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Abstract
Inverse generation problems, such as denoising
without ground truth observations, is a critical
challenge in many scientific inquiries and real-
world applications. While recent advances in gen-
erative models like diffusion models, conditional
flow matching, and consistency models achieved
impressive results by casting generation as de-
noising problems, they cannot be directly used for
inverse generation without access to clean data.
Here we introduce Inverse Flow (IF), a novel
framework that enables using these generative
models for inverse generation problems includ-
ing denoising without ground truth. Inverse Flow
can be flexibly applied to nearly any continuous
noise distribution and allows complex dependen-
cies. We propose two algorithms for learning
Inverse Flows, Inverse Flow Matching (IFM) and
Inverse Consistency Model (ICM). Notably, to de-
rive the computationally efficient, simulation-free
inverse consistency model objective, we general-
ized consistency training to any forward diffusion
processes or conditional flows, which have appli-
cations beyond denoising. We demonstrate the
effectiveness of IF on synthetic and real datasets,
outperforming prior approaches while enabling
noise distributions that previous methods cannot
support. Finally, we showcase applications of
our techniques to fluorescence microscopy and
single-cell genomics data, highlighting IF’s utility
in scientific problems. Overall, this work expands
the applications of powerful generative models to
inversion generation problems.

1. Introduction
Recent advances in generative modeling such as diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
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& Ermon, 2020; Song et al., 2021; 2022), conditional flow
matching models (Lipman et al., 2023; Tong et al., 2024),
and consistency models (Song et al., 2023; Song & Dhari-
wal, 2023) have achieved great success by learning a map-
ping from a simple prior distribution to the data distribu-
tion through an Ordinary Differential Equation (ODE) or
Stochastic Differential Equation (SDE). We refer to their
models as continuous-time generative models. These mod-
els typically involve defining a forward process, which trans-
forms the data distribution to the prior distribution over time,
and generation is achieved through learning a reverse pro-
cess that can gradually transform the prior distribution to
the data distribution (Figure 1).

Despite that those generative models are powerful tools for
modeling the data distribution, they are not suitable for the
inverse generation problems when the data distribution is
not observed and only data transformed by a forward pro-
cess is given, which is typically true for noisy real-world
data measurements. Mapping from noisy data to the latent
ground truth is especially important in various scientific
applications when pushing the limit of measurement capa-
bilities. This limitation necessitates the exploration of novel
methodologies that can bridge the gap between generative
modeling and effective denoising in the absence of clean
data.

Here we propose a new approach called Inverse Flow (IF)1,
that learns a mapping from the observed noisy data distribu-
tion to the unobserved, ground truth data distribution (Figure
1), inverting the data requirement of generative models. An
ODE or SDE is specified to reflect knowledge about the
noise distribution. We further devised a pair of algorithms,
Inverse Flow Matching (IFM) and Inverse Consistency
Model (ICM) for learning inverse flows. Specifically, ICM
involves a computationally efficient simulation-free objec-
tive that does not involve any ODE solver.

A main contribution of our approach is generalizing
continuous-time generative models to inverse generation
problems such as denoising without ground truth. In ad-
dition, in order to develop ICM, we generalized the con-
sistency training objective for consistency models to any
forward diffusion process or conditional flow. This broad-

1Code available at https://github.com/jzhoulab/
InverseFlow
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ens the scope of consistency model applications and has
implications beyond denoising.

Compared to prior approaches for denoising without ground
truth, IF offers the most flexibility in noise distribution, al-
lowing almost any continuous noise distributions including
those with complex dependency and transformations. IF can
be seamlessly integrated with generative modeling to gener-
ate samples from the ground truth rather than the observed
noisy distribution. More generally, IF models the past states
of a (stochastic) dynamical system before the observed time
points using the knowledge of its dynamics, which can have
applications beyond denoising.

2. Background
2.1. Continuous-time generative models

Our proposed inverse flow framework is built upon
continuous-time generative models such as diffusion mod-
els, conditional flow matching, and consistency models.
Here we present a unified view of these methods that will
help connect inverse flow with this entire family of models
(Section 3).

These generative modeling methods are connected by their
equivalence to continuous normalizing flow or neural ODE
(Chen et al., 2019). They can all be considered as explicitly
or implicitly learning the ODE that transforms between the
prior distribution p(x1) and the data distribution p(x0)

dx = ut(x)dt. (1)

in which ut(x) represents the vector field of the ODE. We
use the convention that t = 0 corresponds to the data dis-
tribution and t = 1 corresponds to the prior distribution.
Generation is realized by reversing this ODE, which makes
this family of methods a natural candidate for extension
toward denoising problems.

Continuous-time generative models typically involve defin-
ing a conditional ODE or SDE that determines the p(xt|x0)
that transforms the data distribution to the prior distribution.
Training these models involves learning the unconditional
ODE (Eq. 1) based on x0 and the conditional ODE or
SDE (Lipman et al., 2023; Tong et al., 2024; Song et al.,
2021) (Figure 1). The unconditional ODE can be used for
generation from noise to data.

2.1.1. CONDITIONAL FLOW MATCHING

Conditional flow matching defines the transformation from
data to prior distribution via a conditional ODE vector field
ut(x | x0). The unconditional ODE vector field vθ

t (x) is
learned by minimizing the objective (Lipman et al., 2023;
Tong et al., 2024; Albergo & Vanden-Eijnden, 2023):

∥∥vθ
t (xt)− ut (xt | x0)

∥∥ , (2)

where x0 is sampled from the data distribution, and xt is
sampled from the conditional distribution p(xt | x0) given
by the conditional ODE.

The conditional ODE vector field ut(x | x0) can also be
stochastically approximated through sampling from both
prior distribution and data distribution and using the con-
ditional vector field ut(x | x0,x1) as the training target
(Lipman et al., 2023; Tong et al., 2024):

∥∥vθ
t (xt)− ut (xt | x0,x1)

∥∥ . (3)

This formulation has the benefit that ut(x | x0,x1) can
be easily chosen as any interpolation between x0 and x1,
because this interpolation does not affect the probability
density at time 0 or 1 (Lipman et al., 2023; Tong et al.,
2024; Albergo & Vanden-Eijnden, 2023; Albergo et al.,
2023). For example, a linear interpolation corresponds to
xt = x0 + t(x1 − x0) (Lipman et al., 2023; Tong et al.,
2024; Liu et al., 2022). Sampling is realized by simulating
the unconditional ODE with learned vector field vθ

t (x) in
the reverse direction.

2.1.2. CONSISTENCY MODELS

In contrast, consistency models (Song et al., 2023; Song
& Dhariwal, 2023) learn consistency functions that can
directly map a sample from the prior distribution to data
distribution, equivalent to simulating the unconditional ODE
in the reverse direction:

c(xt, t) = ODEu
t→0(xt)

where xt denotes x at time t, and we use ODEu
t→0(xt) to

denote simulating the ODE with vector field ut(x) from
time t to time 0 starting from xt. The consistency function
is trained by minimizing the consistency loss (Song et al.,
2023), which measures the difference between consistency
function evaluations at two adjacent time points

LCM(θ) =

Ei,xti
,xti+1

[∥∥cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

∥∥]
(4)

with the boundary condition c(x, 0) = x. Stopgrad indi-
cates that the term within the operator does not get opti-
mized.

There are two approaches to training consistency models:
one is distillation, and the other is training from scratch. In
the consistency distillation objective, a pretrained diffusion
model is used to obtain the unconditional ODE vector field
ut, and xti+1

and xti differs by one ODE step

xti+1 ∼ p(xti+1 | x0),

xti+1 − xti = uti+1(xti+1)(ti+1 − ti)
(5)
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Figure 1. Inverse flow enables adapting the family continuous-time generative models for solving inverse generation problems. For
inverse flow matching and inverse consistency model, x0 indicates unobserved data and x1 indicates observed data. For conditional
flow matching and consistency model, x0 indicates data and x1 indicates variable from the prior distribution. Inverse flow algorithms
modify continuous-time generative models to solve the inverse generation problem of recovering unobserved x0 from x1 by replacing the
unobserved p(x0) with generated q(x0) within the training loop.

