. Improved contact
576 prediction in proteins: Using pseudolikelihoods to infer Potts models. *Physical Review E*, 87(1):
577 012707, January 2013. ISSN 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.87.012707.

578 Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang, Llion Jones, Tom
579 Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
580 Rost. Protrans: Towards cracking the language of life’s code through self-supervised deep
581 learning and high performance computing. *IEEE Transactions on Pattern Analysis and Machine*
582 *Intelligence*, 2021.

583 Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green,
584 Bernardino Romera-Paredes, Pushmeet Kohli, John Jumper, Demis Hassabis, Augustin Žídek,
585 Russell Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Bodenstein, Michal
586 Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tunyasuvunakool, Rishabh
587 Jain, and Ellen Clancy. Protein complex prediction with alphafold-multimer. *bioRxiv*, page
588 2021.10.04.463034, 2021. doi: 10.1101/2021.10.04.463034.

589 Quentin Fournier, Robert M. Vernon, Almer van der Sloot, Benjamin Schulz, Sarath Chandar, and
590 Christopher James Langmead. Protein Language Models: Is Scaling Necessary?, September 2024.
591 URL <https://www.biorxiv.org/content/10.1101/2024.09.23.614603v1>.

594 Ziqi Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Lanqing Li, Peilin Zhao, Huanming Yang,
595 Yong Huang, and Jia Li. Hierarchical graph learning for protein–protein interaction. *Nature Com-*
596 *munications*, 14(1):1093, February 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-36736-1.
597 URL <https://doi.org/10.1038/s41467-023-36736-1>.

598 Yuxin Huang, Stefan Wuchty, Yuedong Zhou, and Zemin Zhang. Sgpii: structure-aware prediction
599 of protein–protein interactions in rigorous conditions with graph convolutional network. *Briefings*
600 *in Bioinformatics*, 24:bbad020, 2023. doi: 10.1093/bib/bbad020.

602 Ian R. Humphreys, Jing Zhang, Minkyung Baek, Yaxi Wang, Aditya Krishnakumar, Jimin Pei, Ivan
603 Anishchenko, Catherine A. Tower, Blake A. Jackson, Thulasi Warrier, Deborah T. Hung, S. Brook
604 Peterson, Joseph D. Mougous, Qian Cong, and David Baker. Protein interactions in human
605 pathogens revealed through deep learning. *Nature Microbiology*, 9(10):2642–2652, September
606 2024. ISSN 2058-5276. doi: 10.1038/s41564-024-01791-x. URL <https://www.nature.com/articles/s41564-024-01791-x>.

608 Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein–protein interaction
609 using graph neural networks. *Scientific Reports*, 12(1):8360, May 2022. ISSN 2045-
610 2322. doi: 10.1038/s41598-022-12201-9. URL <https://www.nature.com/articles/s41598-022-12201-9>. Publisher: Nature Publishing Group.

612 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
613 Kathryn Tunyasuvunakool, Russell Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
614 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
615 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
616 Ellen Clancy, Michal Zielinski, Martin Steinegger, Marta Pacholska, Tamas Berghammer, Sebastian
617 Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli,
618 and Demis Hassabis. Highly accurate protein structure prediction with alphafold. *Nature*, 596
619 (7873):583–589, 2021. doi: 10.1038/s41586-021-03819-2.

620 John Jumper, Richard Evans, Alexander Pritzel, Demis Hassabis, et al. Accurate structure prediction
621 of biomolecular interactions with alphafold 3. *Nature*, 2024. doi: 10.1038/s41586-024-07487-w.

623 Young Su Ko, Jonathan Parkinson, Cong Liu, and Wei Wang. TUmA: an uncertainty-aware transformer
624 model for sequence-based protein–protein interaction prediction. *Briefings in Bioinformatics*, 25
625 (5):bbae359, September 2024. ISSN 1477-4054. doi: 10.1093/bib/bbae359. URL <https://doi.org/10.1093/bib/bbae359>.

627 Yiwei Li and Lucian Ilie. SPRINT: Ultrafast protein-protein interaction prediction of the entire human
628 interactome, May 2017. URL <http://arxiv.org/abs/1705.06848>. arXiv:1705.06848
629 [q-bio].

631 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
632 detection. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2017.

633 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
634 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
635 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
636 protein structure with a language model. *Science*, 379(6637):1123–1130, March 2023. doi:
637 10.1126/science.ade2574.

638 Dan Liu, Francesca Young, Kieran D. Lamb, Adalberto Claudio Quiros, Alexandrina Pancheva,
639 Crispin Miller, Craig Macdonald, David L. Robertson, and Ke Yuan. PLM-interact: Extending
640 protein language models to predict protein-protein interactions, November 2024.

