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Abstract

Do machines and humans process language in similar ways? Recent research has
hinted at the affirmative, showing that human neural activity can be effectively
predicted using the internal representations of language models (LMs). Although
such results are thought to reflect shared computational principles between LMs
and human brains, there are also clear differences in how LMs and humans rep-
resent and use language. In this work, we systematically explore the divergences
between human and machine language processing by examining the differences
between LM representations and human brain responses to language as measured
by Magnetoencephalography (MEG) across two datasets in which subjects read
and listened to narrative stories. Using an LLM-based data-driven approach, we
identify two domains that LMs do not capture well: social/emotional intelligence
and physical commonsense. We validate these findings with human behavioral
experiments and hypothesize that the gap is due to insufficient representations of
social/emotional and physical knowledge in LMs. Our results show that fine-tuning
LMs on these domains can improve their alignment with human brain responses.1

1 Introduction

Language models (LMs) now demonstrate proficiency that may equal or even surpass human-level
performance on tasks including generating text [Brown et al., 2020a], answering questions [Lewis
et al., 2019], translating languages [Costa-jussà et al., 2022], and even tasks that necessitate reasoning
and inference [Dasgupta et al., 2022]. This has inspired researchers to leverage LM representations
to investigate and model the human brain’s language system, positing that LMs may serve as reliable
proxies for human linguistic processes [Abdou, 2022]. Prior studies have found that human neural
activity, as measured by neuroimaging techniques such as fMRI [Jain and Huth, 2018, Toneva and
Wehbe, 2019], EEG [Hale et al., 2018], MEG [Wehbe et al., 2014a], and ECoG [Goldstein et al.,
2022], can effectively be predicted using representations from language models such as BERT [Devlin
et al., 2018] or GPT-2 [Radford et al., 2019]. Robust neural prediction is hypothesized to stem from
the shared computational objective of both LMs and the human brain: predicting subsequent words
based on prior context [Yamins and DiCarlo, 2016, Schrimpf et al., 2021].

Despite the evident behavioral similarities, the extent to which LMs and human brains align func-
tionally for language processing remains an open question. Essentially, the methods that LMs and
humans use to acquire language are very different. LMs learn statistical regularities across massive
sets of linguistic symbols, whereas humans rely on applying structured linguistic principles across
relatively little input. Additionally, LMs that are confined to linguistic data are likely to fail to
ground linguistic symbols in real-world contexts [Harnad, 1990, Bender and Koller, 2020, Bisk et al.,
2020a]. Furthermore, the learning environments and goals of LMs and humans are markedly different.
While humans communicate through active inquiry, expressing needs, directed communication, and

1Data and code are available at: https://github.com/FlamingoZh/divergence_MEG

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/FlamingoZh/divergence_MEG


Figure 1: Schematic of our experimental approach. The LM takes as input the current word along
with its preceding context to produce the current word’s LM embedding. This embedding is then
used as input to a ridge regression model to predict the human brain responses associated with the
word. The Mean Squared Error (MSE) between the predicted and actual MEG responses is calculated.
Finally, an LLM-based hypothesis proposer is employed to formulate natural language hypotheses
explaining the divergence between the predicted and actual MEG responses.

scaffolding conversations [Kuhl, 2011], LMs are predominantly trained as passive recipients of raw
text data. Consequently, LMs may struggle with comprehending social pragmatics and the nuances
of words whose meanings fluctuate across different social contexts [Mahowald et al., 2023].

Previous research exploring the relationship between human and LM language processing has
typically focused on the types of linguistic features [Oota et al., 2022a, Sun et al., 2023], neural
network architectures [Schrimpf et al., 2021], or training and fine-tuning methods [Sun and Moens,
2023] that may yield better predictions of brain responses. Diverging from this approach, Aw and
Toneva [2023] proposed that the divergence between human and LM language processing might stem
from LMs’ inadequate understanding of texts. They supported this hypothesis by demonstrating
that LMs fine-tuned on summarization tasks align more closely with human brain responses. Yet,
this hypothesis is only one of many potential explanations. In this work, we adopt a bottom-up,
data-driven methodology to systematically investigate the differences between human and machine
language processing. Our main contributions are as follows:

1. In contrast to prior studies focusing on the similarities between LMs and human brains, our
research emphasizes their differences. We monitor the temporal progression of errors in LM
predictions on a word-by-word basis on two datasets with distinct language input modalities
(§2).

2. Explaining the prediction errors for every word is challenging due to the vast amount of
text. Instead of manually formulating hypotheses, we adopt an LLM-based method that
automatically proposes natural language hypotheses to explain the divergent responses
between human brains and language models (§3). The top candidate explanations are
related to social/emotional intelligence and physical commonsense (§4). We validate these
hypotheses with human behavioral experiments.

3. We present evidence that fine-tuning LMs on tasks related to the two identified phenomena
can align them more closely with human brain responses. This implies that the observed
divergences between LMs and human brains may stem from LMs’ inadequate representation
of these specific types of knowledge (§5).

2 Predictive MEG Model

2.1 Data Preparation and Preprocessing

While many studies investigating the correlation between brain responses and language models utilize
fMRI recordings (e.g., [Caucheteux et al., 2023, Jain et al., 2020]), the comparatively low temporal
resolution of fMRI hinders its ability to accurately capture the processing of individual words. To
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Figure 2: Pearson correlation of actual MEG responses with predicted responses using embeddings
from layer 7 of GPT-2 XL on the Harry Potter dataset. The displayed layout is a flattened repre-
sentation of the helmet-shaped sensor array. Deeper reds indicate more accurate LM predictions.
Language regions are well predicted in language processing time windows (refer to §2.4 for more
details).

address this limitation, our research employed MEG data. We strategically used two different MEG
datasets, each with distinct input modalities, to assess potential variations in the brain’s response
patterns under these conditions.