If the consistency model is trained from scratch, the consis-
tency training objective samples xti+1

and xti in a coupled
manner from the forward diffusion process (Karras et al.,
2022)

xti+1
= x0 + zti+1, xti = x0 + zti, z ∼ N (0, σ2I)

(6)
where σ controls the maximum noise level at t = 1. Consis-
tency models have the advantage of fast generation speed
as they can generate samples without solving any ODE or
SDE.

2.1.3. DIFFUSION MODELS

In diffusion models, the transformation from data to prior
distribution is defined by a forward diffusion process (con-
ditional SDE). The diffusion model training learns the score
function which determines the unconditional ODE, also
known as the probability flow ODE (Song et al., 2021).

Denoising applications of diffusion models Diffusion
models are inherently connected to denoising problems as
the generation process is essentially a denoising process.
However, existing denoising methods using diffusion mod-
els require training on ground truth data (Yue et al., 2023;
Xie et al., 2023b), which is not available in inverse genera-
tion problems.

Ambient diffusion and GSURE-diffusion Ambient Dif-
fusion (Daras et al., 2023) and GSURE-diffusion (Kawar
et al., 2024) address a related problem of learning the distri-
bution of clean data by training on only linearly corrupted
(linear transformation followed by additive Gaussian noise)
data. Although those methods are designed for generation,
they can be applied to denoising. Ambient Diffusion Pos-
terior Sampling (Aali et al., 2024), further allowed using
models trained with ambient diffusion on corrupted data to
perform posterior sampling-based denoising for a different
forward process (e.g., blurring). Consistent Diffusion Meets

Tweedie (Daras et al., 2024) improves Ambient Diffusion
by allowing exact sampling from clean data distribution us-
ing consistency loss with a double application of Tweedie’s
formula. Rozet et al. explored the potential of expecta-
tion maximization in training diffusion models on corrupted
data. However, all these methods are restricted to training
on linearly corrupted data, which still limit their applica-
tions when the available data is affected by other types of
noises.

2.2. Denoising without ground truth

Denoising without access to ground truth data requires as-
sumptions about the noise or the signal. Most contemporary
approaches are based on assumptions about the noise, as
the noise distribution is generally much simpler and better
understood. Because prior methods have been comprehen-
sively reviewed (Kim & Ye, 2021; Batson & Royer, 2019;
Lehtinen et al., 2018; Xie et al., 2020; Soltanayev & Chun,
2018; Metzler et al., 2020), and our approach is not di-
rectly built upon these approaches, we only present a brief
overview and refer the readers to Appendix A.3 referenced
literature for more detailed discussion.

Another class of unsupervised denoising methods leverages
variational autoencoders (VAEs) trained on noisy data com-
bined with an explicit noise model (Prakash et al., 2021b;a;
Iwamoto et al., 2025; Salmon & Krull, 2025). In these ap-
proaches, a neural network jointly models the clean data
distribution, the noisy observation distribution, and the pos-
terior, either by assuming a fixed noise model a priori or
by adapting it on the fly during training. While such VAE-
based methods can provide diverse posterior samples and a
tractable latent representation of clean signals, they typically
rely on the design and optimization of the encoder/decoder
pair and are most effective when the noise statistics conform
to the chosen VAE likelihood model.

None of these approaches are generally applicable to any
noise types.
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3. Inverse Flow and Consistency Models
In continuous-time generative models, usually the data x0

from the distribution of interest is given. In contrast, in
inverse generation problems, only the transformed data x1

and the conditional distribution p(x1|x0) are given, whereas
x0 are unobserved. For example, x1 are the noisy obser-
vations and p(x1|x0) is the conditional noise distribution.
We define the Inverse Flow (IF) problem as finding a map-
ping from x1 to x0 which allows not only recovering the
unobserved data distribution p(x0) but also providing an
estimate of x0 from x1 (Figure 1).

For denoising without ground truth applications, the inverse
flow framework requires only the noisy data x1 and the abil-
ity to sample from the noise distribution p(x1|x0). This is
thus applicable to any continuous noise and allows complex
dependencies on the noise distribution, including noise that
can only be sampled through a diffusion process.

Intuitively, without access to unobserved data x0, inverse
flow algorithms train a continuous-time generative model
using generated x0 from observed data x1 within the train-
ing loop (Figure 1). We demonstrated that this approach
effectively recovers the unobserved distribution p(x0) and
learns a mapping from x1 to x0.

3.1. Inverse Flow Matching

To solve the inverse flow problem, we first consider learning
a mapping from x1 to x0 through an ODE with vector field
vθ
t (x). We propose to learn vθ

t (x) with the inverse flow
matching (IFM) objective

LIFM(θ)

= E
∥∥∥vθ

t (xt)− ut

(
xt | ODEvθ

1→0(x1)
)∥∥∥ (7)

where the expectation is taken over t, p(x1), and p(xt |
x0 = ODEvθ

1→0(x1)). This objective differs from condi-
tional flow matching (Eq. 2) in two key aspects: using
only transformed data x1 rather than unobserved data x0,
and choosing the conditional ODE based on the conditional
distribution p(x1|x0). Specifically,

1. Sampling from the data distribution p(x0) is replaced
with sampling from p(x1) and simulating the uncondi-
tional ODE backward in time based on the vector field
v, denoted as ODEvθ

t→0(x1). We refer to this distribu-
tion as the recovered data distribution q(x0).

2. The conditional ODE vector field ut (x | x0) is chosen
to match the given conditional distribution p(x1|x0) at
time 1.

For easier and more flexible application of IFM, similar to

conditional flow matching (Eq. 3), an alternative form of
the conditional ODE ut (x | x0,x

′
1) can be used instead of

ut (x | x0). Since x′
1 is sampled from the noise distribu-

tion p(x1|x0), the above condition is automatically satis-
fied. The conditional ODE vector field can be easily chosen
as any smooth interpolation between x0 and x′

1, such as
ut (x | x0,x

′
1) = x′

1 − x0. We detailed the inverse flow
matching training in Algorithm 1 with the alternative form
in Appendix A.1.

Next, we discuss the theoretical justifications of the IFM
objective and the interpretation of the learned model. We
show below that when the loss converges, the recovered data
distribution q (x0) matches the ground truth distribution
p(x0). The proof is provided in Appendix A.2.1.

Theorem 1 Assume that the noise distribution p(x1 | x0)
satisfies the condition that, for any noisy data distribution
p(x1) there exists only one probability distribution p(x0)
that satisfies p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then under

the condition that LIFM = 0, we have the recovered data
distribution q(x0) = p(x0).

Moreover, we show that with IFM the learned ODE trajec-
tory from x1 to x0 can be intuitively interpreted as always
pointing toward the direction of the estimated x0. More
formally, the learned unconditional ODE vector field can be
interpreted as an expectation of the conditional ODE vector
field.

Lemma 1 Given a conditional ODE vector field ut(x |
x0,x1) that generates a conditional probability path p(xt |
x0,x1), the unconditional probability path p(xt) can be
generated by the unconditional ODE vector field ut(x),
which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (8)

The proof is provided in Appendix A.2.1. Specifically, with
the choice of ut (x | x0,x1) = x1 − x0, Eq. 8 has an
intuitively interpretable form

ut(x) = Ep(x0|x)

[
x− x0

t

]
(9)

which means that the unconditional ODE vector field at any
time t points straight toward the expected ground truth x0.

