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Abstract

Counterfactual data augmentation (CDA) is a
promising strategy for improving hate speech
classification, but automating counterfactual
text generation remains a challenge. Strong
attribute control can distort meaning, while pri-
oritizing semantic preservation may weaken
attribute alignment. We propose Gradient-
assisted Energy-based Sampling (GENES) for
counterfactual text generation, which restricts
accepted samples to text meeting a minimum
BERTScore threshold and applies gradient-
assisted proposal generation to improve at-
tribute alignment. Compared to other methods
that solely rely on either prompting, gradient-
based steering, or energy-based sampling,
GENES is more likely to jointly satisfy at-
tribute alignment and semantic preservation
under the same base model. In effect, using
GENES as a counterfactual generator for data
augmentation may improve out-of-domain per-
formance of hate speech classifier while, at the
minimum, maintaining the in-domain perfor-
mance. Based on our cross-dataset evaluation,
the average performance of models aided by
GENES is the best among those methods that
rely on a smaller model (Flan-T5-L). On the
other hand, using similar augmentation tech-
niques that rely on larger models (GPT-4o-
mini) is slightly more robust based on aver-
age performance. Nonetheless, the results with
GENES are comparable, making it a possible
lightweight and open-source alternative.

Warning: this paper shows texts or examples
that may be offensive or upsetting.

1 Introduction

The rise of hate speech has driven the development
of datasets and machine learning models aimed
at mitigating harm. However, despite advances in
Large Language Models (LLMs), these models of-
ten suffer from poor generalizability or unintended
bias (Zhou et al., 2021), largely due to data-level

issues like imbalanced labels, skewed topics, and
token biases (Swamy et al., 2019; Nejadgholi and
Kiritchenko, 2020; Ramponi and Tonelli, 2022;
Bourgeade et al., 2023). Data augmentation has
been explored to address these issues, but gener-
ative data augmentation does not consistently im-
prove performance or does not directly address bias
(Wullach et al., 2021; Casula and Tonelli, 2023).

In this regard, counterfactual data augmen-
tation (CDA) has emerged as a promising strat-
egy (Samory et al., 2021; Sen et al., 2022). CDA
involves generating synthetic data by modifying
observed texts to satisfy target attributes while
preserving their original meaning. Kaushik et al.
(2021) Studies have showed that training on both
original and counterfactual data help reduce the
model’s reliance on spurious correlations, improv-
ing out-of-domain generalization (Kaushik et al.,
2021; Madaan et al., 2023).

Despite its potential, implementing CDA in prac-
tice remains challenging. While human-edited
counterfactual texts continue to be the standard
(Sen et al., 2023), manual generation is time-
consuming and resource-intensive. One poten-
tial solution is to fine-tune an LLM for counter-
factual text generation. However, fine-tuning re-
quires large datasets and significant computational
resources. Alternatively, prompting LLMs could be
a lightweight solution. However, in the hate speech
domain, LL.Ms often fail to produce edits that reli-
ably flip the target attribute (Sen et al., 2023). This
is partly due to built-in safeguards against offensive
content (Wang et al., 2024) and the inherent diffi-
culty of generating text with subjective concepts
like abusiveness and offensiveness (Li et al., 2023).
Thus, there is a need for more reliable, resource-
efficient methods for counterfactual generation.

To address these limitations, we investigated the
efficacy of plug-and-play controlled text genera-
tion methods (Madaan et al., 2023; Forristal et al.,
2023) as a means of counterfactual data augmen-



tation. Plug-and-play methods enable control over
specific attributes in generated text without requir-
ing extensive fine-tuning. By integrating smaller
classifiers or score functions, these approaches
facilitate controlled generation with minimal re-
source overhead.

Counterfactual text generation must balance two
key goals: target attribute alignment and seman-
tic similarity. While plug-and-play methods sup-
port multi-attribute control, maintaining this bal-
ance is challenging. Gradient-based approaches
like PPLM (Dathathri et al., 2019) and CASPer
(Madaan et al., 2021) excel at attribute control
but lack mechanisms to directly control semantic
preservation. In contrast, energy-based methods
like Mix & Match (Mireshghallah et al., 2022) can
incorporate semantic constraints but require care-
ful tuning. Tuning for multiple objectives can be
difficult and, generations may over-optimize one
objective, compromising the other. This highlights
the need to better adapt existing methods for bal-
anced counterfactual generation.

Our contributions are as follows:

* We proposed, Gradient-assisted Energy-based
Sampling, a modified sampling procedure to
tailor-fit energy-based methods for counterfac-
tual text generation.

* Our experiments showed that sampling from a
restricted energy-based model and implement-
ing gradient-assisted proposal generation help
increase the likelihood of generating counter-
factual texts that jointly satisfy attribute align-
ment and semantic preservation.

* Although methods using larger models, like
GPT-40-mini, generally achieved higher cross-
dataset accuracy on average, GENES deliv-
ered comparable performance despite rely-
ing on a smaller model. Moreover, among
controlled text generation methods that use
a smaller model (e.g., Flan-T5-L), GENES
achieved the highest average cross-dataset ac-
curacy.

2 Preliminary

2.1 Counterfactual Text Generation

This study uses counterfactual text generation to
augment hate speech examples in the training data.
Counterfactual text generation involves modifying

an existing text to reflect a specific attribute while
preserving its core meaning. For example:

* Input text X: “The young and new swimmers
won so many medals in the Olympics.”

* Desired attribute a: Hate speech (Positive).

« Counterfactual text X : “Those young and new
swimmers f***king cheated and won medals
in the Olympics”

Here, the core meaning remains—swimmers win-
ning medals—but hate speech is introduced, mak-
ing it a counterfactual example for model training.
Formally, given an input text X and a desired at-
tribute a, such as hate speech, the goal is to gener-
ate a counterfactual text X such that:

« Attribute alignment: X reflects the desired
attribute a.

* Semantic preservation: X retains the mean-
ing of the original text as closely as possible
(X ~ X).

