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Abstract

A hallmark of neocortical architecture is recurrent connectivity both within and between
local sub-networks (cortical areas). Within a cortical area, excitation-inhibition balance
(balanced positive and negative connections) shapes neural activity dynamics (1; 2; 3; 4),
while reciprocal connections between areas are excitatory. How this multi-area structure
shapes neural dynamics remains largely unknown (but see (5; 6)). We present an analytical
framework for balanced multi-area networks, revealing key features of cortical computation;
we find that local connectivity within an area determines its responses to inputs received
locally (extra-cortical), but not to inputs relayed from other cortical areas. Local responses
to these relayed inputs are instead primarily driven by long-range inter-area connections.
Moreover, we find that the asymmetry of inter-area connections (feedforward vs feedback
strength) can modulate the joint dynamics across areas and implement a tradeoff between
regimes that promote similarity or divergence of activity across areas.

Keywords: excitation–inhibition balance, recurrent networks, cortical dynamics, multi-
area networks, asymmetry, amplification

1. Introduction

The mammalian neocortex is composed of many coupled sub-networks (cortical areas) that
are heavily interconnected. While there are clear signatures of hierarchy in this multi-
area network—such as feedforward projections from lower to higher areas, which has led
to them being traditionally modeled as deep feedforward architectures—there also exist
extensive lateral connections that recur between areas at similar hierarchical levels (7).
These recurrent pathways challenge the notion of purely feedforward processing, and the
question remains: how do computations unfold within the recurrent, multi-area architecture
of the cortex?

Within a cortical area, local excitation-inhibition (E/I) balance (balanced positive and
negative connections) tightly constrains neural activity dynamics, placing the circuit in a
regime of balanced amplification (2). In this regime, activity is described by an effective
feedforward motif in which E/I unbalanced modes drive E/I balanced modes. Cortical in-
hibition, however, is predominantly local, while E neurons project long-range and to other
areas. These reciprocal excitatory inter-area connections produce characteristic dynami-
cal motifs, notably, they give rise to slow dynamical modes that promote similar activity
patterns across areas (6). Here, we build on these findings and introduce a general analyt-
ical framework for understanding computation in multi-area, cortical-like networks. This
framework smoothly interpolates between purely feedforward and fully recurrent architec-
tures and reveals key principles governing the dynamics of distributed cortical computation.

© 2025 J. Casco-Rodriguez & M. Javadzadeh.
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2. Background

We examine minimal linear recurrent networks with E/I connectivity.
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Figure 1: (A) Recurrently connected E-I network (top) and
its feedforward equivalence from unbalanced (u) to balanced (b)
modes (bottom). (B) Symmetric two-area E-I networks (left)
and its feedforward equivalence (right), showing independent
u −→ b amplification in agree (a) and disagree (d) subnetworks.
(C) The general two-area network (left) and its equivalent cir-
cuits in the quasi-Schur (middle) and Schur (right) bases.

At time t, network ac-
tivity r(t) evolves accord-
ing to recurrent weights
Wei and external input
s(t): τ ṙ(t) = −r(t) +
Weir(t) + s(t), where

Wei =

[
e −i
e −i

]
, and

r =

[
re
ri

]
. E/I connectiv-

ity matrices of the form
Wei do not lend them-
selves well to diagonaliza-
tion (they have non-orthogonal eigenvectors and incur non-normal dynamics). Our objective
is to find an orthonormal basis Q which transforms Wei into an upper triangular matrix
(Schur form; Ŵei = QTWeiQ), such that the connectivity can be interpreted as an effective
feedforward motif, with more interpretable information flow (see appendix A.1).

2.1. Balanced amplification

Previous work (2) has described a straightforward interpretation of simple E-I networks in a
Schur basis of Wei, where an E/I unbalanced mode, uT = 1√

2

[
1 −1

]
, feeds an E/I balanced

mode, bT = 1√
2

[
1 1

]
(fig. 1A, appendix A.1): Ŵei =

[
e− i e+ i
0 0

]
, Q = 1√

2

[
1 1
1 −1

]
=[

b u
]