641 Joseph Loscalzo. Molecular interaction networks and drug development: Novel approach to drug
642 target identification and drug repositioning. *The FASEB Journal*, 37(1):e22660, 2023. doi:
643 10.1096/fj.202201683R. URL <https://doi.org/10.1096/fj.202201683R>.

645 Guofeng Lv, Zhiqiang Hu, Yanguang Bi, and Shaoting Zhang. Learning unknown from cor-
646 relations: Graph neural network for inter-novel-protein interaction prediction. In *Proceed-
647 ings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2021. URL
648 <https://arxiv.org/abs/2105.06709>. See also arXiv:2105.06709.

648 Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi,
649 Po-Ssu Huang, and Richard Socher. ProGen: Language Modeling for Protein Generation, March
650 2020.

651

652 Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
653 hierarchical navigable small world graphs. *IEEE Transactions on Pattern Analysis and Machine
654 Intelligence*, 42(4):824–836, 2020. doi: 10.1109/TPAMI.2018.2889473.

655 Elahe Nasiri, Kamal Berahmand, Mehrdad Rostami, and Mohammad Dabiri. A novel link prediction
656 algorithm for protein-protein interaction networks by attributed graph embedding. *Comput. Biol.
657 Medicine*, 137:104772, 2021. doi: 10.1016/J.COMPBIOMED.2021.104772. URL <https://doi.org/10.1016/j.compbio-med.2021.104772>.

658

659 Don Neumann, Soumyadip Roy, Fayyaz ul Amir Afsar Minhas, and Asa Ben-Hur. On the choice
660 of negative examples for prediction of host-pathogen protein interactions. *Frontiers Bioinform.*,
661 2, 2022. doi: 10.3389/FBINF.2022.1083292. URL <https://doi.org/10.3389/fbinfo.2022.1083292>.

662

663 Erik Nijkamp, Jeffrey Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. ProGen2: Exploring
664 the Boundaries of Protein Language Models, June 2022.

665

666 Jeffrey Ouyang-Zhang, Chengyue Gong, Yue Zhao, Philipp Krähenbühl, Adam R. Klivans, and
667 Daniel J. Diaz. Distilling structural representations into protein sequence models. In *Proceedings
668 of the International Conference on Learning Representations (ICLR) 2025*, 2025.

669

670 Yungki Park and Edward M. Marcotte. Revisiting the negative example sampling problem for
671 predicting protein–protein interactions. *Bioinformatics*, 27(21):3024–3028, September 2011.
672 ISSN 1367-4803. doi: 10.1093/bioinformatics/btr514. URL <https://doi.org/10.1093/bioinformatics/btr514>. tex.eprint: https://academic.oup.com/bioinformatics/article-pdf/27/21/3024/48862842/bioinformatics_27_21_3024.pdf.

671

672

673

674 Yungki Park and Edward M Marcotte. Flaws in evaluation schemes for pair-input computational
675 predictions. *Nature Methods*, 9(12):1134–1136, December 2012. ISSN 1548-7105. doi: 10.1038/nmeth.2259. URL <https://doi.org/10.1038/nmeth.2259>.

676

677

678 Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines.
679 In *Advances in Neural Information Processing Systems*, volume 20. Curran Associates,
680 Inc., 2007. URL https://papers.nips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html.

681

682

683 Florian Richoux, Charlène Servantie, Cynthia Borès, and Stéphane Téletchéa. Comparing two deep
684 learning sequence-based models for protein–protein interaction prediction, January 2019. URL
685 <http://arxiv.org/abs/1901.06268>. arXiv:1901.06268 [cs].

686

687 Anna Ritz, Christopher L. Poirel, Allison N. Tegge, Nicholas Sharp, Kelsey Simmons, Allison Powell,
688 Shiv D. Kale, and T. M. Murali. Pathways on demand: automated reconstruction of human signaling
689 networks. *npj Systems Biology and Applications*, 2:16002, 2016. doi: 10.1038/npjsba.2016.2.
690 URL <https://www.nature.com/articles/npjsba20162>.

691

692 Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
693 Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
694 emerge from scaling unsupervised learning to 250 million protein sequences. *Proceedings of the
695 National Academy of Sciences*, 118(15):e2016239118, April 2021. ISSN 0027-8424, 1091-6490.
696 doi: 10.1073/pnas.2016239118. URL <https://pnas.org/doi/full/10.1073/pnas.2016239118>.

