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Private Order Flows and Builder Bidding Dynamics: The Road to
Monopoly in Ethereum’s Block Building Market

Anonymous Author(s)

Abstract
Ethereum, as a representative of Web3, adopts a novel framework

called Proposer Builder Separation (PBS) to prevent the centraliza-

tion of block profits in the hands of institutional Ethereum stakers.

Introducing builders to generate blocks based on public transac-

tions, PBS aims to ensure that block profits are distributed among

all stakers. Through the auction among builders, only one will win

the block in each slot. Ideally, the equilibrium strategy of builders

under public information would lead them to bid all block profits.

However, builders are now capable of extracting profits from pri-

vate order flows. In this paper, we explore the effect of PBS with

private order flows. Specifically, we propose the asymmetry auc-

tion model of MEV-Boost auction. Moreover, we conduct empirical

study on Ethereum blocks from January 2023 to May 2024. Our

analysis indicates that private order flows contribute to 54.59% of

the block value, indicating that different builders will build blocks

with different valuations. Interestingly, we find that builders with

more private order flows (i.e., higher block valuations) are more

likely to win the block, while retain larger proportion of profits. In

return, such builders will further attract more private order flows,

resulting in a monopolistic market gradually. Our findings reveal

that PBS in current stage is unable to balance the profit distribu-

tion, which just transits the centralization of block profits from

institutional stakers to the monopolistic builder.

CCS Concepts
• General and reference → Empirical studies; Measurement;
Evaluation.

Keywords
Ethereum, Builder market, Private Order Flow, Centralization, Mo-
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1 Introduction
Web3 represents a paradigm shift in online interactions, charac-

terized by decentralized applications and services that leverage
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blockchain technology [56]. Ethereum, a key foundational layer

for the Web3 ecosystem [61], is widely adopted for its censorship

resistance and transparency, although it does not inherently ensure

transaction privacy [59]. Before the final confirmation, transac-

tions are sent to the public mempool, where they are visible to all

nodes participating in the network. Miners then select, sequence,

and bundle these transactions into blocks, which are added to the

Ethereum blockchain. The dependence on transaction ordering

within blocks creates space for arbitrage opportunities and even

malicious activities such as frontrunning and sandwich attacks,

resulting in financial losses for users [32]. The practice of manip-

ulating the order of transactions is known as Miner Extractable

Value (MEV) [15]. MEV not only causes user losses, but also poses a

significant threat to the network. Intense competition among MEV

searchers to exploit these opportunities can result in considerable

network congestion and may even incentivize miners to reorganize

the blockchain [11, 15].

In this context, an in-protocol mechanism for Proposer Builder

Separation (PBS) has been devised to separate the roles of block con-

struction and proposal [7, 24]. Within this framework, Builders are

responsible for constructing blocks, whereas proposers are tasked

with the proposal of blocks. In the initial design, builders were

introduced to delegate the tasks of block construction and MEV

extraction to specialized entities, enabling every Ethereum staker to

participate as a proposer and earn rewards. After constructing the

blocks, all builders engage in an auction to compete for their blocks

to be selected on Ethereum. The proposer’s sole responsibility is

to choose the block offering the highest bid from builders. Ideally,

when builders share common information, their equilibrium strat-

egy would lead them to forgo all profits, similar to the dynamic

between MEV searchers and miners before the introduction of

PBS [45]. This mechanism ensures that rewards are distributed

among all Ethereum stakers, preventing the concentration of MEV

profits in the hands of institutional stakers [48].

However, empirical studies suggest that builders might acquire

private transactions directly fromwallets [54], which are not shared

with all block builders, resulting in variations in block valuation [25].

Moreover, MEV searchers might direct their transaction bundles to

selected builders. We refer to the bundles and transactions sent to

the builders through these private channels as private order flows.

As the builder market evolves, the share of private order flows

has seen a substantial increase [5, 23]. This rise in private order

flow introduces complexity to the landscape, as each builder now

operates with a distinct transaction pool, leading to asymmetric

competition among builders.

In this work, we explore whether PBS effectively achieves its

intended objective of protecting the profits of all Ethereum stakers.

The advent of private order flows changes the original transaction

source of blocks, creates differences in the block valuation across

different builders. We use information difference to elucidate this

i
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in the block valuations. Our analysis, supported by empirical evi-

dence, substantiates that information difference leads to different

bidding strategies of builders, a phenomenon we refer to as auction
strategy difference. It will cause builders to not bid all profits to

Ethereum stakers and have different winning probabilities in the

auction between builders and proposers. To make matters worse,

our findings indicate that private order flows tend to favor the

builder with higher winning probability. That exacerbates auction

strategy difference and increases the probability of that builder

with higher block valuation winning subsequent blocks and accu-

mulating more private order flows. Eventually, the builder market

becomes centralized. To verify this effect, we employ the frame-

work of robust fairness [31]. The results demonstrate that existing

differences compromise fairness within the builder market and cul-

minate in a monopolistic condition. We then delineate that builders

will retain more profits of such a monopolistic market, indicating

greater losses of Ethereum stakers’ profits.

Our primary contributions are:

• We identify two forms of differences in the builder market-

information difference and auction strategy difference-and

validate our theoretical analysis through bidding data from

builders. Our findings indicate that private order flows,

which induce information difference, account for up to

54.59% of the total block value. Furthermore, owing to

auction strategy difference, the top 3 builders submit bids

26.87% lower than the other builders, while their total win-

ning rate exceeds 95%. Our research reveals that, in the

reality of information difference, the premise that builders

bid all profits to proposers does not hold true.

• We analyze the impact of information difference and auc-

tion strategy difference on the builder market. Our finding

suggests that the winning probability for builders with

high-value blocks will continue to increase. We examine

the robust fairness of the builder market, demonstrating

that it fails to achieve robust fairness, inevitably leading to

a monopolistic state. Extensive numerical experiments and

on-chain data are used to validate our results. Our research

reveals the monopolistic trend of the builder market from

both theoretical and data perspectives.

• We investigate the implications of a monopolistic builder,

including reduced earnings for proposers and increased

discrimination in block construction. Our results reveal that

within a more monopolistic builder market, the maximum

average profit margin attained by builders is 27.66% and

the delay gap between transactions with lower and higher

priority fees expands nearly 16 times. It means that the

monopolistic builder market will further deviate from PBS’s

original idea of protecting Ethereum stakers profits.

2 Background
In this section, we present necessary background to facilitate a clear

comprehension of our paper.

2.1 Proposer Builder Separation.
The Proposer Builder Separation (PBS) mechanism has been sug-

gested as a critical innovation in Ethereum [20]. Subsequent to

MEV Auction between Searchers

Searchers
🥷

Mempool

🥷

Users

Private channels

MEV-Boost Auction between Builders

Builders Relays Proposers

Figure 1: Two-phase auction in PBS.

November 2022, PBS has been instrumental in the formulation of

nearly 90% of the blocks, and the top three builders have more than

70% of the market share [55]. PBS delineates the roles that were for-

merly consolidated in miners, segregating them into block builders

and block proposers [7]. This separation serves a dual purpose.

Firstly, it mitigates centralization apprehensions arising from the

economies of scale linked to MEV extraction by proposers within

PoS. It will balance the distribution of MEV profits, rather than con-

centrate in the institutional stakers. Secondly, it acts as a deterrent

against MEV extraction by proposers and preserves preconfirma-

tion confidentiality, as proposers are restricted to accessing only

the block header prior to its finalization [8].

Due to the challenges associated with achieving compatibility at

the consensus layer, Flashbots has introduced MEV-Boost [55], an

off-chain approach to implement PBS as an interim solution. Fig-

ure 1 delineates an architectural representation of the MEV auction

and MEV-Boost infrastructure, which constitutes a two-phase auc-

tion mechanism encompassing four distinct roles: searcher, builder,

relay, and proposer.

Phase One: MEV auction between searchers. The MEV auction

entails the auctioning of block space packaged by block builders,

where the priority fee is given to the latter. Initially, searchers bun-

dle their transactions with victim transactions, transmitting them to

builders through a private channel [13, 46]. In particular, searchers

are relieved of the obligation to pay gas fees for unsuccessful bun-

dles, thereby mitigating the associated risks of MEV extraction.

This characteristic differentiates it from the partial all-pay auction

format employed in previous English auctions [21, 58, 68]. Victim

transactions within the bundle predominantly originate from the

public mempool, with the extractable profit being transparently

calculable. Consequently, for searchers, the utility of a bundle is

contingent not only on its inclusion but also on its positional prior-

itization [2, 40].

Phase Two: MEV-Boost auction between builders. MEV-Boost

auction constitutes a bidding mechanism to secure the opportunity

to finalize blocks. Transactions are typically prioritized based on

the associated priority fees or the builder’s profit maximization

strategy, thus optimizing revenue within the constrained block

space [1]. Subsequently, the blocks are submitted to the relays.

