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Abstract

Counterfactual data augmentation (CDA) is a001
promising strategy for improving hate speech002
classification, but automating counterfactual003
text generation remains a challenge. Strong004
attribute control can distort meaning, while pri-005
oritizing semantic preservation may weaken006
attribute alignment. We propose Gradient-007
assisted Energy-based Sampling (GENES) for008
counterfactual text generation, which restricts009
accepted samples to text meeting a minimum010
BERTScore threshold and applies gradient-011
assisted proposal generation to improve at-012
tribute alignment. Compared to other methods013
that solely rely on either prompting, gradient-014
based steering, or energy-based sampling,015
GENES is more likely to jointly satisfy at-016
tribute alignment and semantic preservation017
under the same base model. In effect, using018
GENES as a counterfactual generator for data019
augmentation may improve out-of-domain per-020
formance of hate speech classifier while, at the021
minimum, maintaining the in-domain perfor-022
mance. Based on our cross-dataset evaluation,023
the average performance of models aided by024
GENES is the best among those methods that025
rely on a smaller model (Flan-T5-L). On the026
other hand, using similar augmentation tech-027
niques that rely on larger models (GPT-4o-028
mini) is slightly more robust based on aver-029
age performance. Nonetheless, the results with030
GENES are comparable, making it a possible031
lightweight and open-source alternative.032

Warning: this paper shows texts or examples033

that may be offensive or upsetting.034

1 Introduction035

The rise of hate speech has driven the development036

of datasets and machine learning models aimed037

at mitigating harm. However, despite advances in038

Large Language Models (LLMs), these models of-039

ten suffer from poor generalizability or unintended040

bias (Zhou et al., 2021), largely due to data-level041

issues like imbalanced labels, skewed topics, and 042

token biases (Swamy et al., 2019; Nejadgholi and 043

Kiritchenko, 2020; Ramponi and Tonelli, 2022; 044

Bourgeade et al., 2023). Data augmentation has 045

been explored to address these issues, but gener- 046

ative data augmentation does not consistently im- 047

prove performance or does not directly address bias 048

(Wullach et al., 2021; Casula and Tonelli, 2023). 049

In this regard, counterfactual data augmen- 050

tation (CDA) has emerged as a promising strat- 051

egy (Samory et al., 2021; Sen et al., 2022). CDA 052

involves generating synthetic data by modifying 053

observed texts to satisfy target attributes while 054

preserving their original meaning. Kaushik et al. 055

(2021) Studies have showed that training on both 056

original and counterfactual data help reduce the 057

model’s reliance on spurious correlations, improv- 058

ing out-of-domain generalization (Kaushik et al., 059

2021; Madaan et al., 2023). 060

Despite its potential, implementing CDA in prac- 061

tice remains challenging. While human-edited 062

counterfactual texts continue to be the standard 063

(Sen et al., 2023), manual generation is time- 064

consuming and resource-intensive. One poten- 065

tial solution is to fine-tune an LLM for counter- 066

factual text generation. However, fine-tuning re- 067

quires large datasets and significant computational 068

resources. Alternatively, prompting LLMs could be 069

a lightweight solution. However, in the hate speech 070

domain, LLMs often fail to produce edits that reli- 071

ably flip the target attribute (Sen et al., 2023). This 072

is partly due to built-in safeguards against offensive 073

content (Wang et al., 2024) and the inherent diffi- 074

culty of generating text with subjective concepts 075

like abusiveness and offensiveness (Li et al., 2023). 076

Thus, there is a need for more reliable, resource- 077

efficient methods for counterfactual generation. 078

To address these limitations, we investigated the 079

efficacy of plug-and-play controlled text genera- 080

tion methods (Madaan et al., 2023; Forristal et al., 081

2023) as a means of counterfactual data augmen- 082
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tation. Plug-and-play methods enable control over083