697

698 Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of protein function. *Molecular
699 Systems Biology*, 3:88, 2007. doi: 10.1038/msb4100129. URL <https://pubmed.ncbi.nlm.nih.gov/17353930/>.

700

701 Rohit Singh, Kapil Devkota, Samuel Sledzieski, Bonnie Berger, and Lenore Cowen. Topsy-Turvy:
702 Integrating a global view into sequence-based PPI prediction. *Bioinformatics*, 38:i264–i272, June
703 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/btac258.

702 Samuel Sledzieski, Rohit Singh, Lenore Cowen, and Bonnie Berger. Sequence-based prediction of
703 protein-protein interactions: a structure-aware interpretable deep learning model. *bioRxiv*, 2021.
704 doi: 10.1101/2021.01.22.427866. URL <https://www.biorxiv.org/content/early/2021/01/25/2021.01.22.427866>.
705

706 Samuel Sledzieski, Kapil Devkota, Rohit Singh, Lenore Cowen, and Bonnie Berger. TT3D: Leveraging
707 precomputed protein 3D sequence models to predict protein–protein interactions. *Bioinformatics*, 39(11):btad663, November 2023. ISSN 1367-4811. doi: 10.1093/bioinformatics/btad663.
708

709

710 Samuel Sledzieski, Meghana Kshirsagar, Minkyung Baek, Rahul Dodhia, Juan Lavista Ferres, and
711 Bonnie Berger. Democratizing protein language models with parameter-efficient fine-tuning.
712 *Proceedings of the National Academy of Sciences*, 121(26):e2405840121, June 2024. doi: 10.1073/pnas.2405840121. URL <https://www.pnas.org/doi/10.1073/pnas.2405840121>.
713 Publisher: Proceedings of the National Academy of Sciences.
714

715

716 Cees Snoek, Marcel Worring, and Arnold W. M. Smeulders. Early versus late fusion in semantic
717 video analysis. In HongJiang Zhang, Tat-Seng Chua, Ralf Steinmetz, Mohan S. Kankanhalli, and
718 Lynn Wilcox, editors, *Proceedings of the 13th ACM International Conference on Multimedia, Singapore, November 6-11, 2005*, pages 399–402. ACM, 2005. doi: 10.1145/1101149.1101236.
719 URL <https://doi.org/10.1145/1101149.1101236>.
720

721 Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. SaProt: Protein
722 Language Modeling with Structure-aware Vocabulary, October 2023.
723

724 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embedding
725 by Relational Rotation in Complex Space. In *Proceedings of the International Conference on Learning Representations (ICLR) 2019*, 2019.
726

727 Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
728 L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search
729 with Foldseek. *Nature Biotechnology*, 42(2):243–246, February 2024. ISSN 1546-1696. doi:
730 10.1038/s41587-023-01773-0.
731

732 Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
733 Attention with Linear Complexity, June 2020. URL <http://arxiv.org/abs/2006.04768>. arXiv:2006.04768 [cs].
734

735 Sen Yang, Peng Cheng, Yang Liu, Dawei Feng, and Shengqi Wang. Exploring the Knowledge
736 of an Outstanding Protein to Protein Interaction Transformer. *IEEE/ACM Trans. Comput. Biol. Bioinformatics*, 21(5):1287–1298, March 2024. ISSN 1545-5963. doi: 10.1109/TCBB.2024.3381825. URL <https://doi.org/10.1109/TCBB.2024.3381825>.
737

738

739 Yu Yao, Xiuquan Du, Yanyu Diao, and Huaixu Zhu. An integration of deep learning with feature
740 embedding for protein-protein interaction prediction. *PeerJ*, 7:e7126, 2019. ISSN 2167-8359. doi:
741 10.7717/peerj.7126.
742

743 Felix X. Yu, Ananda Theertha Suresh, Krzysztof Marcin Choromanski, Daniel N. Holtmann-
744 Rice, and Sanjiv Kumar. Orthogonal random features. In Daniel D. Lee, Masashi
745 Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, *NeurIPS*, pages
746 1975–1983, 2016. URL <https://proceedings.neurips.cc/paper/2016/hash/53adaf494dc89ef7196d73636eb2451b-Abstract.html>.
747

748

749 Jing Zhang, Ian R. Humphreys, Jimin Pei, Jinuk Kim, Chulwon Choi, Rongqing Yuan, Jesse Durham,
750 Siqi Liu, Hee-Jung Choi, Minkyung Baek, David Baker, and Qian Cong. Computing the human
751 interactome. *bioRxiv*, 2024. doi: 10.1101/2024.10.01.615885. URL <https://www.biorxiv.org/content/early/2024/10/01/2024.10.01.615885>.
752

753 Long Zhang, Guoxian Yu, Maozu Guo, and Jun Wang. Predicting protein-protein interactions
754 using high-quality non-interacting pairs. *BMC Bioinformatics*, 19(19):525, December 2018.
755 ISSN 1471-2105. doi: 10.1186/s12859-018-2525-3. URL <https://doi.org/10.1186/s12859-018-2525-3>.