3.2. Simulation-free Inverse Flow with Inverse
Consistency Model

IFM can be computationally expensive during training and
inference because it requires solving ODE in each update.
We address this limitation by introducing inverse consis-
tency model (ICM), which learns a consistency function to
directly solve the inverse flow without involving an ODE
solver.
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However, the original consistency training formulation is
specific to one type of diffusion process (Karras et al., 2022),
which is only applicable to independent Gaussian noise
distribution for inverse generation application. Thus, to
derive inverse consistency model that is applicable to any
transformation, we first generalize consistency training so
that it can be applied to arbitrary transformations and thus
flexible to model almost any noise distribution.

3.2.1. GENERALIZED CONSISTENCY TRAINING

To recall from Section 2.1.2, consistency distillation is only
applicable to distilling a pretrained diffusion or conditional
flow matching model. The consistency training objective
allows training consistency models from scratch but only
for a specific forward diffusion process, which limits its
flexibility in applying to any inverse generation problem.

Generalized Consistency Training Consistency Distillation

Conditional Flow Matching Flow Matching

Here we introduce generalized consistency training (GCT),
which extends consistency training to any conditional ODE
or forward diffusion process (through the corresponding
conditional ODE). Intuitively, generalized consistency train-
ing modified consistency distillation (Eq. 4 and Eq. 5) in
the same manner as how conditional flow matching modi-
fied the flow matching objective: instead of requiring the
unconditional ODE vector field ut(x) which is not available
without a pretrained diffusion or conditional flow matching
model, GCT only requires the user-specified conditional
ODE vector field ut(x | x0).

LGCT(θ)

= E
∥∥(cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))

)∥∥ ,
xti+1 − xti = uti+1(xti+1 | x0)(ti+1 − ti)

(10)
Where the expectation is taken over i, p(x0), and
p(xti+1

|x0). An alternative formulation where the condi-
tional flow is defined by uti+1

(x | x0,x1) is detailed in
Appendix A.1.

We proved that the generalized consistency training (GCT)
objective is equivalent to the consistency distillation (CD)
objective (Eq. 4, Eq. 5). The proof is provided in Appendix
A.2.2.

Theorem 2 Assuming the consistency function cθ(x, t) is
twice differentiable with bounded second derivatives, and
Ep(x0,x1|x) [∥ut(x | x0,x1)∥] <∞, up to a constant inde-
pendent of θ, LGCT and LCD are equal.

3.2.2. INVERSE CONSISTENCY MODELS

With generalized consistency training, we can now provide
the inverse consistency model (ICM) (Figure 1, Algorithm
2):

LICM(θ)

= E
∥∥(cθ(xti+1

, ti+1)− stopgrad (cθ(xti , ti))
)∥∥ ,

xti+1
− xti = uti+1

(xti+1
| x0)(ti+1 − ti)

(11)
which is the consistency model counterpart of IFM
(Eq. 7). The expectation is taken over i, p(x1),
p
(
xti+1

| x0 = cθ(x1, 1)
)
. Similar to IFM, a convenient

alternative form is provided in Appendix A.1.

Since learning a consistency model is equivalent to learning
a conditional flow matching model, ICM is equivalent to
IFM following directly from our Theorem 2 and Theorem 1
from (Song et al., 2023).

Lemma 2 Assuming the consistency function cθ(x, t) is
twice differentiable and ∂cθ(x, t)/∂x is almost everywhere
nonzero2, when the inverse consistency loss LICM = 0,
there exists a corresponding ODE vector field vθ

t (x) that
minimized the inverse flow matching loss LIFM to 0.

The proof is provided in Appendix A.2.2. As in IFM, when
the loss converges, the data distribution q (x0) recovered by
ICM matches the ground truth distribution p(x0), but ICM
is much more computationally efficient as it is a simulation-
free objective.

4. Experiments
We first demonstrated the performance and properties of
IFM and ICM on synthetic inverse generation datasets,
which include a deterministic problem of inverting Naiver-
Stokes simulation and a stochastic problem of denoising a
synthetic noise dataset 8-gaussians. Next, we demonstrated
that our method outperforms prior methods (Mäkinen et al.,
2020; Krull et al., 2019; Batson & Royer, 2019) with the
same neural network architecture on a semi-synthetic dataset
of natural images with three synthetic noise types, and a
real-world dataset of fluorescence microscopy images. Fi-
nally, we demonstrated that our method can be applied to
denoise single-cell genomics data.

4.1. Synthetic datasets

To test the capability of inverse flow in inverting complex
transformations, we first attempted the deterministic in-

2∂cθ(x, t)/∂x ̸= 0 is required to ensure the existence of
corresponding ODE, and it excludes trivial solution such as
cθ(x, t) ≡ constant. With identity initialization of cθ(x, t),
we do not find it to be necessary for enforcing this condition in
practice.
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Algorithm 1 IFM Training
1: Input: dataset D, initial model parameter θ, and

learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample xt ∼ p(xt | x0)
6: L(θ)←

∥∥vθ
t (xt)− ut (xt | x0)

∥∥
7: θ ← θ − η∇θL(θ)
8: until convergence

Algorithm 2 ICM Training
1: Input: dataset D, initial model parameter θ, learning rate η,

and sequence of time points 0 = t1 < t2 < · · · < tN = 1
2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample xti+1

∼ p(xti+1
| x0)

6: xti ← xti+1 − uti+1(xti+1 | x0)(ti+1 − ti)
7: L(θ)←

∥∥cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

∥∥
8: θ ← θ − η∇θL(θ)
9: until convergence

Ground Truth IFM ICM
0.2

0.1

0.0

-0.1

-0.2

0.4

0.2

0.0

-0.2

-0.4

Inverse Flow Matching Inverse Consistency Model 

Figure 2. Demonstration of inverse flow algorithms on synthetic
datasets. Top panel shows an application to inverting Navier-
Stokes fluid dynamics simulation color indicating the difference
between the input state and the initial state. Bottom panel shows
a denoising application on 8-gaussians dataset with input (black)
and denoised data (blue) connected with lines.

verse generation problem of inverting the transformation by
Navier-Stokes fluid dynamics simulation3. We aim to re-
cover the earlier state of the system without providing them
for training (Figure 2). Navier-Stokes equations describe
the motion of fluids by modeling the relationship between
fluid velocity, pressure, viscosity, and external forces. These
equations are fundamental in fluid dynamics and remain
mathematically challenging, particularly in understanding

3Inverse flow algorithms can be applied to deterministic trans-
formations from x0 to x1 by using a matching conditional ODE,
even though the general forms consider stochastic transforms de-
scribed by p(x1 | x0).

turbulent flows. The details of the simulation are described
in Appendix A.4.2.

To test inverse flow algorithms on a denoising inverse gener-
ation problem, we generated a synthetic 8-gaussians dataset
(Appendix A.4.2 for details). Both IFM and ICM are ca-
pable of noise removal (Figure 2). ICM achieved a similar
denoising performance as IFM, even though it is much more
computationally efficient due to the iterative evaluation of
ODE (NFE=10) by IFM.

4.2. Semi-synthetic datasets

We evaluated the proposed method on images in the bench-
mark dataset BSDS500 (Arbeláez et al., 2011), Kodak, and
Set12 (Zhang et al., 2017). To test the model’s capability to
deal with various types of conditional noise distribution, we
generated synthetic noisy images for three different types of
noise, including correlated noise and adding noise through
a diffusion process without a closed-form transition density
function (Appendix A.4.3 for details). All models were
trained using the BSDS500 training set and evaluated on the
BSDS500 test set, Kodak, and Set12. We show additional
qualitative results in Appendix A.6.

1. Gaussian noise: we added independent Gaussian noise
with fixed variance.

2. Correlated noise: we employed convolution kernels
to generate correlated Gaussian noise following the
method in (Mäkinen et al., 2020)

η = ν ⊛ g (12)

where ν ∼ N (0, σ2I) and g is a convolution kernel.