The first dataset [Wehbe et al., 2014a] has eight participants reading Chapter 9 of Harry Potter and
the Sorcerer’s Stone (5,176 words) and four participants reading Chapter 10 of the same book (4,475
words) . Each word was exposed on a screen for a fixed duration of 500ms. MEG data were collected
on an Elekta NeuroMag MEG with 306 channels at 102 cranial points, and sampled at a rate of 1
kHz. The acquired data underwent preprocessing procedures using the Signal Space Separation (SSS)
method [Taulu et al., 2004] and its temporal extension, tSSS [Taulu and Simola, 2006]. The signal
was then time-locked with individual words and down-sampled into non-overlapping 25ms time
bins. Given the typical low Signal-to-Noise Ratio (SNR) of MEG, we adopted a denoising technique
[Ravishankar et al., 2021] that takes advantage of cross-subject correspondences to get an aggregated,
denoised version of MEG responses (refer to Appendix A for more details).

To enhance reproducibility and generalizability of our study, we additionally collected MEG data from
one participant who listened to six narratives (11,626 words) from The Moth, a platform featuring
personal storytelling. These stories were chosen from the stimuli used in a published story listening
fMRI dataset [LeBel et al., 2023]. Five of these stories were repeated twice, while one story was
repeated five times. The data acquisition was performed using a MEGIN scanner equipped with
306 channels at 102 cranial points. The preprocessing pipeline was similar to that applied to the
first dataset. Given that all story repetitions were from the same participant, we averaged the MEG
responses for each story’s repetitions to enhance SNR without using an alignment method.

2.2 Predicting MEG Responses from LM Embeddings

A substantial number of recent studies exploring the correlation between brain responses and LMs
have employed GPT-2 [Pasquiou et al., 2022, Caucheteux et al., 2022, 2023, Toneva et al., 2022]. To
ensure consistency and comparability with these studies, we utilized the pre-trained GPT-2 XL model
with 1.5B parameters, sourced from HuggingFace’s transformers library [Wolf et al., 2020a], as the
backbone language model. Following previous work [Toneva and Wehbe, 2019], for every word w,
we provided the model with a context consisting of the preceding 19 words. We used the output of
hidden layers of the LM, subsequently referred to as LM embeddings, to predict the MEG responses
associated with each word (Figure 1). For comparison, we also replicated some analyses on Llama-2
7B [Touvron et al., 2023a] (refer to Appendix E for more details).

Building upon established research that demonstrates the capability of LM embeddings to linearly
predict MEG responses [Wehbe et al., 2014a, Jain and Huth, 2018, Caucheteux and King, 2022a],
we utilized a linear ridge regression model as the encoding model. Considering the time-correlated
nature of MEG data, it was essential to maintain the temporal structure when partitioning the data
for training and testing purposes [Yang et al., 2019]. Therefore, we implemented a 10-fold cross-
validation procedure that splits the MEG data into 10 continuous chunks. We denote the actual
MEG responses as M and LM embeddings as L. For split i, we set aside one fold as the test set
(M i,test, Li,test) and fitted a ridge regression model with weight matrix W i and bias bi using the
remaining folds, denoted as (M i,train, Li,train). The regularization parameters were chosen via
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nested cross-validation. Following model training, we applied the trained weight matrix and bias to
predict the brain responses from the LM outputs for the test set:

M̂ i,test = Li,testŴ i + b̂i

Finally, the test predictions from all folds were concatenated to form the comprehensive prediction of
MEG responses from the LM:

M̂ = concat[M̂ i,test]

This process is performed for each of the different time windows relative to word onset.

2.3 Best Language Model Layer for Predicting MEG Responses

Prior research has shown that intermediate layers of language models often best predict human brain
responses [Toneva and Wehbe, 2019, Jain and Huth, 2018, Oota et al., 2022b]. Echoing previous
findings, we confirmed that intermediate layers exhibit higher correlations, with layer 7 being the
best at predicting brain responses in GPT-2 XL (refer to Appendix B for more details). Therefore, we
used the output of layer 7 as the language model embeddings in subsequent experiments.

2.4 Spatio-temporal Pattern of Predictions

As a sanity check, we examined if the predictive model can effectively predict the brain areas and
time course of language processing. These areas include the inferior frontal gyrus, superior temporal
gyrus, certain sections of the middle temporal gyrus, and angular gyrus [Blank et al., 2016, Rogalsky
et al., 2015, Sahin et al., 2009, Brennan and Pylkkänen, 2012, Friederici, 2002, Visser et al., 2010,
Rogalsky and Hickok, 2009].

As shown in Figure 2, we observe a temporal progression of accurately predicted areas after word
onset. The prediction performance peaks first in the occipital lobe between 75-100ms. Given that
LM embeddings encode information (e.g., word frequency) correlated to the number of letters in
a word and MEG is sensitive to abrupt changes in visual inputs, we attribute this early peak to the
initial visual perception of a word. This is followed by heightened prediction performance in the
bilateral temporal lobe between 175-250ms, when we expect semantic processing to start. This
observation aligns with previous research indicating that most language experiments with naturalistic
stimuli reveal bilateral language representations [Wehbe et al., 2014b, Huth et al., 2016, Deniz et al.,
2019, Toneva et al., 2022]. Finally, between 250-375ms, the anterior temporal lobe and frontal lobe
show increased prediction performance, which is likely related to further semantic processing. This
sequential pattern of prediction performance replicates the spatio-temporal dynamics of language
processing found in previous literature [Wehbe et al., 2014a, Toneva et al., 2022].

3 Identifying Phenomena of Interest

Our objective is to investigate the elements of MEG responses that cannot be well explained by the
LM. We work with an average of cleaned MEG responses from a group of subjects and multiple
trials, which illustrate the common elements of language processing across individuals. Therefore, for
words where MEG responses are not well predicted, it is likely that this marks a genuine divergence
between human brains and the LM. It is important to clarify that our approach trains an encoding
model to predict human brain responses based on language model outputs, rather than the reverse.
This means our methodology identifies information that is captured by MEG but is not present in the
language model, rather than information captured by the language model but is not present in MEG
responses.