Throughout the interval, builders recurrently execute the sorting

algorithm and persistently submit blocks. This iterative process

stems from the asynchronous nature of the network, which pro-

duces an unpredictable deadline for the auction within the slot,

despite the fixed slot duration of 12 seconds [4]. Relays identify the
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Figure 2: Proportion distribution of private rewards among
builders.

most profitable block and send its header to the designated proposer

for validation [14]. In the final stage, the proposer endorses the

highest bidding block for the finalization of the blockchain [44, 48].

2.2 Robust Fairness.
Robust fairness denotes that the stochastic outcome of a block

builder’s reward 𝜆 is aligned with its initial investment 𝜆0 [31]. For

any given pair of parameters (𝜀, 𝛿) such that 𝜀 ≥ 0 and 0 ≤ 𝛿 ≤ 1,

an incentive mechanism preserves a (𝜀, 𝛿)-fairness for miner 𝐴

possessing a fraction 𝑎 of the total resource if 𝐴 receives a fraction

𝜆 of the total reward satisfying

Pr [(1 − 𝜀)𝜆0 ≤ 𝜆 ≤ (1 + 𝜀)𝜆0] ≥ 1 − 𝛿. (1)

According to this definition, diminished values of 𝜖 and/or 𝛿 indicate

higher levels of fairness. Note that 𝜆 will gradually converge as

long as the number of auction rounds increases. Robust fairness is

articulated through (𝜖, 𝛿)-fairness, which delineates the extent of

robust fairness. In subsequent sections, this definition will be used

to evaluate the dynamic of concentration in the builder network.

3 Differences in PBS
Within the MEV-Boost framework, certain transactions and bun-

dles are recognized to bypass the public mempool, instead being

directed to builders, which is called private order flows [25]. The

influence of private order flows on the valuation of blocks is sub-

stantial [18]. This section quantifies the impacts of private order

flows and characterizes them as information difference. Under the

conditions of information difference, builders with disparate block

valuations will develop different bidding strategies. A model for

the MEV-Boost auction has been established, demonstrating that

different builders employ varying bidding ratios and exhibit differ-

ent winning probabilities. Moreover, we employ empirical data to

substantiate our theoretical exposition.
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Figure 3: Proportion distribution of private transaction
counts among builders.

3.1 Dataset
First, we deploy an Erigon node and a Lighthouse node to sync

the block and transaction information. Using Flashbots Mempool

Dumpster [22], we gather transaction data from the public mempool

from November 2023 to May 2024. We filter the transactions that

have appeared in the public mempool from the on-chain transaction

dataset to obtain the private transaction dataset. Second, we build

the MEV-Boost auction dataset through interfacing with various

relay APIs. We acquire all bidding processes by utilizing the ‘builder

blocks received’ and ‘proposer payload delivered’ endpoints of

public APIs from relays. Our datasets range from January 2023 to

May 2024.

3.2 Information Difference
In practical scenarios, emergent and weak builders entering the

network often encounter difficulties in acquiring order flows from

searchers and users. This is attributed to the preference of searchers

and users for routing their bundles and private transactions to

builders boasting significant market shares, thereby enhancing

the likelihood of being selected on Ethereum. It implies that the

valuation of the blocks constructed by different builders will vary

significantly due to the integration of private order flows. We refer

to this phenomenon as the information difference between builders.

We plot the proportion of private rewards for builder in Figure 2,

which uses distinct colors to represent different builders, arranged

in descending order based on the market share spanning from

block 19,331,051 to 19,431,051. Figure 3 illustrates the proportion

distribution of private transaction counts among builders. The solid

line denotes the counts of private transactions for builders. The

chart indicates that builders have higher proportions of private

transactions and private rewards compared to others with smaller

market shares. The results show that, despite constituting only 12%

of the total amount of transactions, private order flows significantly

contribute to 54.59% of block rewards.
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We examine two types of representative builders and impose the

following assumptions within the builder market. In the context

of the MEV-Boost auction, the builders that exert influence on the

auction outcome are predominantly the first and second highest

ranked builders in the valuations and bidding of the blocks, respec-

tively [62]. We assume there are two builders, i.e., builder P𝑖 and

builder P𝑗 are competing for building blocks.

Initially, the private order flows of builder P𝑖 (resp. P𝑗 ) is rep-

resented as 𝑎 (resp. 𝑏). In particular, considering the private order

flows are possible to be submitted to multiple builders, we recom-

puted the overlapping private order flows and utilized 𝑎 + 𝑏 as the

total counts within the market. The expectation counts of the pri-

vate order flows of each builder’s respective block satisfy a binomial

distribution. Therefore, for builder P𝑖 (resp. P𝑗 ), the proportion of

private order flows is represented as
𝑎

𝑎+𝑏 (resp.
𝑏

𝑎+𝑏 ).
We now focus on the dynamic changes of the private order flows

of builders. Due to high subsidies, rsync-builder has grown from

an emerging weak builder in January 2023 to a strong builder oc-

cupying the third market share [17]. Therefore, studying the data

of the rsync-builder will provide important insights into the dy-

namic changes. we have calculated the quantity of private bundles

received by the rsync-builder over a five-month period, spanning

from its inception to its attainment of a top-three position within

the network in 2023, as depicted in Figure 4. The red and deep blue

lines represent the volume of private bundles sent by all searchers

and the top five searchers, respectively. It is apparent that upon its

initial entry into the network, the rsync-builder attracted a minimal

volume of private bundles. However, as the winning probability of

the rsync-builder expanded, it increasingly attracted private bun-

dles, increasing from nearly 0 to in excess of 15,000 by May. What’s

more, when rsync’s market share decreases, the number of private

bundles it receives will also decrease. Therefore, we find there is a

positive correlation between the number of searcher connections

and the winning probability of builders.

What’s more, upon analysis of decentralized finance protocols

like MEV Blocker and BackRunMe, known for delivering large vol-

umes of user private order flows, it becomes evident that these en-

tities consistently engage in collaboration with stronge builders [6,

16]. This means that both private bundles from searchers and pri-

vate transactions from users tend to be sent to builders with higher

winning probabilities. In light of these findings, we make the fol-

lowing assumption.

Assumption 1. Let 𝑍 𝑖𝑡 denote the proportion of private order flow
connected to builder P𝑖 at round 𝑡 . 𝑍 𝑖

0
= 𝑎

𝑎+𝑏 and 𝑍 𝑖𝑡 ∈ [0, 1] for
all 𝑡 ≥ 0. We assume that {𝑍 𝑖𝑡 }𝑡≥0 is a stochastic process with the
following dynamics: Before each round 𝑡 , private order flows with a
quantity of 𝛿𝑡 will choose to connect to the previous winner of the
MEV-Boost auction, while they have a probability of 𝑝𝑡 ∈ [0, 1] to
drop the connection of the previous failed builder.

Here, 𝛿𝑡 is non-negative value representing the changes in pri-

vate order flows at round 𝑡 . When 𝛿𝑡 is 0, the private order flows are

unchanged. For builder P𝑗 , we represent it as𝑍
𝑗
𝑡 , where𝑍

𝑗
𝑡 = 1−𝑍 𝑖𝑡

for all 𝑡 ≥ 0.
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Figure 4: Weekly distribution of connected searchers since
the emergence of rsync-builder.

3.3 Auction Strategy Difference
The presence of information difference leads to different bidding

strategies among builders participating in the MEV-Boost auction

within the PBS framework. This section predominantly elucidates

the derivation of auction strategy differences between builders and

corroborates these findings with empirical data.

We define the MEV-Boost auction as A(P,V,S), representing
participants, block valuation, and bidding strategies, respectively.

For block valuation 𝑣𝑘𝑡 of builder P𝑘 , 𝑘 ∈ {𝑖, 𝑗} at round 𝑡 , we have
the following relationship as

Δ𝑘𝑡 = 𝑁𝑡𝑍
𝑘
𝑡 𝑤

𝑘
𝑡 , (2)

𝑣𝑘𝑡 = 𝑔(Δ𝑘𝑡 , 𝑟𝑡 ) . (3)

In this context, Δ𝑘𝑡 represents the total value of private order

flows that builder P𝑘 can build in round 𝑡 . 𝑁𝑡 represents the total

number of private order flows and𝑤𝑡 is the average profit provided

by each private order flow. The auction floor price 𝑟𝑡 is set to the

valuation of the block that can be constructed from public transac-

tions. From our observation in Section 3.2, the block valuation 𝑣𝑘𝑡
is an increasing function of 𝑍𝑘𝑡 . The builder P𝑖 (resp. P𝑗 ) uses the

bidding function 𝑠𝑖𝑡 (𝑣𝑖𝑡 , 𝑟𝑡 ), where 𝑟𝑡 also denotes the reservation

price of the proposers. Consequently, the bidding prices can be ex-

pressed as 𝑏𝑖𝑡 = 𝑠
𝑖
𝑡 (𝑣𝑖𝑡 , 𝑟𝑡 ) (resp. 𝑏

𝑗
𝑡 = 𝑠

𝑗
𝑡 (𝑣

𝑗
𝑡 , 𝑟𝑡 )). We denote that the

valuation of the block 𝑣𝑘𝑡 has its cumulative distribution function

𝐹𝑘 (·). With quasilinear utility function , we can derive builder P𝑖 ’s

utility function as follows

𝑢𝑖 (𝑣𝑖 , 𝑏𝑖 , 𝑏 𝑗 ) =
{
𝑣𝑖 − 𝑏𝑖 , if 𝑏𝑖 ≥ 𝑏 𝑗 , 𝑏𝑖 ≥ 𝑟,
0, otherwise.