3. Jacobi process: we transformed the data with Jacobi
process (Wright-Fisher diffusion), as an example of
SDE-based transform without closed-form conditional
distribution

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw. (13)
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Table 1. Quantitative benchmark of denoising performances in multiple datasets for various noise distributions measured by Peak signal-
to-noise ratio (PSNR) in dB.

Noise type Input Supervised BM3D Noise2Void Noise2Self Ours (ICM)

Gaussian
BSDS500 20.17 28.00 27.49 26.54 27.79 28.16

Kodak 20.18 28.91 28.54 27.55 28.72 29.08
Set12 20.16 28.99 28.95 27.79 28.78 29.19

Correlated
BSDS500 20.17 27.10 24.48 26.32 21.03 27.64

Kodak 20.17 27.97 25.03 27.39 21.56 28.53
Set12 20.18 27.88 25.21 27.43 21.58 28.46

SDE (Jacobi process)
BSDS500 14.90 24.34 20.32 23.56 22.60 24.28

Kodak 14.76 25.34 20.42 23.99 23.70 25.07
Set12 14.80 25.01 20.51 24.43 23.26 24.74

We generated corresponding noise data by simulating
the Jacobi process with s = 1 and a = b = 1. Notably,
the conditional noise distribution generated by the Ja-
cobi process does not generally has an expectation that
equals the ground truth (i.e. non-centered noise), which
violates the assumptions of Noise2X methods.

Our approach outperformed alternative unsupervised meth-
ods in all three noise types, especially in correlated noise
and Jacobi process (Appendix A.6, Table 4.2). This can be
attributed to the fact that both Noise2X methods assumes
independence of noise across different feature dimensions
as well as centered-noise which were violated in corrleated
noise and Jacobi process respectively.

Moreover, Our approach outperformed the supervised
method on both Gaussian noise and correlated noise. Further
analysis revealed that the supervised method encountered
overfitting during the training process, which led to subop-
timal performance. In contrast, our method did not exhibit
such issues, highlighting the superiority of our approach.

In addition, in Appendix A.5, we conducted a series of
experiments that demonstrate the reliability of our method
under different intensities and types of noise. Furthermore,
our method yielded satisfactory results even when there is
a bias in the estimation of noise intensity. It also achieved
excellent performance on RGB images and small sample-
size datasets.

4.3. Real-world datasets

4.3.1. FLUORESCENCE MICROSCOPY DATA (FMD)

Fluorescence microscopy is an important scientific appli-
cation of denoising without ground truth. Experimental
constraints such as phototoxicity and frame rates often limit
the capability to obtain clean data. We denoised confocal
microscopy images from Fluorescence Microscopy Denois-
ing (FMD) dataset (Zhang et al., 2019). We first fitted a
signal-dependent Poisson-Gaussian noise model adopted

from (Liu et al., 2013) for separate channels of each noisy
microscopic images (Appendix A.4.4 for details). Then
denoising flow models were trained with the conditional
ODE specified to be consistent with fitted noise model. Our
method outperforms Noise2Self and Noise2Void, achieving
superior denoising performance for mitochondria, F-actin,
and nuclei in the microscopic images of BPAE cells (Figure
3).

4.3.2. APPLICATION TO DENOISE SINGLE-CELL
GENOMICS DATA

In recent years, the development of single-cell sequencing
technologies has enabled researchers to obtain more fine-
grained information on tissues and organs at the resolution
of single cells. However, the low amount of sample ma-
terials per-cell introduces considerable noise in single-cell
genomics data. These noises may obscure real biological
signals, thereby affecting subsequent analyses.

Applying ICM to an adult mouse brain single-cell RNA-seq
dataset (Zeisel et al., 2018) and a mouse brain development
single-cell RNA-seq dataset (Hochgerner et al., 2018b) (Fig-
ure 4, Appendix A.4.5 for details), we observed that the
denoised data better reflects the cell types and developmen-
tal trajectories. We compared the original and denoised
data by the accuracy of predicting the cell type identity
of each cell based on its nearest neighbor in the top two
principal components. Our methods improved the accuracy
of the adult mouse brain dataset from 0.513 ± 0.003 to
0.571 ± 0.003, and the mouse brain development dataset
from 0.647± 0.006 to 0.736± 0.006.

5. Limitation and Conclusion
We introduce Inverse Flow (IF), a generative modeling
framework for inverse generation problems such as denois-
ing without ground truth, and two methods Inverse Flow
Match (IFM) and Inverse Consistency Model (ICM) to solve
the inverse flow problem. Our framework connects the fam-
ily of continuous-time generative models to inverse gener-
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Figure 3. Denoising results for fluorescence microscopy images with PSNR labelled.
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Figure 4. Denoising single-cell RNA-seq data with ICM improves resolution for cell types and developmental trajectories. The top
two principal components are visualized. Top panel: results for (Zeisel et al., 2018). Bottom panel: results for (Hochgerner et al.,
2018b), Astro: astrocytes, RGL: radial glial cells, IPC: intermediate progenitor cells, OPC: oligodendrocyte precursor cells, MOL: mature
oligodendrocytes; NFOL: newly formed oligodendrocytes, GABA: GABAergic neurons, GC: granule cells, Pyr: pyramidal neurons.
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ation problems. Practically, we extended the applicability
of denoising without ground truth to almost any continu-
ous noise distributions. We demonstrated strong empirical
results applying inverse flow. A limitation of inverse flow
is assuming prior knowledge of the noise distribution, and
future work is needed to relax this assumption. We expect
inverse flow to open up possibilities to explore additional
connections to the expanding family of continuous-time
generative model methods, and the generalized consistency
training objective will expand the application of consistency
models.
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A. Appendix
A.1. Alternative forms of IFM and ICM

Here we provide the details of alternative objectives and corresponding algorithms of IFM and ICM which are easier and
flexible to use.

A.1.1. ALTERNATIVE OBJECTIVES OF IFM AND ICM

We define the alternative objective of IFM similar to conditional flow matching (Eq. 3):

LIFM(θ) = E
t,p(x1),p

(
x′
1|x0=ODEvθ

1→0(x1)
)
,p(xt|x0,x′

1)

[∥∥∥vθ
t (xt)− ut

(
xt | ODEvθ

1→0(x1),x
′
1

)∥∥∥] (14)

where x′
1 is sampled from the conditional noise distribution. As described in Section 2.1.1 ut (x | x0,x

′
1) can be easily

chosen as any smooth interpolation between x0 and x′
1, such as ut (x | x0,x

′
1) = x′

1 − x0.

Since ICM is based on generalized consistency training, we first provide the alternative objective of generalized consistency
training

LGCT(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))
∥∥] ,

xti+1 − xti = uti+1(xti+1 | x0,x1)(ti+1 − ti)
(15)

where the conditional flow is defined jointly by p(x1 | x0) and uti+1(x | x0,x1).

Then the alterntive form of ICM can be defined as

LICM(θ) =

Ei,p(x1),p(x′
1|x0=cθ(x1,1)),p(xti+1

|x0=cθ(x1,1),x′
1)
[∥∥cθ(xti+1 , ti+1)− stopgrad (cθ(xti , ti))

∥∥] ,
xti+1

− xti = uti+1
(xti+1

| x0,x
′
1)(ti+1 − ti)

(16)

where ut(x | x0,x
′
1) can be freely defined based on any interpolation between x0 and x′

1, which is more easily applicable
to any conditional noise distribution:.

A.1.2. ALTERNATIVE ALGORITHMS OF IFM AND ICM

Here we show the algorithms of alternative objectives of IFM (Eq. 14) and ICM (Eq. 16).

