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Abstract

Motion time series collected from low-power, always-on mobile and wearable
devices such as smartphones and smartwatches offer significant insights into human
behavioral patterns, with wide applications in healthcare, automation, IoT, and
AR/XR. However, given security and privacy concerns, building large-scale motion
time series datasets remains difficult, hindering the development of pre-trained
models for human activity analysis. Typically, existing models are trained and
tested on the same dataset, leading to poor generalizability across variations in
device location, device mounting orientation, and human activity type. In this
paper, we introduce UniMTS1, the first unified pre-training procedure for motion
time series that generalizes across diverse device latent factors and activities.
Specifically, we employ a contrastive learning framework that aligns motion time
series with text descriptions enriched by large language models. This helps the
model learn the semantics of time series to generalize across activities. Given the
absence of large-scale motion time series data, we derive and synthesize time series
from existing motion skeleton data with all-joint coverage. We use spatio-temporal
graph networks to capture the relationships across joints for generalization across
different device locations. We further design rotation-invariant augmentation to
make the model agnostic to changes in device mounting orientations. Our model
shows exceptional generalizability across 18 motion time series classification
benchmark datasets, outperforming the best baselines by 340% in the zero-shot
setting, 16.3% in the few-shot setting, and 9.2% in the full-shot setting.

1 Introduction

Recognition of human motion using time series from mobile and wearable devices, such as accelera-
tions and angular velocities, is widely adopted as key context information for various applications
from health condition monitoring [4], sports activity analysis [1] to user habit studies [50]. Compared
with vision-based approaches, methods based on motion sensor time series offer more energy-efficient
and cost-effective solutions with enhanced privacy protection [54], making them preferable.

∗Work unrelated to Amazon.
1Code is available on Github: https://github.com/xiyuanzh/UniMTS. Model is available on Hugging

Face: https://huggingface.co/xiyuanz/UniMTS.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/xiyuanzh/UniMTS
https://huggingface.co/xiyuanz/UniMTS
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Figure 1: Our framework addresses three key generalization challenges (variation in device location,
orientation, and activity) where existing methods fall short.

While valuable, collecting motion time series data at large scale remains challenging due to security or
privacy concerns. Labeling motion time series proves even more difficult as such data cannot be easily
interpreted by humans for post annotation. This results in data insufficiency that impedes development
of supervised learning methods. In other fields such as natural language processing [39, 56] and
computer vision [44, 30], pre-trained foundation models have shown remarkable performance in such
settings with insufficient data. However, in the motion time series domain, lack of comprehensive
datasets and an effective pre-training task makes it difficult to similarly develop pre-trained models
that can operate with limited data. Typically, existing models perform training and testing on the
same dataset, and struggle to generalize across different datasets given the following three unique
challenges within the motion time series problem domain.

We summarize these three unique generalization challenges in Figure 1. First of all, variation in
device placement during deployment poses a significant issue; for instance, data from a smartwatch
on the wrist vary considerably from data gathered from a smartphone near the upper leg. Therefore,
models trained on data from one body location can barely generalize to others during the testing
phase. Secondly, devices can experience arbitrary orientations during data collection, making it
difficult for models trained on specific device orientations to adapt to new ones during deployment.
Thirdly, different motion time series datasets can be focused on different types of human activities.
For example, some datasets aim to identify stationary activities such as lying or sitting, while others
concentrate on dynamic movements such as walking or cycling. Models trained on specific types of
activities typically struggle to generalize to new activities introduced by other datasets.

We introduce UniMTS, the first Unified pre-trained model for Motion Time Series to address all the
above three generalization issues, achieving state-of-the-art zero-shot and fine-tuning performance.
UniMTS follows a contrastive learning framework that aligns motion time series with LLM-enriched
textual descriptions to learn the time series semantics for activity generalization. To prepare large-
scale motion time series for pre-training, we synthesize these time series based on existing extensive
motion skeleton data [19] with comprehensive coverage of different body locations. We model these
synthesized time series using graph networks to capture the spatio-temporal relationships across
devices for location generalization. We further implement rotation-invariant augmentation to ensure
the model’s robustness to any device orientation during testing.

We summarize our primary contributions as follows:

• We introduce the first unified pre-training procedure for motion time series, UniMTS, which
successfully generalizes to various device locations, device orientations and activities.

• We design a contrastive learning framework to align motion time series with corresponding semantic
meanings for activity generalization. For device location generalization, we propose to synthesize
motion time series covering various body locations and model their spatio-temporal correlations
using graph convolutional neural networks. We also design rotation-invariant augmentation to
make the model agnostic to different device orientations.

• Our pre-trained model demonstrates state-of-the-art performance across 18 real-world motion time
series benchmark datasets, notably with performance improvement of 340% in the zero-shot setting,
16.3% in the few-shot setting, and 9.2% in the full-shot setting, compared with the respective
best-performing baselines.

2 Related Work
Conventional motion time series classification approaches train a dedicated classifier for each
dataset, and can be categorized into statistical feature extraction methods [15] and deep learning
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<latexit sha1_base64="VcduhImtG31xtIwCRH/3qEwy95Y=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOwvjQc=</latexit>z

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x<latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>y

<latexit sha1_base64="VcduhImtG31xtIwCRH/3qEwy95Y=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOwvjQc=</latexit>z

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x

<latexit sha1_base64="+uQyNRflh6ZfpBt0Osl+e4sjuBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6quNBg==</latexit>y
<latexit sha1_base64="VcduhImtG31xtIwCRH/3qEwy95Y=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOwvjQc=</latexit>z
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<latexit sha1_base64="Y2AJOPFykYN+pCeNE2ldqiDByLw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbn9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAd1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx/D6Y14</latexit>

G1
<latexit sha1_base64="96hQc4WXUNKO4+ObQ3govY5gyCM=">AAAB9HicbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIMeE8gLkmWZnZ0kQ2Zn15neQFjyHV48KOJRv8Iv8ObFb3HyOGhiQUNR1U13lx8LrsG2v6zMyura+kZ2M7e1vbO7l98/aOgoUZTVaSQi1fKJZoJLVgcOgrVixUjoC9b0BzcTvzlkSvNI1mAUMzckPcm7nBIwknvrObhDgwhwzXO8fMEu2lPgZeLMSaF0VP3mb+WPipf/7AQRTUImgQqidduxY3BTooBTwca5TqJZTOiA9FjbUElCpt10evQYnxolwN1ImZKAp+rviZSEWo9C33SGBPp60ZuI/3ntBLrXbsplnACTdLaomwgMEZ4kgAOuGAUxMoRQxc2tmPaJIhRMTjkTgrP48jJpnBedy+JF1aRRRjNk0TE6QWfIQVeohO5QBdURRffoAT2hZ2toPVov1uusNWPNZw7RH1jvP/bSlKM=</latexit>

G1 · T1

<latexit sha1_base64="RP8pf5ofUrDEO2kPbavZ4ggGr1Y=">AAAB6nicbVC7SgNBFL3rM8ZXVLCxGQyCVdgNopYhFlomaB6QLGF2MpsMmZldZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wQxZ9q47peztLyyurae2chubm3v7Ob29us6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIOrsd+4p0qzSN6ZYUx9gXuShYxgY6Xb606xk8u7BXcCtEi8GcmXDqvf7L38UenkPtvdiCSCSkM41rrlubHxU6wMI5yOsu1E0xiTAe7RlqUSC6r9dHLqCJ1YpYvCSNmSBk3U3xMpFloPRWA7BTZ9Pe+Nxf+8VmLCSz9lMk4MlWS6KEw4MhEa/426TFFi+NASTBSztyLSxwoTY9PJ2hC8+ZcXSb1Y8M4LZ1WbRhmmyMARHMMpeHABJbiBCtSAQA8e4AmeHe48Oi/O67R1yZnNHMAfOG8/pBWRFg==</latexit>

