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ABSTRACT

Memory behavior modeling is a critical topic in cognitive psychology and ed-
ucation. Traditional psychological approaches describe the dynamic properties
of memory through memory equations derived from experimental data, but these
models often lack accuracy and are frequently debated in terms of their form. In
recent years, data-driven modeling methods have improved predictive accuracy
but often suffer from poor interpretability, limiting their ability to provide deeper
cognitive insights. While knowledge-informed neural network models have
achieved significant success in fields such as physics, their application in behav-
ior modeling remains limited. This paper proposes a Self-evolving Psychology-
informed Neural Network (SPsyINN), which leverages classical memory equa-
tions as knowledge modules to constrain neural network training. To address
challenges such as the difficulty in quantifying descriptors and the limited in-
terpretability of classical memory equations, a genetic symbolic regression al-
gorithm is introduced to conduct evolutionary searches for more optimal expres-
sions based on classical memory equations, enabling the mutual progress of the
knowledge module and the neural network module. Specifically, the proposed ap-
proach combines genetic symbolic regression and neural networks in a parallel
training framework, with a dynamic joint optimization loss function ensuring ef-
fective knowledge alignment between the two modules. Then, for addressing the
training efficiency differences arising from the distinct optimization methods and
computational hardware requirements of genetic algorithms and neural networks,
an asynchronous interaction mechanism mediated by proxy data is developed to
facilitate effective communication between modules and improve optimization ef-
ficiency. Finally, a denoising module is integrated into the neural network to en-
hance robustness against data noise and improve generalization performance. Ex-
perimental results on four large-scale real-world memory behavior demonstrate
that SPsyINN outperforms state-of-the-art methods in predictive accuracy. Abla-
tion studies further show that the proposed approach effectively achieves mutual
progress between different modules, improving model predictive accuracy while
uncovering more interpretable memory equations, highlighting the potential ap-
plication value of SPsyINN in psychological research. Our code is released at:
https://anonymous.4open.science/r/SPsyINN-3F18

1 INTRODUCTION

Memory is a crucial component of human cognition and a major focus of research in psychology and
neuroscience. Memory behavior modeling aims to establish a relationship model between historical
memory behavior and memory performance (e.g., the recall probability for specific materials) to
elucidate key patterns of human memory behavior, predict performance, and simulate the forgetting
process. These models help researchers better understand the mechanisms of memory and develop
effective memory strategies, offering significant academic and practical value (Clark} |2018)).
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The earliest memory behavior model dates back to 1885 when Ebbinghaus proposed the forgetting
curve (Ebbinghaus et al.,|1913)), suggesting that the relationship between memory performance and
time interval follows an exponential function. Subsequently, models such as the generalized power
law (Wickelgren, [1974), the adaptive control of thought-rational model (Anderson et al.|[2004), and
the multi-scale contextual model (Pashler et al., 2009) were introduced. These classical models
describe the relationships between memory performance and key memory behavior features (e.g.,
interval time, repetition frequency, and material difficulty) using mathematical formulas. Derived
by experts based on experimental data, these theories lack consensus due to the complexity of mem-
ory behavior. Current models often face limitations such as insufficient interpretability, inadequate
predictive accuracy, and difficulty quantifying descriptors (Brown & Brownl 2018)).

Recently, data-driven approaches have emerged for memory behavior modeling. Techniques like
machine learning and deep learning have been extensively applied to large-scale memory behavior
datasets, resulting in various parametric models (Settles & Meeder, 2016; |Ma et al., 2023} [Tu et al.,
20205 |Liu et al.L[2023)). These models exhibit significant advantages in predictive accuracy compared
to classical theories. However, their complexity makes them difficult to interpret, offering limited
theoretical insights. Moreover, data-driven models demand high-quality and large-scale datasets
(Rudin, 2022} 'Wang et al.,|2024b), posing additional challenges (Li et al., [2022).

Knowledge-informed neural network models incorporate domain knowledge into neural network
construction, enhancing stability and interpretability. These models have achieved remarkable suc-
cess in natural science tasks (Wang et al.| |2024a). For instance, physics-informed neural networks
(Raissi et al.,|2019) use known equations and boundary conditions as constraints, reducing data de-
pendency and improving both stability and interpretability. However, their application in memory
behavior modeling remains limited, primarily due to the insufficient explanatory power of mem-
ory knowledge and difficulties in quantifying descriptors. Existing memory equations are neither
as precise nor as universally accepted as physical equations for describing or predicting real-world
phenomena. Furthermore, abstract descriptors used in classical memory equations, such as memory
strength (Wickelgren, [1974) and word difficulty (Lindsey et al., 2014)), lack precise formulations,
making them challenging to convert into computable variables and complicating knowledge repre-
sentation.

Based on this analysis, we aim to develop a knowledge-informed neural network model for memory
behavior modeling by constraining neural network training using existing memory theory equa-
tions to achieve knowledge injection and alignment. To address the limited explanatory power and
quantification challenges of classical memory equations, genetic symbolic regression algorithm is
introduced. It is initialized with classical memory equations as the population and evolves through
mutations to search for improved descriptors and memory equations. Compared to other symbolic
regression methods, genetic symbolic regression allows the use of initial equations to fully lever-
age existing theories and can control equation complexity by limiting symbolic tree depth, ensuring
model interpretability. Ultimately, we aim to enable mutual learning and co-optimization between
memory equation models and neural networks, enhancing both performance and interpretability.

Based on this framework, we developed a Self-evolving Psychology-Informed Neural Network (SP-
syINN), comprising a genetic symbolic regression (GSR) module and a neural network module, with
knowledge alignment achieved through interaction and constraint mechanisms. Specifically, we pro-
pose a Dynamic Asynchronous Optimization (DAO) method to address dynamic differences during
training, including model capability differences and optimization efficiency differences. Model ca-
pability differences arise as the GSR module, initialized with classical theories, significantly out-
performs the randomly initialized neural network in fitting ability at the start, requiring the neural
network to learn more from the GSR module while minimizing its influence on the memory equa-
tions. As training progresses, this gap dynamically shifts, so we adjust of different training objectives
using a dynamic knowledge alignment method to ensure stable optimization. In addition, optimiza-
tion efficiency differences stem from genetic symbolic regression relying on CPU-based genetic
algorithms, while neural networks leverage gradient-based GPU optimization, which is significantly
faster. To address this, we introduce a proxy dataset to facilitate asynchronous knowledge trans-
fer, ensuring flexible interactions, and design multiple asynchronous interaction strategies to enable
decoupled module training while achieving efficient knowledge alignment, allowing synchronized
co-optimization across both modules.

The main contributions of this paper can be summarized as follows:
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* To the best of our knowledge, this is the first work to integrate psychological theories into
neural networks for memory behavior modeling. We propose a self-evolving psychology-
informed neural network (SPsyINN), consisting of a genetic symbolic regression module
and a denoising neural network module, with knowledge alignment achieved through de-
signed interaction and constraint mechanisms.

* We introduce the Dynamic Asynchronous Optimization (DAO) framework to address capa-
bility and optimization efficiency differences between modules. For capability differences,
we design a dynamic knowledge alignment method to estimate module performance and
adjust alignment strategies dynamically. For efficiency differences, we implement a proxy
dataset as a knowledge transfer intermediary and design various asynchronous interaction
strategies to ensure flexible and efficient joint optimization.

* We introduced a denoising module to enhance the robustness of the neural network model
against data noise, improving the model’s stability.

* Comprehensive experiments on four real-world memory behavior datasets demonstrate that
SPsyINN outperforms state-of-the-art memory behavior modeling methods across all key
metrics, and highlighting its potential for theoretical research and practical applications.

2 BACKGROUND

Traditional Memory Theory Equations: Memory modeling aims to explain and predict human
memory (often referred to as forgetting) behavior using mathematical models. Early psychological
studies predominantly relied on controlled experimental paradigms, analyzing data from such ex-
periments to establish relationships between memory behavior features and memory performance,
typically defined as the recall probability of specific memory materials.