2.2  From Controlled Generation to Data
Augmentation

When appropriately adapted, plug-and-play con-
trolled text generation methods offer a lightweight
and automated solution for counterfactual data aug-
mentation. In the context of hate speech classifica-
tion, this entails transforming non-hateful (normal)
comments into counterfactual variants that reflect
hateful content. The process begins by sampling a
subset of normal comments from the training set.
For each selected instance, a controlled generation
method is applied to produce a candidate counter-
factual text conditioned on the target attribute (e.g.,
hate speech). Given that plug-and-play generation
methods do not guarantee perfect attribute control,
a filtering step is employed to retain the top n gen-
erated outputs with the highest predicted probabil-
ity of exhibiting the target attribute, as determined
by a pretrained classifier. These high-confidence
counterfactuals are then added to the training data.
Finally, the downstream classifier is fine-tuned on
the augmented dataset to improve its generalization
performance.

3 Gradient-assisted Energy-based
Sampling for Counterfactual Text
Generation

In this section, we introduce GENES (Gradient-
assisted Energy-based Sampling), a plug-and-
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Figure 1: The left side depicts the sampling algorithm. Acceptance is based on the transistion probability p(X ,X)
and a BERTScore threshold, restricting sampling within an acceptable region. The right side shows the details of
gradient-based steering applied in the proposal generation process.

play framework for counterfactual text genera-
tion. As illustrated in Figure 1, GENES combines
energy-based sampling with a hard rejection cri-
terion and incorporates gradient-based steering to
guide the proposal distribution.

The remainder of this section is organized as
follows. We first outline how energy-based meth-
ods are commonly adapted for counterfactual text
generation. We then describe the modifications in- 2.
troduced in GENES to enhance the efficiency and
effectiveness of the sampling strategy.

3.1 Energy-based Model for Counterfactual
Text Generation

Energy-based methods (Mireshghallah et al.,
2022; Forristal et al., 2023) provides a unified
framework to enforce many requirements at once
(e.g., fluency, style, semantic similarity, etc.), mak-
ing them well-suited for tasks like counterfactual
text generation. These methods define an energy-
based model (EBM) that rewards text which satis-
fies all required attributes. For counterfactual text
generation, the energy-based model is typically de-
fined with the following components:

1. Attribute-based energy component £, (X)
This component quantifies the prominence of
a desired attribute a (e.g., hate speech). It is

defined as:
Eq(X) = —log(p(a| X)) 1)

where p(a|X) is the probability of attribute
a in a text X. In this study, this probability
is computed using a transformer-based hate
speech classifier.

Similarity-based energy component
E,(X,X) This component quantifies the
energy associated with preserving the seman-
tics of the original text X. For this study,
we combined BERTScore (Zhang* et al.,
2020) for semantic similarity and BLEU-2
(Papineni et al., 2002) for word-level overlap:

E.(X,X)=—alog(BERT(X, X))
— (1 —a)log(BLEU(X, X))

where o € (0,1) controls the tradeoff be-
tween semantic similarity and lexical overlap.
In this study, we set a = 0.75, prioritizing
model-based semantic similarity. This allows
some changes in phrasing and diction, as long
as the core meaning is retained. This is to
recognize that incorporating toxic language
(e.g., sarcasm) may require a different writing
style.



The final energy function for counterfactual text
generation is given by:

9(X) = exp{—B1Eo(X) — BEi(X, X)} (2)

where 1 and (32 control the influence of attribute
alignment and semantic preservation. This formu-
lation enables the generation of counterfactual text.
It is similar to the examples used in the experiments
of Mireshghallah et al. (2022).

3.2 Sampling from Truncated EBM

In energy-based methods, controlled text gener-
ation is conducted by sampling texts from the
energy-based model. Typically, a Metropolis-
Hastings sampling method (Hastings, 1970) is used,
where a candidate text is sampled and accepted or
rejected based on the transition probability:

. %) — min 9(X)prm(X|X)
P (l’ g(X)pLMo?rX)) ®

where g(X) denotes the energy function in Eq (2),
and pry(X|X) is the likelihood under the lan-
guage model LM . This rule favors candidates that
are both fluent and aligned with target attributes.
Following Forristal et al. (2023), GENES uses Flan-
TS5 (Chung et al., 2022) for proposal generation.

Although energy-based methods support multi-
objective control, balancing attribute alignment and
semantic similarity remains difficult. The two ob-
jectives are competing characteristics: enforcing
stronger alignment to the target attribute inevitably
reduces semantic similarity to the original text. In
addition, the lack of hard constraints means sam-
pling may generate text that over-optimizes one
component at the expense of the other. To address
this, we introduce a hard rejection rule based on a
minimum BERTScore threshold B,,;,. A candi-
date is accepted only if it passes both the transition
probability and the similarity threshold, effectively
restricting sampling to a truncated EBM—i.c.,
the subset of proposals that remain semantically
close to the original text.

3.3 Gradient-Assisted Sampling

The additional restriction simplifies the multi-
objective problem. However, the stricter accep-
tance rule increases the rejection rate, making it
less efficient. To address this, we incorporate
gradient-based weighted decoding (Dathathri
et al., 2019; Madaan et al., 2023) to the proposal

generation process, increasing the chances of gen-
erating acceptable sequences.

At each decoding step t, the hidden state H,
is computed based on prior tokens X and the
encoding representation of the prompt e:

H; = Transformer(X ¢, e)

A perturbation A H; is applied to to the hidden
state H; to steer the generation process towards the
desired attribute:

o; = PredictionHead(H; + AH,)

The perturbation A H; is computed as a normalized
gradient step that minimizes the loss function L,
which consists of two terms: the attribute-based
energy component (Eq. (1)), and the Kullback-
Leibler divergence between the modified and origi-
nal token distributions:

T
£ = EuX) =3 Dicu(m(onln(ar) )
t=1

The gradient step, scaled by a learning rate v €
(0, 1), increases the probability of attribute a while
keeping the modified token distribution 7 (d;) close
to the original distribution 7(0;). Minimizing the
loss does attribute control while maintain fluency
and/or semantic similarity (Dathathri et al., 2019;
Madaan et al., 2023).