2.2. Consensus building between areas

This decomposition was later extended to the case of two identical E/I networks (X and Y )

coupled via excitatory connections (6): W =

[
Wei L
L Wei

]
, r =

[
rx
ry

]
, where L =

[
ℓ 0
ℓ 0

]
,

and rTx =
[
rTx,e rTx,i

]
, rTy =

[
rTy,e rTy,i

]
are local activity within the areas (fig. 1B). They

showed that these networks exhibit two separate feedforward motifs: (a) an agree subnet-
work, characterized by similar patterns of activity across the areas, where, the unbalanced
agree mode uT

agree =
[
uT
x uT

y

]
feeds the balanced agree mode bTagree =

[
bTx bTy

]
, and (b) a

disagree subnetwork, characterized by opposite patterns across areas, where unbalanced dis-
agree mode uT

disagree =
[
uT
x −uT

y

]
feeds the balanced disagree mode bTdisagree =

[
bTx −bTy

]
:

Ŵ =

[
Ŵei +LT 0

0 Ŵei −LT

]
, Q =

1√
2

[
bx ux bx ux

by uy −by −uy

]
(1)

Long-range connections contribute positively to the connectivity of the agree subnetwork
(Ŵei+LT ), increasing both feedforward strengths and time constants, while weakening the
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weights of the disagree subnetwork (Ŵei − LT ). As a result, the agree subnetwork will
dominate, leading to activity converging dynamically towards similar cross-area patterns.

3. Methods

Here, we generalize this framework to explain activity dynamics of two asymmetrically
coupled, non-identical E/I networks. For simplicity, we assume each network is perfectly
balanced, e = i. We consider two networks X,Y with different weights and asymmetric
excitatory connections: X feeds Y with strength ℓ, and vice versa with strength k, W =[
Wx,ei K
L Wy,ei

]
, where K =

[
k 0
k 0

]
(fig. 1C left). We introduce two orthonormal bases

that can provide insights into these networks.
The first is a quasi-Schur single-area basis consisting of E-I balanced/unbalanced modes

in each area. In this basis, the balanced modes of each area, bx, by, are fed by each other
and the unbalanced modes of each area, ux,uy (fig. 1C middle):

Ŵsingle =

[
We −Wi We +Wi

0 0

]
, Qsingle =

[
bx 0 ux 0
0 by 0 uy

]
(2)

where We =

[
ex k
ℓ ey

]
and Wi =

[
ix 0
0 iy

]
. As Ŵsingle is still recurrent (bx and by feed each

other), we also provide a Schur multi-area basis Qmulti to establish a feedforward equiva-
lence for the whole system, where the basis describes patterns of generalized agreements or
disagreements across the two areas (fig. 1C right). In this basis, the resulting Ŵ is Ŵmulti:

Ŵmulti =

[
−
√
kℓ αN1

N2
k − ℓ β

N1N2

0 0
√
kℓ N2

N1

]
⊗
[
1
0

]
,Qmulti =

[ √
k

N1
bx

√
kF
N2

ux

√
ℓ

N1
bx

√
ℓG
N2

ux

−
√
ℓ

N1
by −

√
ℓG
N2

uy

√
k

N1
by

√
kF
N2

uy

]
(3)

where N1 =
√
k + ℓ, N2 =

√
kF 2 + ℓG2, F = y +

√
kℓ, G = ex +

√
kℓ, α = (exey − kℓ), β =√

kℓ(e2x+k2−e2y− ℓ2)+(k− ℓ)(exℓ+eyk), and ⊗ is the Kronecker product. The columns of
Qmulti are asymmetrically-weighted (generalized) agree/disagree modes; in order, general-
ized balanced disagree (bdisagree), unbalanced disagree (udisagree), balanced agree (bagree),
and unbalanced agree (uagree). Decomposing the network in the above bases allow us to
analytically characterize network dynamics as a function of model parameters.

4. Results

First, we asked how local computation within a cortical area is modulated by other inter-
connected areas (fig. 2A top). Our derivations show that, when area X receives input, its
response is modulated by kℓ, the strength of connections between X and Y , but not by ey,
the connectivity within area Y (bx = 1

1−kℓsb,x +
2ex+kℓ
1−kℓ su,x at steady-state, see appendix D

and fig. 2 red). This finding explains how, despite dense inter-area connectivity, specialized
processing within an area is not corrupted by the recurrent dynamics of connected areas.

