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Abstract

Adversarial perturbations on misleading a well-trained ma-
chine learning (ML) model have been studied in computer
vision (CV) and other related application areas. However,
there is very limited focus on studying the impact of adver-
sarial perturbations on ML models used in data-driven cyber-
physical systems (CPSs) that normally have complex physi-
cal and mechanical constraints. Because of the complex phys-
ical and mechanical constraints, called domain-knowledge
constraints in our paper, established gradient-based adversar-
ial attack methods are not always practical in CPS applica-
tions. In this paper, we propose an innovative CPS-specific
adversarial attack method that is able to practically compro-
mise the ML-based decision makings of CPSs while main-
taining stealthy by meeting the complex domain-knowledge
constraints. In the section of performance evaluations, differ-
ent scenarios are considered to illustrate the effectiveness of
the proposed adversarial attack method in achieving a high
success rate as well as sufficient stealthiness in CPS applica-
tions.

1 Introduction
In recent years, increasing evidence shows that carefully
crafted adversarial perturbation is able to introduce bounded
subtle adversarial perturbation that can mislead learning
models to achieve incorrect decision making (Szegedy et al.
2013). Extensive research has been developed to study the
impact of adversarial attack in different data-driven appli-
cations (Krizhevsky, Sutskever, and Hinton 2012; Lin et al.
2017; Vaswani et al. 2017; Goodfellow, Shlens, and Szegedy
2014; Alzantot et al. 2018; Alzantot, Balaji, and Srivastava
2018; Carlini and Wagner 2017). From the existing studies,
it is clear that the vulnerability raised by adversarial attacks
makes ML models not always trustworthy when being de-
ployed in real-world applications such as self-driving car,
face recognition, and Q&A systems. Therefore, it is crucial
to sufficiently mitigate the adversarial perturbations. To re-
alize successful mitigation strategy, it can be beneficial to
first exploit adversarial mindset and formulate threat models
of practical adversarial perturbations for a given application
field.
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To achieve this goal, many techniques have estab-
lished to generate adversarial perturbations successfully
misleading ML models on CV- and NLP- related applica-
tion fields (Szegedy et al. 2013; Goodfellow, Shlens, and
Szegedy 2014; Carlini and Wagner 2017; Devlin et al. 2018;
Zhang et al. 2020). However, there is very limited work fo-
cusing on generating practical adversarial attacks in CPS-
related application domain. A CPS, such as power system
and transportation system, normally has complex domain-
knowledge constraints. Due to the complex constraints, it
can be challenging to design and launch adversarial per-
turbation practically. For example, the sensing data manip-
ulated with adversarial perturbation may violate the con-
straints in CPSs and can be detected via built-in detec-
tors that are conventionally designed based on domain-
knowledge constraints. To address this challenge, we pro-
pose a practical and stealthy adversarial attack where adver-
sarial perturbations are able to sufficiently mislead learning
model in CPSs while bypassing the built-in detectors effec-
tively. Concretely, our proposed CPS-specific adversarial at-
tack method delivers three main contributions:

• We propose an unsupervised disentangled representation
model to learn and interpret the features of CPSs’ sensing
data by disentangling the features into domain features,
which are related to domain-knowledge constraints, and
attribute features that are not highly correlated to the con-
straints. Using these explainable feature maps, our pro-
posed method can produce practical and stealthy adver-
sarial perturbations.

• Our method provides a novel and practical solution to
effectively select and utilize explainable features for syn-
thesizing adversarial perturbations in CPS domain.

• Our proposed method does not require any handcrafted
domain knowledge to be integrated explicitly in the at-
tack model formulation. By doing so, the attacker is not
required to have sufficient knowledge of the targeted CPS
system. Additionally, this also results in a more general
application scenario for our method, specially when the
domain-knowledge constraints cannot be represented in
a mathematically differentiable form.

The rest of the paper is organized as follows. In Section 2,
we will review related work. In Section 3, we will introduce
our proposed CPS-specific adversarial attack. In Sections 4



and 5, the performance evaluations and conclusions will be
presented, respectively.