4 Experiments and Results

4.1 Part 1: Quality of Counterfactual Text
Generation

4.1.1 Task and Data

For the first experiment, the goal is to character-
ize the quality of counterfactual text generation. A
sample of 300 normal comments from the CADD
dataset (Song et al., 2021) was used. These com-
ments are typically single sentences, ranging from
5 to 35 words. We focused on three hierarchical at-
tributes from the CADD dataset: abusiveness (a1 ),
targeted (ag), and implicitness (a3). The hierarchy
follows:

1. Abusiveness (a; = 1) indicates abusive
speech, i.e., offensive or toxic speech.

2. If abusive, the comment can be targeted
(aa = 1) or untargeted (a2 = 0). Hate
speech is defined as both abusive and tar-
geted.



3. A hate speech comment can be implicit (a3 =
1) or explicit (a3 = 0).

The task considered is to minimally edit a nor-
mal comment into a sample of explicit hate speech
(a1 = 1,a2 = 1,&3 = O).

To facilitate plug-and-play methods, a RoOBERTa-
Large model (Liu et al., 2019) was finetuned sepa-
rately for each attribute, using a conditional train-
ing approach (see details in appendix A). For the
energy-based sampling, the attribute-based energy
component was defined as:

Ey(X) = —log(p(a1| X))
— log(p(azlar = 1, X))
—log(p(asla; = 1,a3 = 1, X))

This formulation allows one to control text gen-
eration with respect to the hierarchical attribute
structure.

4.1.2 Methods

We compared GENES with three methods for
counterfactual text generation, all implemented
using the Flan-T5-Large model. 5-shot Prompt-
ing serves as a reference method, where coun-
terfactuals are generated without additional sam-
pling or steering mechanisms (details in Ap-
pendix B). Block M&M adapts the Block
Metropolis-Hastings energy-based sampler (For-
ristal et al., 2023), with the addition of a hard
rejection rule to better suit counterfactual genera-
tion, but without gradient-based guidance. CASPer
follows the gradient-based steering approach pro-
posed by Madaan et al. (2023), adapted for use
with Flan-T5-Large.

All methods produce a chain of candidate texts,
from which the highest-scoring sample is selected
using the energy function (Eq. 2). For CASPer,
which lacks a native energy model, the same energy
function is applied post hoc for ranking—following
a sample-and-rank strategy similar to Dathathri
et al. (2019).

4.1.3 Evaluation Metrics

We evaluated the quality of counterfactual texts
based on two core objectives: attribute alignment
and semantic preservation.

Flip rate was used to measure attribute align-
ment, defined as the percentage of counterfactuals
where the predicted label matches the target, based
on classifiers trained on CADD. A higher flip rate
indicates better attribute control.

For semantic preservation, we used BERTScore
and BLEU-2, where higher scores reflect closer
similarity to the original text.

Additionally, we conducted a subjective evalua-
tion using GPT-40-mini, which rated each coun-
terfactual on fluency (1-5), similarity (1-5), and
toxicity (1-3) to provide complementary insights
(see Appendix C for details).

4.1.4 Results

Table 1 shows that plug-and-play methods signifi-
cantly improve attribute alignment over few-shot
prompting only. Low flip rate with prompting only
is likely due to safeguards against abusive content.
The flip rates for abusiveness (a1) increase at least
four times with any controlled generation method.
However, methods failed to control the implicitness
of hate speech. This is likely due to the weaker clas-
sifier for implicitness (a3). Its F1-score (59.85%)
is low compared to abusiveness (a1, 89.17%) and
being targeted (as, 71.92%).

A trade-off exists between attribute control and
text similarity. CASPer has the highest flip rate but
lowest similarity (BERTScore < 0.85, BLEU-2
< 0.50), while 5-shot prompting preserves content
best (BERTScore > 0.90, BLEU-2 > 0.50) but
weak at modifying attributes (flip rate for a; is at
most 12%). Block M&M and GENES seem to
balance both aspects, with Block M&M having
a better flip rate and GENES maintaining better
semantic preservation.

In addition to quantitative metrics, GPT-40-mini
was prompted to rate the counterfactual texts with
respect to fluency, similarity to the original text,
and perceived toxicity. Table 1 presents GPT-based
evaluation, reinforcing observed patterns. Few-
shot prompting produces fluent, similar text but
rarely flips attributes, while CASPer enforces at-
tributes at the cost of similarity (< 20% similar).
In addition, fluency correlates with similarity, with
GENES generating more fluent counterfactual texts
than Block M&M and CASPer.

The cross-analysis evaluates the percentage of
counterfactual texts that successfully flip the tar-
get attribute—either detected as abusive by the
trained classifier or tagged as possibly toxic by
GPT—while maintaining some level of similarity
to the original (BLEU-2 > 0.30 or GPT similarity
rating > 3). In the Flipped & Similar category,
GENES outperform Block M&M by at least 6 per-
centage pts. and surpasses CASPer and prompting
only by 30 percentage points. In terms of Flipped



Method Flip Rate 1 Text Similarity 1 GPT-based Evaluation 1 Cross Analysis 1
aq ai,as  ai,as, a3 BERT BLEU %Fluent %Similar %Toxic %Flipped %Flipped
(Borup) (Borup) (2or3) &Fluent & Similar
5-shot Prompt  12.00% 3.33% 0.67% 09622 0.6723 82.67%  75.00% 3.67% 12.33% 12.00%
CASPer 61.00% 48.33% 6.67% 0.8493  0.0577 34.00% 17.67% 36.00% 19.33% 12.00%
Block M&M  54.00% 40.33% 3.00% 0.8850 02770  72.67% 48.33% 28.00% 42.00% 36.00%
GENES 50.00% 35.33% 333% 0.8992 0.3780 83.67% 68.33% 26.00%  44.00% 42.00 %

Table 1: The flip rate is presented at different levels - abusiveness only (a1), hate speech (a; and as), and explicit
hate speech (a1, as, az). BERT refers to the average BERTScore and BLEU refers to the average BLEU-2 score
between the counterfactual text and the original comment. GPT-based evaluation of fluency, similarity, and toxicity.
Flipped cases are those detected as abusive by the finetuned model or tagged as toxic by GPT. The cross analysis
presents the percentage of flipped cases that are also fluent or similar.