(4)

Builder P𝑖 chooses its bidding price 𝑏𝑖 by maximizing

𝑅(𝑣𝑖 , 𝑏𝑖 , 𝑏 𝑗 ) = (𝑣𝑖 − 𝑏𝑖 )𝐹𝑖 [𝑠−1𝑗 (𝑏𝑖 , 𝑟 )] . (5)

There exists a solution to the following pair of differential equations
−𝐹𝑖

[
𝑠−1
𝑗

(𝑏𝑖 , 𝑟 )
]
+

(𝑣𝑖−𝑏𝑖 )𝐹 ′
𝑖

[
𝑠−1𝑗 (𝑏𝑖 ,𝑟 )

]
𝜕

𝜕𝑣𝑗
𝑠 𝑗

[
𝑠−1
𝑗

(𝑏𝑖 ,𝑟 ),𝑟
] = 0,

−𝐹 𝑗
[
𝑠−1
𝑖

(
𝑏 𝑗 , 𝑟

) ]
+ (𝑣𝑗−𝑏 𝑗 )𝐹 ′

𝑗 [𝑠−1𝑖 (𝑏 𝑗 ,𝑟)]
𝜕
𝜕𝑣𝑖

𝑠𝑖 [𝑠−1𝑖 (𝑏 𝑗 ,𝑟),𝑟] = 0.

(6)
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Figure 5: Bidding strategies and winning rate of builders.

Theorem 1. Strong builder P𝑖 bids less aggressively than Weak
builder P𝑗 for each valuation 𝑣 while being more likely to win in a
single round.

The proof of Theorem 1 can be found in Appendix C. Conse-

quently, Theorem 1 means that the builder with a higher valuation

distribution is more likely to submit higher bids, even though his

bidding strategy tends to be more conservative. We refer to this

phenomenon as the auction asymmetry between builders. We also

find the evidence in real-world data.

To present empirical evidence, we utilize builder bidding data

on 100,000 blocks from the end of February to mid-March 2024

to analyze the participation of various builders in the MEV-Boost

auction and their success rates, as shown in Figure 5. Furthermore,

we compute the ratio of successful auction bids to the block value

to validate Theorem 1. The right axis of Figure 5 illustrates the

number of slots. The blue and yellow bars depicted in the figure

denote the frequency of the builder’s participation in the MEV-

Boost auction and their respective winning counts. The left axis

of Figure 5 represents the ratio of successful auction bids to the

block value. The average bid proportion for each builder is indicated

by red dots. Moreover, a dashed line parallel to the x-axis separates

the left axis at a ratio of 0.8, and we use a dashed line perpendicular

to the x-axis to categorize the builders into the top 3 and other

builders. Notably, the top 3 builders’ blocks constitute over 90% of

all network blocks. The bidding proportions of the top three builders

are markedly below 0.8, significantly lower than those of lower-

ranked builders. However, the MEV-Boost auction rounds they win

exceed those with substantially higher bidding proportions. This

evidence precisely aligns with our previous Theorem 1.

4 Centralization in Builder Market
With information difference and auction strategy difference, the

dynamic impact on private order flows and builder winning prob-

ability is worth to be further studied. This section investigates

changes in market concentration among builders by employing

the framework of robust fairness. By our theorem, more and more

private order flows are concentrated on the winning builder, conse-

quently leading to a monopoly in the builder market. Our theorem

is supported by numerical simulations and empirical data.

4.1 Robust Fairness
In our paper, the robust fairness is used to evaluate whether the

random outcome of a builder’s winning probability will be con-

centrated on its initial value. What’s more, in order to study the

dynamic changes of private order flows and the winning probabil-

ity of builders, our analysis utilizes the techniques of Stochastic

Approximation (SA) [47, 49]. The formal definition and associated

lemmas of SA are presented in Appendix C.

We establish that {𝑍 𝑖𝑡 } is an SA algorithm. In particular, the

update of 𝑍 𝑖𝑡 is driven by the winning probability 𝜆𝑖 of builder P𝑖 in

the succeeding MEV-Boost auction, denoted by 𝑓 (·). Subsequently,
we use the SA algorithm to investigate the asymptotic properties

of 𝑍 𝑖𝑡 . Specifically, we discover that 𝑍
𝑖
𝑡 will almost surely converge

to either 0 or 1, which indicates that builder market cannot achieve

robust fairness.

Theorem 2. As rounds 𝑛 approach infinity, the winning proba-
bility 𝜆𝑖 of builder P𝑖 winning converges to 0 or 1 with certainty.
Consequently, the PBS builder market fails to achieve robust fairness,
ultimately resulting in a monopolistic state.

The comprehensive proof is detailed in Appendix C. Theorem 2

states that the winning probability of the builder will converge to

0 or 1. The builder with a winning probability of 0 will exit the

network successively due to running costs. Ultimately, only one

builder will carry out block construction and the builder market

becomes monopolized.

4.2 Experimental Evaluation
In this section, we assess the fairness of PBS under different values

𝑝𝑡 using numerical simulations. In our experimental evaluation, the

quantity of order flows 𝑁𝑡 within a single slot follows a Poisson

distribution. The average profit 𝑤𝑡 of each private order flow is

represented as a random variable drawn from a log-normal distri-

bution, which aligns with the previous study of the MEV-Boost

auction [60]. In addition, we have also performed an analysis of

victim transaction counts within each block, covering a range of

100,000 blocks from block 18,966,775 to block 19,066,775. The re-

sults of the chi-square test reveal that these counts conform to a

Poisson distribution.

For the purpose of robust fairness assessment, the parameters

are predefined as 𝜖 = 0.1 and 𝛿 = 10%. Consequently, there exists a

probability of at least 90% that the return on winning probability

for a builder, given a stochastic outcome, falls within [0.9, 1.1] of
its initial private order flow proportion. For practical implemen-

tation, the interval [(1 − 𝜖)𝜆0, (1 + 𝜖)𝜆0] is designated as the fair
area, with the lower and upper bounds of the simulation domain

corresponding to the 5th and 95th percentiles, respectively.

Figure 6 depicts the evolution of 𝜆𝑖 along with the 6,000 rounds

under 𝑍 𝑖
0
= 0.6,𝛿𝑡 = 0.0002, 𝑤𝑡 ∼ Log-normal(0, 1) and 𝑁𝑡 ∼

Poisson(5). The fair area is set to [0.54, 0.66], which captures the

robust fairness for block builders with information asymmetry and

auction asymmetry. In the numerical simulation, we examined three

scenarios characterized by 𝑝𝑡 = 0, 𝑝𝑡 = 0.5 and 𝑝𝑡 = 1. Consistent

with Theorem 1, we posit that the stronger builder will offer 70% of

the block value as their bid, while the weaker builder will offer 90%

of the block value to the proposer. Initially, builder P𝑖 wins 300 of

v
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Figure 6: Evolution of 𝜆𝑖 along with the number 𝑛 of blocks under 𝑍 𝑖
0
= 0.6.

500 blocks, so the initial winning probability is 0.6. The simulation

tracks the winning probability 𝜆𝑖 of builder P𝑖 after 6,000 blocks

across different scenarios. We repeat the simulations 1,000 times

and report the statistical results.

Figure 6 displays the variation of 𝜆𝑖 with an increasing number of

blocks for different 𝑝𝑡 . It is evident that 𝜆𝑖 will continue to increase,

with a more pronounced increase after block 3,223, block 4,002 and

block 3,992 respectively, since at that round 𝑍 𝑖𝑡 = 1. After that, the

builder P𝑖 will win all subsequent MEV-Boost auctions. In Figure 6a,

we observed a maintenance phase in the fair areas. 𝜆𝑖 is exhibiting

a slow upward trend at a gradual pace. The reason is that when

𝑝𝑡 = 0, many private order flows become public information due to

the simultaneous connection of two builders.

The scope of the experiment has been extended to include the

scenario of multiple builders, as detailed in Appendix B. Our find-

ings suggest that the presence of multiple builders does not alter

the inherent market tendency toward monopoly. Furthermore, our

research also concerns the collaboration between searchers and

builders, as well as the dynamics of timing games. A detailed anal-

ysis of these aspects is provided in Appendix A. In the context of

searcher builder collaboration, should the weaker builder establish

a fixed partnership to supply private order flow searchers, the mar-

ket will not advance towards a complete monopoly. However, for

this set of searchers, collaboration with the weaker builder is not

the optimal strategy for maximizing profits. Regarding the proposer

timing game, while the ultimate monopoly outcome remains un-

changed, the duration of the transition from oligopoly to monopoly

is altered.