G2

<latexit sha1_base64="s6C++dBuOcBxYWMuETtemzWCa7w=">AAAB6nicbVC7SgNBFL3rM8ZXVLCxGQyCVdgVUcsQC60kQfOAZAmzk9lkyMzsMjMrhCWfYGOhiK2tf+EX2Nn4LU4ehSYeuHA4517uvSeIOdPGdb+chcWl5ZXVzFp2fWNzazu3s1vTUaIIrZKIR6oRYE05k7RqmOG0ESuKRcBpPehfjvz6PVWaRfLODGLqC9yVLGQEGyvdXrVv2rm8W3DHQPPEm5J8cb/yzd5LH+V27rPViUgiqDSEY62bnhsbP8XKMMLpMNtKNI0x6eMubVoqsaDaT8enDtGRVToojJQtadBY/T2RYqH1QAS2U2DT07PeSPzPayYmvPBTJuPEUEkmi8KEIxOh0d+owxQlhg8swUQxeysiPawwMTadrA3Bm315ntROCt5Z4bRi0yjBBBk4gEM4Bg/OoQjXUIYqEOjCAzzBs8OdR+fFeZ20LjjTmT34A+ftB86FkTI=</latexit>

GN

<latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>

... <latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>

... <latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>

... <latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>

... <latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>

...

<latexit sha1_base64="QTiMs/PM5VkJMZilgL5QOTaNQS8=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKuiFqG2FgmmBckS5idzCZDZmeWmVkhLPkEGwtFbG39C7/AzsZvcfIoNPHAhcM593LvPUHMmTau++VkVlbX1jeym7mt7Z3dvfz+QUPLRBFaJ5JL1QqwppwJWjfMcNqKFcVRwGkzGN5M/OY9VZpJUTOjmPoR7gsWMoKNle5qXa+bL7hFdwq0TLw5KZSOqt/svfxR6eY/Oz1JkogKQzjWuu25sfFTrAwjnI5znUTTGJMh7tO2pQJHVPvp9NQxOrVKD4VS2RIGTdXfEymOtB5Fge2MsBnoRW8i/ue1ExNe+ykTcWKoILNFYcKRkWjyN+oxRYnhI0swUczeisgAK0yMTSdnQ/AWX14mjfOid1m8qNo0yjBDFo7hBM7AgysowS1UoA4E+vAAT/DscOfReXFeZ60ZZz5zCH/gvP0Atl+RIg==</latexit>

T1
<latexit sha1_base64="GQ2o0KcJqvLiNukUPPFQnOm8/rM=">AAAB6nicbVC7SgNBFL3jM8ZXVLCxGQyCVdgNopYhNpYJ5gXJEmYns8mQ2dllZlYISz7BxkIRW1v/wi+ws/FbnDwKTTxw4XDOvdx7jx8Lro3jfKGV1bX1jc3MVnZ7Z3dvP3dw2NBRoiir00hEquUTzQSXrG64EawVK0ZCX7CmP7yZ+M17pjSPZM2MYuaFpC95wCkxVrqrdYvdXN4pOFPgZeLOSb50XP3m7+WPSjf32elFNAmZNFQQrduuExsvJcpwKtg420k0iwkdkj5rWypJyLSXTk8d4zOr9HAQKVvS4Kn6eyIlodaj0LedITEDvehNxP+8dmKCay/lMk4Mk3S2KEgENhGe/I17XDFqxMgSQhW3t2I6IIpQY9PJ2hDcxZeXSaNYcC8LF1WbRhlmyMAJnMI5uHAFJbiFCtSBQh8e4AmekUCP6AW9zlpX0HzmCP4Avf0At+ORIw==</latexit>

T2
<latexit sha1_base64="3lfM3+hxjM1gMTvVW4oUqxyDb84=">AAAB6nicbVC7SgNBFL3rM8ZXVLCxGQyCVdgVUcsQGytJMC9IljA7mU2GzMwuM7NCWPIJNhaK2Nr6F36BnY3f4uRRaOKBC4dz7uXee4KYM21c98tZWl5ZXVvPbGQ3t7Z3dnN7+3UdJYrQGol4pJoB1pQzSWuGGU6bsaJYBJw2gsH12G/cU6VZJKtmGFNf4J5kISPYWOmu2rnt5PJuwZ0ALRJvRvLFw8o3ey99lDu5z3Y3Iomg0hCOtW55bmz8FCvDCKejbDvRNMZkgHu0ZanEgmo/nZw6QidW6aIwUrakQRP190SKhdZDEdhOgU1fz3tj8T+vlZjwyk+ZjBNDJZkuChOOTITGf6MuU5QYPrQEE8XsrYj0scLE2HSyNgRv/uVFUj8reBeF84pNowRTZOAIjuEUPLiEItxAGWpAoAcP8ATPDncenRfnddq65MxmDuAPnLcf4lORPw==</latexit>

TN
<latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>...

<latexit sha1_base64="2qWSJhNpQEn6cVxXUsdRV9Tcd3c=">AAAB7HicbVDLSsNAFL2prxpfVZduBovgKiQi1Y1YdOOygmkLbSiT6aQdOpmEmYlQQr/BjQtFXAn+ins34t84fSy09VwuHM65l/sIU86Udt1vq7C0vLK6Vly3Nza3tndKu3t1lWSSUJ8kPJHNECvKmaC+ZprTZiopjkNOG+Hgeuw37qlULBF3epjSIMY9wSJGsDaS79gmOqWy67gToEXizUj58sO+SN++7Fqn9NnuJiSLqdCEY6VanpvqIMdSM8LpyG5niqaYDHCPtgwVOKYqyCfLjtCRUbooSqRJodFE/d2R41ipYRyayhjrvpr3xuJ/XivT0XmQM5FmmgoyHRRlHOkEjS9HXSYp0XxoCCaSmV0R6WOJiTb/sc0TvPmTF0n9xPEqzumtW65ewRRFOIBDOAYPzqAKN1ADHwgweIAneLaE9Wi9WK/T0oI169mHP7DefwAXPJCQ</latexit>...
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Figure 2: UniMTS pre-training framework: The physics engine computes motion time series for each
joint based on motion skeleton data and enhances time series through rotation-invariant augmentation.
During pre-training, we adopt contrastive learning to align motion time series encoded by graph
convolutional neural networks with corresponding text descriptions augmented by an LLM.

methods, including convolutional neural networks (MA-CNN [45], SenseHAR [23], Rocket [12]),
recurrent neural network (DeepConvLSTM [40]), and the attention mechanism based models (At-
tnSense [36], THAT [29]). Recently, IMUGPT [28, 27] generates motion sequences given activity
textual descriptions and trains conventional classification models such as DeepConvLSTM [40].
TimesNet [60], GPT4TS [72] and TEST [52] propose task-general time-series models for multiple
tasks including classification. SHARE [71] presents a sequence-to-sequence framework that leverages
shared structures of label names. However, these models perform training and testing on the same
dataset, and cannot generalize across datasets.