& Fluent %, GENES also performed best. Overall,
GENES achieves the best balance among fluency,
similarity, and attribute alignment, making it ideal
for counterfactual text generation.

In conclusion, 5-shot prompting tends to simply
reconstruct the original input text. CASPer is good
at enforcing the target attribute, but it does not pre-
serve the original text. On the other hand, Block
M&M and GENES seem to be good at achiev-
ing both requirements for counterfactual text, but
GENES is more likley to generate valid counterfac-
tual texts. These observations are illustrated in the
following examples:

Original: You could just stay in your state

5-shot Prompt: You could just stay in your state
CASPer: It’s okay to stay sick when you’re sh*t
Block M&M: Can’t you just move on in the United
States.

GENES: You could stay in your own state and be d*mb

Table 2: Examples of counterfactual hate speech gener-
ated by each method.

The reported results use hyperparameters that
best balance attribute alignment and semantic
preservation (details in Appendix D).

4.1.5 Effects of Hyperparameters

EBM Setting % Flipped & Similar
51, 527 Bmin Block M&M GENES
10, 5, 0.850 26.33% 35.00%
10, 5, 0.875 33.00% 38.00%
10, 10, 0.875 36.00% 42.00%

Table 3: This table focuses on the results for the explicit
hate speech case, where the number of iterations is 40
and the learning rate for gradient-based steering is 0.10.

Table 3 summarizes the impact of different

hyperparameter configurations. For the energy-
based model (EBM), assigning equal weights to
the attribute and similarity components (51 = f2)
yielded a better balance than prioritizing the at-
tribute component alone (81 > f2). Enforcing a
minimum BERTScore threshold (Bp;,) improved
semantic preservation; lowering the threshold from
0.875 to 0.850 reduced the proportion of Flipped &
Similar texts, and removing it entirely is expected
to further degrade similarity.

Under identical EBM settings, GENES outper-
forms Block M&M in Flipped & Similar percent-
age. This demonstrates the advantage of gradient-
assisted proposal generation in balancing attribute
control and semantic preservation.

4.2 Part 2: Counterfactual Data
Augmentation

4.2.1 Task and Data

We evaluated counterfactual data augmentation un-
der an imbalanced setting using the CADD dataset,
with a baseline training set of 1,000 hate speech and
4,000 normal comments. For the task, we focused
on binary classification: hate speech (a = 1) vs.
non-hate speech (a = 0). A RoBERTa-Large clas-
sifier was trained on both baseline and augmented
data, treating the generated labels as ground truth.
Performance was compared to assess the impact of
each augmentation strategy.

4.2.2 Data Augmentation Strategies

Each augmentation method added 800 synthetic
hate speech examples to the training set. We
compared three generation methods using Flan-
T5-Large: GENES, Block M&M, and CASPer.
GENES was evaluated under four configurations:
a strict semantic threshold (GENES-A, B,in =
0.875), a relaxed threshold (GENES-B, B,,;, =



CADD AbuseEval LatentHate Average
Method R P Macro F1 R P Macro F1 R P Macro F1 Macro F1
Baseline 0.691 0.860 0.829 0.526 0.821 0.696 0.764 0.658 0.681 0.735
Few-shot 0.701 0.817 0.818 (-0.02,0.00) 0.765 0.764 0.764 (0.05,0.09) 0.904 0.600 0.627 (-0.07,-0.03) 0.736
ToxiCraft 0.721 0.813 0.824 (-0.02,0.01) 0.803 0.735 0.756 (0.04,0.08) 0.899 0.604 0.633(-0.07,-0.03) 0.738
CASPer 0.725 0.801 0.821 (-0.02,0.01) 0.820 0.718 0.748 (0.03,0.08) 0.930 0.560 0.550(-0.15,-0.11) 0.706
Block M&M 0.707 0.815 0.819(-0.02,0.00) 0.784 0.730 0.747 (0.03,0.07) 0.921 0.569 0.571(-0.13,-0.09) 0.712
GENES-A 0.663 0.849 0.814(-0.03,0.00) 0.629 0.788 0.727 (0.01,0.05) 0.887 0.591 0.612 (-0.09,-0.05) 0.718
GENES-B 0.688 0.846 0.823(-0.02,0.01) 0.614 0.800 0.727 (0.01,0.05) 0.891 0.594 0.617 (-0.08,-0.04) 0.723
GENES-C 0.689 0.839 0.821(-0.02,0.01) 0.683 0.771 0.739 (0.03,0.06) 0911 0.584 0.599 (-0.10, -0.06) 0.720
GENES-D 0.728 0.821 0.830(-0.01,0.01) 0.764 0.725 0.737 (0.02,0.06) 0.933 0.566 0.563 (-0.14,-0.10) 0.710

Table 4: This table reports the recall (R), precision (P), and macro F1-score of the models on the CADD, AbuseEval,
and LatentHate datasets. It also show 95% confidence interval estimate for change in macro F1-score relative to
the baseline. Intervals containing zero (0) implies no sufficient statistical evidence to conclude difference. Blue
denotes a significant increase; Red denotes a significant decrease. Few-shot and ToxiCraft were implemented using
GPT-40-mini, while other methods were implemented using Flan-T5-L

0.850), and two multi-attribute settings (GENES-
C/D) that also targeted secondary attributes from
the Unhealthy Comments Corpus (Price et al.,
2020). CASPer and Block M&M were imple-
mented using similar settings as GENES-B.