A signature of cortical architecture is the existence of parallel pathways: External in-
puts reach a cortical area both indirectly, via other cortical areas, and directly through
extra-cortical routes (e.g. higher visual areas recieve input from both primary visual
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Figure 2: Response of area X to inputs received either by itself (red; A top) or through area
Y (blue; A bottom), for varying the product of long-range weights

√
kℓ (B), asymmetry of

long-range weights k/ℓ (C), X’s local connectivity ex(D), and Y’s local connectivity ey(E).

cortex and directly from higher-order thalamus). This raises the question of whether
cortically relayed and direct inputs are processed differently. To probe this, we ana-
lyzed how area X responds to input arriving through a connected area Y (fig. 2 A bot-
tom). Our analytical framework shows that area X’s response to Y’s input depends on
all connectivity strengths (ey, k, l), except, surprisingly, X’s own connectivity ex (bx =

k
1−kℓsb,y +

k(1+2ey)
1−kℓ su,y at steady-state; appendix D; fig. 2 blue). Thus, recurrent dynamics

in X are effectively invisible to cortically relayed inputs. Together, these results suggest that
local, single-area recurrent computations can only be recruited by direct inputs (fig. 2, red),

X Y X Y

X Y X Y

Figure 3: Flow field of network dynamics pro-
jected on the generalized agree (bagree) and dis-
agree (bdisagree) modes for a network with sym-
metric long-range weights (k = ℓ; left) and
asymmetric weights (k/ℓ = 5; right). Dashed
lines are the eigenvectors of the dynamics. The
color indicates the magnitude of velocity. Tra-
jectories (blue) show the network response to
an input to the generalized agree mode (white
arrows). The red and yellow points mark the
stimulus onset and offset accordingly.

while cortically relayed inputs primar-
ily engage long-range connections, bypass-
ing local processing in intermediate areas
(fig. 2, blue).

Finally, our analytical framework re-
veals how multi-area dynamics act on
shared inputs received by both areas X and
Y. Prior work (6) showed that in symmet-
ric networks, the balanced agree and dis-
agree modes form orthogonal eigenvectors
of W , with agree modes having the longest
time constant, such that inputs along the
agree mode (similar to both areas) remain
aligned to it (fig. 3 left). Our general re-
sults extend this finding: Asymmetry in
long-range connections rotates the slow-
est eigenvector, thereby rotating the flow
field. As a result, inputs along the agree
mode can evolve into disagree activity (op-
posite across areas; fig. 3 right). Our work
therefore provides a general framework for
understanding computation in multi-area
networks, where inter-areal asymmetries control the trade off between regimes that pro-
mote similarity or divergence of activity across areas.
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Future directions. The above results were derived in tightly balanced (e = i) networks
with one E and one I unit per area. We are now extending this work to (1) examine how
local E/I imbalance alters our findings, (2) generalize to networks of N neurons, where scalar
connections strengths become (circulant) N ×N matrices (see appendices B and C).
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Appendix A. Math Preliminaries

A.1. Schur decomposition

Throughout the text, we make use of Schur decompositions of matrices. These entail finding
an orthonormal basis Q such that a matrix W becomes upper triangular: W = QŴQ∗,
where Ŵ is upper triangular. Unlike some other matrix decompositions, Schur decompo-
sitions are not unique. Previous work (2) has proposed Schur decomposition to analyze
recurrent E/I networks, expressing them as feedforward via a basis Q. For example, an ex-
citatory neuron excites itself and an inhibitory neuron with strength e, and the inhibitory

neuron inhibits itself and the excitatory neuron with strength −i (W =

[
e −i
e −i

]
). Using

a Schur basis, it becomes visible that there is an unbalanced mode of activity

[
1
−1

]
that

feeds, with strength e+ i, a balanced mode

[
1
1

]
that feeds itself with strength e− i (fig. 1):

Q∗WQ =

[
1 1
1 −1

] [
e −i
e −i

] [
1 1
1 −1

]
=

[
e− i e+ i
0 0

]
= Ŵ

Notably, the Schur decomposition of this example weight matrix is able to handle the case
e = i, whereas eigendecomposition cannot (when e = i, W is not diagonalizable).