Self-supervised motion time series representation learning methods first learn time series represen-
tations based on mask reconstruction (TST [68], TARNet [11], LIMU-BERT [62]), contrastive learn-
ing (TNC [55], TS-TCC [14], TS2Vec [67], TF-C [70], FOCAL [32], CL-HAR [42], DDLearn [43])
or other self-supervised learning objectives (BioBankSSL [66, 13, 10], Step2Heart [51]). Subse-
quently, they fine-tune classifier heads for specific downstream tasks. However, the representation
learning and fine-tuning phases of these methods generally occur on the same or highly similar
datasets, which continues to face challenges in generalization across diverse datasets.

Pre-trained models for motion time series are inspired by the recent success of large language
or multimodal models. ImageBind [16] and IMU2CLIP [38] leverage recent large vision-language
models [44] to learn a joint embedding across multiple modalities including motion time series
and text. However, both ImageBind and IMU2CLIP are trained on motion time series collected
from head-mounted devices [17], limiting their generalizability across different device locations
and orientations. Furthermore, several studies have explored directly applying LLMs for motion
time series classification. For example, HARGPT [24] processes raw motion time series through
LLMs and incorporates role-play and chain-of-thought strategies for prompting. ContextGPT [3]
designs prompt engineering approaches leveraging context information. However, since LLMs are
not directly trained on raw motion time series, such methods require extensive context information
that is not usually available, and struggle with accurately recognizing complex activities.

Other related works on motion classification include multimodal action recognition and domain
adaptation methods. Multimodal action recognition such as the Ego4D [17] and Ego-Exo4D [18]
benchmarks incorporates video and audio modalities, whereas we focus on a more energy-efficient
and challenging scenario of action recognition based purely on motion time series. Domain adaptation
methods mostly assume that source and target datasets share the same label names and have the same
number of classes, such as cross-user domain adaptation and cross-dataset domain adaptation only
for those common classes [22, 35, 21]. We aim for a more generic yet challenging generalization
scenario where pre-training and downstream datasets share different label names.

3 Method

UniMTS takes a contrastive learning-based approach that aligns paired motion time series with text
descriptions to enable activity generalization, as shown in Figure 2. We simulate motion time series
from motion skeleton data (Section 3.1) and augment them for orientation generalization (Section 3.2).
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We use graph encoder to model the simulated motion time series, capturing correlations among joints
to generalize across different device locations (Section 3.3.1). To enhance semantics learning, we use
large language models to augment text descriptions (Section 3.3.2).

3.1 Physics Engine for Motion Time Series Simulation
Motion skeleton data [19] describe the movements of human skeleton joints over time, containing
positions and orientations for each joint. On the other hand, motion time series captured by physical
sensors typically measure higher-order data such as accelerations and angular velocities. Conse-
quently, we apply motion equations [65] to synthesize these time series of accelerations and angular
velocities from motion skeleton data. More specifically, for each skeleton joint Ji, we input both
positions pJi,G (mapped from time domain T to R3, defined in global frame G), and orientation
quaternions qJi,GL (mapped from time domain T to the Special Orthogonal Group SO(3), defined
in Hamilton convention with subscript GL representing a frame rotation from local frame L to global
frame G). We drop the subscript G and GL from here on for simplicity of notation. Based on motion
equations [65], we calculate velocities vJi and accelerations aJi by taking the first and second order
derivatives of positions pJi . These derivatives are then transformed from global frames to local
frames using the corresponding orientation sequences qJi . Similarly, angular velocities ωJi are
computed by taking the first order derivatives of orientation quaternions qJi . Mathematically,

vJi(t) = q∗
Ji(t)⊗ p′

Ji(t)⊗ qJi(t), (1)

aJi(t) = q∗
Ji(t)⊗ p′′

Ji(t)⊗ qJi(t), (2)

ωJi(t) = 2q∗
Ji(t)⊗ q′

Ji(t), (3)

where ⊗ and ∗ represent the quaternion multiplication operator and the quaternion conjugate.

Recognizing the inherent presence of noise carried by sensors in practice, the physics engine incorpo-
rates Gaussian noise with a zero mean into the simulated data. Representing the above motion time
series as xJi(t), which can denote either aJi(t) (accelerations) or ωJi(t) (angular velocities), the
noisy time series x̃Ji(t) are formulated as

x̃Ji(t) = xJi(t) + nJi(t),nJi(t) ∼ N (0,σ). (4)

3.2 Rotation-Invariant Augmentation

A common limitation we have identified from prior studies that leads to their poor generalization is
that they fail to consider the impact of latent device orientation factors on the motion time series. For
example, end users can potentially wear devices in various orientations, such as with a phone facing
towards or against the body in a pocket. Additionally, the software driver API for axis definition
can be arbitrarily configured by the developers. For example, the iOS system defines acceleration
in an opposite direction compared to the Android system2. With the listed risk factors considered,
we apply a data augmentation technique to simulate random orientations during pre-training, so that
our learned model achieves rotation-invariance during deployment [7, 57, 61]. Specifically, during
pre-training, for each iteration we sample a random rotation matrix for each joint Ji,

Rδ
Ji ∼ Uniform(SO(3)), (5)

and compute the augmented time series x̂tJi at timesteps t = 1, 2, · · · , T as

x̂tJi = Rδ
Ji x̃

t
Ji . (6)

During one iteration, the same Rδ
Ji

is consistently applied to Ji for every time series and every
timestep t = 1, 2, · · · , T . The rotation-invariant augmentation ensures that the simulated time series
are adaptable to any downstream orientation, thereby enhancing the generalization capabilities.

3.3 Contrastive Learning
The physics engine generates sufficient motion time series data, which are subsequently encoded by
graph networks and aligned with their corresponding text embeddings through contrastive learning.

2https://github.com/tszheichoi/awesome-sensor-logger/blob/main/CROSSPLATFORM.md
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Figure 3: Inference (left) and fine-tuning (right) phases of UniMTS. We assign real signals to the
nearest location in the skeleton graph. During inference, we compute the similarity score between
the graph embedding and each label candidate, and predict the one with the highest score. During
fine-tuning, we freeze the text encoder and update weights of the graph encoder and linear layer.

3.3.1 Graph Encoder

To capture the spatio-temporal correlations among different joints over time, we adopt spatio-temporal
graph convolutional network [63] as our motion time series encoder. We denote the initial input graph
representation as follows,

G = (V = {x̂Ji}Vi=1, Es = {(x̂Ji , x̂Jl)|(Ji, Jl) ∈ H}, Et = {(x̂t−1
Ji

, x̂tJi)}
V,T
i=1,t=2). (7)

Nodes V contain skeleton joints with features X ∈ RC×T×V , where C, T, V represent the number
of signal channels, temporal steps and joint nodes. Spatial edges Es connect adjacent nodes defined
by the skeleton structure H and temporal edges Et connect temporally adjacent frames.

In practice, devices may not cover the complete joints but are rather positioned at arbitrary subsets of
the complete joints. To simulate this, during each pre-training iteration, we randomly select a subset
of joints and mask data from the remaining joints with zeros. We denote the mask at one iteration as
M ∈ RC×T×V , where Mi ∈ RC×T is 1 if joint Ji is selected, and Mi = 0 if joint Ji is masked:

X̃ = X⊙M, (8)
The graph convolution network gϕ first computes the spatial output features as

Xout = ΣKs

k Φk(X̃(Λ
− 1

2

k AkΛ
− 1

2

k )), (9)

where Ks denotes the spatial kernel size, Ail
k represents whether node xJl belongs to the spatial

convolution sampling subset SkJi of node xJi , and Λii
k = Σl(A

il
k ) + α represents the normalized

diagonal matrix, with α set to 0.001 to prevent empty rows [63, 48]. Φk ∈ RC′×C×1×1 represents
weights of the 1× 1 convolution operation with C ′ denoting output channel dimension. Following
spatial convolution, we further perform Kt × 1 temporal convolution on the spatial output features
Xout, similar to classical convolution operations, where Kt represents the temporal kernel size. The
final graph representation gϕ(X) is derived by averaging features across both spatial and temporal
dimensions with a graph average pooling layer at the end.