While GENES-A/B, Block M&M, and CASPer
modified normal comments to express hate,
GENES-C/D aimed to increase diversity by com-
bining hate speech with additional behaviors. In
GENES-C, the target is to generate hate speech
with either some aggressive comment (e.g., antag-
onistic, hostile) or some covert behavior (i.e., sar-
castic, dismissive, condescending). In GENES-D,
only the covert behavior (e.g., sarcastic, dismissive,
condescending) was considered.

To benchmark against stronger models, we used
GPT-40-mini with 5-shot chain-of-thought prompt-
ing (or Few-shot) and the ToxiCraft framework
(Hui et al., 2024). For ToxiCraft, hate speech was
generated from 100 seed examples, and the Tox-
iCraft prompt is implemented with manually se-
lected attributes from CADD.

4.2.3 Evaluation Metrics

We assessed the impact of counterfactual data aug-
mentation using recall, precision, and macro F1-
score. In-domain performance was evaluated on
the CADD test set, which includes only normal and
hate speech samples. Out-of-domain (OOD) perfor-
mance was measured on two Twitter-based bench-
marks: the Latent Hate Speech dataset (LatentHate)
(ElSherief et al., 2021) and the updated Offen-
sive Language Identification Dataset (AbuseEval)
(Zampieri et al., 2019; Tommaso Caselli, 2020),
both of which differ in source and characteristics
from the Reddit-based CADD. Both of the out-of-

domain test sets were sampled such that there 500
implicit hate speech, 500 explicit hate speech, and
1000 normal comments. We also used the aver-
age macro Fl-score across the three datasets as
an indicator of model robustness—a robust model
performs better on average, even if significant dis-
tribution shift is considered.

4.2.4 Results

Table 4 presents the recall, precision, and macro
F1-scores across three test datasets: CADD (in-
domain), and AbuseEval and LatentHate (out-of-
domain).

Recall-Precision Trade-off: Across both in-
domain and out-of-domain settings, data augmenta-
tion generally increases recall while slightly reduc-
ing precision. This indicates improved detection
coverage at the cost of more false positives. In
AbuseEval and LatentHate dataset, recall gains ex-
ceed precision drops. And so, an overall improve-
ment may still be attained. In CADD, changes are
minimal, mostly within +0.05.

To evaluate the overall effect of data augmenta-
tion, we shall look at the macro F1-scores which
gives equal importance to correct detecting hate
speech and normal comments.

In-domain Performance: Macro Fl-score
changes in CADD are negligible and not sta-
tistically significant. Only GENES-D slightly
outperforms the baseline, suggesting that aug-
mentation mostly rebalances recall and precision
without significantly affecting overall accuracy.

Out-of-Domain Performance: The results re-
veal contrasting effects of data augmentation across



test sets. While all methods improve macro F1-
score on the AbuseEval dataset, performance on La-
tentHate declines despite gains in recall, indicating
an increase in false positives. This trade-off is con-
sistent across models. Among them, GPT-40-mini-
based methods (Few-shot, ToxiCraft) show the
most stable behavior, yielding substantial improve-
ments in AbuseEval with only moderate declines
in LatentHate. In contrast, CASPer, Block M&M,
and GENES-D exhibit high variance, with strong
improvements in AbuseEval but the largest drops
in LatentHate. GENES-A, B, and C strike a better
balance, showing significant gains in AbuseEval
while limiting performance degradation in Laten-
tHate. In this regard, GENES performs comparably
to GPT-based methods and demonstrates more sta-
ble behavior than other Flan-T5-based approaches.

Two factors may explain these discrepancies.
First, distributional shift appears more severe be-
tween CADD and LatentHate (MAUVE = 0.13)
than between CADD and AbuseEval (MAUVE =
0.17). Second, differences in annotation schemes
likely contribute: both CADD and AbuseEval
define hate speech as targeted abusive language,
whereas LatentHate emphasizes implicit, often sub-
jective forms of hate, making accurate detection
more difficult.

Cross-Dataset Average: When the average
macro Fl-score across the three datasets is consid-
ered, the GPT-based methods performed the best.
Among Flan-T5-L-based approaches, GENES-B
and GENES-C perform best on average, outper-
forming CASPer and Block M&M. Despite using
a smaller model, GENES achieves comparable ro-
bustness to those using GPT-40-mini, making it a
viable lightweight and open-source alternative for
counterfactual data augmentation.

5 Related Work

Plug-and-play methods enable control without ex-
tensive fine-tuning, primarily through weighted de-
coding and energy-based sampling. Weighted de-
coding adjusts token probabilities during inference
to enforce attributes (Dathathri et al., 2019; Yang
and Klein, 2021; Madaan et al., 2021; Gu et al.,
2022; Madaan et al., 2023). PPLM (Dathathri et al.,
2019) and FUDGE (Yang and Klein, 2021) mod-
ify hidden states or logits, but are not designed for
counterfactual generation. GYC (Madaan et al.,
2021) and CASPer (Madaan et al., 2023) apply
gradient-based steering for counterfactual text but

lack flexibility of energy-based methods.

Energy-based models (EBMs) approach
controlled generation as a sampling problem
(Mireshghallah et al.,, 2022). While M&M
removes gradient dependency, it suffers from slow
token-level sampling. Block M&M (Forristal et al.,
2023) improves efficiency with utterance-level
sampling, while COLD Decoding (Qin et al.,
2022) uses Langevin dynamics but requires energy
function gradients, limiting the choices for energy
components. Our method retains EBM flexibility
while incorporating gradient-based perturbation
via a separate loss function. Other methods include
prefix tuning. For instance, MAGIC (Liu et al.,
2024) uses prefix tuning to control correlated
attributes, but it requires additional data and
training. This direction could be explored in future
works.

6 Conclusion

This study highlights the potential of plug-and-play
methods for counterfactual data augmentation in
hate speech detection. Our results show that exist-
ing prompting-only approaches are limited by safe-
guards that prevent effective attribute manipulation,
resulting in low flip rates. Controlled generation
methods, particularly CASPer, Block M&M, and
GENES, significantly improve attribute alignment.
However, this often comes at the cost of semantic
similarity. Among them, GENES strikes the best
balance, achieving strong attribute control while
preserving fluency and semantic similarity.