The earliest research on human memory can be traced back to 1885 when Ebbinghaus proposed
an approximate forgetting curve equation. He suggested that the interval since the initial memory
event is a key factor affecting memory retention, which declines over time at a decreasing rate. This
relationship was approximated using an exponential function. Subsequently, researchers explored
other reasonable models for memory behavior. In 1974, Wickelgren (Wickelgren, |1974)proposed
the generalized power law model (R = A(1 + t)~Y), where the recall probability (R) is mod-
eled as a power-law function of initial memory strength (\), time scale factor (/3), forgetting rate
(1), and time interval () since the last memory event. In 1995, Wozniak (Wozniak et al.| |1995)
introduced the dual-component model of long-term memory (R = e~ %), modeling recall prob-
ability (R) as an exponential function of memory strength (S) and time interval (¢). In 2004,
Anderson developed the ACT-R memory model (R = £ + In(3_5_, ;")) based on rational
adaptation control theory for memory modeling. In 2009, Pashler (Pashler et al., [2009)proposed

the MCM model (R = Zf\il ’yiea:p(—%)xi(O)), suggesting that in repeated memory scenarios,
memory performance is an aggregate of independent memory curves, similar to Wozniak’s expo-
nential model. In 2014, Lindsey introduced the DASH memory modeling method (Lindsey et al.,

2014)(R = o(as — d. + Zg‘;h(@zw,lln(l + ¢w) + B20In(1 + ny,)))), which relates a learner’s
memory state (R) to their ability (as), material difficulty (d.), attempt counts (c,,), and historical
correct recall attempts (n,,). In 2016, the Half-Life Regression (HLR) model introduced the concept
of memory half-life to describe the forgetting process of memory materials. Detailed explanations

of the variables in these memory equations are provided in Appendix

Despite over a century of exploration, researchers have yet to identify a universally accepted mem-
ory equation. While theoretical memory equations are concise and interpretable, they have limited
explanatory power for memory behavior and insufficient predictive accuracy for memory perfor-
mance. Furthermore, many theoretical models include abstract psychological descriptors that are
difficult to quantify. For instance, in Wozniak’s dual-component model (R = e~ %), the descrip-
tor memory strength (.5) reflects the depth of impression left by a memory behavior on the learner.
However, current research struggles to fully identify the factors influencing memory strength or to
provide precise calculation methods, even though it clearly impacts memory performance. In prac-
tice, memory strength is often treated as a constant, which is evidently unrealistic. These issues pose
significant challenges to building knowledge models based on psychological theories.
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Data-driven Parametric Model: The widespread adoption of word memory software has opened
new opportunities for memory research. Researchers have utilized data-driven paradigms and
machine learning methods to develop parameterized memory behavior models, treating words as
knowledge components in knowledge tracing (KT) (Bai et al) [2024). This approach integrates
memory modeling with KT tasks, driving improvements in both model performance and theoretical
insights. Advances in deep learning have further accelerated KT research. Piech et al. introduced the
Deep Knowledge Tracing (DKT) model (Piech et al.,[2015)), the first to apply Recurrent Neural Net-
works (RNNs) (Lipton, 2015) to KT. DKT captures the temporal dynamics of student interactions
with questions to predict responses to new ones, significantly outperforming traditional KT models
and highlighting the potential of deep learning in modeling learning behaviors. Subsequent research
adopted temporal models like Long Short-Term Memory (LSTM) (Ma et al., 2023; Sun et al., 2024)
and Transformer (Liu et al.| [2023), refining model structures (Sun et al., |2024)) and incorporating
factors such as difficulty levels (Han et al.l|2013)), review conditions (Shu et al.,[2024), and material
relevance (Chen et al., 2023) to enhance performance. While deep learning-based models excel in
data fit and prediction accuracy, their “black-box” nature remains a challenge, limiting interpretabil-
ity and educational applications. Moreover, building these models requires large-scale, high-quality
behavioral data, which is still difficult to obtain.

Physics Informed Neural Networks: Inrecent years, Physics-Informed Neural Networks (PINNs)
have emerged as one of the most successful knowledge-driven neural network models, achieving
significant breakthroughs in fields like dynamics modeling (Hoffer et al.l 2022)), fluid mechanics
(Wang et al.|, 2024al)), and solving differential equations (Moseley et al., [2023). Unlike traditional
purely data-driven neural networks, PINNs integrate domain-specific physical knowledge with deep
learning, offering a novel approach to modeling. The core idea of PINNS is to embed physical laws
(such as conservation laws and boundary conditions) directly into the neural network’s loss func-
tion, ensuring that predictions and simulations always adhere to physical constraints. This approach
not only enhances the physical interpretability of the model but also improves its generalization
ability across various scenarios (Cuomo et al., [2022)), demonstrating substantial potential for sci-
entific computation and engineering applications. For example, the Navier-Stokes equations were
applied to analyze the energy extraction efficiency of hydrokinetic turbines, while also improving
the high-dimensional design of the turbine blades and ducts (Park et al.|[2023).

However, in the domain of memory behavior modeling, the exploration of knowledge-informed
neural network models remains scarce. Existing memory theory equations find it challenging to
describe or predict real-world phenomena with the precision of physical equations. Their mathe-
matical forms are often contentious, making it difficult to offer precise guidance to neural network
models. Furthermore, psychological domain knowledge is challenging to express in computational
models. Many abstract descriptors introduced in classical memory theory equations are difficult to
translate into computable variables, posing significant challenges for knowledge representation.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

We aim to develop and validate our approach using a large-scale word memory behavior dataset.
Vocabulary Learning scenarios are widely used in memory behavior research (Meier et al [2013),
and the resulting memory models can guide Word Memorization Software in optimizing repeti-
tion strategies. These datasets are derived from real user interaction logs collected through Word
Memorization applications. Users engage in word testing tasks provided by the software (as shown
in Figure [Th), memorize target vocabulary, and retest the words after a certain period to reinforce
memory. By analyzing learners’ performance across different word tests over time, we can uncover
the core patterns underlying their memory evolution and internal mechanisms. Our goal is to build
computational models based on learners’ historical interaction data from word tests, estimate their
memory states for each word, and accurately predict their performance in upcoming tests for specific
words (as shown in Figure[Tp).

Formally, the set of all users in the dataset is denoted as & = {uy,uz,...,u,}, and the set
of all words as W. The dataset encompasses all users’ memory test behaviors, represented as
D = {Du,,Duy, ..., Dy, }, where D, = {[w1,y1,t1], [wa,y2,t2], .-, [Wm, Ym, tm]} denotes all

behavior data for user  in chronological order. Each behavior is described by a triplet [w,y, t],
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Figure 1: Memory Modeling Scenario: a. Learners engage in vocabulary review using various
question types, such as multiple-choice, fill-in-the-blank, and listening exercises, as illustrated by
the Word Memorization Software interface. Responses indicate their memorization state: correct
answers signify successful retention, while incorrect ones imply incomplete memorization. b. The
figure illustrates learners’ performance across multiple review tests. Different colored curves repre-
sent memory retention trajectories for various words. The horizontal axis tracks testing performance
over time, while the vertical axis denotes memory retention rates for specific words.

indicating user u € U practiced word w € W at time ¢ with a test outcome y € {0, 1}, where y = 1
represents a correct response and y = 0 indicates failure, reflecting the user’s memory state at that
moment.

For a specific memory behavior [w,y,t] of user u, we use z!, to represent the historical memory
behavior features of u at time ¢, derived from all preceding behavior records. These features include
six primary variables, whose definitions and computation methods are detailed in Appendix [A.2]
Correspondingly, !, denotes u’s performance on word w in the memory test at time ¢. Our task is
to build a memory model f such that y! = f(z!,). All notations and definitions used in this paper
are summarized and explained in Appendix[A.3]

3.2 SPsYINN

We propose a Self-evolving Psychology-Informed Neural Network (SPsyINN), combining neural
networks and genetic algorithms to design two independent modules: the Denoising Neural Network
(DNN) and Genetic Symbolic Regression (GSR). The corresponding memory models are denoted
as fpyn and fosgr. Here, fpnn is a parameterized neural network trained via gradient-based opti-
mization, while fgsg is a mathematical function optimized using genetic algorithms, with classical
memory theory equations as the initial population.