Algorithm 3 IFM Training v2.
1: Input: dataset D, initial model parameter θ, and

learning rate η
2: repeat
3: Sample x1 ∼ D and t ∼ U [0, 1]
4: x0 ← stopgrad

(
ODEvθ

1→0(x1)
)

5: Sample x′
1 ∼ p(x′

1 | x0)
6: Sample xt ∼ p(xt | x0,x

′
1)

7:
L(θ)←∥∥vθ

t (xt)− ut (xt | x0,x
′
1)
∥∥2

8: θ ← θ − η∇θL(θ)
9: until convergence

Algorithm 4 ICM Training v2.
1: Input: dataset D, initial model parameter θ, learning rate η,

and sequence of time points 0 = t1 < t2 < · · · < tN = 1
2: repeat
3: Sample x1 ∼ D and i ∼ U [1, N − 1]
4: x0 ← stopgrad (cθ(x1, 1))
5: Sample x′

1 ∼ p(x′
1 | x0)

6: Sample xti+1 ∼ p(xti+1 | x0,x
′
1)

7:
xti ←
xti+1

− uti+1
(xti+1

| x0,x
′
1)(ti+1 − ti)

8:
L(θ)←
d
[
cθ(xti+1

, ti+1), stopgrad (cθ(xti , ti))
]

9: θ ← θ − η∇θL(θ)
10: until convergence

12



Inverse Flow and Consistency Models

A.2. Proofs

A.2.1. INVERSE FLOW MATCHING

Theorem 1: Assume that the conditional noise distribution p(x1 | x0) satisfies the condition that, for any noisy data
distribution p(x1) there exists only one probability distribution p(x0) that satisfies p(x1) =

∫
p(x1 | x0)p(x0)dx0 , then

under the condition that LIFM = 0, we have q(x0) = p(x0).

Proof:

The inferred data distribution is given by the push-forward operator (Lipman et al., 2023):

q(x0) =
[
ODEvθ

1→0

]
∗ p(x1) (17)

which is defined for any continuous normalizing flow ϕ from x1 to x0 in the form of

[ϕ] ∗ p(x1) = p
(
ϕ−1(x0)

)
det

[
∂ϕ−1

∂x
(x0)

]
(18)

where x1 = ϕ−1(x0). The inferred noisy data distribution q(x1) is given by

q(x1) =

∫
p(x1 | x0)q(x0)dx0 (19)

Under the condition LIFM = 0, we have
q(x0) =

[
ODEvθ

1→0

]
∗ q(x1) (20)

Then we find that [
ODEvθ

1→0

]
∗ p(x1) =

[
ODEvθ

1→0

]
∗ q(x1) (21)

By the definition of the push-forward operator, we have

p

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


= q

((
ODEvθ

1→0

)−1

(x0)

)
det

∂
(

ODEvθ

1→0

)−1

∂x
(x0)


(22)

Since the solution of ODE is unique, ODEvθ

1→0 is a bijective function with(
ODEvθ

1→0

)−1

= ODEvθ

0→1

and
x1 = ODEvθ

0→1(x0) =
(

ODEvθ

1→0

)−1

(x0)

Also, the nontrivial solution ensures that the determinant is non-zero. By substitution, we get

p(x1) = q(x1) (23)

and combine with Eq. 19, we find that

p(x1) =

∫
p(x1 | x0)q(x0)dx0 (24)

We close the proof by directly applying the uniqueness of p(x0) and find that

q(x0) = p(x0) (25)
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Remark 1: Our proof utilizes the one-to-one mapping property of neural ODEs (Kidger, 2022), which guarantees a
diffeomorphic map between the noisy data distribution and the inferred data distribution.

Remark 2: Many inverse problems are ill-posed and impossible to address perfectly. The assumptions in our Theorem 1
provides guidance on the conditions under which IFM can recover the ground truth distribution. These conditions are:

• Knowledge of the noisy data distribution: Either directly or through access to sufficient noisy data.

• Transformability of p(x1): The noisy data distribution p(x1) must be transformable from p(x0) via an ODE. This
condition accommodates nearly any continuous noise distribution but excludes ill-posed transformations that lack a
one-on-one mapping between p(x0) and p(x1) (e.g., transformations like converting color images to grayscale).

Lemma 1: Given a conditional ODE vector field ut(x | x0,x1) that generates a conditional probability path p(xt | x0,x1),
the unconditional probability path p(xt) can be generated by the unconditional ODE vector field ut(x), which is defined as

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] (26)

Proof:

To verify this, we check that p(xt) and ut(x) satisfy the continuity equation:

d

dt
p(xt) + div (ut(x)p(xt)) = 0. (27)

By definition,
d

dt
p(xt) =

d

dt

∫
p(xt|x0,x1)p(x0,x1)dx0dx1. (28)

With Leibniz Rule we have
d

dt
p(xt) =

∫
d

dt
p(xt|x0,x1)p(x0,x1)dx0dx1. (29)

Since ut(x|x0,x1) generates p(xt|x0,x1), by the continuity equation we have

d

dt
p(xt|x0,x1) + div (ut(x|x0,x1)p(xt|x0,x1)) = 0. (30)

Substitution in Eq. 29 gives

d

dt
p(xt) = −

∫
div (ut(x|x0,x1)p(xt|x0,x1)) p(x0,x1)dx0dx1. (31)

Exchanging the derivative and integral,

d

dt
p(xt) = −div

∫
ut(x|x0,x1)p(xt|x0,x1)p(x0,x1)dx0dx1. (32)

The definition of ut(x) is

ut(x) = Ep(x0,x1|x) [ut(x | x0,x1)] =

∫
ut(x | x0,x1)

p(xt|x0,x1)p(x0,x1)

p(xt)
dx0dx1. (33)

Combining Eq. 32 and Eq. 33 gives the continuity equation:

d

dt
p(xt) + div (ut(x)p(xt)) = 0. (34)
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A.2.2. GENERALIZED CONSISTENCY TRAINING

Without loss of generality, we provide the proof for the form of LGCT in Eq. 15, and the proof for the form Eq. 10 follows
by assuming that the forward conditional probability path is independent of x1.

Theorem 2: Assuming the consistency function cθ(x, t) is twice differentiable with bounded second derivatives, and
Ep(x0,x1|x) [∥ut(x | x0,x1)∥] <∞, up to a constant independent of θ, LGCT and LCD are equal.

Proof:

The proof is inspired by (Song et al., 2023). We use the shorthand cθ− to denote the stopgrad version of the consistency
function c. Given a multi-variate function h(x,y), the operator ∂1h(x,y) and ∂2h(x,y) denote the partial derivative with
respect to x and y. Let ∆t := maxi {| ti+1 − ti |} and we use o(∆t) to denote infinitesimal with respect to ∆t.

Based on Eq. 5 and Eq. 4, the consistency distillation objective is

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

(35)

where xti = xti+1 − (ti+1 − ti)uti+1(xti+1) and d is a general distance function.

We assume d and cθ− are twice continuously differentiable with bounded derivatives. With Taylor expansion, we have

LCD(θ) = Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti , ti)
]}

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
), ti)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

− ∂1cθ−(xti+1
, ti+1)(ti+1 − ti)uti+1

(xti+1
)

−∂2cθ−(xti+1
, ti+1)(ti+1 − ti) + o(∆t)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1 , ti+1)(ti+1 − ti)uti+1(xti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1 , ti+1), cθ−(xti+1 , ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

(36)

Then, we apply Lemma 1 and use Taylor expansion in the reverse direction,

LCD(θ)

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1 , ti+1), cθ−(xti+1 , ti+1)

]
·
[
∂1cθ−(xti+1

, ti+1)(ti+1 − ti)Ep(x0,x1|xti+1
)

[
uti+1

(xti+1
| x0,x1)

]]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1 , ti+1), cθ−(xti+1 , ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

(i)
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]}
− Ei,p(x0,x1),p(xti+1

|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂1cθ−(xti+1

, ti+1)(ti+1 − ti)uti+1
(xti+1

| x0,x1)
]}

− Ei,p(x0,x1),p(xti+1
|x0,x1)

{
∂2d

[
cθ(xti+1

, ti+1), cθ−(xti+1
, ti+1)

]
·
[
∂2cθ−(xti+1 , ti+1)(ti+1 − ti)

]}
+ E [o(∆t)]

= Ei,p(x0,x1),p(xti+1
|x0,x1)

{
d
[
cθ(xti+1 , ti+1), cθ−(xti+1

, ti+1)
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− ∂1cθ−(xti+1
, ti+1)(ti+1 − ti)uti+1

(xti+1
| x0,x1)

−∂2cθ−(xti+1
, ti+1)(ti+1 − ti) + o(∆t)

]}
= Ei,p(x0,x1),p(xti+1

|x0,x1)

{
d
[
cθ

(
xti+1

, ti+1), cθ−(xti+1
− (ti+1 − ti)uti+1

(xti+1
| x0,x1), ti

)]}
+ o(∆t)

= LGCT(θ) + o(∆t) (37)

where (i) is due to the law of total expectation.