specific attributes in generated text without requir-084

ing extensive fine-tuning. By integrating smaller085

classifiers or score functions, these approaches086

facilitate controlled generation with minimal re-087

source overhead.088

Counterfactual text generation must balance two089

key goals: target attribute alignment and seman-090

tic similarity. While plug-and-play methods sup-091

port multi-attribute control, maintaining this bal-092

ance is challenging. Gradient-based approaches093

like PPLM (Dathathri et al., 2019) and CASPer094

(Madaan et al., 2021) excel at attribute control095

but lack mechanisms to directly control semantic096

preservation. In contrast, energy-based methods097

like Mix & Match (Mireshghallah et al., 2022) can098

incorporate semantic constraints but require care-099

ful tuning. Tuning for multiple objectives can be100

difficult and, generations may over-optimize one101

objective, compromising the other. This highlights102

the need to better adapt existing methods for bal-103

anced counterfactual generation.104

Our contributions are as follows:105

• We proposed, Gradient-assisted Energy-based106

Sampling, a modified sampling procedure to107

tailor-fit energy-based methods for counterfac-108

tual text generation.109

• Our experiments showed that sampling from a110

restricted energy-based model and implement-111

ing gradient-assisted proposal generation help112

increase the likelihood of generating counter-113

factual texts that jointly satisfy attribute align-114

ment and semantic preservation.115

• Although methods using larger models, like116

GPT-4o-mini, generally achieved higher cross-117

dataset accuracy on average, GENES deliv-118

ered comparable performance despite rely-119

ing on a smaller model. Moreover, among120

controlled text generation methods that use121

a smaller model (e.g., Flan-T5-L), GENES122

achieved the highest average cross-dataset ac-123

curacy.124

2 Preliminary125

2.1 Counterfactual Text Generation126

This study uses counterfactual text generation to127

augment hate speech examples in the training data.128

Counterfactual text generation involves modifying129

an existing text to reflect a specific attribute while 130

preserving its core meaning. For example: 131

• Input text X: “The young and new swimmers 132

won so many medals in the Olympics.” 133

• Desired attribute a: Hate speech (Positive). 134

• Counterfactual text X̃: “Those young and new 135

swimmers f***king cheated and won medals 136

in the Olympics” 137

Here, the core meaning remains—swimmers win- 138

ning medals—but hate speech is introduced, mak- 139

ing it a counterfactual example for model training. 140

Formally, given an input text X and a desired at- 141

tribute a, such as hate speech, the goal is to gener- 142

ate a counterfactual text X̃ such that: 143

• Attribute alignment: X̃ reflects the desired 144

attribute a. 145

• Semantic preservation: X̃ retains the mean- 146

ing of the original text as closely as possible 147

(X ≈ X̃). 148

2.2 From Controlled Generation to Data 149

Augmentation 150

When appropriately adapted, plug-and-play con- 151

trolled text generation methods offer a lightweight 152

and automated solution for counterfactual data aug- 153

mentation. In the context of hate speech classifica- 154

tion, this entails transforming non-hateful (normal) 155

comments into counterfactual variants that reflect 156

hateful content. The process begins by sampling a 157

subset of normal comments from the training set. 158

For each selected instance, a controlled generation 159

method is applied to produce a candidate counter- 160

factual text conditioned on the target attribute (e.g., 161

hate speech). Given that plug-and-play generation 162

methods do not guarantee perfect attribute control, 163

a filtering step is employed to retain the top n gen- 164

erated outputs with the highest predicted probabil- 165

ity of exhibiting the target attribute, as determined 166

by a pretrained classifier. These high-confidence 167

counterfactuals are then added to the training data. 168

Finally, the downstream classifier is fine-tuned on 169

the augmented dataset to improve its generalization 170

performance. 171

3 Gradient-assisted Energy-based 172

Sampling for Counterfactual Text 173

Generation 174

In this section, we introduce GENES (Gradient- 175

assisted Energy-based Sampling), a plug-and- 176
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Figure 1: The left side depicts the sampling algorithm. Acceptance is based on the transistion probability p(X̃,X)
and a BERTScore threshold, restricting sampling within an acceptable region. The right side shows the details of
gradient-based steering applied in the proposal generation process.

play framework for counterfactual text genera-177

tion. As illustrated in Figure 1, GENES combines178

energy-based sampling with a hard rejection cri-179

terion and incorporates gradient-based steering to180

guide the proposal distribution.181

The remainder of this section is organized as182

follows. We first outline how energy-based meth-183

ods are commonly adapted for counterfactual text184

generation. We then describe the modifications in-185

troduced in GENES to enhance the efficiency and186

effectiveness of the sampling strategy.187

3.1 Energy-based Model for Counterfactual188

Text Generation189

Energy-based methods (Mireshghallah et al.,190

2022; Forristal et al., 2023) provides a unified191

framework to enforce many requirements at once192

(e.g., fluency, style, semantic similarity, etc.), mak-193

ing them well-suited for tasks like counterfactual194

text generation. These methods define an energy-195

based model (EBM) that rewards text which satis-196

fies all required attributes. For counterfactual text197

generation, the energy-based model is typically de-198

fined with the following components:199

1. Attribute-based energy component Ea(X̃)200

This component quantifies the prominence of201

a desired attribute a (e.g., hate speech). It is202

defined as: 203

Ea(X̃) = − log(p(a|X̃)) (1) 204

where p(a|X̃) is the probability of attribute 205

a in a text X̃ . In this study, this probability 206

is computed using a transformer-based hate 207

speech classifier. 208

2. Similarity-based energy component 209

Es(X̃,X) This component quantifies the 210

energy associated with preserving the seman- 211

tics of the original text X . For this study, 212

we combined BERTScore (Zhang* et al., 213

2020) for semantic similarity and BLEU-2 214

(Papineni et al., 2002) for word-level overlap: 215

Es(X̃,X) = −α log(BERT (X̃,X)) 216

− (1− α) log(BLEU(X̃,X)) 217

where α ∈ (0, 1) controls the tradeoff be- 218

tween semantic similarity and lexical overlap. 219

In this study, we set α = 0.75, prioritizing 220

model-based semantic similarity. This allows 221

some changes in phrasing and diction, as long 222

as the core meaning is retained. This is to 223

recognize that incorporating toxic language 224

(e.g., sarcasm) may require a different writing 225

style. 226
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The final energy function for counterfactual text227

generation is given by:228

g(X̃) = exp{−β1Ea(X̃)− β2Es(X̃,X)} (2)229

where β1 and β2 control the influence of attribute230

alignment and semantic preservation. This formu-231

lation enables the generation of counterfactual text.232

It is similar to the examples used in the experiments233

of Mireshghallah et al. (2022).234

3.2 Sampling from Truncated EBM235

In energy-based methods, controlled text gener-236

ation is conducted by sampling texts from the237

energy-based model. Typically, a Metropolis-238

Hastings sampling method (Hastings, 1970) is used,239

where a candidate text is sampled and accepted or240

rejected based on the transition probability:241

p(X̃;X) = min

(
1,

g(X̃)pLM (X|X̃)

g(X)pLM (X̃|X)