To align the outputs of fpyny and fosgr, we adopt techniques from knowledge distillation and
PINN models, enabling knowledge integration while fitting training data. This chapter introduces
the method in three parts: Denoising Neural Network, Genetic Symbolic Regression, and Dynamic
Asynchronous Optimization. The first two sections detail the construction of fpyn and fosr,
while the last explains their knowledge alignment and collaborative optimization. The overall frame-
work is illustrated in Figure 2]

3.3 DENOISED NEURAL NETWORK

Neural networks, as universal approximators, have achieved significant success in behavior mod-
eling, with temporal models like LSTM and Transformer widely applied. Our Denoised Neural
Network (DNN) module adopts a classical learning behavior prediction architecture, combining
a Temporal Neural Network (TNN) with a Multi-Layer Perceptron (MLP) classifier for modeling
learners’ internal states and classifying their performance. TNN can utilize flexible architectures
such as LSTM (Hochreiter, [1997), Transformer (Vaswani, 2017), Mamba (Gu & Dao, [2023)), or
other specially designed model architectures.

For a learner « with memory behavior data D,,, we concatenate all behavior features as zilm =
[l ztz ... xim], with the target memory performance sequence yiim = [yit yt2 .. ytm] The
model’s output predictions are giim = MLP(TNN (zim Oryn),Onrp) , or, more generally
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Figure 2: SPsyINN Model Framework Diagram. The blue subfigure describes the training process of
the deep learning module; the green subfigure illustrates the training process of symbolic regression;
the gray module represents the asynchronous training process.

giim = fpnn(alim ©py ). The model optimizes parameters by minimizing the Mean Squared

Error (MSE), Ly, = ‘%l S e S (g — k)2

To address noise in memory behavior data, we design a denoising module by injecting noise into the
input features:

:’E,’fu‘l:m — m . :L.ZIWn + ,y -€- m (1)
m

where a,, = [[,—,(1 — f) is the cumulative noise schedule, ~ is a learnable noise weight, and
e ~ N(0, I) represents Gaussian noise. This process is consistent with the perturbation kernel used
in the Denoising Diffusion Probabilistic Models diffusion process (Song et al.| [2020). A detailed

proof can be found in Appendix

The model’s noisy predictions are il = fyy (;Etul"",@ DNN), with the denoising objective to
minimize: Ly = ﬁ >wer iy (ghi — 9t)2. The DNN module’s total training objective com-
bines Ly and L 5, while overall optimization details are discussed in the Dynamic Asynchronous
Optimization section.

3.4 GENETIC SYMBOLIC REGRESSOR

Genetic symbolic regression (GSR) is a classical symbolic regression algorithm that leverages evo-
lutionary mechanisms of genetic algorithms to search for and optimize mathematical expressions,
aiming to generate equations that meet specific requirements. The key steps include initializing a
population, evaluating fitness, performing selection, mutation, and crossover operations, and up-
dating the population. To incorporate insights from psychology, we use classical memory theory
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equations as the initial population for GSR. The predictions from the GSR module are expressed
as girm = fosp(xiim ®, 1), where gl represents the function values on raw data, fosr(-) is
the optimized function derived from traditional memory equations, ® € {4, —, x, =, pow, exp, In}
denotes the operator set consistent with classical memory theories, and 7 represents the current
symbolic tree. The fitness function evaluates the GSR model’s predictions and is defined as
Ly = ﬁ >t 2oimq (Fhi — ylki)?, ensuring the searched equations best fit the training data.
Our GSR framework is flexible and supports various algorithms (e.g., TPSR (Shojaee et al.,|2023),
DGSR (Holt et al.}2023))) and libraries (e.g., Eureq PySRﬂ and geppyﬂ).

In summary, SPsyINN consists of two modules: a denoised neural network and a genetic symbolic
regressor. Each module generates independent memory behavior predictions, namely §/1™ and
giim  respectively. By default, we use g% (the output of DNN module) as the final output, as the
denoised neural network typically achieves better prediction accuracy after training.

3.5 DYNAMIC ASYNCHRONOUS OPTIMIZATION

To align knowledge between the denoised neural network (fp ) and the genetic symbolic regres-
sor (fgsr) in SPsyINN, we propose the Dynamic Asynchronous Optimization (DAO) method for
collaborative training. Knowledge alignment is achieved using the alignment loss L 4, defined as:

L= ﬁ SOS (- gty @)

uelU i=1

where, ' and 9% represent the predictions of the symbolic regressor and the neural network, re-
spectively. During training, a knowledge alignment objective is added on top of the data-fitting
objective. This knowledge alignment loss function facilitates mutual learning, allowing weaker
modules to benefit more from stronger ones. In the initialization phase, the randomly initialized
fpnn primarily learns from fgsg, which is grounded in theoretical equations. However, in later
stages, if fpnn outperforms fosgr, the alignment weight should be adjusted accordingly. There-
fore, we propose a dynamic training objective adjustment method. The total loss for the neural
network is:

Lpnny =Lp+oLp+(La 3)
With dynamic weights ¢ and ¢ updated as "t = if:ii, vl = % Ly =

BT Sueu 2im1 (Ui — yii)? represents the MSE loss of the neural network on noisy data. As L

decreases, indicating improved fitting ability of fosg, the weight ( increases, encouraging fpnn to
learn more from fgsr. Similarly, as L 5, decreases, reflecting improved noise prediction by fpnw,
more emphasis is placed on L. For the symbolic regression module, the total fitness function is
fixed as Lagspr = LS + La.

In implementation, fpyn and fogg are trained as separate processes. For alignment loss compu-
tation, a proxy file serves as an intermediary. Predictions from each module for the corresponding
batch are stored in this proxy dataset, which is updated after each epoch. Both modules read data
from this proxy file to compute alignment loss L 4. The proxy dataset’s batch sampling is indepen-
dent of the training data batch sampling. Its batch size can differ from the training dataset, which,
as supported by theoretical proofs (Appendix [B.2), does not affect optimization performance. The
overall workflow for DAO is illustrated in Figure

In practical training, fpyn and fg s often exhibit significant differences in training time per epoch,
with DNN typically training much faster than GSR. This makes it crucial to enhance effective data
exchange (knowledge alignment) between the modules. Additionally, the efficiency of knowledge
alignment must be incorporated into the design, requiring a balance between alignment frequency
and effectiveness. Our goal is to enable the two models to optimize synchronously, achieving better
knowledge alignment results. Therefore, we have designed three types of asynchronous strategies
to adjust the optimization pace between the two modules. Wait Optimization (SPsyINN-W): The

"http://mutonian.wikidot.com/
Zhttps://astroautomata.com/PySR/
3https:// github.com/ShuhuaGao/geppy
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Table 1: The overall prediction performance of all baseline models and SPsyINN. The best model
performance is in bold and the 2nd best is underlined(Excluding the variants of the proposed SP-
syINN). * indicates t-test p-value < 0.05 compared to the 2nd best result. The experimental results
for SPsyINN are based on predictions from the DNN module, with the reported values representing
the averages of five independent experiments.