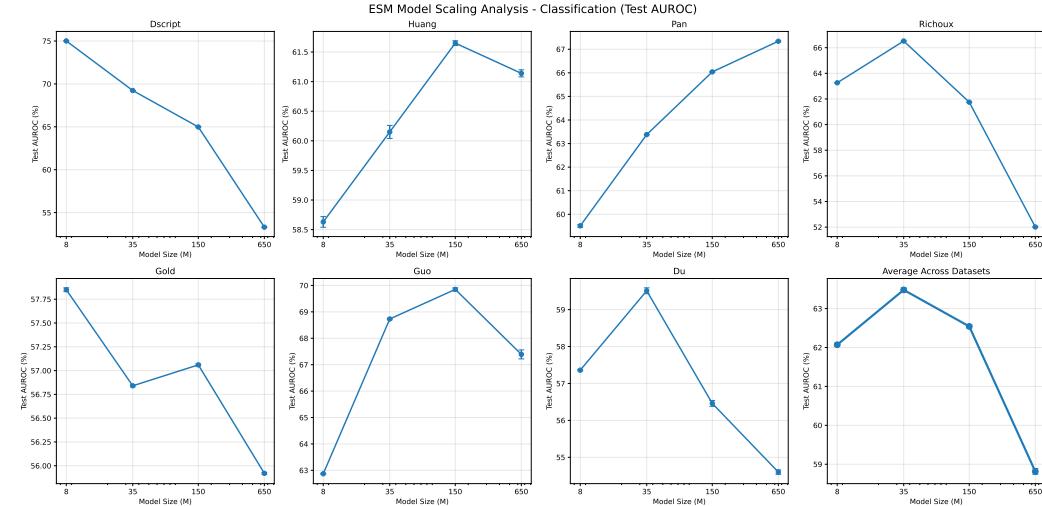
756 Nan Zhao, Maji Zhuo, Kun Tian, and Xinqi Gong. Protein–protein interaction and non-interaction
757 predictions using gene sequence natural vector. *Communications Biology*, 5(1):652, July 2022.
758 ISSN 2399-3642. doi: 10.1038/s42003-022-03617-0. URL <https://doi.org/10.1038/s42003-022-03617-0>.
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A IMPLEMENTATION DETAILS

811
 812 All experiments use five random seeds ($\{0, 1, 2, 3, 4\}$); unless noted, we report the mean (and
 813 standard deviation when available) across seeds. Results for D-SCRIPT (Sledzieski et al., 2021),
 814 DeepFE (Yao et al., 2019), Richoux-FC/LSTM (Richoux et al., 2019), and Topsy-Turvy (Singh et al.,
 815 2022) are taken from the benchmarking study of Bennett et al. (2024); following their guidance,
 816 we apply minimal tuning to baselines based on validation performance. For our method, we use a
 817 single configuration across datasets: AdamW with learning rate $1e-4$, 2048 random Fourier features,
 818 Gaussian kernel bandwidth $\hat{\sigma} = 0.5$ (selected via Appendix B.2), and adversarial temperature
 819 $\tau = 4$ (see Appendix B.4). Software environment: Python 3.10; PyTorch 2.5 with CUDA 11.8.
 820 Anonymized code and data to reproduce the results are included in the supplementary materials.

821 B ADDITIONAL EXPERIMENTS

822 B.1 MODEL-SCALE SELECTION



823
 824 Figure 4: ESM2 model-scaling analysis for PPI binary-classification (Test AUROC) across model
 825 sizes and datasets. Increasing the parameter count beyond 8M does not consistently improve
 826 performance.

827 Following the observation of Fournier et al. (2024) that larger protein LMs do not necessarily yield
 828 better results, we conduct a systematic scaling study on ESM2 (Lin et al., 2023). We evaluate four
 829 checkpoints: 8M, 35M, 150M, and 650M parameters across seven PPI datasets spanning human
 830 and yeast. Protein pairs are scored by the dot product of their [CLS] embeddings, providing an
 831 unsupervised measure of scaling performance. As shown in Figures 4 and 5, both Test AUROC and
 832 Recall@K% change little with model size on nearly all datasets.