Remark 3: Generalized consistency training enables us to extend the application of consistency models to any forward
diffusion processes or conditional ODE including those that introduce non-Gaussian noise. For example, in the Dirichlet
Diffusion Score Model (Avdeyev et al., 2023), the forward diffusion process is a multivariate Jacobi process which transforms
one-hot encoding of discrete data (e.g., DNA sequences) into Dirichlet stationary distribution. Such diffusion processes are
not supported by the original consistency training approach but are feasible with generalized consistency training. We leave
further applications of generalized consistency training for future work.

Lemma 2: Assuming the consistency function cθ(x, t) is twice differentiable and ∂cθ(x, t)/∂x is almost everywhere
nonzero, when the inverse consistency loss LICM = 0, there exists a corresponding ODE vector field vθ

t (x) that minimized
the inverse flow matching loss LIFM to 0.

Proof:

When the inverse consistency function is minimized to 0, we have

0 = LICM (θ) = Ei,p(x1),p(xti+1
|x0=cθ(x1,1))

∥∥(cθ(xti+1
, ti+1)− stopgrad (cθ(xti , ti))

)∥∥
xti+1

− xti = uti+1
(xti+1

| x0)(ti+1 − ti)
(38)

which is equivalent to

0 = cθ(xti+1
, ti+1)− cθ(xti , ti)

= ∂1cθ(xti+1
, ti+1)(xti+1

− xti) + ∂2cθ(xti+1
, ti+1)(ti+1 − ti) + cθ(xti+1

, ti+1)− cθ(xti+1
, ti+1)

= ∂1cθ(xti+1
, ti+1)uti+1

(xti+1
| x0)(ti+1 − ti) + ∂2cθ(xti+1

, ti+1)(ti+1 − ti),
(39)

Then we have the connection between the learned consistency function cθ(x, t) and the conditional ODE vector field
ut(x | x0) where cθ(x1, 1) is substituted for x0:

∂1cθ(x, t)ut (x | cθ(x1, 1)) + ∂2cθ(x, t) = 0 (40)

Inspired by the above result, we construct an ODE vector field as

vθ
t (x) =

∂2cθ(x, t)

∂1cθ(x, t)
(41)

where ∂1cθ = ∂cθ/∂x ̸= 0 almost everywhere and for all (x, t) where ∂1cθ(x, t) = 0, we define vθ
t (x) = 0.

Now we show that vθ
t (x) minimized the inverse flow matching loss LIFM to 0.

LIFM(θ) = E
t,p(x1),p

(
xt|x0=ODEvθ

1→0(x1)
) ∥∥∥vθ

t (xt)− ut

(
xt | ODEvθ

1→0(x1)
)∥∥∥ (42)

Firstly, we argue that ODEvθ

1→0(x1) = cθ(x1, 1), which can be proven by noting that the consistency function cθ(x, t) maps
every point along the ODE trajectory to the same point. Consider an N -step ODE and two consecutive points along the
trajectory, say xti = ODEvθ

1→ti(x1) and xti+1
= ODEvθ

1→ti+1
(x1). We have

cθ(xti , ti) = cθ(xti+1
− vθ

ti+1
(xti+1

)(ti+1 − ti), ti)
= cθ(xti+1

, ti+1)

− ∂1cθ(xti+1
, ti+1)v

θ
ti+1

(xti+1
)(ti+1 − ti)− ∂2cθ(xti+1

, ti+1)(ti+1 − ti)
= cθ(xti+1

, ti+1)

(43)
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where derivative terms are eliminated by the definition of vθ
t . Further applying the boundary condition of the consistency

function,
cθ(x1, 1) = cθ(xtN , tN )

= xtN = x0

= ODEvθ

1→0(x1)

(44)

where tN = 0.

Secondly, substituting vθ
t (x) into LIFM, we get

LIFM(θ) = E
t,p(x1),p

(
xt|x0=ODEvθ

1→0(x1)
) ∥∥∥∥∂2cθ(xt, t)

∂1cθ(xt, t)
− ut

(
xt | ODEvθ

1→0(x1)
)∥∥∥∥ (45)

Multiplying the terms inside the norm by ∂1cθ(xt, t) gives Eq. 40:

∂2cθ(xt, t)− ut

(
xt | ODEvθ

1→0(x1)
)
∂1cθ(xt, t)

= ∂2cθ(xt, t)− ut (xt | cθ(x1,1) ∂1cθ(xt, t)

= 0

(46)

Thus, LIFM(θ) = 0 given the constructed vθ
t (x).

Remark 4: The assumption that ∂cθ(x, t)/∂x ̸= 0 almost everywhere guarantees that the division in the construction of
vθ
t (x) is valid, preventing singularities except on a set of measure zero. More importantly, in neural ODEs, the ability to

uniquely map states forward and backward in time is essential for defining a continuous and invertible transformation. The
assumption ensures that the flow remains invertible almost everywhere, preventing singularities where trajectories might
merge or become non-invertible. This property is crucial for ensuring that the learned dynamics remain well-posed.

A.3. Introduction to denoising without ground truth

The most comparable approaches to our method are those that explicitly consider a noise distribution, including Stein’s
Unbiased Risk Estimate (SURE)-based denoising methods (Soltanayev & Chun, 2018; Metzler et al., 2020) and Noise2Score
(Kim & Ye, 2021). SURE-based denoising is applicable to independent Gaussian noise and Noise2Score is more generally
applicable to exponential family noise. SURE-based denoising directly optimizes a loss motivated by SURE which provides
an unbiased estimate of the true risk, which is a mean-squared error to the ground truth. Noise2Score uses Tweedie’s formula
for estimating the posterior mean of an exponential family distribution with the score of the noisy distribution. The score is
estimated by an approximate score estimator using a denoising autoencoder.

Another family of approaches often referred to as Noise2X is based on the assumptions of centered (zero-mean) and
independent noise. Noise2Noise (Lehtinen et al., 2018) requires independent noisy observations of the same ground truth
data. Noise2Self (Batson & Royer, 2019) is based on the statistical independence across different dimensions of the
measurement, such as the independence between different pixels. Noise2Void (Krull et al., 2019) leverages the concept of
blind-spot networks, which predict the value of a pixel based solely on its surrounding context. Similarly, Noise2Same (Xie
et al., 2020) employs self-supervised learning using selectively masked or perturbed regions to train the model to predict
unobserved values. Both of them assume independence of noise across dimensions.

A.4. Experimental details

All experiments were conducted on a server with 36 cores, 400 GB memory, and NVIDIA Tesla V100 GPUs. All models
were implemented with PyTorch 2.1 (Paszke et al., 2019) and trained with the AdamW (Loshchilov & Hutter, 2019)
optimizer. Hyperparameters for both our method and baselines were chosen via systematic grid searches and 5-fold
cross-validation. Model architectures and training hyperparameters are listed in Table A.4.