The observation aligns with Theorem 2 that PBS cannot achieve

robust fairness. For builders with information and auction asymme-

try, the emergence of a monopoly state is inevitable. In conjunction

with numerical simulations, we scrutinize block data generated

within the PBS framework to furnish more evidence that supports

our simulations. Figure 7 delineates the variations in network con-

centration among block builders from September 2023 to mid-May

2024. We compute a weekly average of the builder’s market share

and employ the Herfindahl-Hirschman Index (HHI), as utilized

in [26], to evaluate the network concentration over time. Empirical

data elucidate a progressive intensification in the concentration

of the builder market, with the market share of the top-ranked

builder increasing from 18% to nearly 50%. This trend also indicates

Figure 7: The network concentration.

the road to a monopoly state within the builder market based on

real-world data.

5 Implications of Drifting to Monopoly
In this section, we examine the adverse consequences in the transi-

tion process toward a monopolistic builder market. This includes

proposer revenue reduction and block construction discrimination.

The former will result in the builder retaining a greater portion of

the rewards and sending fewer rewards to the proposer. The latter

can lead to longer transaction delays, especially for transactions

that offer fewer priority fees.

5.1 Proposer Revenue Reduction
In the MEV-Boost auction, it can be mathematically demonstrated

that builderP𝑖 exhibits first-order stochastic dominance over builder

P𝑗 [12]. However, in a surplus equivalence symmetric setting [9],

where the builder P𝑖 competes with another builder with a similar

distribution, the bid approach of the builder P𝑖 tends to be less

aggressive in the asymmetric case, which will reduce the profits of

stakers.

Given the inverse bidding functions, it is denoted as 𝜙𝑠 (𝑏) in
the symmetric situation and 𝜙𝑎 (𝑏) in the asymmetric situation. We

can formally describe this bidding difference using the following

vi
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Table 1: The market share and profit margin of builders.

Builders Market Share [%] Profit Margin [%]

beaverbuild 50.5 13.58

Titan 22.56 8.34

rsync-builder 13.64 27.66

jetbldr 3.09 -9.91

Flashbots 2.89 12.34

f1b 1.80 13.48

tbuilder 1.52 -5.77

builder0x69 1.49 16.68

penguinbuild 0.80 14.47

lokibuilder 0.41 13.47

equation which is

𝐹𝑠 [𝜙𝑠 (𝑏)] < 𝐹𝑎 [𝜙𝑎 (𝑏)] . (7)

𝜙𝑎 (𝑏) < 𝜙𝑠 (𝑏). (8)

To illustrate the relationship between the level of asymmetry and

the loss of income for proposers, we consider 𝐾 builders in the

PBS framework, each with i.i.d. valuations. Their cumulative distri-

bution function, denoted by 𝐻 (𝑣), is assumed to be continuously

differentiable. These builders are envisioned to form cartel organi-

zations, assuming two cartels:𝑚 + 𝑛 =𝑚′ + 𝑛′ = 𝐾 , where𝑚 > 𝑛

and𝑚′ > 𝑛′. This framework can be extended to involve multiple

entities.

In scenario 𝐼 , the distribution functions are 𝐹 𝐼
1
(𝑣) = 𝐻 (𝑣)𝑚

and 𝐹 𝐼
2
(𝑣) = 𝐻 (𝑣)𝑛 , leading to equilibrium (𝜙1 (𝑏), 𝜙2 (𝑏)). In con-

trast, in scenario 𝐼 𝐼 , the distributions are 𝐹 𝐼 𝐼
1
(𝑣) = 𝐻 (𝑣)𝑚′

and

𝐹 𝐼 𝐼
2
(𝑣) = 𝐻 (𝑣)𝑛′

, resulting in equilibrium (𝜙1 (𝑏), 𝜙2 (𝑏)). The ex-
pected revenue of the proposers in situation 𝐼 is denoted as 𝑅𝐼 and

the expected revenue of proposers in situation 𝐼 𝐼 is denoted as 𝑅𝐼 𝐼 .

If𝑚 < 𝑚′
, situation 𝐼 𝐼 is more asymmetric than situation 𝐼 , and we

have 𝑅𝐼 > 𝑅𝐼 𝐼 . That is

𝑅𝐼 =

∫
𝑏 d

(
𝐻 [𝜙1 (𝑏)]𝑚 𝐻 [𝜙2 (𝑏)]𝑛

)
,

𝑅𝐼 𝐼 =

∫
𝑏 d

(
𝐻

[
𝜙1 (𝑏)

]𝑚′

𝐻

[
𝜙2 (𝑏)

]𝑛′ )
.

Theorem 3. The inherent difference significantly decreases the
income of proposers compared to a symmetric auction. Furthermore, an
increase in the level of difference notably exacerbates the phenomenon
of income loss.

Note that a more detailed proof of Theorem 3 can be found in the

Appendix C. The information shown in Table 1 presents the profit

margins and market shares of the top ten builders in March 2024

during the MEV-Boost auctions. In order to compare with builder

markets with different levels of concentration, we adopted the same

profit margin calculation method from previous research [42]. In

our timeframe, the average HHI index is 0.35 from February 29 to

March 15, 2024. The builder named beaverbuild constructs more

than half of the blocks and has a profit margin of approximately

13.58% per block, while rsync-builder possesses 13.64% of themarket

and averages a profit of 27.66% per block. In contrast, in previous

research, the average HHI index is 0.23 from October 2023 to March
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Figure 8: Transactions inclusion delay in public mempool.

2024 [42], which means that the builder market is less concentrated.

The highest profit margin is only 5.4%, substantially lower than

our results. Our findings corroborate Theorem 3, which posits that

auction strategy difference in builders’ competition exacerbates

revenue loss for proposers. Additional detailed results, including

total profits and payments to the proposers for each builder, are

available in Appendix D.

5.2 Block Construction Discrimination
As per our analysis in Section 3, with the intensification of the

information difference, Strong builder can obtain a higher value

of the private order flow. Weak builders tend to withdraw more

transactions from the public memory pool in order to compensate

for the private order flow value obtained through their private

order flow and the gap with Strong builders. And Strong builder,

since it has more private order flow, withdraws less data from the

public mempool. To put it differently, an increase in the disparity

of block evaluations results in a prolonged average waiting period

for regular transactions, especially for those with lower priority

fees, within the public mempool.

We examined the transaction delays in the public mempool

during the period from November 2023 to May 2024, as shown

in Figure 8. This interval is calculated by subtracting the time that

transactions enter the public mempool from their actual inclusion

time. We rank priority fees from lowest to highest and analyze the

mean daily latency for transactions in both the highest and lowest

quartiles. We select transaction delays within the range of 5% to

95% to mitigate the impact of extreme values.

The blue line shows the delay for transactions with a higher

priority fee corresponding to the 25% quartile, while the red line

illustrates the transaction delay for lower priority fees at the 75%

quartile. It is observed that the lower the priority fee paid, the longer

the transaction delay. The light blue bar depicts the averagemonthly

delay difference between these two categories of transactions. As

beaverbuild’s market share has been steadily growing since January,

the concentration within the network has increased, leading to a

growing delay gap between transactions with lower and higher

priority fees. This gap has widened nearly 16 times, from 0.06 to

0.95. These results are consistent with our previous deductions.
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5.3 After Reaching Monopoly
In the presence of a monopolistic builder, the interaction between

the builder and the proposers will be subject to stringent unfair

conditions. This scenario is analogous to a dictator game. Based
on previous behavioral experiments [19], it can be deduced that

as the game continues to repeat, the monopolistic builder is likely

to become more selfish and eager to intercept all profits. In other

words, in a fully competitive builder market, the majority of these

profits are directed towards the proposer. In contrast, following the

monopoly of the builder market, the profit of the proposers will be

adversely affected. In the most extreme scenario, the proposers can

only receive the block floor price and cannot earn any additional

profits from private order flows.

Moreover, there is also the risk that the monopolistic builder

conditionally excludes specific transactions. In the PBS architec-

ture before 2023, there is evidence to support that the four largest

builders (Flashbots, Builder0x69, BloXroute, and beaverbuild) will

all censor the blocks. Their blocks are observed to omit transactions

associated with Tornado Cash, such as deposits to and withdrawals

from the Tornado Cash contract [53]. In 2024, 60% builders will still

review transactions in blocks [52]. This practice also means that

the builder can selectively exclude transactions, especially in the

monopoly case. The monopolistic builder can decide which trans-

actions to exclude from each block. Provided that the exclusion

of these transactions does not cause the block value to fall below

the auction floor price, the monopolistic builder can exclude these

transactions without any impact of the auction result.