2 Related Work
In this section, we review the state-of-the-art works related
to our proposed method.

2.1 White-Box and Black-Box Adversarial
Attacks

Many previous works focus on generating adversarial per-
turbations based on the full knowledge of the targeted learn-
ing model, called white-box adversarial attack. Fast Gradi-
ent Sign Method (FGSM) defines the perturbation follow-
ing the direction of gradient to maximize the loss func-
tion of learning model (Goodfellow, Shlens, and Szegedy
2014). Kurakin et al. (2016) introduced an iterative method
to search optimal values for adversarial perturbations. Pro-
jected Gradient Descent (PGD) method is another iterative
method that implements projected gradient to restrict the
scale of searched perturbation (Madry et al. 2017). Some
following research work emphasized on how to enhance
the computation efficiency of PGD (Shafahi et al. 2019;
Zhang et al. 2019; Zhu et al. 2020). Additionally, Moosavi-
Dezfooli, Fawzi, and Frossard (2016) proposed a method,
called DeepFool, to quantify the robustness of state-of-the-
art classifiers and compute adversarial perturbations to com-
promise the classifiers. Papernot et al. (2016) used the first
derivative of feed-forward neural network to compute the
adversarial samples. Carlini and Wagner (2017) formulated
a new optimization instance with Lagrangian relaxation to
bound the perturbation for adversarial training. Dong et al.
(2018) proposed momentum-based adversarial attack which
has a more stable update gradient direction than previous
methods. In many practical scenarios, the attacker does not
have access to the target learning model. In this situation,
a black-box adversarial attack is necessary. Transfer-based
method was proposed to generate adversarial perturbations
of a surrogate model to compromise the target learning
model in a black-box scenario (Liu et al. 2016; Papernot
et al. 2017; Lu, Issaranon, and Forsyth 2017; Dong et al.
2018). Published experiment results show that the adversar-
ial perturbations generated against surrogate models can be
effective on compromising the target learning models. In or-
der words, transferability can be maintained.

2.2 Adversarial Attack In CPSs
As far as we know, very limited research work has been
done to generate practical adversarial perturbations in CPSs.
In (Li et al. 2021), a search of optimal adversarial pertur-
bation was considered as an optimization problem where
domain-knowledge constraints were carefully and explicitly
represented as linear equations or inequalities. The search
is an iterative process to find proper perturbation which
can both mislead learning model and fulfill the domain-
knowledge constraints. This method is effective in the con-
sidered scenarios. However, this method requires examina-
tion of the integrity of domain-knowledge constraints in

each iteration. Additionally, when constraints can not be rep-
resented in linear forms, the effectiveness of this method can
be compromised.

2.3 Disentangled Representation
Disentangled representation learning focuses on extract-
ing domain-invariant features from example pairs. Differ-
ent methods have been developed to successfully extract
the domain-invariant content features via an autoencoder
model structure in CV applications (Lee et al. 2018; Cheung
et al. 2014; Mathieu et al. 2016). Adversarial training loss
from Generative Adversarial Network (GAN) (Goodfellow
et al. 2014) is implemented in the disentangled representa-
tion model to enforce the learning of disentangled represen-
tations. The work of Lee et al. (2018) considered that con-
tent and attribute features are designated as the distinct fea-
ture spaces for learning the disentangled representations of
images. Additionally, this model assumes that the attribute
feature aligns with a prior Gaussian distribution.

3 Proposed CPS-Specific Adversarial Attack
In this section, we describe our proposed practical and
stealthy CPS-specific adversarial attack.

3.1 Problem Formulation
In our work, we specify a threat model of our proposed CPS-
specific adversarial attack as follows:

1 The attacker is assumed to have access to partial data
of the targeted data-driven CPSs via eavesdropping and
querying for information distillation.

2 Considering that the learning model F and the built-in
detector B are critical for a data-driven CPS, F and B
are always launched with advanced security measures.
Therefore, it is reasonable to assume that the attacker
does not have access to F and B . The attacker can re-
alize information distillation about F by reconstructing
a surrogate model Fs with the data obtained via eaves-
dropping and querying.

3 It is also reasonable to believe that the training procedure
of the learning model F is conducted with advanced se-
curity measures. Because of it, we assume that the at-
tacker cannot access the training procedure and the data
used for the training procedure.

4 The objective of the attacker is to launch an adversar-
ial attack that is able to sufficiently mislead the learning
model F during the inference procedure while bypassing
the built-in detector B effectively.

5 The attacker has limited knowledge of the physical and
mechanical constraints, called domain-knowledge con-
straints in our paper, of the targeted CPSs.

For simplicity, in our work, the learning model F in the tar-
geted CPS is considered to make classification-based deci-
sion making, such as detecting false data injection attack in
a power system and detecting vehicle state attack in a trans-
portation system.