Leveraging the high temporal resolution of MEG, we computed the Mean Squared Errors (MSEs)
between actual and predicted MEG responses for each individual word on channels that demonstrated
statistically significant correlations (one-sided, p=0.001). For word w,

MSE(w) =
1

|S|
·
∑
i∈S

(M̂(w)i −M(w)i)
2 (1)
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Table 1: Top 10 hypotheses generated from the best layer of GPT-2 XL on the Harry Potter dataset
Hypothesis Validity p-value

have a high level of emotional intensity 0.250 0.010
involve complex sentence structures or grammar 0.250 0.015
include emotional language or descriptions 0.238 0.008
have a high level of tension or conflict 0.237 0.023
have characters using body language or non-verbal cues 0.225 0.032
are emotionally charged, making it challenging for language
models to accurately interpret the intended tone or sentiment

0.213 0.020

include conflicts between characters 0.200 0.035
have characters interacting with their environment 0.188 0.059
have complex sentence structures 0.175 0.081
have dialogue between characters with varying emotions 0.175 0.022

Table 2: Top 10 hypotheses generated from the best layer of GPT-2 XL on the Moth dataset
Hypothesis Validity p-value

contain elements of fiction or exaggeration 0.212 0.012
feature emotional or dramatic language 0.150 0.090
refer to cultural or societal norms 0.138 0.107
include sensory details or imagery 0.137 0.107
have strong emotional or dramatic content 0.100 0.173
show a lack of coherence or logical flow 0.100 0.111
contain elements of surprise and unpredictability 0.094 0.201
contain emotional, personal narratives 0.088 0.201
use idiomatic expressions or figurative language 0.088 0.178
refer to specific events or incidents 0.087 0.237

where S is the set of significant channels.

3.1 Automatically Discovering Differences between Brain Responses and LM Predictions

Given the vast amount of text, manual pattern discovery becomes challenging. Figure 7 presents
sample sentences color-coded based on prediction error, illustrating the challenges in formulating
hypotheses from observations.

To discover subtle differences between MEG responses and LM predictions, we used a method that
automatically describes differences between text corpora using proposer and verifier LMs [Zhong
et al., 2023]. This system consists of first prompting an LLM (GPT-3; Brown et al. [2020b]) with a
number of samples from two corpora (D0, D1) to generate many hypotheses on how the first corpus
differs from the second, and then using a fine-tuned validator model (FLAN-T5-XXL; Chung et al.
[2022]) to validate how often each proposed hypothesis is true based on pairs from each corpus
sampled from a held-out set. Specifically, the verifier is presented with a prompt containing two
sentences from D0 and D1, and asked whether or not the hypothesis is true, and this is repeated
across the development set for each hypothesis. For the exact prompts used in the proposer and
verifier, please refer to Appendix F. Sentences were then ranked based on their mean MSE. The
top 100 least-predicted sentences constituted the D0 set, while the 100 well-predicted sentences
constituted the D1 set. This process of hypothesis proposal and verification was repeated across 3
cross-validation folds.

3.2 Proposed Hypotheses

The top ten hypotheses from the Harry Potter dataset ranked by validity2 are listed in Table 1. P-values
were adjusted using FDR correction [Benjamini and Hochberg, 1995]. We identified two primary
differences between the language model and the human brain: firstly, the processing of social and
emotional information, and secondly, the capacity for interaction with the surrounding environment.

2Validity measures the difference in certainty that the hypothesis is true between the two corpora, see Zhong
et al. [2023] for more details.
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Figure 3: Distribution of human responses for (A) the top 10 and (B) the bottom 10 hypotheses,
ranked by the percentage of ’Divergent Sentence’ responses.

These are henceforth referred to as social/emotional intelligence and physical commonsense,
respectively. Importantly, these hypotheses resonate with conclusions drawn in prior research, as
detailed in §4. Similarly, we ran the hypothesis proposer on the Moth dataset. This replication
produced slightly varied but fundamentally similar topics to those discovered in the Harry Potter
dataset (Table 2). This congruence across datasets with different input modalities aligns with previous
research showing that after initial sensory processing, the brain’s language processing is consistent
across reading and listening [Deniz et al., 2019, Chen et al., 2023].

3.3 Manual Hypothesis Verification

We conducted an experiment involving human participants for additional validation of our hypotheses.
We gathered data from 10 participants using Qualtrics, resulting in a collection of 1,400 trials. In
each trial, participants were presented with a hypothesis selected either from the top 10 or bottom 10
hypotheses generated from the Harry Potter dataset, along with a pair of sentences — one from D0
and the other from D1 — in a randomized order. The task for participants was to determine which
sentence aligned more closely with the given hypothesis, choosing between “More True for Sentence
A”, “More True for Sentence B”, or “Equally true”.

The response distribution for each hypothesis is shown in Figure 3. Note that a given hypothesis is
not expected to apply to all divergent sentences (e.g., it might suffice for a sentence to be emotionally
intense or grammatically complex to be divergent). If a hypothesis does not align with a sentence
from the divergent set, participants should show no preference between the two sentences presented.
Chi-square analysis revealed statistically significant differences in the distribution of responses
between the top and bottom hypotheses (p = 0.024). A preference towards divergent sentences was
observed in the top hypotheses condition while a preference towards “Equally True” was observed in
the bottom hypothesis condition. This pattern can be attributed to the role of the proposer, which was
instructed to generate hypotheses that effectively distinguish D0 (comprising divergent sentences)
from D1. As a result, the bottom hypotheses tend to be those that fail to differentiate between D0
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Figure 4: Performance comparison of the base model with models fine-tuned on (A) social and (B)
physical datasets. Each panel’s y-axis shows the percentage of channels in the fine-tuned model with
better, worse, or non-significantly different performance (measured by Pearson correlation) compared
to the base model. Fine-tuned models outperform the base model during language processing time
windows. Refer to Appendix L for a detailed view of each MEG channel plotted.

and D1, rather than those that are more explanatory of D1 compared to D0 (refer to Appendix G for
more details).

4 Selected Phenomena

Comprehending social/emotional and physical commonsense requires humans use a broad spectrum
of contextual knowledge. We briefly discuss the insights and challenges highlighted in the existing
neuropsychological and NLP literature regarding these domains.