6 Related Work
Miner Extractable Value. The concept of Miner Extractable Value

(MEV) was originally introduced in Flash Boys 2.0 [15], denoting

the potential profits that miners can accrue by reordering transac-

tions within smart contracts. The primary objective of this research

was to quantify and detect MEV, which constitutes a fundamen-

tal component of blockchain technology analysis. Qin et al. [45]

systematically quantified a range of tactics to extract MEV, includ-

ing front-running, back-running, and sandwich attacks. Notably,

within a sandwich attack scenario, the use of automated market

maker mechanisms in decentralized exchanges induces determinis-

tic price alterations based on transactional directionality [3, 66, 67].

Heimbach et al. [28] elucidated that MEV could substantially erode

user profits. This deterministic characteristic facilitates adversarial

prediction and exploitation of transaction outcomes. Recently, the

concept of Non-atomic Arbitrage was introduced in [27], demon-

strating how searchers capitalize on disparities between centralized

and decentralized exchanges. Furthermore, Wang et al. [57] identi-

fied cyclic arbitrage as an innovative MEV strategy. Li et al. [35]

executed an exhaustive investigation of Flashbots bundles, discov-

ering 17 novel DeFi MEV strategies. The research on MEV has

also been extended to the NFT field [39, 65]. These findings illu-

minate the intricate and evolving nature of MEV methodologies.

Our paper is pioneering in measuring MEV impacts within PBS

and delineate associated risks. This analytical endeavor is crucial

for understanding the extensive repercussions of MEV and PBS in

Ethereum.

Proposer Builder Seperation. The PBS ecosystem has been rig-

orously investigated in previous scholarly endeavors, yielding pro-

found insights into its dominant dynamics and future develop-

ments [10, 42, 53, 62, 63]. Heimbach et al. [26] delineated an unequiv-

ocal depiction of burgeoning centralization, particularly within

the builder and relay sectors of the PBS ecosystem, illuminating

the substantial control exerted by a few dominant entities. Simi-

larly, Wahrstatter et al. [54] performed a comprehensive analysis

of the competitive builder market, elucidating the implications of

vertical integration in diverting value and further consolidating

power. The work in [25] examined the implications of private order

flow auctions on the PBS equilibrium. It was contended that these

transformations not only disrupted the current framework but also

rendered the ecosystem more susceptible to vulnerabilities. Our

investigation uniquely forecasts the strategic maneuvers of builders

that might result in not only centralization but also a monopolistic

state, examining the intricate and delicate interrelationship in the

builder market, thereby highlighting concerns regarding fairness.

Frontier to Ethereum. The majority of existing studies focus on

the frontier study of blockchain, including smart contracts [34],

fraud behaviors [29] and wash trading detection [51]. Lin et al. [36]

introduced a novel money laundering detection algorithm, while

Li et al [33] researched on the phishing scams. Huang et al. [30]

measured the prosperous NFT ecosystem and revealed the facade of

decentralization. The use of NFT arbitage and airdrop is carried out

in [65]. Additionally, Wu et al. [61] designed a transaction seman-

tic extraction method, and Zhao et al. [64] performed a network

analysis and identified some anomaly behaviors in Ethereum.

7 Conclusion
In this paper, we identify the information difference among builders

and derive the auction strategy difference in MEV-Boost auction.

The analysis indicates that private transactions contribute signifi-

cantly to the information difference among builders. This produces

divergent valuations of blocks and different bidding strategies dur-

ing the MEV-Boost auction stage, with the dominant builder show-

ing a bidding ratio of 26.87% lower than that of other builders. Our

findings suggest that private order flows preferentially benefit the

builder with a higher winning probability. This tendency accentu-

ates the difference in auction strategies and enhances the winning

probability of the said builder. To verify this effect, we employ the

framework of robust fairness. Our model demonstrates that existing

differences compromise fairness within the builder market and cul-

minate in a monopolistic condition. Then we highlight significant

concerns posed by monopolistic builders, including issues related to

profit distribution and transaction discrimination. . These insights

are essential for the assessment of the current PBS mechanism and

the future development of more equitable mechanisms within the

blockchain ecosystem.
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Figure 9: Evidence of searchers-builders collaboration.

A Extension to Different Dynamics
We extend our analysis to include two more intricate scenarios.

Our findings indicate that in the scenario of collaboration between

builders and searchers, there is a low-level robust fairness. Addi-

tionally, the proposer timing game introduces enhanced winning

opportunities for select builders, thereby altering the time required

to achieve monopoly.

A.0.1 Searcher Builder Collaboration. We commence by examin-

ing the collaboration between builders and searchers. This entails

searchers exclusively providing bundles for a particular builder,

regardless of their success or failure in previous builder auctions.

As illustrated in Figure 9, this collaboration is evident. We can con-

trast two sets of searchers: Wintermute & Symbolic Capital Partner

and 0x98c3 & 0x6F1c. Standard searchers distribute their bundles

across multiple builders, thus enhancing their chances of inclusion

on the blockchain. The 0x98c3 & 0x6F1c group exemplifies this ap-

proach. Their bundles are similarly associated with various builders.

However, the Wintermute and Symbolic Capital Partner operate

differently. More than 95% of their bundles are sent to rsync-builder

and beaverbuild, respectively. This highlights a collaboration be-

tween Wintermute and rsync-builder, as well as Symbolic Capital

Partner and beaverbuild.

The collaboration between searchers and builders can lead to

private order flows even if some builders have lowwinning probabil-

ities. However, it should be noted that the searcher who cooperates

with builder P𝑖 did not actually employ the optimal strategy to

maximize profits. Because they cannot get the maximum chance of

being on the blockchain. The simulation result is shown in Appen-

dix B.

A.0.2 Timing Game. Another scenario involves the proposer delay,
referred to as the timing game between relays and proposers [50].

In essence, this theory elucidates that proposers aim to prolong the

process of selecting builders’ bids as much as possible, thereby en-

compassing block value within the extended timeframe. Following

the public disclosure of the timing game strategy on the proposer

named p2p.org [43], an increasing number of builders and proposers

are engaging in the timing game to earn greater block profits. Real-

world data indicates that proposers are willing to delay the time to

x
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Figure 10: The timing game among proposers.
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Figure 11: Impacts of winning bid selection time on winning
probability.

get the block header [41], and Figure 10 illustrates the existence of

this phenomenon. Lido and Coinbase hold more than 45 % of the

market share, but many of their chosen slots come from 2 seconds

later, as a comparison Figment, which is third in market share, has

almost all of its slots coming from 1.5 seconds earlier.

Figure 11 reveals the impacts of the timing game for different

builders. The data spans from slot 7,460,000 to 7,620,000, and we

analyze the top five builders in terms of market share during that

period. Evidently, if the selection time for the winning bid exceeds

2 seconds, the likelihood of Titan Builder winning increases by

approximately 20%, while the probability of rsync-builder winning

decreases correspondingly. In other words, the timing game also

affects the winning probability of builders. We posit the following

simplified expression: as a consequence of the delay induced by

the timing game, the winning probability of one of the builders

increases, while the other decreases. We find that the timing game

will affect the probability of winning, thereby altering the time for

the builder’s progression towards monopoly. However, it cannot

Table 2: Multiple Builders Fairness

No. of Builders PBS Collaboration Timing Game

Avg. of 𝜆𝑖 2 Builders 0.01 0.00 0.00

3 Builders 0.00 0.00 0.00

4 Builders 0.00 0.00 0.00

10 Builders 1.00 1.00 1.00

achieve robust fairness. The simulation result is shown in Appen-

dix B.

B Multiple Miners/Builders
In our previous analysis, we discussed the scenario involving two

block builders. We now extend this to consider the robust fairness

among multiple block builders. In the PBS mechanism, the variation

in connected private order flows proportions inevitably leads to one

of the block builders attaining a monopoly. Therefore, the results

for robust fairness in PBS align with the previous conclusions.

Table 2 displays the simulation results for multiple block builders

and more rounds. The simulation involved 10
5
blocks, with 1000

repeated experiments. Initial resource for builder P𝑖 is set to 𝜆0 =

0.2, other parameters are the same as the previous simulation. We

compared the proportion of winning probability 𝜆𝑖 . Clearly, robust

fairness is still not realized in PBS. The builder market always tends

to a monopoly.