Models En2Es En2De Duolingo MaiMemo
MAE MAPE MAE MAPE MAE MAPE MAE MAPE
Wickelgren .1163 13.5908 1164 13.4275 .1208 14.1423 2378 23.7749

ACT-R 1128 13.2630 1173 13.5106 1201 14.0784 .2403 24.0310
DASH 1131 13.2853 .1198 13.7429 1215 14.1991 2354 23.5378
HLR .1091 12.9216 .1031 12.1911 .1129 13.4130 2350 23.4967
SBP-GP 1176 13.5666 1218 14.1348 .1108 13.3155 2660 26.6040
PySR 1112 12.9504 1125 12.9815 .1180 13.8164 2238 22.8052
DSR 1225 14.1889 .1499 16.5777 .1293 14.9131 2394 24.2134
TPSR .6328 65.2455 71364 78.3057 .5521 60.4980 .3988 39.8840
DKT-Forget .1130 13.1517 1171 13.4490 1159 13.6450 2194 22.3509
FIFKT .1010 12.1402 .1030 12.1639 1129 13.3785 2169 22.1095
SimpleKT .1070 12.6342 115 12.9719 .1079 12.8777 2266 23.1040
QIKT .1097 12.8703 1107 12.8539 1120 13.1363 2282 23.2759
MIKT .1092 12.7748 1105 12.8918 1128 13.3259 2313 23.4327

SPsyINN-C  .0961 11.5564 .0987 11.7130 .0985 12.0220 2068 21.0379
SPsyINN-I .0923 11.2111 .0959 11.4591 .0965 11.9007 2071 21.0464
SPsyINN-W  .0922%  11.1970*% .0944* 11.3120%* .0901* 11.2543* .2046* 20.7924*

faster module waits for the slower one to synchronize, ensuring alignment but reducing efficiency.
Continuous Optimization (SPsyINN-C): Modules optimize independently, maximizing efficiency
at the cost of alignment synchronization. Interval Optimization (SPsyINN-I): The neural net-
work synchronizes every two epochs, balancing efficiency and alignment. Complete details of the
algorithm and a clear diagram of the training process can be found in Appendix

4 EXPERIMENT

We conducted extensive experiments on four real-world datasets to verify the effectiveness of the
proposed method. Thirteen benchmark models were introduced for comparison, including three
categories: memory theory equations, symbolic regression algorithms, and deep learning methods.
Detailed descriptions of the datasets, comparison methods, experimental criteria, evaluation metrics,
and implementation details are provided in Appendix

4.1 COMPARISON EXPERIMENTS

To demonstrate the effectiveness of the proposed SPsyINN, we compared its prediction accuracy
with 13 baseline methods on four datasets. The results are shown in Table |l From Table [} the
following observations can be made: 1.Compared to other baseline models, the proposed SPsyINN
method significantly outperforms all benchmarks, demonstrating the validity of our approach and
providing a novel framework and perspective for memory behavior modeling. 2.Symbolic regres-
sion performs suboptimally, with methods such as SBP-GP (Pawlak et al., 2014)) and TPSR (Shojace
et al., |2023)) producing highly complex formulas that lose interpretability and often underperform
compared to classical theoretical equations. We believe this is likely due to significant noise in the
original data, which adversely affects the performance of symbolic regression models. 3.Neural
network models exhibit clear advantages over symbolic regression and memory theory equations
because they can flexibly incorporate multiple complex attributes, automate relationship learning,
and process these factors in parallel, enabling them to capture intricate interactions more accu-
rately and provide more precise predictions. 4. Experimental results with different waiting strategies
(SPsyINN-C, SPsyINN-I, SPsyINN-W) show that per-round waiting (SPsyINN-W) achieves the
best performance. Strategies with higher synchronization rates yield better performance but at the
cost of lower training efficiency, requiring users to balance performance and efficiency when choos-
ing an appropriate strategy.
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4.2 ABLATION STUDY

To evaluate the impact of each module on the SPsyINN model, we conducted ablation experiments
targeting one or two modules, including the Denoising module (DN, equation|[T), Knowledge Align-
ment (KA, equation[2)), and the Dynamic Weighting strategy (DW, equation [3) in the DAO method.

Table 2: Component Ablation experiments. A model without any selected components is referred
to as TNN+Classifier, which excludes both the denoising and symbolic regression modules. Select-
ing the KA component indicates that the neural network and symbolic regression are jointly trained
using the knowledge alignment method, and training is conducted using the waiting strategy. Se-
lecting the DW component introduces dynamic weight optimization into the framework, where the
loss weight of Lpnn dynamically adjusts based on model performance. If DW is not selected, the
loss weights remain preset constants. All values in the table represent the predictive performance of
the neural network and the reported results are the averages of five independent experiments.
Component EN2Es En2De Duolingo MaiMemo

DN KA Dw MAE MAPE MAE MAPE MAE MAPE MAE MAPE

1130 13.1517 1171 13.4490 1159  13.6450 .2194  22.3509

v 1087 127599 1083  12.6222 .1077 12.8895 2107 21.4313

v v .0974  11.6900 .1019 12.0158 .1051 12.6518 .2086 21.2104

v 0985 11.7919 .1016 11.9960 .0991 12.0817 .2173 22.1103

v v .0968 11.6300 .0968 11.5431 .0953 11.7246 .2065 20.9828

v v v 0922 11.1970 .0944 11.3120 .0901 11.2543 .2046 20.7924

Based on Table |2 the conclusions are as follows: Symbolic regression improves performance:
Adding symbolic regression (second row) significantly enhances performance compared to the base-
line DNN model (first row), demonstrating that symbolic knowledge can optimize neural network
learning. Synergy of knowledge alignment and dynamic optimization: Models with both KA and
DAO strategies (third and last rows) outperform those with only one (first and fourth rows), high-
lighting their combined effect in boosting accuracy and robustness. Denoising module strengthens
robustness: Comparing the first and fourth rows shows that the denoising module significantly en-
hances the model’s ability to handle noisy data. Combining all components in the ablation study
achieves the best results.: The SPsyINN-W model (last row), incorporating all components (DN,
KA, DW), achieves the best performance across all datasets.

To investigate the impact of initialization equations in symbolic regression, we conducted com-
parative experiments and expanded on more illustrative training details. The results indicate that
initializing the GSR module with memory theory equations significantly enhances model perfor-
mance. Furthermore, using a greater number of initialization equations further improves the out-
comes, demonstrating the method’s ability to effectively absorb and filter diverse prior knowledge
while making the training process more stable. More detailed analyses are provided in Appendix

EIhnd[EZ

4.3  APPLICATION STUDIES

To explore our method’s potential contributions to psychological theory, we conducted an in-depth
analysis of the new theoretical equations discovered by the GSR module. By evaluating the pre-
dictive accuracy and form of these equations, we found that the equations produced by our method
significantly outperform both classical theoretical equations and those generated by SR methods,
demonstrating the advantage of our approach in identifying memory equations. Moreover, we ob-
served that the memory state equations mined by SPsyINN not only remain consistent with tra-
ditional memory theory but also capture more complex behavioral relationships and interactions.
These discovered memory states not only depend on time intervals but also include learners’ his-
torical learning performance, which may provide valuable empirical support for memory modeling.
A detailed analysis process can be found in Appendix [E3] Additionally, we conducted numeri-
cal sensitivity analysis experiments, revealing that time interval-related variables in the Duolingo
dataset exhibit higher sensitivity, indicating that memory states focus more on time interval infor-
mation. In the MaiMemo dataset, memory states focus on both time intervals and learners’ historical
performance(see Appendix [E.4]for detailed analysis).
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Figure3h illustrates the loss and corresponding evaluation metrics (Mean Absolute Percentage Error,
MAPE) changes during the joint training of DNN and GSR. At the beginning of training, GSR
performs well, so DNN gradually learns from GSR and optimizes parameters, dynamically adjusting
loss and MAPE as training progresses. Eventually, DNN outperforms GSR. GSR continuously
absorbs guidance from DNN, reducing MAE while effectively optimizing the equation form. The
collaborative effect of DNN and GSR during training demonstrates the effectiveness and rationality
of our proposed dynamic Asynchronous optimization method.

Figure [3b compares the memory equations mined by our model with traditional memory equations
during long-term memory fits for a specific user on a particular word. As shown, our method ac-
curately finds equations that better fit learners’ memory effects, while traditional memory theory
equations show poor fitting and over-predictions.

® SPylNN

_ 7
. ® HR

206 .