833 Given that inference time for pairwise-encoding models rises steeply with both model size and
 834 quadratic pairwise scoring (e.g., PLM-Interact (Liu et al., 2024) requires *GPU-months* to search the
 835 human proteome even with an 8M model due to its pairwise encoding; see Table 3), we adopt the 8M
 836 ESM2 checkpoint as the backbone for all PLM-based baselines and for RaftPPI, balancing predictive
 837 performance and efficiency.

838 B.2 ABLATION ON GAUSSIAN KERNEL BANDWIDTH

839 The Gaussian kernel in Eq. 3 controls how strictly residue-level interactions are determined: smaller
 840 $\hat{\sigma}$ values confine each residue to interact only with very close neighbors (capturing sharp, local
 841 interfaces), whereas larger $\hat{\sigma}$ allows larger interaction scores over a broader neighborhood. Figure 6
 842 sweeps $\hat{\sigma} \in \{0.125, 0.25, 0.5, 1, 2, 4, 8\}$ and averages the metrics within human and yeast datasets.
 843 From the results of both PPI classification and retrieval tasks, both very small and very large

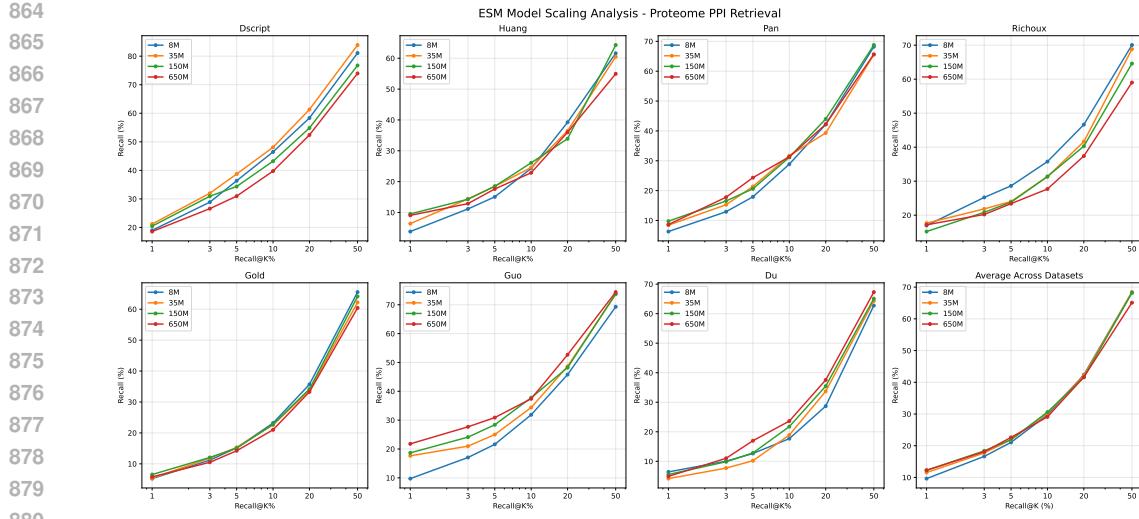


Figure 5: Scaling analysis of ESM2 checkpoints on proteome-level PPI retrieval tasks (Recall@K%). Performance remains largely unchanged when increasing model size.

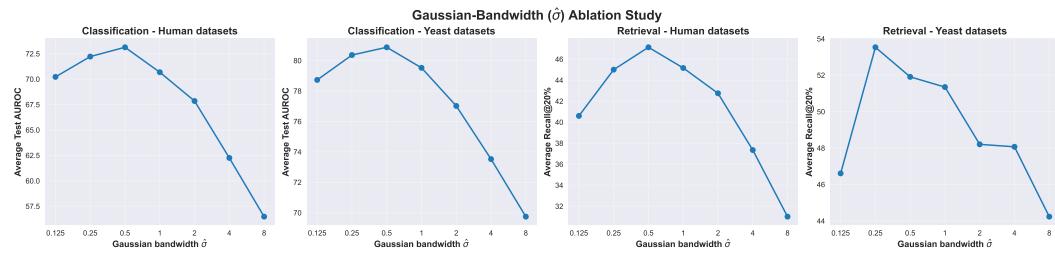


Figure 6: Gaussian-bandwidth ablation: We vary the kernel width $\hat{\sigma}$ from 0.125 to 8 (log-scale x -axis) and report the averaged AUROC/Recall@20% across human and yeast datasets.

bandwidths degrade performance. For example, tiny $\hat{\sigma}$ encourages sparse interactions, yet leads to a clear drop in performance when the bandwidth is too small; very large $\hat{\sigma}$ over-smooths the residue-level structure and significantly hurts both PPI classification and retrieval performance. As $\hat{\sigma} = 0.5$ consistently achieves good performance across species, we adopt this value for all reported experiments.