)
(3)242

where g(X) denotes the energy function in Eq (2),243

and pLM (X̃|X) is the likelihood under the lan-244

guage model LM . This rule favors candidates that245

are both fluent and aligned with target attributes.246

Following Forristal et al. (2023), GENES uses Flan-247

T5 (Chung et al., 2022) for proposal generation.248

Although energy-based methods support multi-249

objective control, balancing attribute alignment and250

semantic similarity remains difficult. The two ob-251

jectives are competing characteristics: enforcing252

stronger alignment to the target attribute inevitably253

reduces semantic similarity to the original text. In254

addition, the lack of hard constraints means sam-255

pling may generate text that over-optimizes one256

component at the expense of the other. To address257

this, we introduce a hard rejection rule based on a258

minimum BERTScore threshold Bmin. A candi-259

date is accepted only if it passes both the transition260

probability and the similarity threshold, effectively261

restricting sampling to a truncated EBM—i.e.,262

the subset of proposals that remain semantically263

close to the original text.264

3.3 Gradient-Assisted Sampling265

The additional restriction simplifies the multi-266

objective problem. However, the stricter accep-267

tance rule increases the rejection rate, making it268

less efficient. To address this, we incorporate269

gradient-based weighted decoding (Dathathri270

et al., 2019; Madaan et al., 2023) to the proposal271

generation process, increasing the chances of gen- 272

erating acceptable sequences. 273

At each decoding step t, the hidden state Ht 274

is computed based on prior tokens X̃<t and the 275

encoding representation of the prompt e: 276

Ht = Transformer(X̃<t, e) 277

A perturbation ∆Ht is applied to to the hidden 278

state Ht to steer the generation process towards the 279

desired attribute: 280

ôt = PredictionHead(Ht +∆Ht) 281

The perturbation ∆Ht is computed as a normalized 282

gradient step that minimizes the loss function L, 283

which consists of two terms: the attribute-based 284

energy component (Eq. (1)), and the Kullback- 285

Leibler divergence between the modified and origi- 286

nal token distributions: 287

L = Ea(X̃)−
T∑
t=1

DKL(π(ot)|π(ôt)) (4) 288

The gradient step, scaled by a learning rate γ ∈ 289

(0, 1), increases the probability of attribute a while 290

keeping the modified token distribution π(ôt) close 291

to the original distribution π(ot). Minimizing the 292

loss does attribute control while maintain fluency 293

and/or semantic similarity (Dathathri et al., 2019; 294

Madaan et al., 2023). 295

4 Experiments and Results 296

4.1 Part 1: Quality of Counterfactual Text 297

Generation 298

4.1.1 Task and Data 299

For the first experiment, the goal is to character- 300

ize the quality of counterfactual text generation. A 301

sample of 300 normal comments from the CADD 302

dataset (Song et al., 2021) was used. These com- 303

ments are typically single sentences, ranging from 304

5 to 35 words. We focused on three hierarchical at- 305

tributes from the CADD dataset: abusiveness (a1), 306

targeted (a2), and implicitness (a3). The hierarchy 307

follows: 308

1. Abusiveness (a1 = 1) indicates abusive 309

speech, i.e., offensive or toxic speech. 310

2. If abusive, the comment can be targeted 311

(a2 = 1) or untargeted (a2 = 0). Hate 312

speech is defined as both abusive and tar- 313

geted. 314
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3. A hate speech comment can be implicit (a3 =315

1) or explicit (a3 = 0).316

The task considered is to minimally edit a nor-317

mal comment into a sample of explicit hate speech318

(a1 = 1, a2 = 1, a3 = 0).319

To facilitate plug-and-play methods, a RoBERTa-320

Large model (Liu et al., 2019) was finetuned sepa-321

rately for each attribute, using a conditional train-322

ing approach (see details in appendix A). For the323

energy-based sampling, the attribute-based energy324

component was defined as:325

Ea(X̃) = − log(p(a1|X̃))326

− log(p(a2|a1 = 1, X̃))327

− log(p(a3|a1 = 1, a2 = 1, X̃))328

This formulation allows one to control text gen-329

eration with respect to the hierarchical attribute330

structure.331

4.1.2 Methods332

We compared GENES with three methods for333

counterfactual text generation, all implemented334

using the Flan-T5-Large model. 5-shot Prompt-335

ing serves as a reference method, where coun-336

terfactuals are generated without additional sam-337

pling or steering mechanisms (details in Ap-338

pendix B). Block M&M adapts the Block339

Metropolis-Hastings energy-based sampler (For-340

ristal et al., 2023), with the addition of a hard341

rejection rule to better suit counterfactual genera-342

tion, but without gradient-based guidance. CASPer343

follows the gradient-based steering approach pro-344

posed by Madaan et al. (2023), adapted for use345

with Flan-T5-Large.346

All methods produce a chain of candidate texts,347

from which the highest-scoring sample is selected348

using the energy function (Eq. 2). For CASPer,349

which lacks a native energy model, the same energy350

function is applied post hoc for ranking—following351

a sample-and-rank strategy similar to Dathathri352

et al. (2019).353

4.1.3 Evaluation Metrics354

We evaluated the quality of counterfactual texts355

based on two core objectives: attribute alignment356

and semantic preservation.357

Flip rate was used to measure attribute align-358

ment, defined as the percentage of counterfactuals359

where the predicted label matches the target, based360

on classifiers trained on CADD. A higher flip rate361

indicates better attribute control.362

For semantic preservation, we used BERTScore 363

and BLEU-2, where higher scores reflect closer 364

similarity to the original text. 365

Additionally, we conducted a subjective evalua- 366

tion using GPT-4o-mini, which rated each coun- 367

terfactual on fluency (1–5), similarity (1–5), and 368

toxicity (1–3) to provide complementary insights 369

(see Appendix C for details). 370

4.1.4 Results 371

Table 1 shows that plug-and-play methods signifi- 372

cantly improve attribute alignment over few-shot 373

prompting only. Low flip rate with prompting only 374

is likely due to safeguards against abusive content. 375

The flip rates for abusiveness (a1) increase at least 376

four times with any controlled generation method. 377

However, methods failed to control the implicitness 378

of hate speech. This is likely due to the weaker clas- 379

sifier for implicitness (a3). Its F1-score (59.85%) 380

is low compared to abusiveness (a1, 89.17%) and 381

being targeted (a2, 71.92%). 382

A trade-off exists between attribute control and 383

text similarity. CASPer has the highest flip rate but 384

lowest similarity (BERTScore < 0.85, BLEU-2 385

< 0.50), while 5-shot prompting preserves content 386

best (BERTScore > 0.90, BLEU-2 > 0.50) but 387

weak at modifying attributes (flip rate for a1 is at 388

most 12%). Block M&M and GENES seem to 389

balance both aspects, with Block M&M having 390

a better flip rate and GENES maintaining better 391

semantic preservation. 392

In addition to quantitative metrics, GPT-4o-mini 393

was prompted to rate the counterfactual texts with 394

respect to fluency, similarity to the original text, 395

and perceived toxicity. Table 1 presents GPT-based 396

evaluation, reinforcing observed patterns. Few- 397

shot prompting produces fluent, similar text but 398

rarely flips attributes, while CASPer enforces at- 399

tributes at the cost of similarity (< 20% similar). 400

In addition, fluency correlates with similarity, with 401

GENES generating more fluent counterfactual texts 402

than Block M&M and CASPer. 403

The cross-analysis evaluates the percentage of 404

counterfactual texts that successfully flip the tar- 405

get attribute—either detected as abusive by the 406

trained classifier or tagged as possibly toxic by 407

GPT—while maintaining some level of similarity 408

to the original (BLEU-2 > 0.30 or GPT similarity 409

rating ≥ 3). In the Flipped & Similar category, 410

GENES outperform Block M&M by at least 6 per- 411

centage pts. and surpasses CASPer and prompting 412

only by 30 percentage points. In terms of Flipped 413

5



Method Flip Rate ↑ Text Similarity ↑ GPT-based Evaluation ↑ Cross Analysis ↑

a1 a1, a2 a1, a2, a3 BERT BLEU %Fluent %Similar %Toxic %Flipped %Flipped
(3 or up) (3 or up) (2 or 3) & Fluent & Similar