3.3.2 Text Encoder

To increase the diversity of paired text descriptions in the pre-training motion corpus [19], we apply
large language models (GPT-3.5) to augment original motion text descriptions with the following
prompt template: The following one or multiple descriptions are describing the same human activities:
<motion descriptions>. Generate k paraphrases to describe the same activities.

We denote the original text descriptions combined with the LLM-augmented ones as Y. We encode
them using the same text encoder fθ as CLIP [44], utilizing its pre-trained weights for initialization.

3.3.3 Training and Inference

During pre-training, we maximize the similarities of paired simulated motion time series and text
descriptions through contrastive learning:

Lctr = − 1

B

B∑
i=1

log
exp(sim(gϕ(Xi), fθ(Yi)))

1
γ∑B

k=1 exp(sim(gϕ(Xi), fθ(Yk)))
1
γ

, (10)
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where B, γ represent batch size and temperature parameter that controls distribution concentrations,
and sim represents similarity score computed as inner product:

sim(gϕ(Xi), fθ(Yi)) = ⟨gϕ(Xi), fθ(Yi)⟩. (11)

We pre-train the graph and text encoders using simulated motion time series and augmented text
descriptions. During inference, we evaluate the model on real-world motion time series, as illustrated
in the left part of Figure 3. For the text encoder, we input all label candidates. For the graph encoder,
we assign real motion time series to the nearest joint in the skeleton graph and assign zeros to the
remaining joints. The random mask M during pre-training emulates the zero-masking process. We
compute the similarity score between the graph embedding with text embedding from each label
candidate, and choose the label with the highest similarity score as the predicted activity.

We can further fine-tune the pre-trained model on downstream real-world data, as depicted in the right
part of Figure 3. Specifically, we freeze the text encoder fθ and update weights of the graph encoder
gϕ followed by a linear classifier hψ. Following the same process as inference, we assign the real
motion time series to the nearest joint in the skeleton graph and assign zeros to the remaining joints
to construct the graph input representation X. We fine-tune the model using X and one-hot encoded
labels z with D classes based on cross-entropy loss, where σ(·) represents the softmax operation:

Lce = − 1

B

B∑
i=1

D∑
j=1

zij log(σ(hψ(gϕ(Xi)))j). (12)

We report both zero-shot and fine-tuning performance in the subsequent experiment section.

4 Experiments
4.1 Datasets and Experimental Setting

We simulate motion time series from existing motion skeleton dataset HumanML3D [19], which
contain both motion skeleton data and corresponding text descriptions as detailed in Section A.1 in
Appendix. We further augment the text descriptions as described in Section 3.3.2.

We evaluate on the most extensive motion time series classification benchmark to date, comprising
18 real-world datasets that cover diverse activities. These datasets are collected from various body
locations such as head, chest, back, arm, wrist, waist, hip, leg, knee and ankle. We categorize these
datasets into three difficulty levels: (1) easy level (with fewer than 10 activities): Opportunity [47],
UCI-HAR [2], MotionSense [37], w-HAR [5], Shoaib [49], HAR70+ [58], RealWorld [53], TNDA-
HAR [64]; (2) medium level (with 10 to 20 activities): PAMAP2 [46], USC-HAD [69], Mhealth [4],
Harth [33], UT-Complex [50], Wharf [6], WISDM [59], DSADS [1]; (3) hard level (with more than
20 activities): UTD-MHAD [8], MMAct [26]. We provide the specific number of activities for each
dataset in Table 1 and Table 2, and detail their collection settings in Section A.2 in Appendix.

We re-sample the real-world test data to the same sampling frequency as the simulation data (20 Hz),
and apply normalization to ensure consistency in unit measurements, e.g., standardizing accelerations
to m/s2. We pre-train UniMTS using Adam optimizer [25] with a learning rate of 0.0001 on a single
NVIDIA A100 GPU. The pre-training process consumes approximately 13 GB of memory given
a batch size of 64. For text augmentation, we prompt GPT-3.5 (“gpt-3.5-turbo”) to generate k = 3
paraphrases. During each iteration, we randomly generate the mask M by selecting 1 to 5 joints and
mask the remaining joints as zeros. We adopt learnable temperature parameter γ initialized from
CLIP. We evaluate the models using accuracy, macro-F1 and the top-2 retrieval performance R@2.

4.2 Zero-Shot Results
We pre-train UniMTS exclusively on simulated data and evaluate on 18 real-world motion time series
classification benchmark datasets. We compare UniMTS against classification models with zero-shot
capabilities: ImageBind [16], IMU2CLIP [38], IMUGPT [28] and HARGPT [24]. We also input
the 2D visualizations of motion time series to pre-trained vision-language model LLaVA [30] for
comparison. We detail the configurations of baselines in Section A.3 in Appendix. As shown in
Table 1, UniMTS significantly outperforms all baselines in the zero-shot setting. We also apply the
Wilcoxon-signed rank test with Holm’s α (5%) following previous works [20, 71]. The Wilcoxon-
signed rank test indicates that the improvement of UniMTS compared with all the baselines is
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Table 1: Zero-Shot performance. We bold the best and underline the second best. UniMTS performs
the best compared with both baselines and our model ablations. The last column shows the average
performance across 18 datasets with standard deviation.
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Number of Classes 4 6 6 7 7 7 8 8 12 12 12 12 13 14 18 19 27 35

Level Easy Medium Hard Avg

ImageBind [16]
Acc 50.2 14.1 18.1 13.1 19.4 0.0 18.9 19.3 14.6 11.8 7.9 9.8 9.7 3.2 7.1 2.1 3.3 2.9 12.5(11.0)
F1 30.0 5.0 16.4 8.6 15.5 0.0 10.1 13.7 8.1 7.3 1.7 6.1 6.3 1.9 4.5 1.2 1.6 1.5 7.8(7.2)

R@2 83.6 21.4 42.8 54.1 35.5 0.2 23.9 32.8 15.6 25.0 21.3 22.5 17.8 6.8 13.7 6.9 5.1 3.7 24.0(20.0)

IMU2CLIP [38]
Acc 25.9 17.8 15.5 6.6 16.7 5.6 6.1 8.5 1.9 12.8 7.9 2.5 7.3 1.4 4.3 4.6 3.7 6.4 8.6(6.4)
F1 10.3 11.4 8.6 3.3 9.2 1.8 4.5 4.2 1.1 9.3 1.3 1.1 3.4 0.7 2.7 1.1 2.1 1.6 4.3(3.6)

R@2 65.5 35.1 39.1 19.7 34.6 22.2 19.7 22.4 9.8 19.8 13.4 4.8 16.3 5.5 9.6 8.3 6.5 10.1 20.1(14.9)