B.3 ABLATION ON LOW-RANK ATTENTION

Section 3.2 defines rank- r attention as r independent softmax pools (columns sum to one), and Eq. 4 combines the pooled descriptors with the Gaussian feature map in Eq. 3. For completeness, we derive the rank- r retrieval formulation implied by that construction. Let $\Psi_A \in \mathbb{R}^{L_A \times 2d'}$ and $\Psi_B \in \mathbb{R}^{L_B \times 2d'}$ stack the Random Fourier Features for proteins A and B , and let the attention matrices be $\mathbf{W}_A \in \mathbb{R}^{L_A \times r}$ and $\mathbf{W}_B \in \mathbb{R}^{L_B \times r}$ with columns that sum to one. The pooled embeddings for each rank are the rows of

$$\mathbf{H}_A = \mathbf{W}_A^\top \Psi_A \in \mathbb{R}^{r \times 2d'}, \quad \mathbf{H}_B = \mathbf{W}_B^\top \Psi_B \in \mathbb{R}^{r \times 2d'}, \quad (15)$$

and the proteome-scale logit becomes

$$\ell(A, B) = \sum_{t=1}^r \langle \mathbf{h}_A^{(t)}, \mathbf{h}_B^{(t)} \rangle = \text{tr}(\mathbf{H}_A \mathbf{H}_B^\top) = \langle \text{vec}(\mathbf{H}_A), \text{vec}(\mathbf{H}_B) \rangle, \quad (16)$$

where $\text{vec}(\cdot)$ denotes vectorization. Computing retrieval scores for $r > 1$ therefore amounts to concatenating the r heads into a single embedding of dimension $2d'r$ per protein. Higher ranks can provide stronger expressiveness, but the embedding dimension, memory footprint, and dot-product

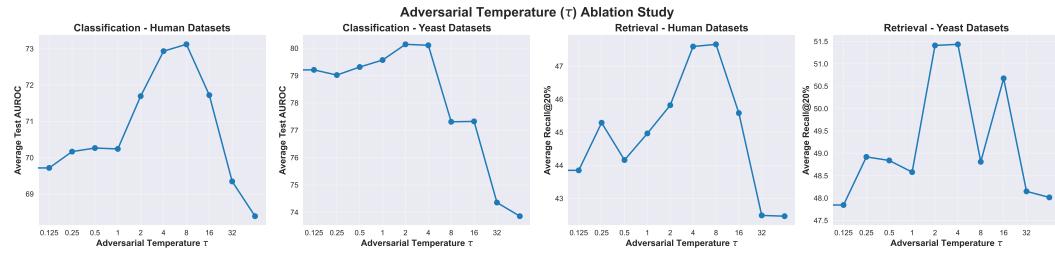
918 Table 4: Impact of attention rank on AUROC and retrieval (macro-average across seven benchmarks).
919 Higher is better; bold marks the best value and underline the second best per metric.
920

Rank	AUROC (%)	Recall@1%	Recall@3%	Recall@5%	Recall@10%	Recall@20%
1	75.29	<u>10.89</u>	<u>18.19</u>	<u>23.31</u>	33.95	48.33
2	<u>74.56</u>	11.33	18.89	24.28	<u>33.72</u>	<u>47.24</u>
4	69.49	10.23	17.12	22.10	31.47	43.89
8	66.13	8.00	13.95	18.65	27.84	40.39
16	63.86	7.08	12.86	17.16	25.50	37.91
32	64.71	7.46	12.98	17.37	25.76	38.19

928
929 cost all grow linearly with r because each additional head contributes another $2d'$ Random Fourier
930 Features (d' for each sin/cos feature).

931 Table 4 reports the seven-dataset macro-average. Rank 1 already achieves the best AUROC (75.29) and
932 Recall@20% (48.33). Moving to rank 2 mildly improves the very top of the ranking—Recall@1%,
933 Recall@3%, and Recall@5% increase by less than 1% without enhancing AUROC, indicating that
934 the extra head enables slightly stronger early recall capabilities. Larger ranks, however, consistently
935 overfit: AUROC drops below 70 at rank 4 and to 63.86 at rank 16, while Recall@20% degrades from
936 48.33 (rank 1) to 37.91 (rank 16) despite the 16 \times increase in memory footprint. Rank 32 further
937 underperforms on every metric. Since rank-one attention is effective enough while achieving the best
938 efficiency compared to higher ranks, we keep $r = 1$ as the default.