In terms of data augmentation, GENES consis-
tently improves recall across test sets with some
loss in precision. In-domain performance remains
stable, while out-of-domain results vary: augmenta-
tion improves performance in AbuseEval but leads
to significant precision drops in LatentHate, likely
due to greater distribution shift and differences
in how hate speech is defined. GENES (espe-
cially configurations B and C) maintains better
stability across domains than other Flan-T5-based
methods and performs comparably to larger GPT-
based approaches. Overall, GENES is a potential
lightweight and open-source alternative for enhanc-
ing hate speech models through counterfactual data
augmentation.

7 Limitations

While GENES could improve counterfactual text
generation, its performance depends on the accu-



racy of the discriminator. Weaker discriminators
lead to less reliable attribute control. Performance
may also vary depending on the task and domain.
Human evaluation may also be done in future work
to further examine the quality of counterfactual text
generation.

Using gradient-based weighted decoding re-
quires access to hidden states and gradients, lim-
iting applicability to open-access models and re-
quiring careful discriminator-model compatibility.
Our method works if the discriminator can be de-
signed to fit the requirements. Nonetheless, black
box functions can still be used in the EBM but not
in the loss function for gradient-based weighted
decoding.

Computationally, weighted decoding alone is
relatively fast, but combining it with energy-based
sampling increases processing time, making our
approach the slowest among those tested. We
measured processing time on a sample of texts
(5-75 words; avg. 24 words per text). The run
times per 25 iterations are as follows: GENES
= 14 min/observation, Block M&M = 13 min,
and CASPer = 11 min. Like other iterative ap-
proaches, GENES is more suitable for offline use
cases such as data augmentation. Notably, runtime
can be reduced by applying early stopping criteria.
For instance, halting once the attribute probability
exceeds 0.60 and BERTScore surpasses a thresh-
old—rather than running all methods for the full
number of iterations.

8 Ethical Considerations

This research exclusively utilizes publicly available
datasets with appropriate licenses. All datasets
are publicly available and they are either released
under a Creative Commons (CC) license or an MIT
license, both permitting use for research purposes.
Similarly, all pre-trained models used in this study
(RoBERTa and Flan-T5) are open-access, ensuring
transparency and reproducibility.

While counterfactual data augmentation involves
generating synthetic comments, including hate
speech, all generated data are strictly used for re-
search purposes to improve hate speech classifica-
tion. Controlled text generation should never be
used for malicious activities. Furthermore, we em-
phasize that the generated texts do not reflect our
values or viewpoints.

9 Use of Al in this Research

Al tools were used solely to assist in improving the
writing clarity and language of this paper. Specifi-
cally, Al-assisted refinements were applied to en-
hance readability, coherence, and grammatical ac-
curacy. No Al-generated content was used to re-
place critical thinking or fabricate results. Ideas,
methodology, experimental design, analysis, and
conclusions were entirely conceived, developed,
and executed by the authors.
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A Fine-tuning and Computational
Resources

Fine-tuning was not required for the main language
model (Flan-T5-L). However, it was necessary to
finetune discriminators to guide text generation.
These discriminators were trained by fine-tuning a
RoBERTa-large model on an NVIDIA A100-PCIE-
40GB GPU server, which was also used for in-
ference and counterfactual text generation. Train-
ing of a single discriminator takes about 20-30
mins of GPU processing. The methods were imple-
mented primarily using PyTorch and Transformers
libraries.

Due to the hierarchical definition of attributes,
a conditional training approach was applied. The
classifier for abusiveness (a1) was trained on the
full dataset. The classifier for targeted (az) was
trained only on abusive samples (aza; = 1).
Lastly, the classifier for implicitness was trained
only on abusive and targeted samples (as|a;
1,a9 = 1). The training configurations for the first
experiment are summarized in table (5).

Abusiveness a;

Number of Epochs 3

Batch Size 16
Learning Rate 1x107°
Weight Decay 0.01
Targeted agja; = 1

Number of Epochs 10

Batch Size 16
Learning Rate 1x1076
Weight Decay 0.01
Implicitness agla; = 1,a9 =1

Number of Epochs 15

Batch Size 16
Learning Rate 1x10°6
Weight Decay 0.01

Table 5: Overview of configurations used during the
training of models.

For the second experiment, the same configura-
tion was used for all versions of the training dataset
over 5 epochs, with a batch size of 16, learning rate
of 1 x 107°, and a weight decay of 0.01. In all
cases, we used the AdamW optimizer (Loshchilov
and Hutter, 2019) for the finetuning process.

B Prompt Design

All methods used the same prompt structure as a
starting point. The prompt introduces the two main
task components, defines key terms, and provides
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five handcrafted example sets. Each example con-
sists of a neutral comment and two counterfactual
variations—explicit and implicit hate speech. The
prompt design is partially based on the prompt of
Sen et al. (2023).

Design of Prompts in the Experiments:

Your task has two parts:

1. Add {target} hate speech into the
comment or rewrite it into a {target} hate
speech. {de finition}

2. Make as few changes as possible by
adding, removing, or editing phrases.
Sentences should be realistic and fluent.

Examples:

‘comment’: That place is gorgeous
and seems pretty chill—such a lovely
neighborhood.

‘implicit’: That place is gorgeous and
seems pretty chill—not too many loud
gays.

‘explicit’: That place is gorgeous and seems
pretty chill—no LGBT sinners f***king
it...

{...4 more examples are shown...}

Perform the task on the ‘comment’ only.
‘comment’:{input}
{target}’:

The {target} placeholder represents either ‘ex-
plicit’ or ‘implicit’, depending on the target. The
{definition} placeholder is replaced with the cor-
responding definition:

* explicit: explicit hate speech is an obvious
expression of threat, or hostile intent, often
through derogatory words, profanity, and in-
sults.