Human social and emotional intelligence requires both introspection and predicting the feelings of
others [Salovey and Mayer, 1990]. Neuropsychological research on social cognition has identified a
network of brain regions that support understanding other people’s intentions, actions, and emotions
[Saxe et al., 2006]. Crucially, emotions are intrinsic to the human experience and pervasively interact
with other mental facilities, including language [Satpute and Lindquist, 2021]. As such, creating
agents with social and emotional intelligence has been a longstanding goal of NLP [Gunning, 2018,
Paiva et al., 2021]. However, LLMs still fall short of human abilities for inferring the mental states
and emotions of others (“theory-of-mind” tasks) [Sap et al., 2022].

Physical commonsense refers to knowledge about the physical properties of everyday objects and
physical phenomena [Forbes et al., 2019, Bisk et al., 2020b]. From a neuropsychological perspective,
language is not the primary means through which humans acquire commonsense physical knowledge.
Instead, humans rely on sensory inputs and interactions with their environment [Baillargeon, 1994].
Notably, the category of a physical object affects which brain regions are recruited when interacting
with that object. For example, interacting with people activates the theory of mind areas [Saxe
et al., 2006], the visual face areas [Sergent et al., 1992, Kanwisher et al., 1997], and body areas
[Downing et al., 2001], interacting with corridors while navigating recruits the visual place [Epstein
and Kanwisher, 1998] and spatial navigation areas, and interacting with tools recruits the dorsal
object-processing stream [Almeida et al., 2010]. Interestingly, reading about these domains has also
been found to recruit these same visual regions [Wehbe et al., 2014b, Huth et al., 2016]. Given how
physical commonsense knowledge is acquired, it is not surprising that, within NLP, this domain poses
a challenge for language models. While these models can potentially learn representations capturing
specific physical properties of the world, such as an object’s color or a game board’s state [Abdou
et al., 2021, Li et al., 2023], it remains unclear whether purely text-based representations can capture
the richness and complexity of physical commonsense as exhibited by humans [Forbes et al., 2019,
Bisk et al., 2020b].
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5 Improving Brain Alignment via Fine-tuning

We hypothesize that the inability of language models to accurately predict associated brain responses
stems from their inadequate representations of social/emotional understanding and physical world
knowledge. Drawing inspiration from Aw and Toneva [2023], we fine-tuned the GPT-2 XL model on
datasets specific to the two phenomena to examine if targeted fine-tuning could enhance the model’s
alignment with brain activity.

Furthermore, we examined whether domain-specific fine-tuning would specifically bolster the model’s
capability in predicting MEG responses associated with words from that domain, as compared to
words outside that domain. To this end, we recruited three raters to annotate Chapter 9 of Harry
Potter across the two domains. We release these annotations as a resource for the dataset to facilitate
further analysis. Details on the annotation process can be found in Appendix I. Examples of each
phenomenon within the Harry Potter text can be found in Appendix J.

5.1 Datasets

Social/Emotional Intelligence We study social and emotional intelligence using the Social IQa
dataset [Sap et al., 2019]. This dataset contains questions about people’s feelings and their social
implications.

Physical Commonsense We study physical commonsense using the PiQA dataset [Bisk et al., 2020b].
This dataset contains goal-driven questions based on everyday situations. These questions were taken
from the website instructables.com, where people share DIY project instructions.

We also provide examples from each dataset in Table 3.

Table 3: Datasets for Fine-Tuning with Sample Questions and Answers (Correct Answer in Bold)
Dataset Type Num train Options Sample question Sample answers

Social IQa Social/Emotion 33.4k 3 Sydney had so much
pent up emotion, they
burst into tears at work.
How would Sydney
feel afterwards?

1. affected
2. like they released
their tension
3. worse

PiQA Physical 16.1k 2 When boiling butter,
when it’s ready, you
can

1. Pour it onto a plate
2. Pour it into a jar

5.2 Fine-tuning Setup

In order to keep the architecture of fine-tuned models consistent with the base model, we format the
multiple choice task as N language modeling tasks, where N is the number of options. Specifically,
for the combined context and question x, we directly concatenate each possible multiple-choice
answer {y1, ..., yN} to x to form N different sentences. After passing the concatenated sequences
through the model, we sum the logits of all tokens corresponding to each multiple-choice option to
obtain a score proportional to its log-likelihood. These scores are then gathered into a size (1, N )
tensor, and cross-entropy loss relative to the correct multiple choice answer is used to train the model.
Further details on the fine-tuning setup can be found in Appendix H.

5.3 Comparing Fine-tuned Models with the Base Model

We evaluated the fine-tuned GPT-2 XL model on the Harry Potter dataset. To identify channels with
statistically significant differences between the base and fine-tuned model, we calculated empirical
p-values by comparing the true correlation value with 10,000 simulated ones obtained by permuting
the brain data. Details of the algorithm can be found in Appendix K.

Fine-tuned models are better aligned with the brain on both tasks. As illustrated in Figure 4A, the
model fine-tuned on the social dataset exceeds the base model in performance across the majority of
channels within the 50ms to 300ms time interval post word onset. Notably, this interval corresponds
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Figure 5: Comparison of improved MSE between (A) social and (B) physical words and those outside
each category evaluated on models fine-tuned on corresponding datasets. Positive values denote lower
MSEs in the fine-tuned model. Shaded region indicates standard error. Asterisks denote time points
with significant differences between the two groups (Student’s t-test with FDR correction, p=0.05).

to the language processing time windows, as identified in §2.4. In a similar vein, the fine-tuned
physical model exceeds the base model’s performance in almost all channels during the 50-275ms
interval post word onset (Figure 4B). However, interestingly, almost all channels are worse than
the base model outside this time window. This time selectivity may indicate that the improvements
of the fine-tuned model are tailored towards linguistic comprehension rather than broader brain
functionalities.

Fine-tuning improves alignment more for words annotated with that category. We compared
the reduction in prediction error for words annotated within each category and words outside each
category by computing the difference in MSE between the model fine-tuned on the corresponding
task and the base model. As demonstrated in Figure 5A, prediction errors for social words exhibit a
significant reduction compared to non-social words 200-275ms post word onset. Additionally, there
is a significant improvement in MSE for physical words over non-physical words 150-225ms post
word onset (Figure 5B). We also ran additional control experiments to check if MSE improvement
is specific to words that match the category of the dataset on which the model was fine-tuned.
Specifically, we evaluated the prediction improvement of physical words on the model fine-tuned on
the social dataset, and vice versa (Appendix M).