.
" —o— DNNMAPE 04 . \ . :
—m- GSRMAPE . . o ACTR
3 02
o
1 . . . oo o B . .
08 .
) S
2
o 5 5 2 Y 3

DNN Training Loss  Val GSR-MAE

H
Recall Probabilit

Val MAPE

Figure 3: a. Dynamic training example of SPsyINN-W on the Duolingo dataset. b. Example of
different memory equations predicting a learner’s long-term memory effects (MaiMemo dataset).

5 CONCLUSION

We propose a novel psychologically interpretable dynamic asynchronous training model, SPsyINN,
which effectively models memory behavior through knowledge injection and dynamic asynchronous
optimization. Extensive experiments demonstrate that constraining neural networks with knowledge
in memory scenarios is effective. Our framework enables efficient collaborative optimization of
neural networks and symbolic regression, significantly improving the predictive performance of
neural networks and the fitting accuracy of equations, thereby alleviating the issue of insufficient
explanatory power of theoretical equations in memory scenarios. Methodologically, the dynamic
alignment strategy enhances synergy, while in the asynchronous strategy, we observed a positive
correlation between synchronization and model performance, though at the cost of training speed.
In practical applications, SPsyINN reveals memory equations consistent with classical theories and
identifies the dual influence of time intervals and learners’ historical behaviors, offering valuable
insights for memory modeling.

Future research will explore broader applications of SPsyINN, such as analyzing cognitive abilities
like attention distribution and problem-solving, as well as applications in fields like cognitive science
and finance. We aim to further enhance the model’s generalizability, enabling it to integrate with
other symbolic regression methods and offering a novel approach to scientific discovery.
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A RELEVANT SUPPLEMENT AND DEFINITION

Al

DETAILS RELATED TO THE EQUATIONS OF MEMORY THEORY

For consistency, we represent memory retention as Recall (R) in the following memory equations.

» Ebbinghaus (Ebbinghaus et al.l [1913)): In 1885, the representation of the memory curve
was proposed, indicating that the degree of forgetting is a functional relationship with the
time elapsed without review. The ratio b (representing how much of the first memory
content is retained during the second memory attempt) of the time saved during relearning
to the time initially spent learning is expressed as a function of the time interval ¢ between
the first and second learning sessions, involving two parameters c and k.

k
~ (logt)e +k

* Wickelgren (Wickelgren, |1974): Based on the traditional regression model of the gener-
alized power-law memory model theory, the recall probability of memory material (R) is
modeled as a power-law function of initial memory strength (\), time scaling factor (3),
forgetting rate controlling memory decay speed (), and the time interval since the last
memory (t).The equation is expressed as:

R=)1+pt)""

* Woz (Wozniak et al.,[1995): The dual-component model of long-term memory, modeling
recall probability (R) as an exponential function of memory strength (S) and time interval
®).

R = e_é

* ACT-R (Anderson et al., 2004): Based on the traditional regression model of adaptive
cognitive characteristics and rationality, the learner’s memory state (R) is expressed as a
function of material difficulty () and the decay rate of memory strength (dy) during the
k-th review. The ACT-R memory equation is as follows:

N
R=B+In(> t,")

* Wixted (Wixted et al.,2007): Memory state R is expressed as a power-law function of the

review interval ¢, forgetting rate 1), and a parameter 6, and the equation is given as follows:

R=06tY

e MCM (Pashler et al., [2009):The Multiscale Context Model (MCM) assumes that each
practice session generates an exponential forgetting curve, and the forgetting process is
approximated using a superposition of multiple exponential functions. The equation is as
follows:

N '
R = Z ’Yiexp(—?i)l‘i(o)

Where ~; represents the scaling coefficients and 7; represents the decay time constants, both
of which are obtained through least-squares fitting to characterize the learner’s memory
strength.

e DASH (Lindsey et al., 2014): The learner’s memory state (R) is expressed as a relation-
ship with their student ability (a,), material difficulty (d.), number of attempts (c,,), and
historical correct recall count (72,,). The DASH theoretical equation is as follows:

R =0 as d + Z 9211) 1 hl 1 + Cw)+92w 111(1 + nw))

e HLR (Settles & Meeder,|[2016)): The half—hfe h represents the time it takes for the learner’s
memory state to decay to %, and it is estimated using the word’s features, the time interval
between two reviews, the number of times the word has been encountered, and the number
of times it has been correctly recalled. Here, z is used to represent these features. The
equation is expressed as follows:

R=27"" =20
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A.2 FEATURE DESCRIPTION

take fetch fetch take take
T Tt *t Tt4 ts [
At: Word memorization intervals
Features Notation t; t, t3 ty ts te
Word level intervals o, - - - Atyy; Atsy  Atgy
Word memorization intervals 6, - - - Aty, Atsy  Atgs
Sequence time intervals 63 - Aty Atzy;  Atyz  Atgy  Atgs
Number of practices b4 0 0 0 1 1 2
Number of corrects b5 0 0 0 1 0 0
Word length b6 4 5 6 5 4 4

Figure 4: Description of Input Data Features.

We processed the raw data of the model into the following six features as inputs, with their visual
representation shown in Figure 4]

* 01: The interval between the learner’s first memory of the word and the current timestamp.
* 02: The interval between the learner’s last memory of the word and the current timestamp.

* 03: The interval since the learner’s last memory activity, regardless of the consistency of
memory material.

* 04: The number of times the learner has reviewed the current word in prior memory activi-
ties.

* J5: The number of times the learner has reviewed the current word in previous memory
activities and successfully recalled it during testing.

* dg: The length of the word, used as a simple descriptor of word difficulty.
During processing of the MaiMemo data, we did not obtain the J3 data and only retained d1, do, d4,
05, and dg. In the Duolingo dataset, we use the complete features d;.¢. To account for the presence of

certain review strategies in memory software, we standardized the above features using the training
data set during model training.
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A.3 LIST OF SYMBOLS

We provide a detailed description of the symbols used in this paper in the table below.

Table 3: Nomenclature

Symbol

Meaning

D= {Du17Du27 ~--7Dun}

ay = [w,y, 1]

vl € {0,1}

fDNN, fasr
am =J[2 1= B

Y
e e N(0,I)

~t1.
xul.‘m,

gir

g
Lp = b S Sr (3 — )2
Lp= \D\ D ueu e L (G — 5 )?

LN - |’D\ Zueu ZL 1(yu 12)2
(C]
® = {+, —, x, =, pow,In}

m iti % 2
Lg= ﬁ Suev iy (T — i)

m nti i) 2
La= ﬁzueU Sy (- o)

Lpny =Lp+@Lgy+(La

Lpn+l — L%+Lg
LW +4L%
N+ S

Lesr =Lg+La

<n+1

LY +LY
LR +L7

The dataset encompasses all users’ mem-
ory test behaviors, represented as D, where
Du - {[w17y17t1]7[w27y27t2]7"-7[w7rL7y'rrL7t7n]}
denotes all behavior data for user u in chronological
order. Each behavior is described by a triplet [w, y, t],
indicating user v € U practiced word w € WV at time
t with a test outcome y € {0, 1}, where y = 1 repre-
sents a correct response and y = 0 indicates failure,
reflecting the user’s memory state at that moment.

The historical memory behavior features of w at time ¢,
derived from all preceding behavior records.

The probability that user u can recall the word at time ¢
during memorization, which serves as the label data for
the model.

The abbreviation for Denoised Neural Network and Ge-
netic Symbolic Regression.

Cumulative noise scheduling, where [: denotes the
noise scheduling parameter, controls the intensity of
noise added at each time step .

It is a learnable noise weight used to adjust the degree
of noise influence.

Random noise generated according to a normal distri-
bution.

Learner interaction data after adding noise.

The predicted value obtained from the noiseless data
through the neural network.

The predicted value obtained from the noisy data
through the neural network.

The predicted value obtained from the noiseless data
through the symbolic regression.

The MSE loss between network’s predictions on clean
data and true labels

The MSE loss between network’s predictions on noisy
and clean data.

The MSE loss between network predictions on noisy
data and true labels.

The set of model parameters.

The set of operators for symbolic regression.