5-shot Prompt 12.00% 3.33% 0.67% 0.9622 0.6723 82.67% 75.00% 3.67% 12.33% 12.00%
CASPer 61.00% 48.33% 6.67% 0.8493 0.0577 34.00% 17.67% 36.00% 19.33% 12.00%
Block M&M 54.00% 40.33% 3.00% 0.8850 0.2770 72.67% 48.33% 28.00% 42.00% 36.00%
GENES 50.00% 35.33% 3.33% 0.8992 0.3780 83.67% 68.33% 26.00% 44.00% 42.00%

Table 1: The flip rate is presented at different levels - abusiveness only (a1), hate speech (a1 and a2), and explicit
hate speech (a1, a2, a3). BERT refers to the average BERTScore and BLEU refers to the average BLEU-2 score
between the counterfactual text and the original comment. GPT-based evaluation of fluency, similarity, and toxicity.
Flipped cases are those detected as abusive by the finetuned model or tagged as toxic by GPT. The cross analysis
presents the percentage of flipped cases that are also fluent or similar.

& Fluent %, GENES also performed best. Overall,414

GENES achieves the best balance among fluency,415

similarity, and attribute alignment, making it ideal416

for counterfactual text generation.417

In conclusion, 5-shot prompting tends to simply418

reconstruct the original input text. CASPer is good419

at enforcing the target attribute, but it does not pre-420

serve the original text. On the other hand, Block421

M&M and GENES seem to be good at achiev-422

ing both requirements for counterfactual text, but423

GENES is more likley to generate valid counterfac-424

tual texts. These observations are illustrated in the425

following examples:426

Original: You could just stay in your state
5-shot Prompt: You could just stay in your state
CASPer: It’s okay to stay sick when you’re sh*t
Block M&M: Can’t you just move on in the United
States.
GENES: You could stay in your own state and be d*mb

Table 2: Examples of counterfactual hate speech gener-
ated by each method.

The reported results use hyperparameters that427

best balance attribute alignment and semantic428

preservation (details in Appendix D).429

4.1.5 Effects of Hyperparameters430

EBM Setting % Flipped & Similar

β1, β2, Bmin Block M&M GENES
10, 5, 0.850 26.33% 35.00%
10, 5, 0.875 33.00% 38.00%
10, 10, 0.875 36.00% 42.00%

Table 3: This table focuses on the results for the explicit
hate speech case, where the number of iterations is 40
and the learning rate for gradient-based steering is 0.10.

Table 3 summarizes the impact of different431

hyperparameter configurations. For the energy- 432

based model (EBM), assigning equal weights to 433

the attribute and similarity components (β1 = β2) 434

yielded a better balance than prioritizing the at- 435

tribute component alone (β1 > β2). Enforcing a 436

minimum BERTScore threshold (Bmin) improved 437

semantic preservation; lowering the threshold from 438

0.875 to 0.850 reduced the proportion of Flipped & 439

Similar texts, and removing it entirely is expected 440

to further degrade similarity. 441

Under identical EBM settings, GENES outper- 442

forms Block M&M in Flipped & Similar percent- 443

age. This demonstrates the advantage of gradient- 444

assisted proposal generation in balancing attribute 445

control and semantic preservation. 446

4.2 Part 2: Counterfactual Data 447

Augmentation 448

4.2.1 Task and Data 449

We evaluated counterfactual data augmentation un- 450

der an imbalanced setting using the CADD dataset, 451

with a baseline training set of 1,000 hate speech and 452

4,000 normal comments. For the task, we focused 453

on binary classification: hate speech (a = 1) vs. 454

non-hate speech (a = 0). A RoBERTa-Large clas- 455

sifier was trained on both baseline and augmented 456

data, treating the generated labels as ground truth. 457

Performance was compared to assess the impact of 458

each augmentation strategy. 459

4.2.2 Data Augmentation Strategies 460

Each augmentation method added 800 synthetic 461

hate speech examples to the training set. We 462

compared three generation methods using Flan- 463

T5-Large: GENES, Block M&M, and CASPer. 464

GENES was evaluated under four configurations: 465

a strict semantic threshold (GENES-A, Bmin = 466

0.875), a relaxed threshold (GENES-B, Bmin = 467
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CADD AbuseEval LatentHate Average

Method R P Macro F1 R P Macro F1 R P Macro F1 Macro F1

Baseline 0.691 0.860 0.829 0.526 0.821 0.696 0.764 0.658 0.681 0.735
Few-shot 0.701 0.817 0.818 (-0.02, 0.00) 0.765 0.764 0.764 (0.05, 0.09) 0.904 0.600 0.627 (-0.07, -0.03) 0.736
ToxiCraft 0.721 0.813 0.824 (-0.02, 0.01) 0.803 0.735 0.756 (0.04, 0.08) 0.899 0.604 0.633 (-0.07, -0.03) 0.738
CASPer 0.725 0.801 0.821 (-0.02, 0.01) 0.820 0.718 0.748 (0.03, 0.08) 0.930 0.560 0.550 (-0.15, -0.11) 0.706
Block M&M 0.707 0.815 0.819 (-0.02, 0.00) 0.784 0.730 0.747 (0.03, 0.07) 0.921 0.569 0.571 (-0.13, -0.09) 0.712
GENES-A 0.663 0.849 0.814 (-0.03, 0.00) 0.629 0.788 0.727 (0.01, 0.05) 0.887 0.591 0.612 (-0.09, -0.05) 0.718
GENES-B 0.688 0.846 0.823 (-0.02, 0.01) 0.614 0.800 0.727 (0.01, 0.05) 0.891 0.594 0.617 (-0.08, -0.04) 0.723
GENES-C 0.689 0.839 0.821 (-0.02, 0.01) 0.683 0.771 0.739 (0.03, 0.06) 0.911 0.584 0.599 (-0.10, -0.06) 0.720
GENES-D 0.728 0.821 0.830 (-0.01, 0.01) 0.764 0.725 0.737 (0.02, 0.06) 0.933 0.566 0.563 (-0.14, -0.10) 0.710

Table 4: This table reports the recall (R), precision (P), and macro F1-score of the models on the CADD, AbuseEval,
and LatentHate datasets. It also show 95% confidence interval estimate for change in macro F1-score relative to
the baseline. Intervals containing zero (0) implies no sufficient statistical evidence to conclude difference. Blue
denotes a significant increase; Red denotes a significant decrease. Few-shot and ToxiCraft were implemented using
GPT-4o-mini, while other methods were implemented using Flan-T5-L