Improvements are not related to increased language-modeling ability. Prior work has found
that LMs with lower perplexity can better predict brain activity [Schrimpf et al., 2021]. Therefore,
additional fine-tuning may have improved the language model’s ability to perform the LM task in
general, leading to improved alignment. To rule out this possibility, we performed 3-fold cross-
validation on Harry Potter and the Sorcerer’s Stone, excluding Chapters 9 and 10, which were used
as data in this study. We trained the base model, as well as the fine-tuned models, on the train set in
each fold with the language modeling objective, and found that the final average losses on the test
sets were similar (See Appendix N for details).

6 Related Work

Numerous studies have found that LM hidden states can linearly map onto human brain responses to
speech and text measured by MEG, EEG, and fMRI [Wehbe et al., 2014a, Hale et al., 2018, Jain and
Huth, 2018, Abnar et al., 2019, Jat et al., 2019, Gauthier and Levy, 2019, Toneva and Wehbe, 2019,
Caucheteux and King, 2022a, Jain et al., 2020, Toneva et al., 2022, Aw and Toneva, 2022].

At a more foundational level, studies have identified shared computational principles between LMs
and human brains. Evidence suggests that both human brains and LMs are perpetually engaged in
predicting the subsequent word [Schrimpf et al., 2021]. LM surprisal is found to be positively corre-
lated with brain activation, reaching its peak approximately 400 ms post word onset [Goldstein et al.,
2022]. This aligns well with N400, which denotes a decline in brain activation upon encountering
unexpected words around 400 ms after word onset [Lau et al., 2009, Parviz et al., 2011, Halgren et al.,
2002]. Moreover, LM representations can predict the hierarchy of brain responses [Caucheteux and
King, 2022b, Caucheteux et al., 2023]. Despite this, Antonello and Huth [2022] have pointed out that
a high correlation between brain activity and LMs does not necessarily imply that they operate under
similar computational principles.
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We not only observe this LM-brain alignment but can also actively intervene in it. Research has
demonstrated that the alignment between LMs and human brains can be improved by task-specific
fine-tuning. A notable instance is the study by Schwartz et al. [2019], where the fine-tuning of BERT
using both fMRI and MEG signals enhanced its ability to predict fMRI responses. Importantly, this
improvement was not participant-specific and could be transferred to hold-out individuals. Another
study [Aw and Toneva, 2023] showed that task-oriented fine-tuning, particularly for narrative summa-
rization, also facilitated better alignment with brain activity. Furthermore, altering the architecture of
BERT such that it aligns better with the brain improves its performance on downstream NLP tasks
[Toneva and Wehbe, 2019]. These findings suggest a potentially symbiotic relationship between
enhancing task performance in LMs and boosting their alignment with brain responses.

7 Conclusions, Limitations, and Future Work

We explore a critical question connecting language models with human neural activity: How do
LMs differ from human brains in processing language? We employed an LLM-based approach to
automatically propose hypotheses explaining the elements of human brain responses that cannot
be well explained by language models. Social/emotional intelligence and physical commonsense
emerged as the two dominant themes. After fine-tuning GPT-2 XL on datasets related to these themes,
we observed an improved alignment between LM predictions and human brain responses.

Limited by the availability of datasets with aligned brain data, our study was conducted on a relatively
narrow range of texts. While we observed consistent patterns across two language modalities, it is
important to note that both datasets utilized were exclusively narrative stories. This limited scope
raises the possibility that additional, undetected divergences exist, potentially obscured by the quantity
of text and the methodology employed for hypothesis generation from the sentences. By developing
more robust tools for pattern discovery and incorporating a wider array of textual materials, our
approach can be adapted to more comprehensively address the question in future studies.
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A MEG Denoising

Because of the typical low Signal-to-Noise Ratio (SNR) associated with MEG, we adopted a denoising
technique [Ravishankar et al., 2021] that takes advantage of cross-subject correspondences to get an
aggregated, denoised version of MEG responses. Specifically, this process involves modeling the
MEG responses Mt of subject t as a linear function of the MEG responses Ms from a source subject
s:

M̂t←s = Ŵt←sMs + b̂t←s

We estimated the target subject’s MEG responses from all other subjects:

M̂t =
1

N − 1

∑
s∈S,s ̸=t

M̂t←s

where S is the set of subjects and N is the number of subjects. These individual estimates are then
aggregated to generate a denoised version of MEG responses:

M̂ =
1

N

∑
s∈S

M̂t

B Best Language Model Layers for Predicting MEG Responses

Prior research has shown that intermediate layers of language models often best predict human brain
responses [Toneva and Wehbe, 2019, Jain and Huth, 2018, Oota et al., 2022b]. Therefore, we selected
the layer that best predicts brain responses. Figure 6 illustrates the Pearson correlation between actual
MEG responses and those predicted by LM embeddings across layers and time points relative to
word onset. We used the average correlation across all words and time windows as the metric to
select the best layer. Echoing previous findings, we confirmed that intermediate layers exhibit higher
correlations, with layer 7 being the best at predicting brain responses in GPT-2 XL. Similarly, for
Llama-2, layer 3 was identified as the most predictive.

Figure 6: Pearson correlation between actual MEG responses and predicted responses from (A)
GPT-2 XL and (B) Llama-2 across LM layers and time after word onset on the Harry Potter dataset.
Both models exhibit high correlations in early and intermediate layers at around 200ms. Correlation
is computed across words and averaged across MEG channels.

C Sample Sentences

Given the vast amount of text in the datasets, manually discovering patterns becomes challenging.
Figure 7 provides an illustrative example by presenting a set of sample sentences that are color-coded
based on the magnitude of their prediction error. This visualization demonstrates the complexity
involved in formulating hypotheses from observations.
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He had been looking forward to learning to fly more than anything else.

"Of course he has," said Ron, wheeling around.

But Neville, nervous and jumpy and frightened of being left on the ground, pushed off hard
before the whistle had touched Madam Hooch's lips.

most divergent least divergent

1.

2.

3.