The fitness function is defined as the MSE between
symbolic regression predictions and true labels

The knowledge alignment loss is defined as the MSE
between the neural network’s predictions on clean data
and those from symbolic regression.

The overall loss of the neural network.

Dynamic Weights for Dynamic Asynchronous Asyn-
chronous Optimization, where n represents the iteration
step.

The overall fitness function of symbolic regression.
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B RELEVANT PROOFS

B.1 PRINCIPLES OF DIFFUSION PROCESSES

In the forward diffusion process of Denosing Diffusion Probabilistic Models (DDPM) (Song et al.,
2020) , the perturbation kernel is defined as:

Q($t|$t71) = N(Sﬂt; \/OTtxtfla (1 - at)—’) s

where a; is the noise scheduling parameter at step ¢. Thus, the Markov property of the forward
diffusion in DDPM can be expressed as:

= Va1 + V1 —aper, e ~N(0,1),
where the noise level at each step is controlled by /1 — a.

This result shows that the data at timestep ¢ in the forward diffusion process of DDPM is a linear
combination of zy and noise ¢, with weights determined by the cumulative noise factor &; and
1—ay.

We extend DDPM by introducing a learnable noise weight, updating the perturbation kernel in
DDPM as follows:

q(‘%,’il:m |x,’;1:7n) — N (i.,tulwn; /atxZI;'rrz , ,y2(1 _ at).[) ,
where y is a learnable noise weight that adjusts the noise component. With this perturbation kernel,
the diffusion process can be described as:

= \fa, - alim oy e VT —am,

where, a,, = H (1 — B¢), consistent with the cumulative noise factor in DDPM. When y = 1, the
diffusion process is fully equivalent to DDPM.
In our model setup, the learnable noise weight v provides the capability for dynamic noise level

adjustment, enhancing adaptability and expressiveness across various tasks.

B.2 THE PROOF OF OPTIMIZATION THROUGH SAMPLING PROXY DATA

Combining with the Monte Carlo approximation, we can express the loss Lpyy after adding the
previously defined alignment loss in the following process.

m

Lpnn = ﬁ > Z
=B ,y51>~P<D)((

N2 ~t at N 4t
(Wi —9i)" + (gl — 95 + C(9h — gii)?
Yl —yu ) + (e — 08)? + C(0L- — Ut )?
~ B ,yg;)wp(s)((yi* =90 )? + (G — Ui )?)

+E eyt ympepsm) S (G — U )?

Similarly, for Lgsgr, we can also obtain the following process.

Lgsr = ‘D|ZZ( '—yfj) + (05 — 74 )?
u =1
- E(a: Yl )NP(D)((yZ* gu ) ( *13 yu ) )

~ ]E(w R )NP(B)(( _yu )2

*

+E(w,;*’yu*)~P(7’DNN)(yu* —Gu-)?
where, (mf: , yfﬁ) refers to data sampled from dataset D. It is sampled according to the probability
P(D), where P(D) represents a uniform distribution; B is generated directly from D, representing

the batch size of data when calculating the loss. PD represents a proxy dataset also generated
from D, and it combines the outputs of the neural network and symbolic regression to construct

the corresponding proxy data PDVY = [z fim g tim g tim] and PDIR = [gifim gt g tum],
During model optimization, the DNN uses PD°, while the GSR uses PDV .
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C ALGORITHM

Continuous Optimization Strategy (SPsyINN-C):This strategy seeks to maximize the optimiza-
tion efficiency of each module by eliminating wait times. The modules operate independently, com-
pleting updates and reading the proxy dataset without waiting for each other, enabling fully asyn-
chronous interaction. This strategy maximizes training efficiency but minimizes the frequency of
effective interaction between the modules.

Waiting Optimization Strategy (SPsyINN-W): This strategy aims to maximize the frequency of
effective interaction between the models. The faster training module waits for the slower module to
complete its training after finishing one epoch and then synchronously updates the proxy dataset be-
fore proceeding with the next round of training. This strategy maximizes the frequency of interaction
but results in lower training efficiency with the longest wait times.

Interval Optimization Strategy (SPsyINN-I):In this strategy, the neural network interacts every
two iterations, and the symbolic regression model interacts on every iteration.

Algorithm 1: SPsyINN-C
Input: The learner’s word learning time series includes time, historical responses, word difficulty
descriptions, target data y, number of epochs [V, an initial set of traditional memory equations f.
Output: Trained model parameters and optimized memory equations.

I: Initialize neural network parameters, initialize genetic symbolic regression with f

2:  while condition do

3 fori=1: N do

4: Train neural network parameters and fit optimized memory equations

5.

6

7

Save the current optimal parameters and equations

Sample r;tl”" and save its predictions g);flﬁm and 17;‘1"" as interaction data
Read interaction data from the local file, and update loss weights, parameters,
and the current optimal equation according to

8: end for

9:  end while

10:  return Parameters and optimized memory equations

Algorithm 2: SPsyINN-W
Input: The learner’s word learning time series includes time, historical responses, word difficulty
descriptions, target data y, number of epochs N, an initial set of traditional memory equations f.
Output: Trained model parameters and optimized memory equations.

1:  Initialize neural network parameters, initialize genetic symbolic regression with f

2:  while condition do

3 fori=1: N do

4: Train neural network parameters and fit optimized memory equations

5.

6

7

Save the current optimal parameters and equations, and record the training time.

Sample m:fl”" and save its predictions g);tl”" and gj;“”" as interaction data
Mutually read interaction data and update loss weights, parameters,
and the current optimal equation according to
8: Based on the training time, the models wait for each other.
9: end for
10:  end while
11:  return Parameters and optimized memory equations
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Algorithm 3: SPsyINN-I
Input: The learner’s word learning time series includes time, historical responses, word difficulty
descriptions, target data y, number of epochs [V, an initial set of traditional memory equations f.
Output: Trained model parameters and optimized memory equations.
1:  Initialize neural network parameters, initialize genetic symbolic regression with f
2:  while condition do
3 fori=1: N do
4: Train neural network parameters and fit optimized memory equations
5: Save the current optimal parameters and equations
6
7
8
9

Sample x;fl:m and save its predictions g);tlﬁm and y:fl"" as interaction data
GSR reads interaction data and updates the current optimal equation according t0
if i mod 2 == 0 then
DNN reads interaction data from GSR and updates loss weights and parameters
according to[3.3}
10: end for
11:  end while
12:  return Parameters and optimized memory equations

SPsyINN-C
Denoised ] 2 kLDNN i bieﬁ(ﬁsiea'} =) o, I 7Dieﬁoiisieﬁrl
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Figure 5: Schematic of Different Training Strategies.
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D EXPERIMENT

D.1

DATASETS

We evaluated the performance of SPsyINN on 4 publicly available commonly used datasets:
Duolingo, Duolingo-En2De, Duolingo-En2Es and MaiMemo:

. Duoling This dataset is a real-world dataset widely used in language learning applica-
tions. It contains language learning logs of 115,222 learners of English, French, German,
Italian, Spanish, and Portuguese, recording 12.8 million student word courses and practice
course logs.

* Duolingo-En2De: From the Duolingo dataset, we extracted user data of those learning
German using the English UI interface and named it the Duolingo-En2De subset. This
subset contains 117,037 log data points from 2,485 learners.

* Duolingo-En2Es: From the Duolingo dataset, we extracted user data of those learning
Spanish using the English UI interface and named it the Duolingo-En2Es subset. This
subset contains 271,854 log data points from 5,706 learners.

. MaiMem(ﬂ: This dataset comes from China’s most popular English learning application
“MaiMemo”. It contains 200 million user learning records and 17,081 English words.

D.2 BASELINES

To evaluate the effectiveness and robustness of our proposed SPsyINN model, we compare it with
the following state-ofthe-art deep learning models and traditional theoretical models.

Traditional Theoretical Equation Models

» Wickelgren (Wickelgren, |1974): Based on the traditional regression model of the gen-
eralized power-law memory model theory, the recall probability of memory state (R) is
modeled as a power-law function of initial memory strength (\), time scaling factor (3),
forgetting rate controlling memory decay speed (), and the time interval since the last
memory (t).