A.2. Upper triangularization via block-Hadamard matrices

We are interested in upper-triangularizing matrices with particular structures. To this end,

the following properties of block-Hadamard matrices H =

[
I I
I −I

]
are useful:

[
I I
I −I

] [
A B
A B

] [
I I
I −I

]
=

[
2(A+B) 2(A−B)

0 0

]
(4)[

I I
I −I

] [
A B
B A

] [
I I
I −I

]
=

[
2(A+B) 0

0 2(A−B)

]
(5)

A.3. Orthogonality of a 2× 2 matrix of diagonal blocks

Later in the text, we will be decomposing matrices using orthogonal bases composed of
diagonal blocks. Specifically, we are interested in matrices with four square diagonal blocks
of the same shape, A,B,C,D, arranged into a 2×2 real block matrix. We seek the conditions
on A,B,C,D that ensure the block matrix is orthogonal:[

A B
C D

] [
A C
B D

]
=

[
A C
B D

] [
A B
C D

]
=

[
I 0
0 I

]
[
A2 +B2 AC +BD
AC +BD C2 +D2

]
=

[
A2 + C2 AB + CD
AB + CD B2 +D2

]
=

[
I 0
0 I

]
(6)

eq. (6) must be satisfied to ensure orthogonality. Inspecting its diagonal reveals the
conditions A2 = D2 and B2 = C2 = I − A2. To satisfy the assumption that A,B,C,D
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are real, I − A2 must be nonnegative: A must have a spectral radius no greater than 1.
Assuming A is given and satisfies this constraint, our matrix of diagonal blocks must take
this form: [

A b(I −A2)1/2

c(I −A2)1/2 dA

]
,

where b, c, d ∈ {−1, 1}. From inspection of the anti-diagonal of Equation (6), we can deduce
the constraints on b, c, d assuming that A and I − A2 are invertible (if either A or I − A2

are zero, then b, c, d are unconstrained):

cA(I −A2)1/2 + bdA(I −A2)1/2 = bA(I −A2)1/2 + cdA(I −A2)1/2 = 0

c+ bd = b+ cd = 0

The second equation simplifies to c+bd = 0, since multiplying the second set of terms b+cd
by d produces c + bd because d2 = 1. Therefore, c = −bd: either c = 1 and b = −d, or
c = −1 and b = d. We rewrite this constraint as d = −bc to produce our final expression
with unconstrained b, c ∈ {−1, 1}.

Lemma 1 Any block 2×2 matrix composed of equally sized real diagonal blocks must assume
the following form (up to multiplication by −1), where b, c ∈ {−1, 1} and the spectral radius
of A can be no larger than 1: [

A b(I −A2)1/2

c(I −A2)1/2 −bcA

]

Appendix B. Single-area basis Qsingle

Now we will consider a vector of activity from two groups of neurons, x and y; each group
has separate excitatory and inhibitory populations. We aggregate all neurons’ activities as
a vector r, which evolves over time via τ ṙ(t) = −r(t) + Wr(t) + s(t), for some stimulus

s(t) and weight matrix W =


Ex −Ix Lk 0
Ex −Ix Lk 0
Ll 0 Ey −Iy
Ll 0 Ey −Iy

, where r =


ex
ix
ey
iy

. Every weight block

Ex, Ey, Ix, Iy, Lk, Ll consists of positive entries, and all four blocks of r are vectors in RN .

Without any additional assumptions, we can already make an initial decomposition
W = QinitŴQinit of W via basis Qinit (see Section A.2):

Ŵinit =


Ex − Ix Ex + Ix Lk Lk

0 0 0 0
Ll Ll Ey − Iy Ey + Iy
0 0 0 0

 , Qinit =
1√
2


I I 0 0
I −I 0 0
0 0 I I
0 0 I −I

 (7)

Next, we will assume: (1) that all aforementioned weight blocks are mutually diagonal-
izable by some real orthogonal P (for example, PExP

T is diagonal), and (2) Ex = Ix and
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Ey = Iy. Then, we can obtain a further decomposed decomposed matrix Ŵsingle, where the
basis Qsingle is composed of single-area activations:

Ŵsingle =


0 2PExP

T PLkP
T PLkP

T

0 0 0 0
PLlP

T PLlP
T 0 2PExP

T

0 0 0 0

 ≜


0 Λx Λk Λk

0 0 0 0
Λl Λl 0 Λy

0 0 0 0

 (8)

Qsingle =
1√
2


P P 0 0
P −P 0 0
0 0 P P
0 0 P −P

 (9)

One straightforward way to ensure mutual diagonalizability of all weight blocks is for them
to all be circulant. For our results, we will generally assume that all elements of Ŵsingle

are non-negative and real; the latter entails that all weight blocks are circulant, while the
former, in the circulant case, places additional constraints on the values of each Λ block.
The Ŵsingle,Qsingle used in the main text can be obtained through a simple re-ordering of
Qsingle.