To realize a practical and stealthy attack, the adversarial
perturbation r should be optimized to maximize the cross-
entropy for misleading the target learning model F , which
is described as:

r = argmin
||r||∞≤ε

log2[P (y|x+ r,F )]. (1)

where x and y are a sensing data sample and its associated
label, respectively, and ε is the upper bound of the infinite
norm of perturbation r. However, since F is unknown to the
attacker, the attacker needs to reconstruct a surrogate model
Fs for information distillation about F . Therefore, Eq. (1) is
reformulated as follows:

r = argmin
||r||∞≤ε

log2[P (y|x+ r,Fs)]. (2)

In our work, we aim to build an effective surrogate model
Fs, based on which the adversarial perturbation r is gen-
erated to not only mislead the learning model F but also
bypass the built-in detector B .

3.2 Framework Overview
The overview of our proposed framework for generating the
adversarial perturbation r is illustrated in Fig. 1. As shown
in Fig. 1, the framework mainly consists of three steps:

Step 1: A disentangled model is trained to learn and inter-
pret the features of the sensing data samples by disen-
tangling the features into domain features and attribute
features. A completed disentangled model includes two
encoders and a decoder. We only utilize the selected en-
coder in the following steps for generating adversarial
perturbations.

Step 2: The selected encoder of the disentangled model is
reused as a transfer-learning model to optimize the cas-
caded discriminator. The encoder and discriminator con-
stitute the surrogate model Fs that is used for information
distillation for the learning model F .

Step 3: The surrogate model Fs is utilized to generate the
adversarial perturbations that have transferability to com-
promise the target learning model F . The attacker queries
the target learning model F with the generated adversar-
ial data sample x + r for testing the effectiveness of the
attack strategy.

In the next subsections, we detail the main steps of our pro-
posed framework.

3.3 Design of Disentangled Representation Model
As stated above, in our proposed framework, a disentangled
representation model is designed for interpreting the features
of the sensing data by disentangling the features into domain
and attribute features, which enables stealthy adversarial at-
tack. Inspired by the work of Lee et al. (2018), we propose
a novel autoencoder structure by exploiting cycle-generative
adversarial network (CycleGAN) (Zhu et al. 2017) for re-
alizing the disentangled representation model. A data pair
(x1, x2) sampled from the accessible dataset is fed to the
proposed disentangled representation model shown in Fig. 2.
Two encoders Ed and Ea are utilized to extract domain and
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Figure 1: Overview of our proposed framework for gener-
ating CPS-specific adversarial attack.
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Figure 2: The overview of the proposed disentangled repre-
sentation model.

attribute features, respectively. After the encoders, the ex-
tracted features of the two input data samples are mixed and
fed to decoder D . The decoder generates two new fake data
samples f1 and f2, which are associated with the real data
x1 and x2, respectively. A discriminator Cf is implemented
after the decoder to identify whether the input data is real or
fake. The generated fake data are then encoded and decoded
again in the same mixing pattern as the previous autoen-
coder. Therefore, the generated fake examples in the second
round should be the same as or very close to the input data
samples if the encoders and decoder are optimal.

During the training process of our proposed disentangled
representation model, there are eight loss-function terms re-
quired to be minimized as stated in the followings:
1 Cycle-reconstruction loss: this loss represents the mean

square error between the generated fake data x̂ in the sec-
ond round and the associated real data x:

L1 =||x̂1 − x1||22 + ||x̂2 − x2||22,

where


x̂1 = D(Ed(f1), Ea(f2))
x̂2 = D(Ed(f2), Ea(f1))
f1 = D(Ed(x1), Ea(x2))
f2 = D(Ed(x2), Ea(x1))

.
(3)

2 Discriminator loss: this loss is based on the binary cross-
entropy method. If the data sample is real, the output is
one. Otherwise, the output is zero. The loss can be for-
mulated as:

L2 =− log2(Cf (x1))− log2(Cf (x2))

− log2(1− Cf (f1))

− log2(1− Cf (f2)).