0.850), and two multi-attribute settings (GENES-468

C/D) that also targeted secondary attributes from469

the Unhealthy Comments Corpus (Price et al.,470

2020). CASPer and Block M&M were imple-471

mented using similar settings as GENES-B.472

While GENES-A/B, Block M&M, and CASPer473

modified normal comments to express hate,474

GENES-C/D aimed to increase diversity by com-475

bining hate speech with additional behaviors. In476

GENES-C, the target is to generate hate speech477

with either some aggressive comment (e.g., antag-478

onistic, hostile) or some covert behavior (i.e., sar-479

castic, dismissive, condescending). In GENES-D,480

only the covert behavior (e.g., sarcastic, dismissive,481

condescending) was considered.482

To benchmark against stronger models, we used483

GPT-4o-mini with 5-shot chain-of-thought prompt-484

ing (or Few-shot) and the ToxiCraft framework485

(Hui et al., 2024). For ToxiCraft, hate speech was486

generated from 100 seed examples, and the Tox-487

iCraft prompt is implemented with manually se-488

lected attributes from CADD.489

4.2.3 Evaluation Metrics490

We assessed the impact of counterfactual data aug-491

mentation using recall, precision, and macro F1-492

score. In-domain performance was evaluated on493

the CADD test set, which includes only normal and494

hate speech samples. Out-of-domain (OOD) perfor-495

mance was measured on two Twitter-based bench-496

marks: the Latent Hate Speech dataset (LatentHate)497

(ElSherief et al., 2021) and the updated Offen-498

sive Language Identification Dataset (AbuseEval)499

(Zampieri et al., 2019; Tommaso Caselli, 2020),500

both of which differ in source and characteristics501

from the Reddit-based CADD. Both of the out-of-502

domain test sets were sampled such that there 500 503

implicit hate speech, 500 explicit hate speech, and 504

1000 normal comments. We also used the aver- 505

age macro F1-score across the three datasets as 506

an indicator of model robustness—a robust model 507

performs better on average, even if significant dis- 508

tribution shift is considered. 509

4.2.4 Results 510

Table 4 presents the recall, precision, and macro 511

F1-scores across three test datasets: CADD (in- 512

domain), and AbuseEval and LatentHate (out-of- 513

domain). 514

Recall-Precision Trade-off: Across both in- 515

domain and out-of-domain settings, data augmenta- 516

tion generally increases recall while slightly reduc- 517

ing precision. This indicates improved detection 518

coverage at the cost of more false positives. In 519

AbuseEval and LatentHate dataset, recall gains ex- 520

ceed precision drops. And so, an overall improve- 521

ment may still be attained. In CADD, changes are 522

minimal, mostly within ±0.05. 523

To evaluate the overall effect of data augmenta- 524

tion, we shall look at the macro F1-scores which 525

gives equal importance to correct detecting hate 526

speech and normal comments. 527

In-domain Performance: Macro F1-score 528

changes in CADD are negligible and not sta- 529

tistically significant. Only GENES-D slightly 530

outperforms the baseline, suggesting that aug- 531

mentation mostly rebalances recall and precision 532

without significantly affecting overall accuracy. 533

Out-of-Domain Performance: The results re- 534

veal contrasting effects of data augmentation across 535
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test sets. While all methods improve macro F1-536