Figure 7: Sample sentences from the Harry Potter dataset, with colors indicating prediction error
levels. Each of the five colors corresponds to a 20-percentile range of words from the entire dataset.

D Additional Results on GPT-2 XL

D.1 Results on Last Layer

In addition to the best layer, we also performed analyses on the last layer of the language model.

D.1.1 Spatial-Temporal Patterns of Predictions

The spatial-temporal pattern of predictions observed in the last layer (Figure 8) is similar to that of
the best layer, However, there is a notable difference in the magnitude of the values. Specifically, the
maximum correlation in the last layer is lower, decreasing from 0.53 in the best layer to 0.43.
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Figure 8: Pearson correlation of actual MEG responses with those predicted by LM embedding
from the last layer of GPT-2 XL (evaluated on the test set). The displayed layout is a flattened
representation of the helmet-shaped sensor array. Deeper reds indicate more accurate LM predictions.
Language regions are effectively predicted in language processing time windows (refer to §2.4 for
more details).

D.1.2 Proposed Hypotheses

We also generate hypotheses from the predictions of the last layer (Table 4). These hypotheses exhibit
similarities with those derived from the best-performing layer, notably in their inclusion of emotions
and social interactions. However, a distinctive aspect of these hypotheses is their association with
supernatural and magical elements. Additionally, we observe the emergence of figurative language,
aligning with previous research that indicates language models underperform humans in both the
interpretation and generation of figurative language [Chakrabarty et al., 2022, Liu et al., 2022] and
the correct representation of idiomatic phrases [Dankers et al., Liu and Neubig, 2022].

E Replication on Llama-2 7B

Although GPT-2 is a widely used language model in brain research, it’s not the latest model in the field.
Models with more parameters and advanced training methods could show different results. Therefore,
we replicated some analyses on Llama-2 [Touvron et al., 2023b]. We used the implementation in
the HuggingFace library [Wolf et al., 2020b] with 7B parameters. As Figure 6B shows, early layers
exhibit high correlations, with layer 3 identified as having the highest correlation.
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Table 4: Top 10 hypotheses generated from the last layer of GPT-2 XL on the Harry Potter dataset

Hypothesis Validity p-value

contain descriptions of unusual settings or creatures 0.1750 0.0754
has a lot of dialogue, with characters speaking to each other 0.1719 0.0855
contain figurative language 0.1367 0.1409
contain rhetorical questions or exclamations 0.1125 0.1685
contains references to obscure facts or trivia, such as the longest game of Quidditch 0.1094 0.0627
mentions the unknown or unexpected, such as an unknown creature or a surprise announcement 0.1094 0.1856
contain references to the emotions of characters 0.1062 0.1996
contain references to the supernatural 0.0875 0.1827
mentions dangerous creatures and events, such as trolls and duels 0.0813 0.2383
contain references to magic 0.0688 0.2550

E.1 Spatio-Temporal Patterns of Predictions

The spatial-temporal pattern of predictions in layer 3 of Llama-2 (Figure 9) closely resembles
those found in GPT-2 XL. This similarity implies that both language models effectively capture the
representations of words.
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Figure 9: Pearson correlation of actual MEG responses with those predicted by LM embedding from
the best layer (layer 3) of Llama-2 (evaluated on the test set). The displayed layout is a flattened
representation of the helmet-shaped sensor array. Deeper reds indicate more accurate LM predictions.
Language regions are effectively predicted in language processing time windows (refer to §2.4 for
more details).

E.2 Proposed Hypotheses

Hypotheses from the predictions of layer 3 of Llama-2 7B can be found in Table 5. Interestingly, the
focus of these hypotheses is primarily on physical objects and events. In comparison to the hypotheses
produced by GPT-2 XL, there is a notable absence of social and emotional aspects, suggesting that
Llama-2 7B could have a more advanced comprehension of social and emotional contexts.

Table 5: Top 10 hypotheses generated from the best layer of Llama-2 on the Harry Potter dataset

Hypothesis Validity p-value

involve action or movement, such as running or tiptoeing 0.300 0.005
refer to specific events or actions, such as a flying lesson or a spell not working 0.237 0.029
refer to specific objects or locations, such as the front steps or the trophy room 0.237 0.013
describe physical actions or movements 0.175 0.081
discuss or describe dangerous or frightening situations 0.150 0.056
include actions or physical movements 0.150 0.117
contain words or phrases that are specific to the wizarding world 0.140 0.130
have a sense of chaos or disorder 0.137 0.040
have a high level of tension or suspense 0.137 0.128
include words or phrases that are specific to the wizarding world 0.127 0.152
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F Proposer and Verifier Prompts

The prompt for the proposer is:

{A_block}
{B_block}
The dataset includes two chapters from "Harry Potter and the Sorcerer’s Stone".
The two groups are generated based on the difference between language model
and human responses to these sentences. The Group A snippets sentences where
language models and humans show divergent responses, while the Group B snippets
sentences where language models and humans show similar responses.
I am a literary analyst investigating the characteristics of words. My goal is to
figure out which sentences induce different responses for language models and
human responses.
Please write a list of hypotheses about the datapoints from Group A (listed by
bullet points “-”). Each hypothesis should be formatted as a sentence fragment.
Here are three examples.
- “{example_hypothesis_1}”
- “{example_hypothesis_2}”
- “{example_hypothesis_3}”
Based on the two sentence groups (A and B) from the above, more sentences in
Group A ...

The prompt for the validator is:

Check whether the TEXT satisfies a PROPERTY. Respond with Yes or No. When
uncertain, output No.
Now complete the following example -
input: PROPERTY: {hypothesis}
TEXT: {text}
output:

G Manual Hypothesis Verification

G.1 Experiment Setup

We recruited 10 participants through Qualtrics. Of these, 9 participants completed 100 trials each,
while one participant completed 500 trials. In each trial, participants were presented with a hypothesis
selected either from the top 10 or bottom 10 hypotheses generated from the Harry Potter dataset,
along with a pair of sentences — one from D0 (the divergent sentence set) and the other from D1
(the convergent sentence set) — in a randomized order. The task for participants was to determine
which sentence aligned more closely with the given hypothesis, choosing between “More True for
Sentence A”, “More True for Sentence B”, or “Equally true”. Note that a given hypothesis is not
expected to apply to all divergent sentences (e.g., it might suffice for a sentence to be emotionally
intense or grammatically complex to be divergent) so it is expected that some of the responses will be
“Equally true”. A screenshot of the experiment can be found in Figure 10.