(4)



3 Adversarial training loss: this loss represents the qual-
ity of the fake data samples generated by the autoen-
coder. The autoencoder belongs to generative model in
GAN that performs adversarial optimization. In this case,
the autoencoder aims to produce higher-quality fake data
samples that are able to bypass the discriminator. The
loss is formulated as:

L3 =− log2(Cf (f1))− log2(Cf (f2)). (5)

4 Conditional-reconstruction loss I: if x1 and x2 have dif-
ferent domain features and share the same attribute fea-
tures, the fake example f1 should be the same as or close
to x1. The same situation applies to f2 and x2. There-
fore, the loss is used to optimize the model only if x1
and x2 share the same attribute features. The loss can be
calculated as:

L4 = ||f1 − x1||22 + ||f2 − x2||22. (6)

5 Conditional-reconstruction loss II: if x1 and x2 share the
same domain features and have diverse attribute features,
the fake data sample f2 should be the same as or close to
x1. The same situation applies to f1 and x2. Therefore,
the loss is used to optimize the model only if x1 and x2
share the same domain features. The loss can be calcu-
lated as:

L5 = ||f2 − x1||22 + ||f1 − x2||22. (7)

6 Cycle consistency loss: this loss represents the summa-
tion of the mean square error between the encoded fea-
tures in the first round and the encoded features in the
second round:

L6 =||Ed(f1)− Ed(x1)||22 + ||Ed(f2)− Ed(x2)||22
+ ||Ea(f1)− Ea(x2)||22 + ||Ea(f2)− Ea(x1)||22.

(8)

7 Conditional pair loss I: if x1 and x2 share the same do-
main features and have diverse attribute features, Ed(x1)
and Ed(x2) should be the same or close to each other.
Additionally, Ea(x1) and Ea(x2) should be very differ-
ent from each other. The loss can be represented as:

L7 =||Ed(x1)− Ed(x2)||22 − ||Ea(x1)− Ea(x2)||22.
(9)

8 Conditional pair loss II: if x1 and x2 share the same
attribute features and have diverse domain features,
Ea(x1) and Ea(x2) should be the same or close to each
other and the domain featuresEd(x1) andEd(x2) should
be very different from each other. Thus, the loss can be
represented as:

L8 =||Ea(x1)− Ea(x2)||22 − ||Ed(x1)− Ed(x2)||22.
(10)

3.4 Surrogate Model Construction
Once the disentangled representation model is well-trained,
we utilize the encoders Ed and Ea as the initial model to

transfer domain knowledge to the surrogate model. The out-
puts of Ed and Ea are concatenated and fed to a new dis-
criminator Cc to learn the task of the target learning model.
Figure 3 illustrates the structure of the surrogate model.
Since domain and attribute encoders are well-trained in the
previous step, their parameters are fixed and only the pa-
rameters of the following discriminator Cc are updated dur-
ing the training of surrogate model. In other words, the con-
struction of surrogate model can be viewed as a transfer-
learning process where a classifier is built on the existing
model. Since the attacker is assumed to have no knowledge

x

Ed

Ea

Cc ŷ

Figure 3: Network structure for surrogate model.

of the target learning model F as stated in our threat model,
the discriminator Cc can have an arbitrary structure.

3.5 Generation of Adversarial Perturbation
In our proposed method, the generation of adversarial at-
tack based on the surrogate model is realized by exploiting
gradient-based algorithms. Three gradient-based algorithms
are considered in our current work, including Fast Gradi-
ent Sign Method (FGSM) (Goodfellow, Shlens, and Szegedy
2014), a Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) (Dong et al. 2018), and Projected Gradient De-
scent (PGD) (Madry et al. 2017). The loss of generating ad-
versarial perturbation is formulated to maximize the differ-
ence between the model prediction ŷ and the associated true
label y, which is shown as follows:

La = −distance(ŷ, y), (11)

where ŷ = Fs(x). Additionally, to enable a stealthy adver-
sarial attack, the adversarial perturbation needs to be able to
bypass the built-in detector that is conventionally designed
based on domain-knowledge constraints. Considering that
domain features characterize the inherent features associ-
ated with domain-knowledge constraints, the impact of the
adversarial perturbation on the domain features needs to be
minimized. To realize this goal, in our proposed method, the
domain encoder Ed is selected to be detached when execut-
ing backpropagation on the model Fs for generating adver-
sarial perturbation. By doing so, the gradient calculation is
restricted to only follow the direction of extracted attribute
features.

4 Performance Evaluations
In this section, we will evaluate the performance of our pro-
posed CPS-specific adversarial attack from the perspectives
of efficiency on misleading the target learning model and the
stealthiness via bypassing the built-in detector effectively.
We consider two CPS case studies for performance evalua-
tions: one is about detecting false data injection attack in a



power system, and the other is about detecting vehicle state
attack in a transportation system.