C Missing Proofs
C.1 Proof of Theorem 1
For 𝑘 ∈ {𝑖, 𝑗}, builder P𝑘 ’s valuation 𝑣𝑘 has support [𝛽𝑘 , 𝛼𝑘 ],
0 ≤ 𝛽𝑘 < 𝛼𝑘 . For the sake of simplicity of the equations, it is

preferable to work with the bidding price 𝑏 instead of 𝑣 to depict

this equilibrium state. And we use 𝜙𝑖 (𝑏𝑖 ) to denote the inverse

function of 𝑠𝑖 (𝑣𝑖 , 𝑟 ). From Maskin and Riley [37, 38], there exist

minimum and maximum winning bids 𝑏 and 𝑏 for all 𝑏 ∈ [𝑏, 𝑏],
and the equilibrium’s differential equations can be expressed as

𝑓𝑖 (𝜙𝑖 )
𝐹𝑖 (𝜙𝑖 ) 𝜙

′
𝑖
(𝑏) = 1

𝜙 𝑗−𝑏 ,
𝑓𝑗 (𝜙 𝑗 )
𝐹 𝑗 (𝜙 𝑗 ) 𝜙

′
𝑗
(𝑏) = 1

𝜙𝑖−𝑏 .
(9)

The equations satisfy the following regularity condition which is

(𝑖) 𝜙𝑘 (𝑏) = 𝑠−1𝑘
(𝑏), 𝑘 ∈ {𝑖, 𝑗},

(𝑖𝑖) 𝐹𝑘 (𝜙𝑘 (𝑏)) = 1, 𝑘 ∈ {𝑖, 𝑗},
(𝑖𝑖𝑖) 𝛽 𝑗 < 𝑟 ≤ 𝛽𝑖 ⇒ 𝑏 =𝑚𝑎𝑥{argmax𝑏 {(𝛽𝑖 − 𝑏)𝐹 𝑗 (𝑏)}, 𝑟 },
(𝑖𝑣) 𝑟 ≤ 𝛽 𝑗 < 𝛽𝑖 ⇒ 𝑏 = argmax𝑏 {(𝛽𝑖 − 𝑏)𝐹 𝑗 (𝑏)}, 𝜙 𝑗 (𝑏) = 𝑏,
(𝑣) 𝛽 𝑗 < 𝛽𝑖 ≤ 𝑟 ⇒ 𝑏 = 𝜙𝑖 (𝑏) = 𝜙 𝑗 (𝑏) = 𝑟 .
Proof for 𝜙𝑖 (𝑏) > 𝜙 𝑗 (𝑏): For all 𝑥 < 𝑦 in (𝛽, 𝛼𝑖 ), if 𝐹𝑖 (·) condi-

tional stochastically dominates 𝐹 𝑗 (·), we have

𝑃𝑟 (𝑣𝑖 < 𝑥 |𝑣𝑖 < 𝑦) =
𝐹𝑖 (𝑥)
𝐹𝑖 (𝑦)

<
𝐹 𝑗 (𝑥)
𝐹 𝑗 (𝑦)

= 𝑃𝑟 (𝑣 𝑗 < 𝑥 |𝑣 𝑗 < 𝑦) (10)

Rearrange and compute the first derivative,

𝐹𝑖 (𝑥)
𝐹 𝑗 (𝑥)

<
𝐹𝑖 (𝑦)
𝐹 𝑗 (𝑦)

(11)
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𝑑

𝑑𝑣
( 𝐹𝑖 (𝑣)
𝐹 𝑗 (𝑣)

) > 0, 𝑣 ∈ (𝛽, 𝛼𝑖 ) (12)

which implies:

𝐹 ′
𝑖
(𝑣)

𝐹𝑖 (𝑣)
>
𝐹 ′
𝑗
(𝑣)

𝐹 𝑗 (𝑣)
, 𝑣 ∈ (𝛽, 𝛼𝑖 ) (13)

Suppose that 𝛽𝑖 = 𝛽 𝑗 = 𝛽 , this implies that the lower support of the

valuation distribution is influenced by the transactions contained

in the public mempool. The bidding support is [𝑏, 𝑏], then in a

punctured neighborhood of 𝑏, it is obvious:

𝛼𝑖 = 𝜙𝑖 (𝑏) > 𝛼 𝑗 = 𝜙 𝑗 (𝑏) (14)

Supposed that there exists 𝑏∗ ∈ [𝑏, 𝑏], and 𝜙𝑖 (𝑏∗) = 𝜙 𝑗 (𝑏∗) = 𝑣∗,
from (9), we can derive that:

𝑓𝑖 (𝑣∗)
𝐹𝑖 (𝑣∗)

𝜙 ′𝑖 (𝑏
∗, 𝑟 ) = 1

𝑣∗ − 𝑏∗ =
𝑓𝑗 (𝑣∗𝑗 )
𝐹 𝑗 (𝑣∗)

𝜙 ′𝑗 (𝑏
∗, 𝑟 ) (15)

From (13), we have 𝜙 ′
𝑗
(𝑏∗, 𝑟 ) > 𝜙 ′

𝑖
(𝑏∗, 𝑟 ), and 𝜙 𝑗 (𝑏) > 𝜙𝑖 (𝑏), for

𝑏 ∈ [𝑏∗, 𝑏], which is contradictory with (14). Thus we have 𝜙𝑖 (𝑏) >
𝜙 𝑗 (𝑏).

Proof for 𝐹𝑖 (𝜙𝑖 (𝑏)) < 𝐹 𝑗 (𝜙 𝑗 (𝑏)) Define:
𝑝𝑘 (𝑏) = 𝐹𝑘 (𝜙𝑘 (𝑏)) (16)

and

𝐻𝑘 (·) = 𝐹−1𝑘
(·) (17)

substituting (16) and (17) in to (9), we have
𝑝′
𝑖

𝑝𝑖
= 1

𝐻 𝑗 (𝑝 𝑗 )−𝑏 ,
𝑝′
𝑗

𝑝 𝑗
= 1

𝐻𝑖 (𝑝𝑖 )−𝑏
(18)

Since 𝐹𝑖 (𝛽) = 𝐹 𝑗 (𝛽) = 0, 𝑝𝑖 (𝛽) = 𝑝 𝑗 (𝛽) = 0, using L’Hôpital’s Rule

to (9) when 𝑏 = 𝛽 , we obtain:

𝜙 ′𝑖 (𝛽) = 𝜙
′
𝑗 (𝛽) = 2 (19)

By the definition of 𝑝𝑘 (·), we have:

𝑝′
𝑘
(𝑏) = 𝐹 ′

𝑘
(𝜙𝑘 (𝑏))𝜙 ′𝑘 (𝑏), 𝑘 ∈ {𝑖, 𝑗} (20)

Combine (19) and (20), we can get:

𝑝′
𝑘
(𝛽) = 2𝐹 ′

𝑘
(𝜙𝑘 (𝛽)), 𝑘 ∈ 𝑖, 𝑗 (21)

From13) , 𝐹 𝑗 (𝛽) > 𝐹𝑖 (𝛽). So it can be proved that there exist
ˆ𝛽 ∈

[𝑏, 𝑏] :
𝑝 𝑗 (𝑏) > 𝑝𝑖 (𝑏), 𝑏 ∈ [𝑏, ˆ𝛽] . (22)

Suppose that we have 𝑏∗ ∈ [𝑏, 𝑏] such that
𝑝𝑖 (𝑏∗ )
𝑝 𝑗 (𝑏∗ ) = 1, put it in

(18). Since 𝐻𝑖 (𝑝) > 𝐻 𝑗 (𝑝), for 𝑝 𝑖𝑛[0, 1], then we can get:

𝑝′
𝑗

𝑝 𝑗
=

1

𝐻𝑖 (𝑝𝑖 ) − 𝑏∗
<

1

𝐻 𝑗 (𝑝 𝑗 ) − 𝑏∗
=
𝑝′
𝑖

𝑝𝑖
(23)

Then
𝑝𝑖 (𝑏 )
𝑝 𝑗 (𝑏 ) increases at 𝑏∗. For 𝑏 ∈ [𝑏∗, 𝑏], we always have

𝑝𝑖 (𝑏 )
𝑝 𝑗 (𝑏 ) > 1. But we have 𝑝𝑖 (𝑏) = 𝑝 𝑗 (𝑏), so 𝑏∗ does not exist.

In summary, we can demonstrate that (25) is valid for 𝑏 ∈ [𝑏, 𝑏].
That means for all bidding 𝑏 on the interior of their supports, we

have

𝜙𝑖 (𝑏) > 𝜙 𝑗 (𝑏), (24)

𝐹𝑖 (𝜙𝑖 (𝑏)) < 𝐹 𝑗 (𝜙 𝑗 (𝑏)) . (25)

From Inequality (24), we can derive that if 𝑠𝑖 (𝑣𝑖 , 𝑟 ) = 𝑠 𝑗 (𝑣 𝑗 , 𝑟 ),
the MEV income 𝑣𝑖 of P𝑖 surpasses 𝑣 𝑗 of P𝑗 . Therefore, information

asymmetry leads to participants with higher valuations tending to

adopt more conservative bidding strategies. From Inequality (25),

we can obtain Pr(𝑣𝑖 ≤ 𝜙𝑖 (𝑏)) = Pr(𝑏𝑖 ≤ 𝑏) < Pr(𝑏 𝑗 ≤ 𝑏) = Pr(𝑣 𝑗 ≤
𝜙 𝑗 (𝑏)) , with 𝜙𝑘 (𝑏) strictly increasing, 𝑘 ∈ {𝑖, 𝑗}. Assuming the

cumulative distribution function of the binding price 𝑏 is denoted

as 𝑝𝑘 (𝑏), 𝑘 ∈ {𝑖, 𝑗}, we can obtain the bidding realization of P𝑖 also

first-order stochastically dominates that of P𝑗 .