score on the AbuseEval dataset, performance on La-537

tentHate declines despite gains in recall, indicating538

an increase in false positives. This trade-off is con-539

sistent across models. Among them, GPT-4o-mini-540

based methods (Few-shot, ToxiCraft) show the541

most stable behavior, yielding substantial improve-542

ments in AbuseEval with only moderate declines543

in LatentHate. In contrast, CASPer, Block M&M,544

and GENES-D exhibit high variance, with strong545

improvements in AbuseEval but the largest drops546

in LatentHate. GENES-A, B, and C strike a better547

balance, showing significant gains in AbuseEval548

while limiting performance degradation in Laten-549

tHate. In this regard, GENES performs comparably550

to GPT-based methods and demonstrates more sta-551

ble behavior than other Flan-T5-based approaches.552

Two factors may explain these discrepancies.553

First, distributional shift appears more severe be-554

tween CADD and LatentHate (MAUVE = 0.13)555

than between CADD and AbuseEval (MAUVE =556

0.17). Second, differences in annotation schemes557

likely contribute: both CADD and AbuseEval558

define hate speech as targeted abusive language,559

whereas LatentHate emphasizes implicit, often sub-560

jective forms of hate, making accurate detection561

more difficult.562

Cross-Dataset Average: When the average563

macro F1-score across the three datasets is consid-564

ered, the GPT-based methods performed the best.565

Among Flan-T5-L-based approaches, GENES-B566

and GENES-C perform best on average, outper-567

forming CASPer and Block M&M. Despite using568

a smaller model, GENES achieves comparable ro-569

bustness to those using GPT-4o-mini, making it a570

viable lightweight and open-source alternative for571

counterfactual data augmentation.572

5 Related Work573

Plug-and-play methods enable control without ex-574

tensive fine-tuning, primarily through weighted de-575

coding and energy-based sampling. Weighted de-576

coding adjusts token probabilities during inference577

to enforce attributes (Dathathri et al., 2019; Yang578

and Klein, 2021; Madaan et al., 2021; Gu et al.,579

2022; Madaan et al., 2023). PPLM (Dathathri et al.,580

2019) and FUDGE (Yang and Klein, 2021) mod-581

ify hidden states or logits, but are not designed for582

counterfactual generation. GYC (Madaan et al.,583

2021) and CASPer (Madaan et al., 2023) apply584

gradient-based steering for counterfactual text but585

lack flexibility of energy-based methods. 586

Energy-based models (EBMs) approach 587

controlled generation as a sampling problem 588

(Mireshghallah et al., 2022). While M&M 589

removes gradient dependency, it suffers from slow 590

token-level sampling. Block M&M (Forristal et al., 591

2023) improves efficiency with utterance-level 592

sampling, while COLD Decoding (Qin et al., 593

2022) uses Langevin dynamics but requires energy 594

function gradients, limiting the choices for energy 595

components. Our method retains EBM flexibility 596

while incorporating gradient-based perturbation 597

via a separate loss function. Other methods include 598

prefix tuning. For instance, MAGIC (Liu et al., 599

2024) uses prefix tuning to control correlated 600

attributes, but it requires additional data and 601

training. This direction could be explored in future 602

works. 603

6 Conclusion 604

This study highlights the potential of plug-and-play 605

methods for counterfactual data augmentation in 606

hate speech detection. Our results show that exist- 607

ing prompting-only approaches are limited by safe- 608

guards that prevent effective attribute manipulation, 609

resulting in low flip rates. Controlled generation 610

methods, particularly CASPer, Block M&M, and 611

GENES, significantly improve attribute alignment. 612

However, this often comes at the cost of semantic 613

similarity. Among them, GENES strikes the best 614

balance, achieving strong attribute control while 615

preserving fluency and semantic similarity. 616

In terms of data augmentation, GENES consis- 617

tently improves recall across test sets with some 618

loss in precision. In-domain performance remains 619

stable, while out-of-domain results vary: augmenta- 620

tion improves performance in AbuseEval but leads 621

to significant precision drops in LatentHate, likely 622

due to greater distribution shift and differences 623

in how hate speech is defined. GENES (espe- 624

cially configurations B and C) maintains better 625

stability across domains than other Flan-T5-based 626

methods and performs comparably to larger GPT- 627

based approaches. Overall, GENES is a potential 628

lightweight and open-source alternative for enhanc- 629

ing hate speech models through counterfactual data 630

augmentation. 631

7 Limitations 632

While GENES could improve counterfactual text 633

generation, its performance depends on the accu- 634

8



racy of the discriminator. Weaker discriminators635

lead to less reliable attribute control. Performance636

may also vary depending on the task and domain.637

Human evaluation may also be done in future work638

to further examine the quality of counterfactual text639

generation.640

Using gradient-based weighted decoding re-641

quires access to hidden states and gradients, lim-642

iting applicability to open-access models and re-643

quiring careful discriminator-model compatibility.644

Our method works if the discriminator can be de-645

signed to fit the requirements. Nonetheless, black646

box functions can still be used in the EBM but not647

in the loss function for gradient-based weighted648

decoding.649

Computationally, weighted decoding alone is650

relatively fast, but combining it with energy-based651

sampling increases processing time, making our652

approach the slowest among those tested. We653

measured processing time on a sample of texts654

(5–75 words; avg. 24 words per text). The run655

times per 25 iterations are as follows: GENES656

= 14 min/observation, Block M&M = 13 min,657

and CASPer = 11 min. Like other iterative ap-658

proaches, GENES is more suitable for offline use659

cases such as data augmentation. Notably, runtime660

can be reduced by applying early stopping criteria.661

For instance, halting once the attribute probability662

exceeds 0.60 and BERTScore surpasses a thresh-663

old—rather than running all methods for the full664

number of iterations.665

8 Ethical Considerations666

This research exclusively utilizes publicly available667

datasets with appropriate licenses. All datasets668

are publicly available and they are either released669

under a Creative Commons (CC) license or an MIT670

license, both permitting use for research purposes.671

Similarly, all pre-trained models used in this study672

(RoBERTa and Flan-T5) are open-access, ensuring673

transparency and reproducibility.674

While counterfactual data augmentation involves675

generating synthetic comments, including hate676

speech, all generated data are strictly used for re-677

search purposes to improve hate speech classifica-678

tion. Controlled text generation should never be679

used for malicious activities. Furthermore, we em-680

phasize that the generated texts do not reflect our681

values or viewpoints.682

9 Use of AI in this Research 683

AI tools were used solely to assist in improving the 684

writing clarity and language of this paper. Specifi- 685

cally, AI-assisted refinements were applied to en- 686

hance readability, coherence, and grammatical ac- 687

curacy. No AI-generated content was used to re- 688

place critical thinking or fabricate results. Ideas, 689

methodology, experimental design, analysis, and 690

conclusions were entirely conceived, developed, 691

and executed by the authors. 692
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A Fine-tuning and Computational908

Resources909

Fine-tuning was not required for the main language910

model (Flan-T5-L). However, it was necessary to911

finetune discriminators to guide text generation.912

These discriminators were trained by fine-tuning a913

RoBERTa-large model on an NVIDIA A100-PCIE-914

40GB GPU server, which was also used for in-915

ference and counterfactual text generation. Train-916

ing of a single discriminator takes about 20-30917

mins of GPU processing. The methods were imple-918

mented primarily using PyTorch and Transformers919

libraries.920

Due to the hierarchical definition of attributes,921

a conditional training approach was applied. The922

classifier for abusiveness (a1) was trained on the923

full dataset. The classifier for targeted (a2) was924

trained only on abusive samples (a2|a1 = 1).925

Lastly, the classifier for implicitness was trained926

only on abusive and targeted samples (a3|a1 =927

1, a2 = 1). The training configurations for the first928

experiment are summarized in table (5).929

Abusiveness a1
Number of Epochs 3
Batch Size 16
Learning Rate 1× 10−5

Weight Decay 0.01
Targeted a2|a1 = 1

Number of Epochs 10
Batch Size 16
Learning Rate 1× 10−6

Weight Decay 0.01
Implicitness a3|a1 = 1, a2 = 1

Number of Epochs 15
Batch Size 16
Learning Rate 1× 10−6

Weight Decay 0.01

Table 5: Overview of configurations used during the
training of models.

For the second experiment, the same configura-930

tion was used for all versions of the training dataset931

over 5 epochs, with a batch size of 16, learning rate932

of 1 × 10−5, and a weight decay of 0.01. In all933

cases, we used the AdamW optimizer (Loshchilov934

and Hutter, 2019) for the finetuning process.935

B Prompt Design936

All methods used the same prompt structure as a937

starting point. The prompt introduces the two main938

task components, defines key terms, and provides939

five handcrafted example sets. Each example con- 940

sists of a neutral comment and two counterfactual 941

variations—explicit and implicit hate speech. The 942

prompt design is partially based on the prompt of 943

Sen et al. (2023). 944

Design of Prompts in the Experiments: 945

Your task has two parts:
1. Add {target} hate speech into the
comment or rewrite it into a {target} hate
speech. {definition}
2. Make as few changes as possible by
adding, removing, or editing phrases.
Sentences should be realistic and fluent.