IMUGPT [28]
Acc 10.1 1.1 11.8 67.2 12.4 0.0 16.9 14.3 8.9 6.0 9.8 4.8 11.6 2.7 8.3 7.5 3.7 2.0 11.1(14.4)
F1 10.4 0.3 3.5 38.8 6.2 0.0 4.0 6.1 1.5 6.9 2.5 1.9 8.3 1.8 6.6 2.0 0.3 0.7 5.7(8.6)

R@2 33.7 18.2 40.4 67.2 32.1 0.0 33.7 28.5 19.3 31.8 19.5 27.8 17.4 17.7 13.9 14.6 8.8 5.1 23.9(14.9)

HARGPT [24]
Acc 28.8 15.0 11.6 4.9 21.0 34.3 12.7 13.7 11.1 9.5 10.4 28.8 7.5 5.9 5.5 5.8 3.3 2.3 12.9(9.2)
F1 17.3 12.7 5.6 3.1 12.4 10.6 5.3 5.4 2.1 3.6 7.4 7.5 4.4 1.4 3.5 3.4 1.5 1.1 6.0(4.4)

R@2 47.0 31.4 35.9 11.5 38.6 51.9 31.7 25.2 23.0 17.6 27.4 48.6 16.5 11.4 11.8 12.1 9.3 5.0 25.3(14.2)

LLaVA [30]
Acc 40.1 16.3 22.8 0.0 16.7 10.3 16.8 12.9 10.3 11.1 18.9 16.3 2.1 3.6 5.6 5.3 3.7 4.0 12.0(9.4)
F1 14.3 6.5 6.2 0.0 4.8 3.7 3.7 2.9 1.6 2.6 7.4 5.0 0.6 0.7 0.6 0.5 0.3 0.2 3.4(3.5)

R@2 67.6 34.6 34.4 0.0 33.3 43.4 28.4 25.2 18.7 19.6 33.5 16.4 9.0 3.6 10.6 10.5 7.4 7.3 22.4(16.5)

UniMTS
Acc 45.9 35.2 45.2 59.0 63.6 68.2 43.6 59.1 47.2 30.5 70.7 68.9 34.8 18.2 27.8 31.5 22.8 10.2 43.5(17.9)
F1 42.2 22.0 33.7 42.9 57.2 34.8 36.7 53.7 43.6 27.8 61.8 41.1 29.2 13.7 25.5 23.7 18.5 10.0 34.3(14.2)

R@2 80.0 53.1 57.2 60.7 82.1 86.6 64.0 77.5 63.2 45.4 78.7 85.0 44.2 38.6 47.1 46.0 32.6 18.7 58.9(19.3)

w/o rot aug
Acc 37.7 18.6 25.1 36.1 19.4 53.4 55.5 35.6 32.5 20.7 27.4 59.4 9.9 3.6 13.5 21.5 13.5 4.3 27.1(16.3)
F1 30.4 8.2 11.2 26.4 13.5 27.7 41.1 29.6 28.3 10.5 24.0 20.5 4.9 4.8 10.6 13.4 7.2 4.7 17.6(10.7)

R@2 74.3 40.1 64.3 52.5 40.1 76.5 76.3 54.4 48.8 29.7 49.4 61.2 28.5 6.8 23.3 34.0 32.1 7.6 44.4(20.8)

w/o text aug
Acc 52.7 36.3 43.4 57.4 55.6 61.0 40.7 40.9 38.4 29.6 59.2 62.8 30.3 28.2 31.3 29.3 6.5 12.6 39.8(15.8)
F1 39.4 21.3 34.7 41.4 49.5 32.8 29.7 32.7 33.9 21.6 49.0 26.7 21.2 19.6 27.2 22.2 4.7 10.3 28.8(11.6)

R@2 70.9 39.6 63.7 57.4 78.7 77.4 60.4 63.5 48.8 49.1 63.4 77.9 41.4 43.2 45.1 41.7 10.7 23.2 53.1(18.1)

w/o graph
Acc 41.4 37.6 18.9 23.0 50.9 18.8 42.7 33.8 30.0 22.4 28.7 34.8 23.4 0.5 12.4 19.8 1.9 11.2 25.1(13.4)
F1 20.5 28.5 21.6 17.9 38.6 9.1 23.7 28.9 23.6 23.0 19.3 15.3 11.5 1.1 8.5 16.0 2.7 7.7 17.6(9.5)

R@2 63.7 66.7 54.2 34.4 66.1 35.3 51.1 62.1 41.8 41.7 43.9 51.6 35.6 8.2 23.7 29.1 4.7 18.0 40.7(18.4)

statistically significant, with p-values significantly lower than 0.05 (e.g., p-value = 8 × 10−6 for
ImageBind, which has the highest F1 score among the baselines).

Compared with UniMTS, ImageBind and IMU2CLIP are trained on data from single location (head-
mounted devices), limiting their generalization to data collected from other locations. IMUGPT
struggles to generalize across datasets featuring different activities and requires individual training
for each downstream dataset. Both HARGPT and LLaVA focus on simple and easily distinguishable
activities as these language or vision models are not originally trained on motion time series, and they
also require careful prompt designs. Another limitation for all the above models is that they do not
generalize across device orientations. In contrast, UniMTS shows remarkable generalizability to vari-
ous downstream device locations, orientations and activities, achieving state-of-the-art performance.
We also compare with a few ablations of UniMTS as illustrated in the Ablation Study section.

4.3 Few-Shot Fine-tuning Results
Apart from the zero-shot setting, we provide a few real samples for each activity and fine-tune
UniMTS and the baselines. More specifically, we provide 1, 2, 3, 5, 10 samples for each activity
and compare UniMTS against ImageBind [16], IMU2CLIP [38], IMUGPT [28], GPT4TS [72],
BioBankSSL [66] and a randomly initialized model with the same model architecture as UniMTS
(referred to as Random). We report both the mean and the standard deviation in Figure 4. UniMTS
also demonstrates state-of-the-art performance in the few-shot fine-tuning setting, showing the
effectiveness of pre-training. Following the same Wilcoxon-signed rank test as in the zero-shot
setting, we observe p-values far below 0.05 (e.g., p-value = 2 × 10−25 for the best-performing
baseline ImageBind), indicating the statistical significance of our improvement.

4.4 Full-Shot Results
We also compare the full-shot performance where UniMTS and the baselines are fine-tuned or trained
using all the available training samples of the downstream datasets. We compare UniMTS with pre-
trained models (ImageBind [16], IMU2CLIP [38]), self-supervised models (TST [68], TARNet [11],
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Figure 4: Few-shot fine-tuning results. UniMTS consistently outperforms both baselines and our
model ablation. We repeat 3 runs and report both mean and standard deviation.

50 25 0 25 50
t-SNE 1

50

25

0

25

50

t-S
NE

 2

t-SNE visualization of embeddings
lying
sitting
standing
walking
running
cycling
nordic walking
ascending stairs
descending stairs
vacuum cleaning
ironing
rope jumping

(a) PAMAP2

10 5 0 5
t-SNE 1

10

5

0

5

10

t-S
NE

 2

t-SNE visualization of embeddings
standing still
sitting relaxing
lying down
walking
climbing stairs
waist bends forward
frontal elevation of arms
knees bending crouching
cycling
jogging
running
jump front and back

(b) Mhealth

40 20 0 20 40
t-SNE 1

40

20

0

20

40

t-S
NE

 2

t-SNE visualization of embeddings
sitting
standing
lying down
ascending stairs
descending stairs
riding
walking
jogging

(c) TNDA-HAR

Figure 5: T-SNE visualizations show that signal clusters align with their semantic meanings.