C.2 Proof of Theorem 2
Our analysis utilizes the techniques of Stochastic Approximation

(SA) [47, 49]. We first introduce some useful definitions and lemmas

of SA in the following.

Definition 1 (Stochastic Approximation [47]). A stochastic
approximation algorithm {𝑍𝑛} is a stochastic process taking value in
[0, 1], adapted to the filtration F𝑛 , that satisfies,

𝑍𝑛+1 − 𝑍𝑛 = 𝛾𝑛+1
(
𝑓 (𝑍𝑛) +𝑈𝑛+1

)
,

where 𝛾𝑛 , 𝑈𝑛 ∈ F𝑛 , 𝑓 : [0, 1] ↦→ R and the following conditions hold
almost surely

(1) 𝑐𝑙/𝑛 ≤ 𝛾𝑛 ≤ 𝑐𝑢/𝑛,
(2) |𝑈𝑛 | ≤ 𝐾𝑢 ,
(3) |𝑓 (𝑍𝑛) | ≤ 𝐾𝑓 , and
(4) |E[𝛾𝑛+1𝑈𝑛+1 | F𝑛] | ≤ 𝐾𝑒𝛾

2

𝑛 ,
where 𝑐𝑙 , 𝑐𝑢 , 𝐾𝑢 , 𝐾𝑓 , 𝐾𝑒 are finite positive real numbers.

The stochastic approximation algorithm is originally used for

root-finding problems. Specifically, {𝑍𝑛} is a stochastic process

with an initial value of 𝑍0, 𝛾𝑛 denotes a moving step size gradually

decreasing along with 𝑛 and 𝛾𝑛𝑈𝑛 is a random noise with an ex-

pectation tending to zero quickly. In a nutshell, 𝑍𝑛 moves towards

one of the zero points of 𝑓 (·) and finally converges as long as the

update process iterates a sufficiently large number of steps.

Lemma 1 (Zero Point of SA [47]). If 𝑓 is continuous, then
lim𝑛→∞ 𝑍𝑛 exists almost surely and is in 𝑄 𝑓 = {𝑥 : 𝑓 (𝑥) = 0}.

Note that𝑍𝑛 may not converge to every zero point in𝑄 𝑓 . That is,

if a zero point 𝑞 is stable, 𝑍𝑛 converges to 𝑞 when 𝑛 → ∞ has a pos-

itive probability. Otherwise, if 𝑞 is an unstable point, 𝑍𝑛 converges

to 𝑞 with zero probability. The following lemmas characterize the

properties of stable and unstable points of SA.

Definition 2 (Attainability [47]). A subset 𝐼 is attainable if
for every fixed 𝑁 ≥ 0, there exists a 𝑛 ≥ 𝑁 such that Pr[𝑍𝑛 ∈ 𝐼 ] > 0.

Lemma 2 (Stable Zero Point of SA [47]). Suppose 𝑞 ∈ 𝑄 𝑓 is
stable, i.e., 𝑓 (𝑥) (𝑥 − 𝑞) < 0 whenever 𝑥 ≠ 𝑞 is close to 𝑞. If every
neighborhood of 𝑞 is attainable, then Pr[𝑍𝑛 → 𝑝] > 0.

Lemma 3 (Unstable Zero Point of SA [47]). Assume that there
exists an unstable point 𝑞 in𝑄 𝑓 , i.e., such that 𝑓 (𝑥) (𝑥−𝑞) ≥ 0 locally,
and that E[𝑈 2

𝑛+1 | F𝑛] ≥ 𝐾𝐿 holds, for some 𝐾𝐿 > 0, whenever 𝑍𝑛 is
close to 𝑞. Then, Pr[𝑍𝑛 → 𝑞] = 0.

We define𝑍𝑛 as the portion of the order flows received by builder

P𝑖 at 𝑛 rounds, for instance, 𝑍0 = 𝑎
𝑎+𝑏 . Additionally, we consider

two additional scenarios. In the first condition, private order flows

xii
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will be cut from the builder that failed in the previous round, that

is, 𝑝𝑛 = 1. We define 𝑍 ′
𝑛 as the portion of the private order flows

received by builder P𝑖 after 𝑛 rounds under this condition. Another

scenario is that private order flows will be retained from the failed

builder, that is, 𝑝𝑛 = 0. We define 𝑍 ′′
𝑛 as the portion of the order

flows received by the builder P𝑖 after 𝑛 rounds in this scenario.

We assume that in round 𝑛, the number of private order flows

involving changes is 𝛿𝑡 . Let𝑋𝑡 ∈ {0, 1} be a binary random variable

indicating whether P𝑖 is the winner for the MEV-Boost auction

at round 𝑡 . Then 𝑍 ′
𝑛 can be written as 𝑍 ′

𝑛 =
𝑎+2∑𝑛

𝑡=1 𝛿𝑡𝑋𝑡−
∑𝑛

𝑡=1 𝛿𝑡
𝑎+𝑏 .

𝑍 ′′
𝑡 can be written as 𝑍 ′′

𝑛 =
𝑎+∑𝑛

𝑡=1 𝛿𝑡𝑋𝑡

𝑎+𝑏+∑𝑛
𝑡=1 𝛿𝑡

. Under any circumstances

characterized by identical preceding victories or defeats, denoted

as {𝑍𝑛 | 𝑋0, 𝑋1, . . . , 𝑋𝑛−1}, we can get

min(𝑍 ′
𝑛, 𝑍

′′
𝑛 ) ≤ 𝑍𝑛 ≤ max(𝑍 ′

𝑛, 𝑍
′′
𝑛 ) . (26)

Then, the difference between 𝑍 ′′
𝑛+1 and 𝑍

′′
𝑛 can be written as

𝑍 ′′
𝑛+1 − 𝑍

′′
𝑛 =

𝑎 +∑𝑛+1
𝑡=1 𝛿𝑡𝑋𝑡

𝑎 + 𝑏 +∑𝑛+1
𝑡=1 𝛿𝑡

− 𝑍
′′
𝑛

=
(𝑎 + 𝑏 +∑𝑛

𝑡=1 𝛿𝑡 )𝑍 ′′
𝑛 + 𝛿𝑡+1𝑋𝑛+1

𝑎 + 𝑏 +∑𝑛+1
𝑡=1 𝛿𝑡

− 𝑍 ′′
𝑛

=
𝛿𝑡+1

𝑎 + 𝑏 +∑𝑛+1
𝑡=1 𝛿𝑡

· (𝑋𝑛+1 − 𝑍 ′′
𝑛 ) .

Moreover, let 𝛾𝑛+1 =
𝛿𝑡+1

𝑎+𝑏+∑𝑛+1
𝑡=1 𝛿𝑡

, 𝑓 (𝑍 ′′
𝑛 ) = E[𝑋𝑛+1 | 𝑍 ′′

𝑛 ] −𝑍 ′′
𝑛 and

𝑈𝑛+1 = 𝑋𝑛+1 − E[𝑋𝑛+1 | 𝑍 ′′
𝑛 ]. Then,

𝑍 ′′
𝑛+1 − 𝑍

′′
𝑛 = 𝛾𝑛+1

(
𝑓 (𝑍 ′′

𝑛 ) +𝑈𝑛+1
)
.

Next, we verify that conditions 1–4 given in Definition 1 hold

almost surely. For condition 1, we know that
𝛿𝑡

(𝑎+𝑏+𝛿𝑡 )𝑛
≤ 𝛾𝑛 ≤ 1

𝑛

and set 𝑐𝑙 = 𝛿𝑡/(𝑎 + 𝑏 + 𝛿𝑡 ) and 𝑐𝑢 = 1. For condition 2, we set

𝐾𝑢 = 1 as |𝑈𝑛 | ≤ 1. For condition 3, we know that

𝑓 (𝑍 ′′
𝑛 ) =


𝑍 ′′
𝑛

2(1−𝑍 ′′
𝑛 ) − 𝑍

′′
𝑛 , if 𝑍 ′′

𝑛 ≤ 1

2
,

1 − 1−𝑍 ′′
𝑛

2𝑍 ′′
𝑛

− 𝑍 ′′
𝑛 , otherwise.

(27)

Thus, it can be seen that

��𝑓 (𝑍 ′′
𝑛 )

�� ≤ 1 and hence we set 𝐾𝑓 = 1.

Finally, for condition 4, we find that E[𝛾𝑛+1𝑈𝑛+1 | F𝑛] = 0 and

hence we set 𝐾𝑒 = 0.