4.1 Case Study I
In this case study, we consider a CPS scenario where a learn-
ing model F is deployed to detect false data injection at-
tack (Liu, Ning, and Reiter 2011) in IEEE 39-Bus System
that has 10 generators and 46 power lines (Athay, Podmore,
and Virmani 1979). Additionally, a built-in residual-based
detector is considered, which is formulated as follows:

||z + a−Hs′||2 ≤ α. (12)

where a denotes an attack vector, z denotes the original be-
nign measurement data, H denotes the a constant matrix
characterizing physical constraints of the power system, s′ is
the state estimation based on the measurements potentially
compromised by the attack vector a, and α is the threshold
of the built-in detector. Using our proposed method, an ad-
versarial attack is generated to mislead the learning model F
sufficiently while bypassing the built-in detector formulated
in Eq. (12) effectively.

In our case study, the sensing dataset are collected from
simulations with multiple load profiles and two topology
profiles. We consider the constraints represented by the
topology profiles correspond to the domain features in our
disentangled representation model. Additionally, the infor-
mation represented by load profiles corresponds to the at-
tribute features. Each training data sample pair for training
the disentangled representation model is randomly sampled
from the dataset. If the pair shares the same load profile,
conditional-reconstruction loss I and conditional pair loss
II are applied. If the pair shares the same topology pro-
file, conditional-reconstruction loss II and conditional pair
loss I are applied. All the other four loss-function terms de-
fined in Section 3.3 are always applied no matter which pair
is fetched for optimizing the model. In addition, 2000 data
samples are collected, of which 900 data samples are used
for realizing the learning model F for detecting the false
data injection attack in the power system and 1100 data sam-
ples are considered to be accessible to the attacker for devel-
oping and deploying adversarial attack. Furthermore, in our
case study, we consider the target learning model F is in the
form of either fully connected neural network (FCNN) or
recurrent neural network (RNN).

For generating the adversarial perturbation, we first train
a RNN-based disentangled model to extract the domain and
attribute features. Then the encoders of this model is uti-
lized as a pre-trained model to fine-tune a surrogate model.
The training data samples for the surrogate model include
the benign data samples and the data manipulated via false
data injection attack. The domain encoder is selectively de-
tached during the calculation of the gradient for perturba-
tion generation. As a comparison, we also introduce gen-
eral gradient-based adversarial attack methods as baseline
methods. The success rates of our proposed CPS-specific
adversarial attack on misleading the decision making by ex-
ploiting FGSM, MI-FGSM and PGD method are shown in
Figs. 4 to 6, respectively. As illustrated in the plots, our pro-
posed method is able to achieve comparable success rates

compared with the baseline methods. Additionally, our pro-
posed method shows better transferability on misleading
FCNN-based target learning model compared with mislead-
ing RNN-based learning model. We continue to evaluate the
capacity of our proposed adversarial attack on bypassing the
built-in detector. The bypassing capacity g is formulated as:

g = min
( 1

log2(||z + a−Hs′||2)
, 1
)
. (13)

The performance evaluation is shown in Fig. 7. From Fig. 7,
it is clear that our method outperforms the baseline methods.
Additionally from Figs. 4 to 7, we can get that our proposed
adversarial attack is able to achieve a good trade-off between
the misleading efficiency and bypassing capability.

4.2 Case Study II
In this case study, we leverage the Veremi dataset for per-
formance evaluation by considering a scenario of detect-
ing vehicle state attack in a transportation system (van der
Heijden, Lukaseder, and Kargl 2018). The dataset collects
the vehicle state message from 37500 vehicles in Luxem-
bourg SUMO Traffic scenario (Codecá et al. 2017). The
vehicle state message contains the positions of transmitter
and receiver, speed, and elapsed time. The injected vehicle
state attack includes constant value, constant offset, random
value, random offset, and eventual stop (van der Heijden,
Lukaseder, and Kargl 2018). In this transportation system, a
deep learning model is deployed to detect the vehicle state
attack. Additionally, the system also has two types of built-in
detectors: sudden appearance warning (SAW) based detector
and acceptance range threshold (ART) based detector. SAW-
based detector detects the vehicle state attack by measuring
the moved distance between samples and identifying the un-
reasonable moving distance. ART-based detector detects the
attack by estimating the communication distance between
the transmitter and receiver and identifying the unreachable
vehicles.