TS2Vec [67], BioBankSSL [66]), and conventional models (DeepConvLSTM [40], MA-CNN [45],
XGBoost [9], THAT [29], IMUGPT [28], TimesNet [60], GPT4TS [72], SHARE [71]). Baselines
are detailed in Section A.3 in Appendix. We also compare pre-trained UniMTS with a randomly
initialized UniMTS (referred to as Random). As shown in Table 2, UniMTS also demonstrates
state-of-the-art performance in the full-shot setting, outperforming pre-trained, self-supervised and
conventional models. Due to space limit, we report baselines before 2021 in Table 3 in Appendix.
Following the same Wilcoxon-signed rank test, we observe p-values far below 0.05 (e.g., p-value =
0.018 for the best-performing baseline), indicating the statistical significance of our improvement.
UniMTS also demonstrates space and time efficiency, as detailed in Section A.5 in Appendix.

4.5 Ablation Study
In the zero-shot setting, we compare UniMTS with a few ablations by removing rotation-invariant
augmentation (w/o rot aug), removing text augmentation (w/o text aug) and by replacing the graph
encoder with a CNN-based encoder that directly concatenates joints without modeling their spatial
relationships (w/o graph). We can observe in Table 1 that the performance declines after removing
each of the above components, verifying their respective importance in improving generalization
across locations (graph encoder), orientations (rotation-invariant augmentation) and activities (text
augmentation). We also compare the pre-trained UniMTS with randomly initialized UniMTS in both
few-shot and full-shot settings. As shown in Figure 4 and Table 2, pre-trained UniMTS consistently
outperforms randomly initialized UniMTS, highlighting the benefits of pre-training.

4.6 Case Study
UniMTS’s time series embeddings align with corresponding semantic meanings. As shown in
Figure 5, the t-SNE visualizations of UniMTS’s time series embeddings form distinguishable clusters
that align with their semantic meanings. Notably, UniMTS is only pre-trained on the simulated
data but its embeddings for real-world data closely align with the semantic space, which again
demonstrates our model’s zero-shot generalization due to contrastive learning. For example, in
Figure 5a, stationary activities such as lying and sitting group together; light-movement activities
such as standing, ironing, and vacuum cleaning are close to each other; while high-intensity activities
such as running and cycling cluster closer in the embedding space.
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Table 2: Full-Shot performance. We bold the best and underline the second best. UniMTS performs
the best compared with both pre-trained, self-supervised and conventional models. The last column
shows the average performance across 18 datasets with standard deviation.
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ImageBind [16] Acc 82.8 90.9 94.0 95.1 98.5 91.8 83.8 95.0 94.3 52.1 82.9 93.0 97.0 71.4 77.2 90.0 74.0 65.8 85.0(12.2)
F1 84.6 90.7 93.1 61.9 98.5 67.7 86.1 94.9 94.6 52.2 83.2 62.7 96.9 43.3 76.8 89.3 71.6 58.3 78.1(16.5)

IMU2CLIP [38] Acc 71.9 87.1 79.3 88.5 98.2 87.8 79.9 97.1 90.7 55.7 94.5 93.9 90.6 52.3 62.7 88.7 62.8 66.9 80.5(14.3)
F1 70.0 87.0 77.2 75.1 98.1 64.4 80.5 97.1 91.2 52.0 95.0 65.7 90.2 35.6 62.8 88.2 59.6 60.3 75.0(17.0)

TST [68] Acc 89.1 91.6 91.4 75.4 73.5 95.8 68.9 94.1 88.9 66.2 86.0 98.8 92.9 59.1 70.2 80.0 61.4 54.5 79.9(13.6)
F1 91.1 91.4 89.6 79.3 72.3 62.9 67.2 94.1 89.8 60.9 83.8 72.7 92.8 34.5 69.1 76.1 59.6 48.4 74.2(16.3)

TARNet [11] Acc 82.6 91.1 72.0 78.7 67.9 97.2 60.9 92.5 92.4 57.6 82.9 94.7 94.4 63.2 58.5 30.7 78.1 56.7 75.1(17.5)
F1 83.4 91.2 70.0 41.0 66.1 76.9 54.4 92.4 90.6 48.7 77.5 47.8 94.4 38.1 58.5 23.0 75.5 55.9 65.9(20.5)

TS2Vec [67] Acc 80.7 92.1 94.2 100.0 87.4 98.4 74.6 95.9 91.8 56.1 93.3 98.2 98.5 73.2 69.5 84.3 80.0 53.4 84.5(13.9)
F1 83.3 92.1 93.9 100.0 87.2 88.1 68.8 95.9 92.9 53.6 93.8 58.3 98.5 47.9 68.8 82.3 76.7 53.4 79.8(16.7)

BioBankSSL [66] Acc 85.9 92.7 99.4 93.4 99.1 93.2 75.5 89.4 87.3 65.8 95.1 98.0 96.4 81.4 83.3 65.8 80.5 62.5 85.8(11.5)
F1 86.1 92.9 99.2 81.3 99.1 85.9 68.0 89.6 89.3 72.6 94.0 68.1 96.4 62.7 82.9 83.1 78.4 58.4 82.7(12.1)

THAT [29] Acc 83.1 86.8 87.9 77.1 92.3 95.8 67.7 97.7 96.5 53.9 89.0 97.6 86.9 60.0 60.3 82.1 71.2 55.0 80.1(14.7)
F1 84.5 86.7 86.5 65.0 92.2 73.9 62.9 97.7 96.7 55.0 89.9 71.9 87.0 29.5 60.9 79.0 70.0 52.3 74.5(17.5)

IMUGPT [28] Acc 84.8 87.0 86.2 85.3 61.7 98.3 62.2 87.7 85.6 41.1 71.3 98.3 86.5 54.6 67.8 71.9 57.7 51.9 74.4(16.3)
F1 84.9 87.0 85.2 48.8 61.8 78.0 56.0 87.5 83.8 42.4 63.6 65.2 85.8 24.6 67.4 71.0 53.2 49.0 66.4(17.7)

TimesNet [60] Acc 80.0 88.5 90.5 88.5 82.4 97.5 65.4 93.2 88.0 58.3 81.7 97.7 92.7 41.4 67.4 77.3 62.3 50.9 78.0(16.2)
F1 82.4 88.6 88.3 79.5 82.6 77.2 62.2 93.1 88.0 48.7 79.1 61.4 92.8 30.2 67.1 78.5 61.0 45.7 72.6(17.3)

GPT4TS [72] Acc 83.6 88.4 92.3 70.5 73.5 97.8 66.5 95.7 92.6 61.7 87.8 97.2 95.3 51.8 63.8 79.9 66.1 52.6 78.7(15.2)
F1 86.1 88.5 92.1 54.8 74.1 76.6 56.6 95.7 93.4 58.9 85.2 58.2 95.2 34.4 64.5 78.0 63.7 48.8 72.5(17.7)

SHARE [71] Acc 89.0 92.2 99.6 96.7 77.5 97.7 66.0 95.9 94.1 72.9 97.0 99.1 98.7 63.2 77.0 92.0 73.0 62.1 85.8(13.2)
F1 90.2 92.1 99.6 85.5 78.0 77.5 57.1 95.8 94.8 66.7 97.1 74.0 98.8 40.6 76.5 91.9 69.3 56.5 80.1(16.5)

UniMTS Acc 88.2 92.1 99.8 98.4 99.7 96.9 84.0 99.6 98.0 58.3 97.0 98.0 99.1 82.7 81.3 94.3 85.6 77.1 90.6(10.6)
F1 89.1 92.2 99.8 98.8 99.7 87.9 81.2 99.6 98.1 63.1 97.3 86.7 99.2 51.7 80.9 94.2 83.2 71.7 87.5(13.4)

Random Acc 87.7 89.3 95.5 95.1 66.1 98.1 74.2 98.7 96.2 48.5 82.9 98.6 98.5 76.8 79.4 90.3 74.4 73.9 84.7(13.5)
F1 88.9 89.4 95.5 60.1 65.0 85.9 74.0 98.7 96.8 51.9 78.2 69.1 98.5 50.8 79.3 90.1 69.7 71.6 78.5(15.1)
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Figure 6: Simulated motion time series closely resemble patterns of the real PAMAP2 time series.
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Figure 7: UniMTS shows significant
performance improvement compared
with the best baseline when evaluated
on new activities not seen.