939 940 B.4 ABLATION ON ADAPTIVE NEGATIVE WEIGHTING LOSS



950
951 Figure 7: **Adversarial-temperature ablation.** We vary the temperature τ in the adaptive negative
952 weighting loss (Eq. 14) from 0.125 to 32 (log-scale x -axis). Each panel reports the average metric
953 over the indicated datasets. A moderate value of $\tau = 4$ (vertical peak) consistently maximizes both
954 classification AUROC (left two panels) and retrieval Recall@20% (right two panels) on human and
955 yeast benchmarks.

956
957 **Sensitivity Analysis of τ .** As introduced in § 3.4, we adopt adaptive negative weighting to mitigate
958 the challenge of constructed negatives in PPI datasets. We use a weighted BCE loss that softly
959 prioritizes harder negatives through a temperature parameter (Eq. 13). When $\tau \rightarrow 0$, the objective
960 reduces to uniform BCE; when $\tau \rightarrow \infty$, it focuses entirely on the single hardest negative in the batch.
961 Figure 7 shows that neither extreme is optimal. Across species and protocols, performance peaks
962 around $\tau = 4$: increasing τ from 0.125 to 4 improves average test AUROC by ≈ 2 –3 points and
963 Recall@20% by ≈ 3 points, while larger values degrade results by overfitting to outliers. This ablation
964 highlights that moderately emphasizing harder negatives can improve proteome-scale retrieval.

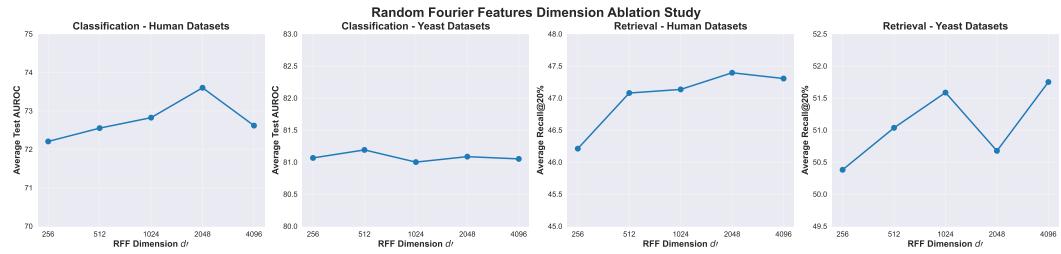
965
966 **Comparison to Focal Loss** In real-world PPI data, samples can vary substantially in difficulty and
967 reliability. Therefore, we propose reweighting them rather than treating all positives and negatives
968 equally. Focal Loss (Lin et al., 2017) was originally proposed for addressing the problem of class
969 imbalance in standard classification settings, where it modulates and balances positive and negative
970 samples using the (α) parameter and further obtains different sample weights based on the $(1 - p)^\gamma$
971 term. Our adaptive negative sample weighting, inspired by Sun et al. (2019), comes from the
knowledge graph reasoning (KGR) domain, which typically features (1) sparse ground truth **pairs**

Model	Test AUROC	Recall@20%
RaftPPI-AdaptiveNegLoss	75.29	49.34
RaftPPI-FocalLoss	74.16	47.60
RaftPPI-BCE	72.24	45.05

977
978 **Table 5: Adaptive weighting vs. focal loss.** Macro-average AUROC and Recall@20 % (means over
979 the seven PPI benchmarks in Table 1).
980

981 and (2) ranking-style objectives where the observed positive pair is encouraged to have a higher
982 score compared with many sampled (unreliable) negative pairs. In this setting, it is natural to only
983 reweight negative samples based on their relative hardness within a batch. We view our PPI retrieval
984 scenario as more closely aligned with the KGR setting (as PPI retrieval aims to find the interacting
985 pairs in the proteome and negative PPIs are often constructed as pseudo-negatives by sampling) than
986 with conventional CV classification. Performance-wise, both adaptive negative loss and Focal Loss
987 improve over standard BCE, indicating that PPI samples indeed have different effective quality, and
988 our adaptive negative loss is slightly better on average.
989

990 B.5 ABLATION ON RANDOM FOURIER FEATURES DIMENSION



1000 **Figure 8: Random Fourier Features dimension ablation.** We vary the RFF embedding dimension
1001 d' from 256 to 4096 (log-scale x -axis; the corresponding sin/cos feature dimension is $2d'$) and
1002 report the averaged AUROC/Recall@20% across human and yeast datasets. In contrast to other
1003 hyperparameters, performance remains remarkably stable across all tested dimensions, with changes
1004 of less than 1.1 points, demonstrating that d' is not an important parameter.
1005