Note that in the main text, networks consist of one E and one I unit (N = 1), so,
connectivity matrices reduce to scalars (e.g. Ex = ex)
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Appendix C. Multi-area basis Qmulti

C.1. Problem statement

From the previous section, we have a partially decomposed weight matrix of diagonal blocks.
For convenience, we name each unique diagonal block and also rewrite the partially decom-
posed weights as a 2× 2 block matrix of 2× 2 upper-triangular block matrices (the names
of block matrices here are not always consistent with the main text):

Ŵsingle =


0 Λx Λk Λk

0 0 0 0
Λl Λl 0 Λy

0 0 0 0

 ≜

[
X K
L Y

]

We seek a Schur decomposition of the partially decomposed matrix Ŵsingle = QT
singleWQsingle:

a real orthogonal matrix Qdiag such that Ŵmulti = QT
diag(Q

T
singleWQsingle)Qdiag is upper tri-

angular. Since the Schur decomposition basis Qdiag is not unique, we impose constraints on
Qdiag that satisfy a subjective notion of simplicity:

1. Qdiag =

[
A B
C D

]
is a 2× 2 matrix of real diagonal blocks.

2. A,B,C,D should be non-negative.

3. When Λx = Λy and Λk = Λl, A,B,C,D should be proportional to ±I.

C.2. Conditions for upper triangularity

Now we write Ŵmulti = QT
diagŴsingleQdiag to find constraints on A,B,C,D that ensure its

upper triangularity:

Ŵmulti = QT
diagŴsingleQdiag =

[
A C
B D

] [
X K
L Y

] [
A B
C D

]
=

[
AX + CL AK + CY
BX +DL BK +DY

] [
A B
C D

]
=

[
AXA+ CLA+AKC + CY C AXB + CLB +AKD + CY D
BXA+DLA+BKC +DY C BXB +DLB +BKD +DYD

]
(10)

Since A,B,C,D are diagonal and X,K,L, Y are upper triangular, each of the four blocks
of eq. (10) is already upper-triangular. Therefore, we need only set the bottom-left block
to zero to ensure upper triangularity.

However, Lemma 1 proves that our diagonal matrices A,B,C,D are themselves con-
strained if Qdiag is orthogonal (theorem 1), so we update Qdiag and eq. (10) accordingly:

Qdiag =

[
A bB
cB −bcA

]
, where b, c ∈ {−1, 1} and B = (I −A2)1/2 (11)

Ŵmulti =

[
AXA+ cBLA+ cAKB +BY B bAXB + bcBLB − bcAKA− bBY A

bBXA− bcALA+ bcBKB − bAY B BXB − cALB − cBKA+AY A

]
(12)

9
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Now we set the bottom-left block of Ŵmulti (eq. (12)) to zero, and assume B is invertible

so that A = MB = BM , where M =

[
M1 0
0 M2

]
is also diagonal:

bBXA− bcALA+ bcBKB − bAY B = 0

BXA− cALA+ cBKB −AY B = 0

BXMB − cBMLMB + cBKB −BMYB = 0

XM − cMLM + cK −MY = 0

Next we write out each term and add or subtract them appropriately:

XM =

[
0 Λx

0 0

] [
M1 0
0 M2

]
=

[
0 M2Λx

0 0

]
cMLM =

[
M1 0
0 M2

] [
cΛl cΛl

0 0

] [
M1 0
0 M2

]
=

[
cM2

1Λl cM1M2Λl

0 0

]
cK =

[
cΛk cΛk

0 0

]
MY =

[
M1 0
0 M2

] [
0 Λy

0 0

]
=

[
0 M1Λy

0 0

]
[
−cM2

1Λl + cΛk M2Λx − cM1M2Λl + cΛk −M1Λy

0 0

]
= 0 (13)

C.3. Solving for M1, M2, A, and B

First, we solve the top-left block of eq. (13):

M1 = s
√
ΛkΛ

−1
l , s ∈ {−1, 1}, (14)

and then we solve the top-right block for M2:

M2Λx − cM1M2Λl = −cΛk +M1Λy

M2 = (M1Λy − cΛk)(Λx − cM1Λl)
−1

=
s
√
ΛkΛ

−1
l Λy − cΛk

Λx − cs
√
ΛkΛl

=
s
√
ΛkΛy − cΛk

√
Λl

Λx

√
Λl − cs

√
ΛkΛl

M2 =

√
Λk(sΛy − c

√
ΛkΛl)√

Λl(Λx − cs
√
ΛkΛl)