UniMTS generalizes well to new activities unseen in pre-
training. To show UniMTS’s capability to generalize to new
activities not seen during pre-training, we visualize the zero-
shot performance for some example new activities in Fig-
ure 7. Compared with the best-performing baseline Image-
Bind, UniMTS shows significant performance improvement
on these previously unseen activities, verifying the effective-
ness of semantic generalization via contrastive learning.

Simulated data from our physics engine closely resemble
real signal patterns. In Figure 6, we compare some example
simulated data alongside their real-world counterparts. We
show three example activities of different intensity levels
(i.e., sitting, walking, rope jumping), where both simulated
data and real-world data are near the wrist. We can observe that the patterns in simulated data
closely resemble those of real data, in terms of both magnitude and frequency. Although the tri-axial
distributions might differ, these variations are mostly due to orientation differences and are effectively
managed by our rotation-invariant augmentation. We observe similar patterns between simulated data
and real data for other device locations, as shown in Section A.4 in Appendix.
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5 Conclusion and Discussion
Conclusion. In this paper, we present the first unified pre-training procedure, UniMTS, for motion
time series classification. Our model is pre-trained only on physics-simulated data, and yet demon-
strates remarkable generalization across diverse real-world motion time series datasets featuring
different device locations, orientations and activities. The simulated data with all-joint coverage are
augmented for rotation invariance and modeled by a graph encoder, improving generalization across
various device factors. During pre-training, contrastive learning aligns time series with their semantic
meanings to improve generalization across activities. Extensive evaluation in zero-shot, few-shot and
full-shot settings consistently demonstrates the state-of-the-art performance of UniMTS.

Limitation and Future Work. We acknowledge a few limitations which we leave as future work. (1)
Simulated motion time series can only be approximations of real signals, which are usually collected
near – rather than directly on – the body joints. For example, sensors on smartwatches collect data
near the wrist, not on the wrist joint itself. We plan to incorporate random offset vectors to better
simulate real-world signal variations near joints. (2) While our framework effectively addresses the
classification task, we intend to extend its applicability to other motion time series tasks such as
inertial navigation. (3) Our current pre-training utilizes existing motion datasets, and we plan to enrich
our pre-training corpus with additional motion data extracted from large-scale video-based pose
estimation. (4) We also plan to integrate our model with efficient inference optimization techniques
such as quantization, pruning and distillation for deployment on edge devices.

Broad Impact. UniMTS is the first pre-trained motion time series classification model that gener-
alizes to diverse downstream datasets, irrespective of device locations, orientations and activities.
The primary societal concern centers around privacy as motion time series might reveal personal
information, so we ensure strict privacy controls at the earliest stages of model development by
pre-training exclusively on synthetic data. With UniMTS’s state-of-the-art performance in zero-shot,
few-shot and full-shot settings, we believe it would bring broad, positive impact to the community.
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A Appendix / supplemental material

A.1 Pre-training Datasets
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Figure 8: Skeleton
of “waving hands”.

HumanML3D [19] is a large-scale motion skeleton data consisting of 14,616
3D human motion skeletons spanning 28.59 hours. The average motion skele-
ton sequence length is 7.1 seconds. Paired with each motion skeleton sequence
there is an average of 3 textual descriptions, resulting in a total of 44,970
textual descriptions with a vocabulary size of 5,371. The average and median
lengths of these descriptions are 12 and 10 words. We further augment the
textual descriptions using large language models as described in Section 3.3.2.
All motion skeletons follow the skeleton structure of SMPL [34] with 22 joint
nodes. Figure 8 provides an example skeleton of “a person waves his hands”.

We also tried to incorporate additional motion skeleton datasets into pre-
training, such as KIT-ML [41] and NTU RGB+D 120 [31]. However, these
data are relatively less diverse in terms of both motion skeletons and textual
descriptions. We did not observe performance improvement from adding them, and therefore use
HumanML3D as our primary pre-training corpus.

A.2 Downstream Evaluation Datasets

We detail the information for each downstream real-world evaluation dataset as follows.

Opportunity [47] contains data collected from back, upper arms and lower arms, and features
multiple sets of activities. We aim to predict the modes of locomotion such as standing and walking.

UCI-HAR [2] collects motion data from a smartphone located on the subject’s waist. The subject
performs daily activities such as walking upstairs and walking downstairs.

MotionSense [37] collects data from a smartphone in the participant’s front pocket, featuring daily
activities such as sitting and jogging.

w-HAR [5] contains motion time series data collected from the ankle. It captures daily physical
activities such as jumping and lying down.

Shoaib [49] contains daily activities such as biking. Each participant is equipped with five smart-
phones on five positions: right jean’s and left jean’s pockets, belt, right upper arm and right wrist.

HAR70+ [58] tracks activities such as shuffling for older adult subjects. The motion time series are
collected from the right front thigh and the lower back.

RealWorld [53] records daily activities such as climbing stairs from multiple body positions including
chest, forearm, head, shin, thigh, upper arm, and waist.

TNDA-HAR [64] collects static as well as periodic daily activities such as cycling, from devices
located at multiple body positions such as wrist, ankle and back.

PAMAP2 [46] monitors physical activities such as ironing, vacuum cleaning and rope jumping using
devices located on the wrist, chest and ankle.

USC-HAD [69] records daily activities such as sleeping and taking the elevator with devices attached
to the subject’s front right hip.

Mhealth [4] comprises body motion for common activities such as waist bending forward, frontal
elevation of arms and knees bending. Devices are placed on the user’s chest, right wrist and left ankle.

Harth [33] records data in a free-living setting with devices located at the right thigh and lower back.

UT-Complex [50] contains different smartphone sensor data such as typing, drinking coffee and
giving a talk, with devices positioned at wrist and pocket positions.

Wharf [6] records activities from wrist-worn devices, such as combing hair and getting up bed.