Examples:

‘comment’: That place is gorgeous
and seems pretty chill—such a lovely
neighborhood.
‘implicit’: That place is gorgeous and
seems pretty chill—not too many loud
gays.
‘explicit’: That place is gorgeous and seems
pretty chill—no LGBT sinners f***king
it...
{...4 more examples are shown...}

Perform the task on the ‘comment’ only.
‘comment’:{input}
‘{target}’:

946

The {target} placeholder represents either ‘ex- 947

plicit’ or ‘implicit’, depending on the target. The 948

{definition} placeholder is replaced with the cor- 949

responding definition: 950

• explicit: explicit hate speech is an obvious 951

expression of threat, or hostile intent, often 952

through derogatory words, profanity, and in- 953

sults. 954

• implicit: implicit hate speech is an indirect 955

expression of threat, or hostile intent, often 956

through sarcasm, irony, or stereotype. 957

Since implicitness was not specified in the sec- 958

ond experiment, the prompt was slightly modified. 959

The same examples were used, but the ‘implicit’ 960

and ‘explicit’ labels were replaced with ‘hate’. 961

Also, a generic definition of hate speech was used. 962

12



C GPT-based Evaluation963

GPT-based evaluation was done by prompting GPT-964

4o-mini to rate the counterfactual text with respect965

to fluency, similarity, and toxicity. A fluency rating966

of ≥ 3 indicates a fluent text (3 =‘understandable967

but with noticeable errors and phrasing issues’). A968

similarity rating of ≥ 3 indicates acceptable simi-969

larity between the original and the counterfactual970

(3 =‘different words were used, but the topic is971

related to the reference’.). Lastly, a 3-pt toxicity972

scale was used: 3 =‘clearly offensive, toxic, or973

hateful’, 2 =‘possibly offensive, toxic, or hateful’,974

1 =‘not offensive, toxic, nor hateful at all.’975

The next set of figures shows the relationship976

between the GPT-based evaluation and other quan-977

titative metrics. These figures show that there is978

some agreement between the subjective ratings of979

GPT-4o-mini and the evaluation based on predicted980

probabilities, BERTScore, and BLEU-2.981

Figure 2: Comparison of BLEU-2 scores with GPT-
based ratings for Fluency and Similarity

Figure 2 compares fluency and similarity ratings982

of GPT-generated text with the calculated BLEU-2983

score between the original and counterfactual texts.984

The results indicate a general correlation: higher985

BLEU-2 scores are associated with higher fluency986

and similarity ratings. Notably, a BLEU-2 score987

of at least 0.25 most likely corresponds to fluency988

(≥ 3) and similarity (≥ 3).989

Similarly, figure 3 shows that a higher990

BERTScore is associated with better fluency and991

text similarity. It can be observed that a BERTScore992

higher than 0.875 is most likley associated to fluent993

(≥ 3) and similar (≥ 3) text.994

Lastly, Figure 4 shows that GPT-assigned toxi-995

city ratings of possibly toxic (= 2) or toxic (= 3)996

are associated with higher predicted probabilities997

for abusiveness and hate speech. Specifically, when998

GPT detects some level of toxicity, the predicted999

Figure 3: Comparison of BERTScore with GPT-based
ratings for Fluency and Similarity

Figure 4: Comparison of Predicted Probability for Abu-
siveness p(a1 = 1) and Hate Speech p(a1 = 1, a2 = 1)
with GPT-based ratings for toxicity.

probability of abusiveness is most likely ≥ 0.75, 1000

while the predicted probability of hate speech is 1001

most likely ≥ 0.50. 1002

D Hyperparameter Selection 1003

Refer to Table 6 for flip rates, Table 7 for text sim- 1004

ilarity, Table 8 for GPT-based ratings, and Table 1005

9 for cross-analysis. Notations: N (iterations), γ 1006

(learning rate), β1 (attribute-based energy weight), 1007

β2 (similarity-based energy weight), and Bmin 1008

(minimum BERTScore). 1009

For the first experiment, hyperparameter selec- 1010

tion for the energy-based model followed a fixed 1011

set of combinations inspired by Mireshghallah et al. 1012

(2022). 1013

Given three target attributes, we considered at 1014

least 20 iterations, based on prior findings suggest- 1015

ing 10 iterations were generally sufficient. To as- 1016

sess improvements, we initially tested hyperparam- 1017

eters over 20 iterations before increasing to 40 itera- 1018

tions to examine its impact on flip rate. The results 1019

showed improved attribute control at 40 iterations, 1020
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Attribute Control
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin FR(a1)↑ FR(a1, a2)↑ FR(a1, a2, a3)↑ FR(a1)↑ FR(a1, a2)↑ FR(a1, a2, a3)↑
5-shot prompt - - - - - 12.00% 3.33% 0.67% 9.00% 4.67% 3.00%
CASPer 20 0.05 - - - 55.33% 40.00% 6.67% 66.33% 58.33% 45.67%

40 0.1 - - - 61.00% 48.33% 6.67% 80.67% 72.33% 64.33%
Block M&M 20 - 10 5 0.850 54.00% 42.33% 8.33% 61.00% 53.67% 44.67%

20 - 10 10 0.875 40.33% 26.67% 4.67% 43.33% 32.33% 29.33%
40 - 10 5 0.850 75.67% 63.00% 7.33% 78.67% 70.67% 66.00%
40 - 10 5 0.875 53.33% 38.67% 4.33% 57.33% 47.67% 42.33%
40 - 10 10 0.875 54.00% 40.33% 3.00% 61.33% 50.33% 44.67%

GENES 20 0.1 10 5 0.850 46.00% 30.00% 3.33% 48.67% 37.33% 33.33%
20 0.1 10 10 0.875 35.00% 18.67% 2.33% 41.00% 31.00% 27.00%
40 0.1 10 5 0.850 56.67% 43.00% 5.67% 65.67% 59.67% 55.00%
40 0.1 10 5 0.875 48.33% 33.00% 3.67% 53.67% 42.33% 39.67%
40 0.1 10 10 0.875 50.00% 35.33% 3.33% 52.67% 42.00% 38.00%

Table 6: FR refers to flip rate. Three (3) attributes are being controlled - a1 (abusive), a2 (targeted), and a3
(implicitness). Joint expression of a1 & a2 is hate speech, while a1, a2, & a3 jointly refers to explicit/implicit hate.