* implicit: implicit hate speech is an indirect
expression of threat, or hostile intent, often
through sarcasm, irony, or stereotype.

Since implicitness was not specified in the sec-
ond experiment, the prompt was slightly modified.
The same examples were used, but the ‘implicit’
and ‘explicit’ labels were replaced with ‘hate’.
Also, a generic definition of hate speech was used.



C GPT-based Evaluation

GPT-based evaluation was done by prompting GPT-
4o-mini to rate the counterfactual text with respect
to fluency, similarity, and toxicity. A fluency rating
of > 3 indicates a fluent text (3 =‘understandable
but with noticeable errors and phrasing issues’). A
similarity rating of > 3 indicates acceptable simi-
larity between the original and the counterfactual
(3 =‘different words were used, but the topic is
related to the reference’.). Lastly, a 3-pt toxicity
scale was used: 3 =‘clearly offensive, toxic, or
hateful’, 2 =‘possibly offensive, toxic, or hateful’,
1 =‘not offensive, toxic, nor hateful at all.’

The next set of figures shows the relationship
between the GPT-based evaluation and other quan-
titative metrics. These figures show that there is
some agreement between the subjective ratings of
GPT-40-mini and the evaluation based on predicted
probabilities, BERTScore, and BLEU-2.
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0.75 '3

1gBT | Ln®

BLEU-2

0.25

o
§
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.
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1 2 3 4 5 1 2 3 4
GPT-40-mini rating on Fluency and Similarity

Figure 2: Comparison of BLEU-2 scores with GPT-
based ratings for Fluency and Similarity

Figure 2 compares fluency and similarity ratings
of GPT-generated text with the calculated BLEU-2
score between the original and counterfactual texts.
The results indicate a general correlation: higher
BLEU-2 scores are associated with higher fluency
and similarity ratings. Notably, a BLEU-2 score
of at least 0.25 most likely corresponds to fluency
(> 3) and similarity (> 3).

Similarly, figure 3 shows that a higher
BERTScore is associated with better fluency and
text similarity. It can be observed that a BERTScore
higher than 0.875 is most likley associated to fluent
(> 3) and similar (> 3) text.

Lastly, Figure 4 shows that GPT-assigned toxi-
city ratings of possibly toxic (= 2) or toxic (= 3)
are associated with higher predicted probabilities
for abusiveness and hate speech. Specifically, when
GPT detects some level of toxicity, the predicted
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Figure 3: Comparison of BERTScore with GPT-based
ratings for Fluency and Similarity
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Figure 4: Comparison of Predicted Probability for Abu-
siveness p(a; = 1) and Hate Speech p(a; = 1,a2 = 1)
with GPT-based ratings for toxicity.

probability of abusiveness is most likely > 0.75,
while the predicted probability of hate speech is
most likely > 0.50.

D Hyperparameter Selection

Refer to Table 6 for flip rates, Table 7 for text sim-
ilarity, Table 8 for GPT-based ratings, and Table
9 for cross-analysis. Notations: N (iterations), ¥
(learning rate), 3 (attribute-based energy weight),
B2 (similarity-based energy weight), and By,
(minimum BERTScore).

For the first experiment, hyperparameter selec-
tion for the energy-based model followed a fixed
set of combinations inspired by Mireshghallah et al.
(2022).

Given three target attributes, we considered at
least 20 iterations, based on prior findings suggest-
ing 10 iterations were generally sufficient. To as-
sess improvements, we initially tested hyperparam-
eters over 20 iterations before increasing to 40 itera-
tions to examine its impact on flip rate. The results
showed improved attribute control at 40 iterations,



Attribute Control
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech
N v B1 B2 Bmin | FR(a1)T FR(a1,a2)t FR(a1,a2,a3)t | FR(a1)T FR(a1,a2)T FR(ay,ag, a3)t
S-shot prompt - - - - - 12.00% 3.33% 0.67% 9.00% 4.67% 3.00%
CASPer 20 0.05 - - - 55.33% 40.00% 6.67% | 66.33% 58.33% 45.67%
40 0.1 - - - 61.00% 48.33% 6.67% | 80.67% 72.33% 64.33%
Block M&M 20 - 10 5 0.850 | 54.00% 42.33% 8.33% | 61.00% 53.67% 44.67%
20 - 10 10 0.875 | 40.33% 26.67% 4.67% | 43.33% 32.33% 29.33%
40 - 10 5 0.850 | 75.67% 63.00% 7.33% | 78.67% 70.67% 66.00%
40 - 10 5 0875 53.33% 38.67% 4.33% | 57.33% 47.67% 42.33%
40 - 10 10 0.875 | 54.00% 40.33% 3.00% | 61.33% 50.33% 44.67%
GENES 20 01 10 5 0.850 | 46.00% 30.00% 3.33% | 48.67% 37.33% 33.33%
20 0.1 10 10 0.875 | 35.00% 18.67% 233% | 41.00% 31.00% 27.00%
40 0.1 10 S5 0.850 | 56.67% 43.00% 5.67% | 65.67% 59.67% 55.00%
40 0.1 10 S5 0.875 | 48.33% 33.00% 3.67% | 53.67% 42.33% 39.67%
40 0.1 10 10 0.875 | 50.00% 35.33% 3.33% | 52.67% 42.00% 38.00%

Table 6: FR refers to flip rate. Three (3) attributes are being controlled - a; (abusive), ao (targeted), and as
(implicitness). Joint expression of a1 & as is hate speech, while a4, as, & ag jointly refers to explicit/implicit hate.