A.4.1. TRAINING DETAILS

To train IFM or ICM, we first consider a discretized time sequence ϵ = t1 < t2 < · · · < tN = 1, where ϵ is a
small positive value close to 0. We follow (Karras et al., 2022) to determine the time sequence with the formula ti =
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Table 2. Model architectures and hyperparameters
dataset architecture channels embed_dim embed_scale epochs lr lr schedule

Navier-Stokes
MLP [256,256,

256,256] 256 1.0
2000 5× 10−4

None8-gaussians 2000 5× 10−4

Single-cell 1000 1× 10−4

Gaussian noise

UNet [128,128,
256,256,512] 512 1.0

3000 1× 10−4 StepLR
Correlated noise 1000 1× 10−4 None
Jacobi process 1000 1× 10−4 None

FMD 3000 1× 10−4 StepLR

(
ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ)

)ρ

, where ρ = 7, T = 1, and N = 11. We choose the conditional ODE vector field as

uti(xti | x0,x1) = x1 − x0. (47)

Further, the gradient of the inferred noise-free data x0 is stopped to stabilize the training process, which is

x0 = stopgrad
(

ODEvθ

1→0(x1)
)

(48)

for IFM and
x0 = stopgrad (cθ(x1, 1)) (49)

for ICM. For ICM, the loss is weighted by
λ(i) = ti+1 − ti (50)

in the same way as (Song & Dhariwal, 2023).

A.4.2. SYNTHETIC DATASETS

We adopted a simple form of Navier-Stokes equations which only includes the viscosity term in the fluid mechanics

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ µ∇2v

∇ · v = 0
(51)

where ρ is the density of the fluid, v is the velocity, p is the pressure and µ is the viscosity coefficient. For inverting the
Navier-Stokes simulations, we simulated the fluid data within a 2D boundary of [0, 1]× [0, 1] domain from t = 0 to t = 0.1
with the spectral method (Spalart et al., 1991). For the upper simple case shown in Figure 2, the initial flow vector field was
chosen as:

vx = − sin(2πy)

vy = sin(4πx)
(52)

For the bottom complex case, the initial flow vector was constructed by creating a random stream function:

ψ(x, y) =

N∑
i=1

Ai sin(k
i
xx) ∗ cos(kiyy) (53)

where we choose N = 20, Ai ∼ U [0, 2], kix ∼ U [0, 10], and kiu ∼ U [0, 10]. Then the flow vector field was defined as

vx =
∂ψ

∂y

vy = −∂ψ
∂x

.

(54)

We show the original prediction of flow fields in Figure 5.

The 8-gaussians is generated by adding independent gaussian noise (σ = 0.15) to 8 points whose coordinates are (0, 1), (0.−
1), (1, 0), (−1, 0), (

√
2
2 ,

√
2
2 ), (

√
2
2 ,−

√
2
2 ), (−

√
2
2 ,

√
2
2 ), (−

√
2
2 ,−

√
2
2 ). The dataset is composed of 8000 points for training

and 1600 points for testing.

We used a simple MLP-based model architecture with Gaussian Fourier time embedding in Table A.4. All methods were
trained with a learning rate of 5× 10−4 for 2000 epochs. The model training took about 10 minutes.
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Figure 5. Original Prediction of inverting Navier-Stokes fluid dynamics simulation, color indicating horizontal velocity.

A.4.3. REAL-WORLD DATASETS

All models were trained using the BSDS500 training set with 200 images randomly cropped to the size of 256× 256 and
evaluated on the BSDS500 test set, Kodak, and Set12 with images cropped to the same size at the center. We used the same
UNet-based model architecture as (Lehtinen et al., 2018) with additional Gaussian Fourier time embedding listed in Table
A.4.

The URL for each dataset is given:

BSDS500 (Arbeláez et al., 2011): https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/

Kodak: https://r0k.us/graphics/kodak/

Set12 (Zhang et al., 2017): https://github.com/cszn/DnCNN/tree/master/testsets/Set12

Gaussian noise is applied with
x1 = x0 + η (55)

where x0 is the noise-free data, x1 is a noisy observation, and η ∼ N (0, σ2I). We chose σ = 25 in the experiments. All
models were trained with the following setting. The total epoch was set to 3000. The learning rate was initialized to 1×10−4

for the first 1500 epochs and was decayed to 5× 10−5 for the last 1500 epochs. The model training took about 1.5 hours.

Correlated noise is applied similarly to independent Gaussian noise. We adopt the method from (Mäkinen et al., 2020) with

η = ν ⊛ g (56)

where ν ∼ N (0, σ2I) and g is a convolution kernel. We consider g in the form of

g =
1

2πa2
cos |r| exp (− r2

2a2
) (57)

in polar coordinates and a determines the level of correlation. We generated the correlated noisy observation with σ = 25
and a = 2. All models were trained with a learning rate of 1× 10−4 for 1000 epochs. The model training took about 30
minutes.

Jacobi process takes the following form

dx =
s

2
[a(1− x)− bx]dt+

√
sx(1− x)dw, (58)

where 0 ≤ x ≤ 1, s > 0 is the speed factor, and a > 0, b > 0 determines the stationary distribution Beta(a, b). Note that
when x approaches 0 or 1, the diffusion coefficient converges to 0 and the drift coefficient converges to a or −b, keeping the
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diffusion within [0, 1]. We used s = 1 and a = b = 1 and generated the noisy observation x1 with an Euler-Maruyama
sampler to simulate the SDE from the initial value x0. All models were trained with a learning rate of 1× 10−4 for 1000
epochs. The model training took about 1.5 hours.

A.4.4. DENOISING MICROSCOPIC DATA

The Fluorescence Microscopy Denoising (FMD) dataset published by (Zhang et al., 2019) was downloaded from https:
//github.com/yinhaoz/denoising-fluorescence. We adopted the signal dependent noise model from (Liu
et al., 2013)

g = f + fγ · u+ w (59)

to estimate the condition noise distribution where g is the noisy pixel value, f is the noise-free pixel value, γ is the
exponential parameter, and u and w are zero-mean random variables with variance σ2

u and σ2
w, respectively. The variance of

the noise model is

σ2 = f2γ · σ2
u + σ2

w. (60)

To estimate the parameters in the noise model, we split an image into 4× 4 patches. We assume the variance within a patch
is constant and approximate the noise-free pixel values of the patches by the mean values. The parameters in the noise
model are estimated by the Maximum-Likelihood method.

We used the same UNet-based model architecture as (Lehtinen et al., 2018) with additional Gaussian Fourier time embedding
listed in Table A.4. The learning rate was initialized to 1× 10−4 for the first 1500 epochs and was decayed to 5× 10−5 for
the last 1500 epochs.

A.4.5. DENOISING SINGLE-CELL GENOMICS DATA

The adult mouse brain dataset published by (Zeisel et al., 2018) was downloaded from https://www.ncbi.nlm.nih.
gov/sra/SRP135960. The dentate gyrus neurogenesis dataset published by (Hochgerner et al., 2018a) was downloaded
from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104323 and the neuron- and glia-
related cells were kept for denoising. We preprocessed the datasets by the standard pipeline (Wolf et al., 2018) and then
performed principal component analysis. We further normalized the datasets by scaling the standard deviation of the first
principal component to 1. After that, we denoised the datasets using the top 6 principal components with σ = 0.4. We used
a simple MLP-based model architecture with Gaussian Fourier time embedding in Table A.4. The model was trained with a
learning rate of 1× 10−4 for 1000 epochs. The model training took about 5 minutes.

A.5. Additional experiments

We provide extensive experiments to measure how different levels of Gaussian noise, different noise level assumptions, and
different combinations of noises affect performance. We adopted the same model architecture and training strategy as for
FMD in Table A.4. .