Semantic Similarity
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin BERTScore↑ BLEU-2↑ % No Edit↓ BERTScore↑ BLEU-2↑ % No Edit↓
5-shot prompt - - - - - 0.9622 0.6723 14.33% 0.9455 0.5482 9.00%
CASPer 20 0.05 - - - 0.8520 0.0780 0.00% 0.8419 0.0289 0.00%

40 0.1 - - - 0.8493 0.0577 0.00% 0.8427 0.0309 0.00%
Block M&M 20 - 10 5 0.850 0.8693 0.1951 2.33% 0.8617 0.1195 2.33%

20 - 10 10 0.875 0.8910 0.3175 1.00% 0.8864 0.2683 0.67%
40 - 10 5 0.850 0.8645 0.1543 0.67% 0.8582 0.1024 2.00%
40 - 10 5 0.875 0.8844 0.2716 4.00% 0.8817 0.2329 6.33%
40 - 10 10 0.875 0.8850 0.2770 0.33% 0.8821 0.2538 1.33%

GENES 20 0.1 10 5 0.850 0.8973 0.3297 3.33% 0.8731 0.2265 4.33%
20 0.1 10 10 0.875 0.9104 0.4205 0.67% 0.8948 0.3380 1.67%
40 0.1 10 5 0.850 0.8808 0.2736 1.00% 0.8673 0.1758 1.00%
40 0.1 10 5 0.875 0.8927 0.3376 4.67% 0.8861 0.2889 3.67%
40 0.1 10 10 0.875 0.8992 0.3780 1.67% 0.8872 0.2968 0.67%

Table 7: The BERTScore and BLEU-2 measures the similarity between the original and counterfactual texts. The
’% No Edit’ is the percentage where the method failed to make any changes to the original text.

likely due to the task’s multi-aspect nature.1021

To ensure comparability across methods,1022

GENES adopted the same configurations as Block1023

M&M, with the only modification being the addi-1024

tion of gradient perturbation (γ learning rate). For1025

the second experiment, the best settings in the first1026

experiment were used but it was implemented in1027

25 iterations only since only 1 attribute is being1028

controlled.1029

For learning rate selection, we tested γ =1030

0.1, 0.05, 0.01, ultimately selecting γ = 0.1 as it1031

produced observable changes in text fluency and1032

similarity. Learning rates below 0.05 had mini-1033

mal impact. Due to time constraints, CASPer was1034

tested with fewer configurations, but its hyperpa-1035

rameter selection was informed by those effective1036

for GENES.1037

E Examples of Counterfactual Text 1038

Generated 1039

Table 10 shows examples of counterfactual texts 1040

generated by each method. 1041

14



GPT-based Evaluation
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin % Fluent↑ % Similar↑ % Toxic↑ % Fluent↑ % Similar↑ % Toxic↑
5-shot prompt - - - - - 82.67% 75.00% 3.67% 86.33% 73.00% 2.33%
CASPer 20 0.05 - - - 43.67% 22.33% 30.00% 28.00% 8.00% 33.00%

40 0.1 - - - 34.00% 17.67% 36.00% 25.00% 9.00% 45.33%
Block M&M 40 - 10 5 0.850 49.33% 28.00% 43.00% 46.33% 18.33% 44.33%

40 - 10 5 0.875 69.00% 43.00% 28.67% 65.00% 35.00% 35.00%
40 - 10 10 0.875 72.67% 48.33% 28.00% 68.33% 39.67% 34.67%

GENES 40 0.1 10 5 0.850 65.67% 45.00% 32.33% 56.00% 31.33% 39.00%
40 0.1 10 5 0.875 77.67% 59.00% 32.33% 76.00% 46.67% 29.67%
40 0.1 10 10 0.875 83.67% 68.33% 26.00% 77.00% 57.00% 28.33%

Table 8: This table shows the summary of additional evaluations using gpt-4o-mini as a model-based rater. Fluent
rating is ≥ 3, and a similar rating is ≥ 3. A case is toxic if the rating is 2 (possibly toxic) or 3 (toxic).

Attribute Control vis-a-vis Text Quality
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

% Toxic % Toxic % Toxic % Toxic % Toxic % Toxic
N γ β1 β2 Bmin (All) and Fluent and Similar (All) and Fluent and Similar

5-shot prompt - - - - - 13.67% 12.33% 12.00% 10.00% 9.33% 8.67%
CASPer 20 0.05 - - - 61.00% 19.67% 12.00% 69.00% 16.33% 5.67%

40 0.1 - - - 68.33% 19.33% 13.00% 84.67% 18.33% 6.67%
Block M&M 40 - 10 5 0.850 81.00% 37.00% 26.33% 82.00% 33.67% 17.00%

40 - 10 5 0.875 61.00% 36.67% 33.00% 63.33% 35.33% 29.00%
40 - 10 10 0.875 63.00% 42.00% 36.00% 64.67% 39.00% 34.33%

GENES 40 0.1 10 5 0.850 62.00% 37.00% 35.00% 68.67% 34.00% 23.00%
40 0.1 10 5 0.875 55.67% 39.00% 38.00% 58.33% 38.67% 34.00%
40 0.1 10 10 0.875 55.00% 44.00% 42.00% 57.00% 38.33% 37.33%

Table 9: This table summarizes how each method is able to satisfy both constraints of counterfactual text generation.
For GPT-based ratings, settings with better results were prioritized.

Original Text Method Counterfactual Text
Tried doing a search
in your email
attached to your
driver account? They
send an email with a
weekly statement.

5-shot prompt Tried doing a search in your driver account email? They send an
email with a weekly statement.

CASPER They sent an email with a weekly statement that was a spam account
and the account is black and racist

Block M&M “‘Tried doing a search in our email attached to the driver account and
spouting our wudls like we were all on the same flight

GENES “‘Tried doing a f**ked search in your driver account? Then you
should’ve gotten a monthly statement instead.”

Sure if you want a
headstart. I find it
boring so I’m
probably not going
to

5-shot prompt be the one to make it.

CASPER I’m bored because I’m afraid of going to church with my father’s
sister’s

Block M&M “I find it boring and I’m not going to a race that isn’t black.”

GENES ‘I found it boring so I’m probably going to a coffee shop with a guy
who is a sh*t’

You could just stay
in your state.

5-shot prompt you could just stay in your state

CASPER It’s okay to stay sick when you’re shit

Block M&M Cant you just move on in the united states.

GENES you could stay in your own state and be dumb

Table 10: The original text is a normal text sampled from the CADD dataset. The counterfactual text column
presents the output for each method.
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