* ACT-R (Anderson et al., 2004): Based on the traditional regression model of adaptive
cognitive characteristics and rationality, the learner’s memory state (R) is expressed as a
function of material difficulty (/) and the decay rate of memory strength (dy) during the
k-th review.

* DASH (Lindsey et al., 2014): The learner’s memory state (R) is expressed as a relation-
ship with their student ability (a,), material difficulty (d.), number of attempts (c,,), and
historical correct recall count (72,,).

e HLR (Settles & Meeder, 2016): The half-life h represents the time it takes for the learner’s
memory state to decay to %, and it is estimated using the word’s features, the time interval
between two reviews, the number of times the word has been encountered, and the number
of times it has been correctly recalled.

Symbolic Regression Model

* SBP-GP (Pawlak et al., 2014): An improved genetic symbolic regression algorithm uses
semantic backpropagation to heuristically invert the execution of evolving programs, opti-
mizing the search process of operators.

* PySR (Cranmer, [2023)): A symbolic regression tool based on genetic algorithms combines
symbolic operations and simplification strategies to automatically generate interpretable
mathematical formulas. It employs multi-objective optimization to balance model accu-
racy and complexity, features efficient parallelization, and is suitable for data modeling in
scientific domains.

*https://www.duolingo.com/
>https://www.maimemo.com/
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* DSR (Petersen et al., [2020): A reinforcement learning-based symbolic regression method
trains a policy network to generate symbolic expressions.

* TPSR (Shojaee et al) [2023)): A pre-trained Transformer-based symbolic regression plan-
ning strategy incorporates the Monte Carlo Tree Search algorithm into the Transformer
decoding process, allowing non-differentiable feedback (such as fitting accuracy and com-
plexity) to serve as external knowledge sources integrated into the equation generation
process.

Data-driven Parametric Model

* DKT-F (Nagatani et al.l [2019): An extension of Deep Knowledge Tracing (DKT) model
(Piech et al.l 2015)) that incorporates a forgetting mechanism to predict user performance.
The authors introduced three time-related features to improve the original DKT model:
repetition interval, sequence interval, and the number of past attempts.

* FIFAKT (Ma et al., [2023): This model leverages an attention mechanism to dynamically
integrate key information related to forgetting, question formats, and word semantic simi-
larity, enabling more accurate predictions of user performance during the learning process..

* SimpleKT (Liu et al.,2023)): By explicitly modeling question-specific variations and using
a standard dot-product attention mechanism, the model captures individual differences in
questions and time-related behavioral information, effectively addressing students’ learning
dynamics and changes in knowledge states.

e QIKT (Chen et al|2023)): Through question-sensitive cognitive representations and Item
Response Theory (IRT) (Wilson et al.| [2016), this model enhances the ability to model and
interpret students’ knowledge states, emphasizing the impact of question characteristics on
their learning.

e MIKT (Sun et al.| [2024): By simultaneously tracking students’ domain knowledge states
(coarse-grained) and concept knowledge states (fine-grained), and incorporating the Rasch
(Raschl [1993) representation method and IRT module, the model improves performance
and interpretability, achieving multi-level modeling of students’ knowledge states.

D.3 EXPERIMENTAL SETUP

To train and validate the model, we used 80% of the student sequence data, reserving the remaining
20% for evaluation. All models were trained for 40 epochs using the Adam optimizer (Diederik,
2014) and repeated five times. An early stopping strategy was adopted: optimization was halted if
the loss on the validation set did not improve within the last five epochs.

Denoising Neural Network Architecture

* Base Structure: LSTM with a three-layer linear MLP module.
* LSTM: Hidden layer size = 64, number of layers = 1.

e MLP: Linear(64 — 128)—Tanh()— Linear(128 — 64) —Tanh()— Linear(64 — 1) —
Sigmoid()

* Learning Rates: MaiMemo dataset: 0.01; Duolingo dataset: 0.001
¢ Batch size: 256

* Bi:fr = linspace(0.001,0.2,100). Generate a uniformly distributed sequence of noise
intensities ranging from 0.001 to 0.2 with a length of 100, for use in the noise module
equation 1]

Additional Notes for Ablation Study When KA is selected without DAO in SPsyINN, the loss
function for DNN is expressed as:

Lpne = Lp + L + Ly,
with all weight coefficients set to 1, without dynamic adjustments.

Details for Genetic Symbolic Regression
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* Tool: PySR
* Settings:
— Population size = 40
Individual size = 50
Total iterations = 40
Cycles per iteration = 200
— Maximum equation complexity = 15
— Maximum nesting depth = 4

Interaction Data Sampling: 1024 samples.

All models were implemented in PyTorch and trained on a Linux server cluster equipped with
NVIDIA GeForce GTX 2080Ti GPUs. Given the inconsistency in evaluation metrics between the
Duolingo and MaiMemo datasets, we primarily used Mean Absolute Percentage Error (MAPE) as
the main evaluation metric and Mean Absolute Error (MAE) as the secondary metric. The calcula-
tion methods for the evaluation metrics are as follows.

MAPE = 100% ‘%' Zi

u =1

MAE = 5 ST ol - 6

u =1

(94 —ybi) [yl
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E ADDITIONAL EXPERIMENTS

E.1 ANALYSIS OF THE IMPACT OF DIFFERENT INITIALIZATION EQUATIONS ON MODEL
PERFORMANCE

Table 4: Performance of different initialization equations on four real-world datasets. The data
comes from the predicted values of the DNN in the SPsyINN-C strategy. The reported results are
the averages of five experiments.

Models En2Es En2De Duolingo MaiMemo
MAE MAPE MAE MAPE MAE MAPE MAE MAPE

O-NN 0985 11.7919 .1016 11.9960 .0991 12.0817 2173 22.1103

SPsyINN(NO) 0982 11.7583 .1027 12.0887 .0990 12.0734 2135 21.7136

SPsyINN(ACT-R) .1002  11.9475 .1033  12.1483 .0990 12.0728 .2145 21.7949
SPsyINN(HLR) 0979  11.7300 .1035 12.1670 .0987 12.0437 .2143 21.7766
SPsyINN(Woz) 0996 11.8860 .1062 12.4250 .0987 12.0451 2121 21.5675
SPsyINN(Wick) 0972  11.6710 .1008 11.8940 .0985 12.0270 .2140 21.7651
SPsyINN(Wixted) .0982 11.7630 .1018 12.0020 .0984 12.0160 .2100 21.3499
SPsyINN(ALL) 0961 11.5564 .0987 11.7130 .0985 12.0220 .2068  21.0379

The definitions of various variants in the table are as follows:

* O-NN(DNN): The proposed DNN model is trained independently without integrating GSR.

* SPsyINN(NO): During GSR initialization, no equations are predefined. GSR directly
searches for equations, which are then combined with the DNN using DAO for training.

* SPsyINN(ACT-R): GSR is initialized with equations from ACT-R memory theory (Ander-
son et al.,2004), which are combined with the DNN and trained using DAO.

e SPsyINN(HLR): GSR is initialized with equations from HLR memory theory (Settles &
Meeder, |2016), which are combined with the DNN and trained using DAO.

* SPsyINN(Woz): GSR is initialized with equations proposed by Wozniak’s memory theory
(Wozniak et al.,|1995)), which are combined with the DNN and trained using DAO.

» SPsyINN(Wick): GSR is initialized with equations proposed by Wickelgren’s memory
theory (Wickelgrenl [1974])), which are combined with the DNN and trained using DAO.

» SPsyINN(Wixted): GSR is initialized with equations approximating Wickelgren’s mem-
ory theory proposed by Wixted (Wixted et al., 2007)), which are combined with the DNN
and trained using DAO.

» SPsyINN(ALL): GSR is initialized with all the above memory theory equations, which are
then combined with the DNN and trained using DAO.