In this scenario, our proposed method firstly trains a
RNN-based disentangled model to extract the domain and
attribute features. Since no prior domain knowledge is as-
sumed in this scenario, we consider the common features
shared by all the data as the domain features and the other
features as the attribute features. In this case, all the loss-
function terms except conditional-reconstruction loss I and
conditional pair loss II are implemented in this scenario.
Secondly, we implement a RNN-based surrogate model. We
evaluate the performance of our method by considering that
the target learning model is based on either FCNN or RNN,
which is shown in Fig. 8. From the plots, it is clear that our
method outperforms the baseline method, general FGSM, in
misleading both FCNN-based and RNN-based target learn-
ing models. We also evaluate the capability of our method
on bypassing the SAW-based and ART-based detectors. The
bypassing capacity of the adversarial attack is formulated
as the probability of not being detected by the built-in de-
tectors. The performance evaluation is shown in Fig. 9, from
which we can observe that our method outperforms the base-
line method especially for ART-based detector. Furthermore,
in this case study, we also include a method of detaching
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Figure 4: Success rates of adversarial attack based on FGSM: A: General FGSM and B: Our method.

1e-4 1e-3 1e-2 1e-1 2e-1 3e-1 4e-1 5e-1 7e-1 9e-1
Perturbation Size  

0

20

40

60

80

100

Su
cc
es
s 
R
at
e 
(Ɛ

)

A
B

(a) Effectiveness on misleading the surrogate
model.

1e-4 1e-3 1e-2 1e-1 2e-1 3e-1 4e-1 5e-1 7e-1 9e-1
Perturbation Size  

0

20

40

60

80

100
Su

cc
es
s 
R
at
e 
(Ɛ

)
A
B

(b) Effectiveness on misleading the FCNN-
based target learning model.

1e-4 1e-3 1e-2 1e-1 2e-1 3e-1 4e-1 5e-1 7e-1 9e-1
Perturbation Size  

0

20

40

60

80

100

Su
cc
es
s 
R
at
e 
(Ɛ

)

A
B

(c) Effectiveness on misleading the RNN-
based target learning model.

Figure 5: Success rates of adversarial attack based on MI-FGSM where the decay factor µ=1: A: General MI-FGSM and B:
Our method.
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Figure 6: Success rates of adversarial attack based on PGD: A: General PGD and B: Our method.
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(b) MI-FGSM.
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Figure 7: Bypass capacities of adversarial attack: A: Baseline method and B: Our method.
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Figure 8: Success rates of adversarial attack: A: Baseline
method, B: Attribute-encoder detached method, and C: Our
method; perturbation size, ε - a: 0, b: 0.0001, c: 0.001, d:
0.002 e: 0.003, f: 0.004.

attribute encoder for evaluation purpose. Since our method
detaches the domain encoder during calculating adversarial
perturbation, attribute-encoder detached method is consid-
ered as a comparison to illustrate the importance of selec-
tively detaching domain encoder in our design. The perfor-
mance comparisons between our method and the attribute-
encoder detached method shown in Figs. 8 and 9 illustrate
the the effectiveness of our proposed method to interpret the
data features by extracting domain and attribute features and
selectively utilize explainable features for generating adver-
sarial perturbations.

5 Conclusions
In this paper, we propose a novel CPS-specific adversarial
attack method that is able to compromise the learning model
of a data-driven CPS in a practical and stealthy manner. Our
work presents three main contributions. Firstly, our method
enables an unsupervised disentangled representation model
for learning and interpreting the data features by disentan-
gling the features into domain features and attribute features.
Using the obtained explainable feature maps, it is feasible
to produce practical and stealthy adversarial perturbations.
Secondly, our work provides a novel approach to synthe-
size adversarial perturbations where explainable features are
selectively utilized, which leads to a more practical adver-
sarial attack. Thirdly, our adversarial attack method does
not require any explicit integration of domain-knowledge
constraints in attack model formulation, resulting in more
general application scenarios especially when the attacker
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(c) Bypass capacities considering ART-based
detector at 200 meters with different pertur-
bation sizes ε.
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(d) Bypass capacities considering ART-based
detector at 300 meters with different pertur-
bation sizes ε.

Figure 9: Bypass capacities of adversarial attack. Method -
A: Baseline method, B: Attribute-encoder detached method,
and C: Our method.

has limited knowledge of the targeted CPSs or the domain-
knowledge constraints cannot be represented in a mathemat-
ically differentiable form. As illustrated in the simulation re-
sults, our proposed method is able to sufficiently mislead
the learning model in the target CPSs while effectively by-
passing the built-in detector that is normally designed based
on physical and mechanical constraints of the CPSs. In our
ongoing work, we are working on evaluating our proposed
method in other CPS domains and exploring a more general
form of our proposed adversarial attack which can be suit-
able for various CPS applications.
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