G.2 Results

We constructed a contingency table with dimensions (Top Hypothesis, Bottom Hypothesis) by (Prefer
Divergent, Equal, Prefer Convergent) (Table 6). A binomial test conducted on the contingency table
(looking only at the “Prefer Divergent” and “Prefer Convergent” responses) showed that divergent
sentences were more likely to be chosen over convergent sentences on average (p < 10−10). A
Chi-square test revealed statistically significant differences in the distribution of responses between
the top and bottom hypotheses (p = 0.024). Additionally, we utilized the Chi-square test to compare
the frequency of "Prefer Divergent," "Equal," and "Prefer Convergent" responses in two conditions.
Notably, a preference towards divergent sentences was observed in the top hypotheses condition
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Figure 10: Screenshots of the experiment

Table 6: Contingency Table for Human Responses

Divergent Equal Convergent

Top 377 122 209

Bottom 336 159 196

compared to the bottom hypotheses (p = 0.093). In contrast, in the bottom hypothesis condition,
there was a marked preference for “equally true” (p = 0.008). No significant difference was observed
in the preference for convergent sentences between the conditions (p = 0.676).

H Fine-tuning details

H.1 Computational Details

GPT-2 XL was trained separately on each of the two datasets in subsection 5.1 on 4 A6000 GPUs
with 16-bit quantization and a batch size of 1 per GPU. Deepspeed with ZeRo stage 2 optimization
was used in order to parallelize training [Rasley et al., 2020]. The Adam optimizer was used with
a learning rate of 1e-5, betas of (0.9, 0.999), epsilon of 1e-8, and no weight decay. Models were
trained with early stopping with a patience of 3 [Kingma and Ba, 2017].

H.2 Multiple-choice training

Let xi represent the concatenation of the context, if applicable, and the question. Then for each
answer choice yi, we concatenate it with the question and context, and feed it to the model to obtain
a sequence of logits.

ℓi = Model(xi ⊕ yi) (2)

Then we sum the logits corresponding to the sequence, where t ∈ [1, T ] represents the total length of
xi ⊕ yi.
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scorei =
T∑

t=1

ℓi,t (3)

Finally, we take the cross-entropy loss of these values relative to a one-hot encoding of the correct
option, where ti = 1 if option i is correct, or else 0.

Pi =
exp(logiti)∑N
j=1 exp(logitj)

L = −
N∑
i=1

ti log(Pi)

H.2.1 Performance on Multiple-Choice Datasets

We note that the performance of the final model may not approach that of GPT-2 XL fine-tuned with
an output size of N denoting each option, as we keep the output dimension the same as the size of the
vocabulary. However, we report the final accuracy achieved by each model on the original datasets
here.

Table 7: Summary of model performance

Dataset Best epoch Accuracy (%) Baseline (random) accuracy
Social IQa 4 54.86% 33.33%

PiQA 1 73.88% 50.00%

I Annotations

To decide which category a word belongs to, we employed three raters who used binary coding to
indicate if a word belonged to the target category. The consistency among raters was evaluated using
Krippendorff’s alpha. Their consistency was 0.54 for social/emotion and 0.87 for physical. Finally, if
at least two out of the three people annotated a word as fitting a category, we counted it as belonging
to that category.

I.1 Annotation Guidelines

I.1.1 Social/Emotional Intelligence

• Include words that depict the emotions of characters and/or social interactions.
• Exclude words that suggest emotions or social interactions indirectly. For instance, “slam

the door” shouldn’t be annotated.

I.1.2 Physical commonsense

• Annotate words referring to tangible entities, such as characters (people) and physical
objects.

• Do not annotate words that represent concrete ideas but lack physical substance, like
“laughter”.

• Pronouns should also be excluded.

J Examples of phenomena in Harry Potter

We give some examples of the two phenomena in the dataset according to the annotations. Words of
that category are marked in bold.
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Algorithm 1 Permutation test (for one channel, one time window)
Input: Brain data D, Prediction from base model P1, Prediction from fine-tuned model P2

D, P1, and P2 are all of size (1, N), where N is the number of words in the dataset.
Output: pvalue
X = corr(D,P1)− corr(D,P2)
Counter = 0
for i = 1 to 10, 000 do
Di = permute(D)
Xi = corr(Di, P1)− corr(Di, P2)
if Xi > X then

Counter = Counter + 1
end if

end for
pvalue = Counter+1

10,000+1

J.1 Social/Emotional

• Harry had never believed he would meet a boy he hated more than Dudley.

• Hermione Granger was almost as nervous about flying as Neville was.

• But Neville, nervous and jumpy and frightened of being left on the ground, pushed off
hard before the whistle had touched Madam Hooch’s lips.

J.2 Physical Commonsense

• Up the front steps, up the marble staircase inside, and still Professor McGonagall didn’t
say a word to him.

• Ron had a piece of steak and kidney pie halfway to his mouth, but he’d forgotten all about
it.

• They pulled on their bathrobes, picked up their wands, and crept across the tower room,
down the spiral staircase, and into the Gryffindor common room.

K Algorithm for Permutation Test

To identify channels on which the performance of the fine-tuned model and the base model has
statistically significant differences, we calculated empirical p-values by comparing the true correlation
value with 10,000 simulated ones obtained by permuting the brain data as shown in Algorithm
1. Given that we are assessing multiple hypotheses simultaneously, we also used the Benjamini-
Hochberg False Discovery Rate (FDR) [Benjamini and Hochberg, 1995] to correct for multiple
comparisons, at level α = 0.05.

L Comparison between Fine-tuned models and the Base Model

We provide a detailed view of the comparison between the base language model and the models
fine-tuned on social (Figure 11) and physical (Figure 12) datasets with each channel plotted.