1006 The Random Fourier Features (RFF) embedding dimension d' (where d' is the number of frequencies
1007 in Eq. 8) controls the expressiveness of the Gaussian kernel approximation. Higher dimensions
1008 provide more accurate kernel approximation but increase computational cost and memory footprint
1009 linearly with the embedding dimension (the sin/cos feature dimension scales as $\mathcal{O}(2d')$ and storage
1010 scales as $\mathcal{O}(Nd')$ for N proteins). Figure 8 sweeps $d' \in \{256, 512, 1024, 2048, 4096\}$ and averages
1011 the metrics within human and yeast datasets.

1012 Compared to the previous hyperparameter ablations, the RFF dimension d' is *not* a sensitive parameter
1013 within our tested range. Performance remains remarkably stable across all tested dimensions: varying
1014 d' from 256 to 4096 changes average AUROC by less than 1.1 points and Recall@20% by less than
1015 1.1 points on human datasets, with similarly small variations on yeast datasets. These variations are
1016 substantially smaller than the change in performance when varying $\hat{\sigma}$ (Appendix B.2) and varying
1017 τ (Appendix B.4): for example, on human datasets, $\hat{\sigma} = 0.5$ achieves 73.1 AUROC while $\hat{\sigma} = 8.0$
1018 drops to 56.5 AUROC, a 16.7 point difference. The stability of RFF dimension across a 16 \times range
1019 demonstrates that RaftPPI is robust to the RFF dimension choice, and any reasonable value (e.g.,
1020 512–2048) works well in practice.
1021

1022 B.6 EVALUATION ON PiNUI DATASETS

1023 We additionally evaluate our method on the PiNUI datasets (Dubourg-Felonneau et al., 2023), which
1024 provide additional large-scale PPI classification benchmarks for human and yeast. After cleaning,
1025 PiNUI-human contains 684,448 protein pairs (228,317 positive, 456,131 negative) and PiNUI-yeast

Dataset	Species	Train			Val			Test			Total
		Pos	Neg	Total	Pos	Neg	Total	Pos	Neg	Total	
PiNUI-HUMAN	Human	136,812	273,858	410,670	45,684	91,205	136,889	45,821	91,068	136,889	684,448
PiNUI-YEAST	Yeast	31,797	62,424	94,221	10,569	20,838	31,407	10,671	20,736	31,407	157,035

Table 6: Dataset statistics for PiNUI-human and PiNUI-yeast.

Model	PiNUI-human		PiNUI-yeast	
	AUROC	AUPRC	AUROC	AUPRC
ESM2-NoFT	59.14 ± 0.00	42.45 ± 0.00	51.90 ± 0.00	38.74 ± 0.00
ESM2-MLP	75.37 ± 0.66	61.97 ± 1.03	77.52 ± 0.76	63.01 ± 0.81
PLM-Interact	76.04 ± 0.18	62.71 ± 0.35	76.77 ± 0.96	61.97 ± 1.71
TUnA	64.53 ± 0.34	47.31 ± 0.55	69.79 ± 1.08	54.29 ± 0.67
RaftPPI-P	73.61 ± 0.31	61.06 ± 0.31	72.53 ± 0.62	58.64 ± 0.67
RaftPPI	77.92 ± 0.39	69.33 ± 0.34	77.87 ± 0.41	69.24 ± 0.47

Table 7: Test AUROC and AUPRC performance (%) on PiNUI datasets.

contains 157,035 pairs (53,037 positive, 103,998 negative). Both datasets are split randomly into train/validation/test sets with a 60/20/20 ratio; Table 6 summarizes these statistics.

Table 7 reports Test AUROC and AUPRC results across competing methods. The unsupervised ESM2 baseline, i.e., ESM2-NoFT, performs poorly on both datasets, highlighting the importance of fine-tuning for PPI prediction. RaftPPI achieves the best performance on both datasets. These results are consistent with our findings on the seven-dataset benchmark discussed in § 4.2, demonstrating that the proposed residue-level interaction modeling and adaptive negative weighting in RaftPPI generalize well to larger-scale PPI datasets. PLM-Interact and ESM2-MLP appear to also have strong performance. Besides, the improvements of RaftPPI v.s. RaftPPI-P (protein-level interaction only) further demonstrate the effectiveness of our design that considers residue-level interaction.

C USE OF LARGE LANGUAGE MODELS

We used a large language model to help polish the writing. We take full responsibility for all content in this paper.