(15)

10
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Having solved for M =

[
M1 0
0 M2

]
, we solve for A and B. They must satisfy A = BM

(from the definition of M) and B = (I−A2)1/2 (from the orthogonality of our basis Qdiag):

A = (I −A2)1/2M

A2 = (I −A2)M2

A2(I +M2) = M2

A = aM(I +M2)−1/2, a ∈ {−1, 1}
B = a(I +M2)−1/2

Since a affects both A and B, it is simply a scalar in front of Qdiag, so we set a = 1 without
loss of generality. Substituting A,B into eq. (11) produces an initial expression of Qdiag

(eq. (16)), where the elements of M are given by eq. (14) and eq. (15):

Qdiag =

[
(I +M2)−1/2 0

0 (I +M2)−1/2

] [
M bI
cI −bcM

]
(16)

C.4. Final expression for Qdiag and Qmulti

Since each nonzero element of M is a fraction, each non-zero element of Qdiag in eq. (11)

takes the form o/u√
1+(o/u)2

or 1√
1+(o/u)2

, for some o, u. Here, we re-write Qdiag to make

it more simple and minimize the number fractional terms. First, we define O,U as the
numerators and denominators of every non-zero term in M :

M1 =

√
Λk√
Λl

≜
O1

U1
, M2 =

√
Λk(Λy − c

√
ΛkΛl)√

Λl(Λx − c
√
ΛkΛl)

≜ M1
F

G
≜

O2

U2

M =

[
O1 0
0 O2

] [
U1 0
0 U2

]−1

≜ OU−1

Next, we define a matrix of normalization constants N , which we use to simplify A,B:

N =
√

O2 + U2 =

[
Λk + Λl 0

0 ΛkF
2 + ΛlG

2

]1/2
B =

I√
I +M2

=
U

U
√
I +O2U−2

=
U√

O2 + U2
=

U

N
=

[√
Λl 0
0

√
ΛlG

]
N−1

A = MB = BM =
OU−1U√
O2 + U2

=
O√

O2 + U2
=

O

N
=

[√
Λk 0
0

√
ΛkF

]
N−1

Finally, we substitute our new expressions of A,B into Qdiag (eq. (11)):

Qdiag =

[
ON−1 bUN−1

cUN−1 −bcON−1

]
=

[
O bU
cU −bcO

] [
N−1 0
0 N−1

]

Qdiag =


√
Λk 0 b

√
Λl 0

0
√
ΛkF 0 b

√
ΛlG

c
√
Λl 0 −bc

√
Λk 0

0 c
√
ΛlG 0 −bc

√
ΛkF



N−1

1 0 0 0

0 N−1
2 0 0

0 0 N−1
1 0

0 0 0 N−1
2

 (17)

11
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To arrive at our final basis Qmulti, we multiply Qsingle (eq. (9)) by Qdiag (eq. (17)):

Qmulti = QsingleQdiag = Qsingle


N−1

1

√
Λk 0 bN−1

1

√
Λl 0

0 N−1
2

√
ΛkF 0 bN−1

2

√
ΛlG

cN−1
1

√
Λl 0 −bcN−1

1

√
Λk 0

0 cN−1
2

√
ΛlG 0 −bcN−1

2

√
ΛkF



=
1√
2


PN−1

1

√
Λk PN−1

2

√
ΛkF bPN−1

1

√
Λl bPN−1

2

√
ΛlG

PN−1
1

√
Λk −PN−1

2

√
ΛkF bPN−1

1

√
Λl −bPN−1

2

√
ΛlG

cPN−1
1

√
Λl cPN−1

2

√
ΛlG −bcPN−1

1

√
Λk −bcPN−1

2

√
ΛkF

cPN−1
1

√
Λl −cPN−1

2

√
ΛlG −bcPN−1

1

√
Λk bcPN−1

2

√
ΛkF


To obtain the Qmulti used in the main text, we set b = 1, c = −1 (so that F and G are

always positive), and condense 1√
2

[
P
±P

]
terms into “balanced” and “unbalanced” matrices.

C.5. Triangularized dynamics

Now we express the triangularized dynamics Ŵmulti = QT
diagŴsingleQdiag from eq. (12):

Ŵmulti =

[
AXA+ cBLA+ cAKB +BY B bAXB + bcBLB − bcAKA− bBY A

0 (by definition of M) BXB − cALB − cBKA+AY A

]
,

and write out several terms that appear therein. As a shorthand, J =

[
λΛj Λj

0 0

]
for

j ∈ {x, y, l, k}.