WISDM [59] collects diverse daily activities such as brushing teeth, eating soup, playing balls, and
folding clothes, using data from the smartphone in the pocket and smartwatch on hand.
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Table 3: Full-Shot performance on additional baselines before 2021. We bold the best results. The
last column shows the average performance across 18 datasets with standard deviation.
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Number of Classes 4 6 6 7 7 7 8 8 12 12 12 12 13 14 18 19 27 35

Level Easy Medium Hard Avg

DeepCL [40] Acc 84.4 86.9 86.2 93.4 62.4 97.7 69.9 89.6 82.7 45.2 73.8 95.5 88.0 46.8 69.0 69.6 54.9 50.2 74.8(16.7)
F1 86.4 87.0 84.5 67.1 63.4 92.2 60.3 89.3 77.4 46.4 75.8 56.7 88.2 25.9 69.0 66.1 53.0 46.9 68.6(17.8)

MA-CNN [45] Acc 82.9 89.8 92.0 67.2 93.2 86.1 73.9 96.0 94.7 37.3 78.7 97.9 93.8 20.9 51.5 84.5 48.8 28.9 73.2(24.2)
F1 84.8 89.5 91.7 51.7 93.1 59.8 71.2 96.0 95.2 35.3 70.7 53.2 94.0 17.2 51.8 83.9 48.5 18.4 67.0(25.5)

XGBoost [9] Acc 83.1 90.2 92.9 68.9 94.8 97.7 78.2 93.2 93.9 47.8 79.9 97.2 96.6 52.3 66.6 80.5 61.9 53.0 79.4(16.5)
F1 85.1 90.1 91.6 56.1 94.7 77.5 77.6 93.2 93.9 47.7 74.1 64.4 96.7 30.2 66.0 79.4 60.3 51.4 73.9(18.6)

UniMTS Acc 88.2 92.1 99.8 98.4 99.7 96.9 84.0 99.6 98.0 58.3 97.0 98.0 99.1 82.7 81.3 94.3 85.6 77.1 90.6(10.6)
F1 89.1 92.2 99.8 98.8 99.7 87.9 81.2 99.6 98.1 63.1 97.3 86.7 99.2 51.7 80.9 94.2 83.2 71.7 87.5(13.4)

DSADS [1] comprises daily and sports activities such as exercising and rowing. Multiple devices are
positioned at the torso, right arm, left arm, right leg, and left leg.

UTD-MHAD [8] contains diverse activities such as swiping arms, hand clapping, throwing, arm
crossing, drawing and squatting. The devices are worn on the subject’s right wrist or the right thigh
depending on whether the action is mostly an arm or a leg type of action.

MMAct [26] presents a large-scale activity dataset covering a wide range of daily life activities such
as carrying, talking on phone and falling. Devices recording motion time series include a smartwatch
as well as a smartphone inside the pocket of the subject’s pants.

A.3 Baselines

We detail the baseline settings as follows.

ImageBind [16]: We employ the pre-trained weights from “imagebind_huge” for zero-shot evaluation.
During fine-tuning, we add a linear layer to map ImageBind embeddings to the number of activity
classes. We fine-tune both ImageBind and the linear layer during fine-tuning, which performs better
than simply tuning the linear layer.

IMU2CLIP [38]: The pre-trained weights of IMUCLIP are not released. Therefore, we first follow
their pre-training implementation3 to pre-train on Ego4D datasets [17]. During fine-tuning, we add a
linear layer after IMU2CLIP embeddings and fine-tune both IMU2CLIP and the linear layer.

IMUGPT [28]: We choose DeepConvLSTM as the backbone model, which shows the best perfor-
mance as reported in their original paper. We remove the supervised distribution calibration phase,
which relies on labeled downstream data and conflicts with the zero-shot setting objectives.

HARGPT [24]: The method directly prompts large language models to classify motion time series.
We down-sample motion time series to 10 Hz as used in their paper and follow their prompt template.

LLaVA [30]: We visualize motion time series as 2D plots and use these visualizations as input for
the pre-trained model of “llava-v1.5-7b”.

TST [68]: This is a Transformer-based representation learning framework with several downstream
tasks including multivariate time-series classification. We follow the framework to first pre-train
the Transformer model in an unsupervised fashion and then fine-tune the pre-trained model on the
downstream classification task.

TARNet [11]: The model proposes task-aware representation learning that reconstructs important
timestamps guided by self-attention score distribution from end-task training. We jointly train the
reconstruction task and the classification task.

3https://github.com/facebookresearch/imu2clip
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Figure 9: Simulated motion time series show similar patterns as real PAMAP2 time series.

TS2Vec [67]: The method performs contrastive learning to learn contextual representations of time
series. We follow their implementation to first apply contrastive learning and then train a linear
regression model for each dataset.

BioBankSSL [66]: The paper proposes a pre-trained model for human activity recognition using a
large-scale UK Biobank wrist accelerometer dataset with multi-task self-supervised learning.

DeepConvLSTM [40] (shown as “DeepCL” in Table 3 due to space limit): The model applies
convolutional layers to automatically learn feature representations and further applies LSTM to
capture the temporal dependencies between their activations.

MA-CNN [45]: The model first extracts preliminary features for each motion time series modal-
ity through its own dedicated convolutional layers, then the extracted intra-modality features are
combined through fully-connected layers for motion time series classification.

XGBoost [9]: This is a scalable end-to-end machine learning system for tree boosting, which has
been widely recognized in machine learning and time series analysis.

THAT [29]: The model proposes a two-stream convolution augmented human activity transformer
which captures both time-over-channel and channel-over-time features in a two-stream structure.

TimesNet [60]: This is a task-general backbone for time series analysis including classification by
modeling the multi-periodicity and extracting temporal variations.

GPT4TS [72]: This is also a task-general framework that includes time series classification. The
model is based on a frozen pre-trained language model, so we also adopt it as a few-shot fine-tuning
baseline. However, the method is not suitable for zero-shot evaluation, as it requires training a
separate classifier head for each downstream dataset and does not generalize across activities.

SHARE [71]: This is a sequence-to-sequence model that contains an encoder to extract motion time
series features, as well as a decoder to generate label name sequences to capture label semantics.

A.4 Simulated Data

In addition to the simulated data for wrist as shown in Figure 6, we present more examples for
other device locations such as ankle in Figure 9. We observe consistently similar patterns between
simulated motion time series and real PAMAP2 data across activities of various intensity levels,
ranging from sitting to walking and rope jumping.

A.5 Efficiency Analysis

For space complexity, the graph encoder of UniMTS contains only 4.94M parameters, which is
significantly smaller compared with the 18.69M used in the IMU encoder of the best existing baseline
ImageBind. For time complexity, fine-tuning of UniMTS is also efficient. On one example dataset of
UCI-HAR, full-shot fine-tuning of UniMTS takes approximately 1.3 minutes to converge while it
takes approximately 9.8 minutes for ImageBind to converge. Moreover, we have run a power estimate
assuming 0.1Hz cadence (i.e., 10-second window size), and it takes approximately 22.64 mW to run
the whole graph model on an eNPU (embedded Neural Processing Unit), which is much smaller than
ImageBind IMU encoder’s power consumption of approximately 702 mW. Therefore, UniMTS is
efficient for real-world applications and suitable to be deployed on edge devices.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are that we build the first
unified pre-trained model for motion time series that is able to generalize to various device
locations, orientations and activities, which are verified by our experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss four limitations and corresponding future works as detailed in
“Limitation and Future Work” of Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not involve new theoretical results. We have properly cited the
literature for prior results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental settings in Section 4.1, as well as Section A.1,
Section A.2 and Section A.3 in Appendix. We also provide the code in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide them as a zip file in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Section 4.1, as well as Section A.1,
Section A.2 and Section A.3 in Appendix. We also provide the code in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars and apply statistical significance tests for all experiments,
including both zero-shot, few-shot and full-shot settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify computer resource details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts and limitations in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose high risk for misusing data or models. We pre-train
the model exclusively on synthetic data to ensure strict privacy control at the earliest stages
of model development.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all the code and data used in this paper, and respect their
license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the new assets as a zip file in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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