A.5.1. DIFFERENT LEVELS OF GAUSSIAN NOISE

We conducted experiments to evaluate the performance of our method under different intensities of Gaussian noise. We
performed experiments from σ = 5 to σ = 50 and found that our method is robust over all noise levels we applied (Table
A.5.1).

Table 3. Denoising performance for different levels of Gaussian noise measured by PSNR in dB
σ = 5 σ = 12.5 σ = 25 σ = 50 σ = 75

Input Pred Input Pred Input Pred Input Pred Input Pred
BSDS500 34.15 37.56 26.19 31.85 20.17 28.16 14.15 24.98 10.63 23.33

Kodak 34.15 37.92 26.19 32.56 20.18 29.08 14.15 25.96 10.63 24.33
Set12 34.15 37.87 26.20 32.78 20.16 29.19 14.13 25.78 10.63 23.86
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A.5.2. DIFFERENT COMBINATIONS OF NOISES

We considered additive Gaussian noise and multiplicative noise such as Gamma noise, Poisson noise, and Rayleigh noise, as
well as their combinations and on a channel-uncorrelated RGB dataset. We followed the noise distributions introduced in
Noise2Score (Kim & Ye, 2021; Xie et al., 2023a). For combinations of multiplicative noise and Gaussian noise, we added
Gaussian noises with σ = 10 to the individual multiplicative noise models. As shown in Table A.5.7, our method is robust
over all noise type combinations we applied and superior to compared methods in most noise types.

A.5.3. DIFFERENT NOISE LEVEL ASSUMPTIONS

We conducted experiments on data with σ = 25 Gaussian noise, but training and denoising with different noise level
assumptions from σ = 12.5 to σ = 50. Shown in Table A.5.7, our method demonstrates stable performance within the range
of σ = 25 to σ = 35, indicating that overestimating the noise level has minimal impact on the effectiveness of the model.

A.5.4. DENOISING SMALL DATASETS

In scientific discovery, the amount of data available is often very limited. To evaluate the performance of our method on
small datasets, we conducted experiments on the electron microscopy denoising dataset (Mohan et al., 2021). Since the
original authors did not release the real experimental data, we used the simulated dataset they provided and added Poisson
noise, which is the noise distribution in the real data according to their analysis. The dataset consists of 46 samples. The
results indicate that our method is applicable to small datasets and outperforms other approaches in this scenario (Table
A.5.7). While diffusion model is known as being data hungry, our method is efficient on sample size because it does not
involve training a full generative model.

A.5.5. COMPARISONS TO SURE-RELATED METHODS

We evaluated our method against Stein’s Unbiased Risk Estimator (SURE) (Metzler et al., 2020) and its generalized variant,
G-SURE (Kawar et al., 2024), which are applicable to Gaussian noise with known variance. Specifically, we compared
performance on the BSDS500 dataset using SURE and assessed G-SURE on CelebA (Tabel A.5.7), where the method
was originally optimized. Across both settings, our approach consistently achieved higher PSNR, demonstrating superior
denoising performance.

A.5.6. COMPARISONS BETWEEN IFM AND ICM

Based on our experiments, we observed that while IFM tends to yield a slightly higher denoising performance than ICM
(Table A.5.7), with ICM 2x faster during training and 10x faster during inference. In our setup, IFM requires solving the
ODE at every training step, which makes it slower, whereas ICM uses a simulation-free consistency function that bypasses
the need for iterative ODE evaluations. In other words, if computation time is not a major constraint, IFM might offer
marginal performance improvements. However, for most practical applications where efficiency is important, ICM offers a
nearly equivalent performance at a substantially lower cost.

A.5.7. INTEGRATION WITH GENERATIVE MODELING

Our methods can be seamlessly integrated with generative modeling to generate clean samples from the ground truth rather
than the observed noisy distribution. Specifically, we extend the training timepoint to a higher tmax so that xtmax

becomes
pure noise. For timepoints t below the noise level σ, the training follows our original methods whereas for higher t, the
training is identical to regular continuous-time generative models like flow matching. We have conducted experiments on
CelebA with Gaussian noise σ = 0.01 where training with this extended timepoint results in the generation of clean samples
from pure noise (Figure 6). These experimental results validate our claim that IF can be integrated with generative modeling.

A.6. Additional qualitative results

We provide additional denoising results of the real-world datasets. Since there is not an explicit noise magnitude σ in the
Jacobi process, we did not apply the SURE-based method (Metzler et al., 2020) to this task.
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Table 4. Denoising performance for different noise distributions measured by PSNR in dB
Noise type Input Noise2Void Noise2Self Noise2Score Ours (ICM)

Poisson
ζ = 0.01

BSDS500 23.78 28.29 28.52 30.53 29.91
Kodak 23.60 28.76 29.36 31.10 30.58
Set12 23.08 30.01 29.23 30.94 30.68

Gamma
k = 100

BSDS500 26.75 29.17 27.43 31.14 32.48
Kodak 26.67 30.26 28.26 31.67 32.97
Set12 25.53 30.44 28.54 31.21 33.08

Rayleigh
σ = 0.3

BSDS500 14.03 28.57 14.86 30.37 30.55
Kodak 13.95 29.73 14.83 30.96 31.16
Set12 12.81 29.98 13.74 30.89 31.17

Poisson+Gaussian
BSDS500 22.40 26.45 27.76 28.54 29.26

Kodak 22.25 27.67 28.86 29.02 30.02
Set12 21.88 27.81 29.23 29.10 30.03

Gamma+Gaussian
BSDS500 24.29 27.98 26.10 29.34 30.53

Kodak 24.24 28.99 27.08 29.90 31.22
Set12 23.62 29.53 26.84 29.69 31.27

Rayleigh+Gaussian
BSDS500 13.85 28.01 14.72 29.36 29.79

Kodak 13.77 29.12 14.69 30.12 30.49
Set12 12.78 26.81 13.59 29.82 30.50

GaussianRGB
σ = 25

BSDS500 20.17 29.72 27.33 28.28 29.99
Kodak 20.17 30.65 28.21 28.66 30.73

ImageNet 20.17 28.95 26.34 - 29.65

Table 5. Performance for different noise level assumptions
σ = 12.5 σ = 15 σ = 20 σ = 25 σ = 30 σ = 35 σ = 50

BSDS500 21.59 22.43 24.78 28.16 28.09 27.55 25.71
Kodak 21.62 22.49 25.03 29.08 28.99 28.43 26.66
Set12 21.67 22.56 25.14 29.19 29.20 28.65 26.86

Table 6. Performance on the electron microscopy denoising dataset
Input Noise2Void Noise2Self Ours (ICM)

PSNR 23.70 38.67 41.42 43.78

Table 7. Comparisons to SURE-related methods
Dataset SURE G-SURE Ours

BSDS500 27.58 - 28.16
Kodak 28.23 - 29.08
Set12 28.95 - 29.19

CelebA - 36.40 38.86

Table 8. Comparison between IFM and ICM
Input ICM IFM

BSDS500 20.17 28.16 28.33
Kodak 20.18 29.08 29.25
Set12 20.16 29.19 29.34
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Figure 6. Generated samples from IF trained on the noisy CelebA dataset
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Figure 7. Denoising results of BSDS500 for natural images corrupted with three types of noise distributions. Methods compared are
BM3D, SURE loss, Noise2Self, and ICM.
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Figure 8. Denoising results of BSDS500 for natural images corrupted with three types of noise distributions. Methods compared are
BM3D, SURE loss, Noise2Self, and ICM.
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Figure 9. Denoising results of Kodak for natural images corrupted with three types of noise distributions. Methods compared are BM3D,
SURE loss, Noise2Self, and ICM.
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Figure 10. Denoising results of Set12 for natural images corrupted with three types of noise distributions. Methods compared are BM3D,
SURE loss, Noise2Self, and ICM.
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