AJ =

[
A1 0
0 A2

] [
λΛj Λj

0 0

]
=

[
λA1Λj A1Λj

0 0

]
AJA =

[
λA2

1Λj A1A2Λj

0 0

]
, BJB =

[
λB2

1Λj B1B2Λj

0 0

]
AJB =

[
λA1B1Λj A1B2Λj

0 0

]
, BJA =

[
λA1B1Λj A2B1Λj

0 0

]
A2

1 = N−2
1 Λk =

Λk

Λk + Λl

B2
1 = N−2

1 Λl =
Λl

Λk + Λl

A1B1 = N−2
1

√
ΛkΛl =

√
ΛkΛl

Λk + Λl

A1A2 = (N1N2)
−1ΛkF

A2B1 = (N1N2)
−1

√
ΛkΛlF

A1B2 = (N1N2)
−1

√
ΛkΛlG

B1B2 = (N1N2)
−1ΛlG

N1N2 =
(
(Λk + Λl)

(
ΛkF

2 + ΛlG
2
))1/2

Next, we express each nonzero block of Ŵmulti.

12
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C.5.1. Top-left block: AXA+ cBLA+ cAKB +BY B

AXA+ cBLA+ cAKB +BY B

=

[
0 A1A2Λx

0 0

]
+ c

[
A1B1Λl A2B1Λl

0 0

]
+ c

[
A1B1Λk A1B2Λk

0 0

]
+

[
0 B1B2Λy

0 0

]
=

[
cA1B1(Λl + Λk) A1A2Λx + cA2B1Λl + cA1B2Λk +B1B2Λy

0 0

]
=

[
c
√
ΛkΛl (N1N2)

−1
(
(ΛxΛk + cΛl

√
ΛkΛl)F + (cΛk

√
ΛkΛl + ΛyΛl)G

)
0 0

]

=


c
√
ΛkΛl (N1N2)

−1
(
(ΛxΛk + cΛl

√
ΛkΛl)(Λy − c

√
ΛkΛl)

+(ΛyΛl + cΛk

√
ΛkΛl)(Λx − c

√
ΛkΛl)

)
0 0



=


c
√
ΛkΛl (N1N2)

−1
(
ΛxΛyΛk + (cΛyΛl − cΛxΛk)

√
ΛkΛl − Λ2

lΛk

+ΛxΛyΛl + (cΛxΛk − cΛyΛl)
√
ΛkΛl − Λ2

kΛl

)
0 0


=

[
c
√
ΛkΛl (N1N2)

−1
(
ΛxΛyΛk − Λ2

lΛk + ΛxΛyΛl − Λ2
kΛl

)
0 0

]
=

[
c
√
ΛkΛl (N1N2)

−1(Λk + Λl)(ΛxΛy − ΛkΛl)
0 0

]
=

[
c
√
ΛkΛl N−1

2

√
Λk + Λl(ΛxΛy − ΛkΛl)

0 0

]
=

[
c
√
ΛkΛl

N1
N2

(ΛxΛy − ΛkΛl)

0 0

]

C.5.2. Bottom-right block: BXB − cALB − cBKA+AY A

AY A− cBKA− cALB +BXB

=

[
−c

√
ΛkΛl (N1N2)

−1
(
(ΛyΛk − cΛk

√
ΛkΛl)F + (−cΛl

√
ΛkΛl + ΛxΛl)G

)
0 0

]
=

[
−c

√
ΛkΛl (N1N2)

−1
(
ΛkF

2 + ΛlG
2
)

0 0

]
=

[
−c

√
ΛkΛl N−1

1

√
ΛkF 2 + ΛlG2

0 0

]
=

[
−c

√
ΛkΛl

N2
N1

0 0

]

13
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C.5.3. Top-right block: bAXB + bcBLB − bcAKA− bBY A

= −bcAKA− bBY A+ bAXB + bcBLB

= −bc

[
A2

1Λk A1A2Λk

0 0

]
− b

[
0 A2B1Λy

0 0

]
+ b

[
0 A1B2Λx

0 0

]
+ bc

[
B2

1Λl B1B2Λl

0 0

]
=

[
bc(B2

1Λl −A2
1Λk) −bcA1A2Λk − bA2B1Λy + bA1B2Λx + bcB1B2Λl

0 0

]
=

[
bc

Λ2
l −Λ2

k
Λk+Λl

(N1N2)
−1

(
−b(cΛ2

k + Λy

√
ΛkΛl)F + b(Λx

√
ΛkΛl + cΛ2

l )
)