The experimental results in Table [f] demonstrate that the SPsyINN (ALL) model, integrating five
decay functions (ACT-R, Wozniak, HLR, Wixted, Wickelgren), outperforms others in most tasks.
This highlights its superior ability to capture diverse memory decay patterns, crucial for handling
complex, heterogeneous datasets. By combining multiple decay mechanisms, the model adapts to
varied forgetting behaviors, aligning with cognitive science findings that memory decay involves
multiple factors. This integration enables SPsyINN (ALL) to effectively model both rapid and slow
forgetting processes, enhancing prediction performance across scenarios.

E.2 ANALYSIS OF THE IMPACT OF DIFFERENT THEORETICAL MEMORY EQUATIONS ON
NEURAL NETWORK TRAINING

Figure [6] provides key insights into loss performance: (1) SPsyINN-Wick and SPsyINN-Wixted
show stable performance and fast optimization, consistent with Table (2) DNN exhibits sig-
nificant loss fluctuations, indicating that relying solely on neural network gradients is insufficient
to escape local optima. (3) SPsyINN-NO, lacking equation initialization, is more volatile than
SPsyINN-ALL, highlighting the stabilizing role of traditional memory equations in optimization.
(4) On single-language datasets, SPsyINN-ALL underperforms in training error, while SPsyINN-
Wick proves more stable. This suggests that memory equations reflect diverse memory states, a
hypothesis supported by results on Duolingo and MaiMemo datasets.
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Figure 6: Loss performance of Asynchronous optimization training with different initialization
equations on four datasets. The data comes from the predicted values of the DNN in the SPsyINN-C
strategy.

E.3 MEMORY EQUATION COMPARISON
From the model performance perspective:

* The proposed SPsyINN method outperforms traditional memory state equations in terms of
performance and significantly outperforms the pure symbolic regression algorithm in terms
of effectiveness.

* The symbolic regression algorithm based on genetic programming (such as PySR (Cran-
mer}, 2023) and different strategies of SPsyINN) can find relatively simple equations that
align with memory theory. This is in contrast to symbolic regression algorithms based
on reinforcement learning (DSR (Petersen et al.l 2020)) or pre-training (TPSR (Shojaeel
et al., 2023)), which tend to generate more complex equation forms with lower theoretical
interpretability.

* The SBP-GP (Pawlak et al.| [2014) method performs well in general symbolic regression
tasks (such as SRBench), but may not be suitable for domain-specific pattern mining tasks.
This method typically generates equations with higher complexity during the search pro-
cess, making interpretation more difficult, similar to the TPSR method.

From the memory equation perspective:

* From the equation form: The memory state equations mined by SPsyINN under different
strategies mostly take the exponential form, which shares some similarities with the local
form of HLR (Settles & Meeder}, [2016). This similarity may indicate that memory states,
to some extent, follow an exponential decay rule, as suggested by (Wozniak et al., |1995).

* From the behavioral data features involved in the equation: Similar to traditional mem-
ory theory equations, the memory equations mined by SPsyINN also highly focus on learn-
ers’ time interval information 41, 62, d3, which aligns with existing memory theory research
(Randazzol 2020). Particularly in the MaiMemo dataset, the equations mined by SPsyINN
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Table 5: Memory Equation Comparison.The data in the table comes from the output of GSR. "
indicates that the equation is too long to be displayed in full. All constants in the table are rounded
to two decimal places. For precise values, please refer to our project.

Model MAE Function

Wickelgren 1208+ 0005  0.89(1 4 0. 000352)—0'0003

ACT-R 120140010 —0.56 - 56 + In( Z 59: O5)
S, DASH 12154 0022 0(1.89 — 1.1456 + Z‘W‘ 0.11n(1 + &5) — 0.21n(1 + 64))
% HLR .1 129iA0006 2'3 5361 —9.5465—0. 253 0. 0454 0. 18ar+0 3‘)(&6 0.06
£ ~SBP-GP 1108+ 0068 -

PySR 118040034  0.90 — et 4 %2

DSR 12934 0002 sin(exp(ds - exp(d2 — exp(d4))))

TPSR 552140354

SPsyINN-C-F 1061+ o016 0.9 — (36 T 02)(31 — 02)
SPsyINN-I-F 1020+ gg0s  0.92(0-2!01Fexp(%)
SPsyINN-W-F 1031 0011 0.93°"° (85 4 0.02)%1~2)

Wickelgren 23781 0020  0.65(1 4 21.2355) 011
N
ACT-R 24034+ 0006 0.8486 + In( Z 65:4%)
k—

£ DASH 23541 0025 0(0.42 — 0. 4356 + Z‘W‘ 0.181In(1 + 05)+4.08 In(1 + 64))
§ HLR ~2350iA0033 22 5961 —4.3855—0. 4154+0 '3755+0 0156 0.05
E “SBP-GP 2660+.001 -
= 52)(83+0.08)

PySR 223840027 0.2100)

DSR 2395+ 0002 008(61 — 05 + exp(61 - 0o - (54(—54 — 05 — 66) + 66))

TPSR 3988+ 0626

SPsyINN-C-F 2215+ 0039  0.300°1 %5 (%4 F014)
0.76
SPsyINN-I-F 2269+ 0022 0.47(1.11»51)(54 )
0.63
SPsyINN-W-F  .2158 0024 0.49(%1 +0.01) (047

place greater emphasis on the learners’ historical performance features d4, d5, which is in
strong agreement with the DASH theory (Lindsey et al., 2014).

From the interaction between behavioral data: In the Duolingo dataset, the equation
mined by SPsyINN-W introduces an additional term (85 + 0.02)(®1=92), which combines
the historical performance d; with the time interval of the last memory J, and the time

interval of the first memory d3. Considering the full equation 0.93¢" (6540.02)(01=92) the
factors influencing the current memory are jointly determined by material difficulty, review
intervals, and historical performance. Additionally, the equation includes the term (§; —d2),
representing the difference in time intervals between the first memory of a word and its
last memory. This may reflect a chain memory effect in long-term memory processes,
indicating that the associative impact between multiple memories may play a significant
role in memory state modeling.

E.4 EQUATION NUMERICAL SENSITIVITY ANALYSIS

Table 6: Sensitivity of Equation Coefficients and Variable Sensitivity.

EIEEE)

indicates that the equation

does not include the variable or the sensitivity of the variable is less than 1x 1074,

Model Function

Total-order indices

Cc1 Cc2 Cc3 51 62 63 64 55 66

g SPyINNC T (66 1 02)(81 —62) 1392 _ , 0013 3899 3983 - , ,
£ SPeyINNM (“2 S1+exp(36)) 9080 0031 . , 0033 _ R R 1014
8 SPyINN-W  c§ %6 (55 + ¢1)(01—2) 6111 0873 _ - 2536 2531  _ 2352 0877
2 SPsyINNC (51‘55“4“2” 5555 0507 - 2278 B 1621 2315
= (c251)(54“3)
Z sPyINNI ol 9282 L0325 0019  .1461 , 0056 ,
= 54°3

sPsyINN-w {01 ep)(947%) 8119 0510 .0046 .1947 . 0092 ,
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We performed Total-order indices sensitivity analysis on the equations generated by different strate-
gies to assess the overall impact of input variables (or parameters) on the model output, including
both the direct effects of variables and their interactions with other variables. Since the equations
generated by the model are often in exponential form, the choice of base significantly affects the rate
of change of the exponential function, making the base a key factor in determining sensitivity.

From the sensitivity analysis results, under the waiting strategy (SPsyINN-W), the sensitivity of the
memory time interval was high in both the Duolingo and MaiMemo datasets, indicating its signifi-
cant impact on memory prediction. However, there are differences in focus between the datasets:

* Duolingo: More focused on learners’ time interval information, which is reflected in the
higher sensitivity indices for time-related variables in the analysis results.

* MaiMemo: Shows more sensitivity to learners’ historical performance, indicating that the
model tends to adjust memory predictions based on past records.

Overall, these differences reflect the distinct characteristics of the datasets and further highlight the
model’s adaptability across different contexts.
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