M Additional Control Experiments on MSE Improvement

We conducted additional control experiments to evaluate whether MSE improvement is specific to
words that match the category of the dataset on which the model was fine-tuned. Specifically, we
evaluated the improvement of physical words on the model fine-tuned on the social dataset, and vice
versa.

This analysis reveals that the performance of the model fine-tuned on the social dataset does not
significantly differ when assessed with physical and non-physical words (Figure 13B). This finding
implies that the enhancements observed are specifically tied to social words. On the other hand, in the
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Figure 11: Performance evaluation of the model fine-tuned on the Social IQa (social and emotional)
dataset versus the base model using Pearson correlation. Each dot represents a MEG channel.
Red channels indicate better predictions by the fine-tuned model, blue channels indicate better
predictions by the base model, and gray dots denote non-significant differences. The fine-tuned model
outperforms the base model in predicting most channels during language processing time windows.

model fine-tuned on the physical dataset, we observed a marginal, though not statistically significant,
boost in performance with social words (Figure 13C). We propose that this marginal improvement
could be attributed to the presence of social and emotional knowledge embedded within the physical
dataset. To substantiate this hypothesis, we conducted a thorough review of the physical dataset and
identified items that indeed pertain to social or emotional scenarios.

Examples of such items include:

• how do you give a surprise party?

• To help your child feel less afraid when they’re going to sleep

• How can you get a child to smile in a photo?

• To help a friend feel better when they are sad

• how to avoid danger?
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Figure 12: Performance evaluation of the model fine-tuned on the PiQA (physical) dataset versus the
base model using Pearson correlation. Each dot represents a MEG channel. Red channels indicate
better predictions by the fine-tuned model, blue channels indicate better predictions by the base
model, and gray dots denote non-significant differences. The fine-tuned model outperforms the base
model in predicting most channels during language processing time windows.

• To determine if someone has romantic feelings for you

These findings led us to conclude that the marginal improvement in processing social words by the
model fine-tuned on the physical dataset may result from exposure to social and emotional content.

N Cross-validation on language modelling task

We perform 3-fold cross-validation on the remaining chapters of the Harry Potter book (excluding
chapters 9 and 10), where we randomly shuffle paragraphs and assign to train:validation:test sets
respectively 77%, 16.5%, and 16.5% of the data. Paragraphs that exceeded the context length were
excluded. Both the base GPT-2 XL model as well as each model fine-tuned on the three domains were
trained to predict the next word for 3 epochs, with the same hyperparameters used in Appendix H.
Results on the test set for each fold are listed below. The average negative-log-likelihood loss per
token at the end of training is reported in Table 8.
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Figure 13: Comparison of improved MSE for A) social vs. non-social words on the social model, B)
physical vs. non-physical words on the social model, C) social vs. non-social words on the physical
model, and D) physical vs. non-physical words on the physical model. Positive values denote lower
MSEs in the fine-tuned model. Shaded region indicates standard error. Asterisks denote time points
with significant differences between the two groups (Student’s t-test with FDR correction, p=0.05).

Table 8: Summary of language-modeling loss across cross-validation folds for models on the
remaining chapters of Harry Potter.

Model Avg. Loss (%) ± St.dev Fold 1 Loss Fold 2 Loss Fold 3 Loss
Base 0.08795 ± 0.01707 0.09794 0.06391 0.1020

Social 0.1148 ± 0.00286 0.1119 0.1187 0.1138

Physical 0.1001 ± 0.00184 0.1019 0.1009 0.0976

O Societal Impacts

This study represents a significant intersection between Neuroscience and Machine Learning, striving
to push the boundaries of machine learning models while deepening our understanding of how
the human brain functions. In a broader context, this research lays the groundwork for future
breakthroughs in the field of neuroscience and for making human-computer interfaces more efficient
and intuitive.

However, the development of human-computer interfaces may cause problems in privacy and security,
as these interfaces often require the collection and processing of personal data, increasing the risk of
data breaches and unauthorized access. There are also ethical concerns regarding the potential for
surveillance and the impact on employment, as advanced interfaces might automate tasks currently
performed by humans, potentially displacing workers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope. The abstract provides a concise summary of the key
contributions, while the introduction elaborates on the assumptions and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed in section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a comprehensive disclosure of all the necessary information
required to reproduce the main experimental results. The methodologies are described in
sufficient detail, allowing for accurate replication of the experiments. Additionally, the code
implementation is accessible via an online repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code implementation for all experiments is accessible via an online reposi-
tory. The Harry Potter dataset is open-sourced. The Moth dataset, which is a component
of a larger research initiative, will be publicly released once additional data collection is
complete. Instructions on command and environment to reproduce experimental results can
be found in the online repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results. The training of the encoding model is detailed in subsection 2.2, and the fine-tuning
details of the language models are specified in Appendix H. Additionally, the code for
training these models is available in the online repository provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper appropriately reports error bars and p-values, providing clear
indications of the statistical significance of the experiments. Additionally, p-values are
corrected for multiple comparisons.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the computational resources
required to reproduce the experiments, including the type and number of GPUs used, as
well as the specific hyperparameters employed for fine-tuning the language model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms to the NeurIPS Code of Ethics. It ensures fair
compensation and adherence to protocols for human research participants. Data privacy and
consent are prioritized, with fair use of datasets. The paper transparently addresses potential
societal impacts, including safety, security, discrimination, and environmental concerns,
providing mitigation strategies. It avoids facilitating illegal activities and ensures fairness
and human rights protection. Documentation of data and models is thorough, with necessary
licenses and privacy protocols. Responsible release of models and accessibility of research
artifacts are ensured, with all essential elements for reproducibility disclosed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of the work are discussed in detail in Appendix O,
covering both the potential positive and negative effects on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable. The paper does not involve data or models that carry a high
risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in the paper are properly cited, with the creators or original
owners credited. The versions we used are explicitly stated, and the license and terms of use
are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the new assets introduced in the paper are well documented. Detailed
instructions on how to use the code and data are provided in the online repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper includes the full text of instructions given to participants and a
screenshot, which can be found in Appendix G.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The experiments conducted in the study posed no risk to participants. Addi-
tionally, all experiments were thoroughly reviewed and approved by the Institutional Review
Board (IRB).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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