In addition, by Equation (27), we observe that 𝑓 (𝑍 ′′
𝑛 ) is continu-

ous for 𝑍 ′′
𝑛 ∈ [0, 1]. Thus, by Lemma 1, lim𝑛→∞ 𝑍 ′′

𝑛 exists almost

surely and is in one of the zeros of 𝑓 (·). Let 𝑓 (𝑥) = 0 such that the

zeros are found as 𝑄 𝑓 = {0, 1
2
, 1}. Then, it remains to show that

𝑞 = 1/2 is an unstable point and 𝑞 = 0 and 𝑞 = 1 are two stable

points.

Clearly, we have

𝑓 (𝑥) (𝑥 − 1/2) =
{
𝑥 (𝑥−1/2)

1−𝑥 · (𝑥 − 1/2) ≥ 0, if 𝑥 ≤ 1

2
,

(1−𝑥 ) (𝑥−1/2)
𝑥 · (𝑥 − 1/2) ≥ 0, otherwise.

Furthermore,

E[𝑈 2

𝑛+1 | F𝑛] = E[𝑋 2

𝑛+1 | 𝑍 ′′
𝑛 ] − E2 [𝑋𝑛+1 | 𝑍 ′′

𝑛 ]
= E[𝑋𝑛+1 | 𝑍 ′′

𝑛 ] − E2 [𝑋𝑛+1 | 𝑍 ′′
𝑛 ] .

Thus, if 𝑍 ′′
𝑛 is close to 1/2, i.e., 𝑍 ′′

𝑛 ∈ [1/2 − 𝜀, 1/2 + 𝜀] for some

𝜀 > 0, we have E[𝑋𝑛+1 | 𝑍 ′′
𝑛 ] ∈ [ 1/2−𝜀

1+2𝜀 ,
1/2+3𝜀
1+2𝜀 ]. As a result,

E[𝑈 2

𝑛+1 | F𝑛] ≥
1/2 − 𝜀
1 + 2𝜀

· 1/2 + 3𝜀

1 + 2𝜀
≜ 𝐾𝐿,

which implies 𝑞 = 1/2 is an unstable point. Hence, according

to Lemma 3, Pr[𝑍 ′′
𝑛 𝑛 → 1/2] = 0.

Finally, we prove that 𝑞 = 0 is a stable point, with 𝑞 = 1 being

analogous. Using a similar method, we can also prove that for 𝑍
′
𝑛 ,

there are only two stable points at 𝑞 = 0 and 𝑞 = 1. Therefore, we

can get the conclusion that 𝑍𝑛 will approach 0 or 1 when 𝑛 → ∞.

Note that when 𝑍𝑛 → 0, we must have 𝜆𝑖 → 0. Therefore, when

𝑛 → ∞, Pr[(1−𝜀)𝜆0 ≤ 𝜆𝑖 ≤ (1+𝜀)𝜆0] = 0 for any positive 𝜀, which

concludes the theorem.

C.3 Proof of Theorem 3
Proof for 𝐹𝑠 (𝜙𝑠 (𝑏)) < 𝐹𝑎 (𝜙𝑎 (𝑏)) and 𝜙𝑎 (𝑏) < 𝜙𝑠 (𝑏): We define

[𝑢,𝑢] as the support of bidding valuation in the asymmetric situa-

tion and [𝑏𝑠 , 𝑏𝑠 ] represent the bidding support of the symmetric auc-

tion with bidders ’ valuations. We can derive that 𝑏𝑠 ≤ 𝑢, hence we
have 𝜙𝑎 (𝑏) ≥ 𝜙𝑎 (𝑏). For any 𝑏 ∈ (𝛽𝑠 , 𝑏), such that 𝜙𝑎 (𝑏) ≤ 𝜙𝑎 (𝑏).

𝐹 ′𝑎 (𝜙𝑎)
𝐹𝑎 (𝜙𝑎)

𝜙 ′𝑎 =
1

𝜙 𝑗 − 𝑏
>

1

𝜙𝑖 − 𝑏
≥ 1

𝜙𝑎 − 𝑏 =
𝐹 ′𝑠 (𝜙𝑠 )
𝐹𝑠 (𝜙𝑠 )

𝜙 ′𝑠 . (28)

Hence,

𝜙𝑎 (𝑏) ≤ 𝜙𝑠 (𝑏) . (29)

𝑑

𝑑𝑣
( 𝐹𝑎 (𝜙𝑎)
𝐹𝑠 (𝜙𝑠 )

) > 0. (30)

For some
ˆ𝜃 ≤ 1, suppose that there exits

ˆ𝑏 ∈ (𝛽𝑠 , 𝑏∗) satisfying

𝐹𝑎 (𝜙𝑎 ( ˆ𝑏))
𝐹𝑠 (𝜙𝑠 ( ˆ𝑏))

= ˆ𝜃 . (31)

Because
𝐹𝑎 (𝜙𝑎 ( ˆ𝑏 ) )
𝐹𝑠 (𝜙𝑠 ( ˆ𝑏 ) )

is increasing at
ˆ𝑏, thus we have

𝜙𝑎 (𝑏) < 𝜙𝑠 (𝑏) 𝑎𝑛𝑑
𝐹𝑎 (𝜙𝑎 ( ˆ𝑏))
𝐹𝑠 (𝜙𝑠 ( ˆ𝑏))

> 0. (32)

But 𝜙𝑠 (𝑏𝑠 ) = 𝑏𝑠 and so 𝜙𝑎 (𝑏𝑠 ) ≥ 𝜙𝑠 (𝑏𝑠 ), which is contradiction

with Formula 29

Proof for 𝑅𝐼 > 𝑅𝐼 𝐼 with

𝑅𝐼 =

∫
𝑏 d

(
𝐻 (𝜙1 (𝑏))𝑚𝐻 (𝜙2 (𝑏))𝑛

)
,

𝑅𝐼 𝐼 =

∫
𝑏 d

(
𝐻 (𝜙1 (𝑏))𝑚

′
𝐻 (𝜙2 (𝑏))𝑛

′ )
.

Denote by (𝜙1, 𝜙2) the equilibrium in the scenario 𝐼 , and by ( ˜𝜙1, ˜𝜙2)
the equilibrium in the scenario 𝐼 𝐼 . Let𝐺𝐼 (𝑏) = 𝐻 (𝜙1 (𝑏))𝑚𝐻 (𝜙2 (𝑏))𝑛
and 𝐺𝐼 𝐼 (𝑏) = 𝐻 (𝜙1 (𝑏))𝑚

′
𝐻 (𝜙2 (𝑏))𝑛

′
, that is 𝐺𝐼 and 𝐺𝐼 𝐼 are the

cumulative distribution of bids under scenario 𝐼 and scenario 𝐼 𝐼

respectively. With these notions,

𝑅𝐼 (𝑏) =
∫

𝑏𝑑𝐺𝐼 (𝑏) . (33)
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Table 3: Statistic data of top builders

Builders Blocks [#] Market Share [%] Total Payments [ETH] Total Block Value [ETH] Profit Margin [%]

beaverbuild 44,602 50.5 6278.51 8036.49 13.58

Titan 19,927 22.56 3479.22 6682.89 8.34

rsync-builder 12,043 13.64 1651.13 2288.90 27.66

jetbldr 2,731 3.09 189.31 188.27 -9.91

Flashbots: Builder 2,556 2.89 472.00 573.89 12.34

f1b 1,572 1.80 131.17 158.94 13.48

tbuilder 1,339 1.52 52.36 55.60 -5.77

builder0x69 1,312 1.49 215.43 327.18 16.68

penguinbuild 708 0.80 101.64 124.74 14.47

lokibuilder 359 0.41 24.92 31.37 13.47

𝑅𝐼 𝐼 (𝑏) =
∫

𝑏𝑑𝐺𝐼 𝐼 (𝑏). (34)

A sufficient condition for 𝑅𝐼 (𝑏) > 𝑅𝐼 𝐼 (𝑏) is that 𝐺𝐼 (𝑏) < 𝐺𝐼 𝐼 (𝑏) in
the interior of their common support. Using first-order stochastic

dominance, we have

𝐺𝐼 (𝑏) = 𝐺𝐼 𝐼 (𝑏) ⇒
𝐺 ′
𝐼
(𝑏)

𝐺𝐼 (𝑏)
<
𝐺 ′
𝐼 𝐼
(𝑏)

𝐺𝐼 𝐼 (𝑏)
. (35)

This allows us to rule out any crossing of 𝐺𝐼 (𝑏) and 𝐺𝐼 𝐼 (𝑏) to
the right of 𝑏, 𝑏 is the lower bounder of bidding value and using

Formula 35 we can easily derive 𝑅𝐼 (𝑏) > 𝑅𝐼 𝐼 (𝑏).

D Builder Profit
In Table 3, in addition to builder’s market share and profit margin,

we also calculate the total payments to proposers and total block

value of builders.
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