Semantic Similarity
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech
N v  B1 B2 Bmin | BERTScoret BLEU-2T % No Edit] | BERTScoret BLEU-21 % No Edit|
5-shot prompt - - - - - 0.9622 0.6723 14.33% 0.9455 0.5482 9.00%
CASPer 20 005 - - - 0.8520 0.0780 0.00% 0.8419 0.0289 0.00%
40 01 - - - 0.8493 0.0577 0.00% 0.8427 0.0309 0.00%
Block M&M 20 - 10 5 0.850 0.8693 0.1951 2.33% 0.8617 0.1195 2.33%
20 - 10 10 0.875 0.8910 0.3175 1.00% 0.8864 0.2683 0.67%
40 - 10 5 0.850 0.8645 0.1543 0.67% 0.8582 0.1024 2.00%
40 - 10 5 03875 0.8844 0.2716 4.00% 0.8817 0.2329 6.33%
40 - 10 10 0.875 0.8850 0.2770 0.33% 0.8821 0.2538 1.33%
GENES 20 0.1 10 5 0.850 0.8973 0.3297 3.33% 0.8731 0.2265 4.33%
20 0.1 10 10 0.875 0.9104 0.4205 0.67% 0.8948 0.3380 1.67%
40 01 10 5 0.850 0.8808 0.2736 1.00% 0.8673 0.1758 1.00%
40 01 10 5 0875 0.8927 0.3376 4.67% 0.8861 0.2889 3.67%
40 01 10 10 0.875 0.8992 0.3780 1.67% 0.8872 0.2968 0.67%

Table 7: The BERTScore and BLEU-2 measures the similarity between the original and counterfactual texts. The
"% No Edit’ is the percentage where the method failed to make any changes to the original text.

likely due to the task’s multi-aspect nature.

To ensure comparability across methods,
GENES adopted the same configurations as Block
M&M, with the only modification being the addi-
tion of gradient perturbation (v learning rate). For
the second experiment, the best settings in the first
experiment were used but it was implemented in
25 iterations only since only 1 attribute is being
controlled.

For learning rate selection, we tested +y
0.1,0.05,0.01, ultimately selecting v = 0.1 as it
produced observable changes in text fluency and
similarity. Learning rates below 0.05 had mini-
mal impact. Due to time constraints, CASPer was
tested with fewer configurations, but its hyperpa-
rameter selection was informed by those effective
for GENES.

E Examples of Counterfactual Text
Generated

Table 10 shows examples of counterfactual texts
generated by each method.
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GPT-based Evaluation
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech
N ¥ 81 B2 Bmin | % Fluent? % Similar? % Toxict | % Fluent? % Similarf % ToxicT
5-shot prompt - - - - - 82.67% 75.00% 3.67% 86.33% 73.00% 2.33%
CASPer 20 005 - - - 43.67% 22.33% 30.00% 28.00% 8.00% 33.00%
40 01 - - - 34.00% 17.67% 36.00% 25.00% 9.00% 45.33%
Block M&M 40 - 10 5 0.850 49.33% 28.00% 43.00% 46.33% 18.33% 44.33%
40 - 10 5 0.875 69.00% 43.00% 28.67% 65.00% 35.00% 35.00%
40 - 10 10 0.875 72.67% 48.33% 28.00% 68.33% 39.67% 34.67%
GENES 40 01 10 5 0.850 65.67% 45.00% 32.33% 56.00% 31.33% 39.00%
40 01 10 5 0.875 77.67% 59.00% 32.33% 76.00% 46.67% 29.67%
40 0.1 10 10 0.875 83.67% 68.33% 26.00% 77.00% 57.00% 28.33%

Table 8: This table shows the summary of additional evaluations using gpt-4o-mini as a model-based rater. Fluent
rating is > 3, and a similar rating is > 3. A case is toxic if the rating is 2 (possibly toxic) or 3 (toxic).

Attribute Control vis-a-vis Text Quality

Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech
% Toxic % Toxic % Toxic | % Toxic % Toxic % Toxic
N o 51 B2 Bmin (All) and Fluent and Similar (All) and Fluent and Similar
5-shot prompt - - - - - 13.67% 12.33% 12.00% | 10.00% 9.33% 8.67%
CASPer 20 005 - - - 61.00% 19.67% 12.00% | 69.00% 16.33% 5.67%
40 o1 - - - 68.33% 19.33% 13.00% | 84.67% 18.33% 6.67%
Block M&M 40 - 10 5 0.850 | 81.00% 37.00% 26.33% | 82.00% 33.67% 17.00%
40 - 10 5 0.875 | 61.00% 36.67% 33.00% | 63.33% 35.33% 29.00%
40 - 10 10 0.875 | 63.00% 42.00% 36.00% | 64.67% 39.00% 34.33%
GENES 40 0.1 10 5 0.850 | 62.00% 37.00% 35.00% | 68.67% 34.00% 23.00%
40 0.1 10 5 0875 55.67% 39.00% 38.00% | 58.33% 38.67% 34.00%
40 0.1 10 10 0.875 | 55.00% 44.00% 42.00% | 57.00% 38.33% 37.33%

Table 9: This table summarizes how each method is able to satisfy both constraints of counterfactual text generation.
For GPT-based ratings, settings with better results were prioritized.

Original Text

Method

Counterfactual Text

Tried doing a search

in your email

attached to your

5-shot prompt

Tried doing a search in your driver account email? They send an
email with a weekly statement.

. CASPER They sent an email with a weekly statement that was a spam account
driver account? They . .
L and the account is black and racist
send an email with a
weekly statement. Block M&M ““Tried doing a search in our email attached to the driver account and
spouting our wudls like we were all on the same flight
GENES “‘Tried doing a f**ked search in your driver account? Then you

should’ve gotten a monthly statement instead.”

Sure if you want a

5-shot prompt

be the one to make it.

hea.dstart. I’ﬁnd it CASPER I’m bored because I’'m afraid of going to church with my father’s
boring so I'm S,
. sister’s
probably not going
to Block M&M “I find it boring and I’'m not going to a race that isn’t black.”
GENES ‘I found it boring so I'm probably going to a coffee shop with a guy

who is a sh*t’

You could just stay

5-shot prompt

you could just stay in your state

. CASPER It’s okay to stay sick when you’re shit

1n your state.
Block M&M Cant you just move on in the united states.
GENES you could stay in your own state and be dumb

Table 10: The original text is a normal text sampled from the CADD dataset. The counterfactual text column
presents the output for each method.
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