0 0

]

=


bc(Λl − Λk) b(N1N2)

−1
(
(cΛ2

k + Λy

√
ΛkΛl)(−Λy + c

√
ΛkΛl)

+(Λx

√
ΛkΛl + cΛ2

l )(Λx − c
√
ΛkΛl)

)
0 0



=


bc(Λl − Λk) b(N1N2)

−1
(
− cΛ2

kΛy + (−Λ2
y + Λ2

k)
√
ΛkΛl + cΛyΛkΛl

+cΛ2
lΛx + (Λ2

x − Λ2
l )
√
ΛkΛl − cΛxΛkΛl

)
0 0


=

[
bc(Λl − Λk) b(N1N2)

−1
(√

ΛkΛl(Λ
2
x + Λ2

k − Λ2
y − Λ2

l ) + c(Λl − Λk)(ΛxΛl + ΛyΛk)
)

0 0

]

C.5.4. Final expression

The final expression for Ŵmulti, again setting b = 1, c = −1, is:

Ŵmulti =


−
√
ΛkΛl

N1
N2

(ΛxΛy − ΛkΛl) Λk − Λl
β

N1N2

0 0 0 0

0 0
√
ΛkΛl

N2
N1

0 0 0 0

 , (18)

where β =
√
ΛkΛl(Λ

2
x + Λ2

k − Λ2
y − Λ2

l ) + (Λk − Λl)(ΛxΛl + ΛyΛk). To obtain the Ŵmulti

used in the main text, we simply condense Ŵmulti by writing it as a Kronecker product.
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Appendix D. Steady-State Activity

We seek to characterize dynamical systems of the form τ ṙ(t) = −r(t) +Wr(t) + s(t). If we
assume s(t) = s is constant, define θ = I − W , define µ = θ−1s, and set τ = 1 (without
loss of generality), such that ṙ = θ(µ− r(t)), then we can easily examine the mean of r(t)
according to (8):

r(t) = e−θtr(0) + (I − e−θt)µ

lim
t→∞

r(t) = θ−1s since θ is positive definite

lim
t→∞

QT r(t) = QT (I −W )−1s

= QT (Q(I − Ŵ )QT )−1s

= QTQ(I − Ŵ )−1QT s

= (I − Ŵ )−1QT s

In the main text, we are interested in the steady-state values of r(t) when projected via

Qsingle. This requires calculating (I − Ŵsingle)
−1, which we do by leveraging the property[

A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
:

(I − Ŵsingle)
−1 =


1 −k −2ex −k
−ℓ 1 −ℓ −2ey
0 0 1 0
0 0 0 1


−1

=

[ 1
1−kℓ

k
1−kℓ

ℓ
1−kℓ

1
1−kℓ

] [ 1
1−kℓ

k
1−kℓ

ℓ
1−kℓ

1
1−kℓ

] [
2ex k
ℓ 2ey

]
0 I



=


1

1−kℓ
k

1−kℓ
2ex+kℓ
1−kℓ

k(1+2ey)
1−kℓ

ℓ
1−kℓ

1
1−kℓ

ℓ(1+2ex)
1−kℓ

2ey+kℓ
1−kℓ

0 0 1 0
0 0 0 1


We can use the above result to write the steady-state values of QT

singler(t) as a function

of a constant input QT
singles:

lim
t→∞


bx
by
ux

uy

 =


1

1−kℓ
k

1−kℓ
2ex+kℓ
1−kℓ

k(1+2ey)
1−kℓ

ℓ
1−kℓ

1
1−kℓ

ℓ(1+2ex)
1−kℓ

2ey+kℓ
1−kℓ

0 0 1 0
0 0 0 1



sb,x
sb,y
su,x
su,y


We can immediately see that the output bx of area x amplifies the inputs sb,x of area x

depending only on k, l, ex, and amplifies the inputs sb,y, su,y depending only on k, l, ey.

bx =

(
1

1− FB
sb,x +

2ex + FB

1− FB
su,x

)
+

(
B

1− FB
sb,y +

B(1 + 2ey)

1− FB
su,y

)
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