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Abstract
We advance the study of incentivized bandit
exploration, in which arm choices are viewed
as recommendations and are required to be
Bayesian incentive compatible. Recent work of
(Sellke & Slivkins, 2022) has shown that for the
special case of independent arms, after collect-
ing enough initial samples, the popular Thomp-
son sampling algorithm becomes incentive com-
patible. This was generalized to the combinato-
rial semibandit in (Hu et al., 2022). We give an
analog of this result for linear bandits, where the
independence of the prior is replaced by a natu-
ral convexity condition. This opens up the possi-
bility of efficient and regret-optimal incentivized
exploration in high-dimensional action spaces.
In the semibandit model, we also improve the
sample complexity for the pre-Thompson sam-
pling phase of initial data collection.

1. Introduction
1.1. Problem Formulation and Results

We consider incentivized exploration as introduced in
(Kremer et al., 2014; Mansour et al., 2020). These are ban-
dit problems motivated by the scenario that the t-th action is
a recommendation made to the t-th customer. A planner,
representing a central service such as a major website, ob-
serves outcomes of past customers. By contrast, each cus-
tomer sees only the recommendation they are given and vis-
its the planner only once. Assuming a common Bayesian
prior (and indistinguishability of customers), we would like
our recommendations to be trustworthy, in the sense that a
rational customer will follow our recommendations. We
have the following definition:
Definition 1. Let A be an action set and µ a prior dis-
tribution over the mean reward function ℓ∗ : A →
R. A bandit algorithm which recommends a sequence
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(A(1), A(2), . . . , A(T )) of actions in A is said to be
Bayesian incentive compatible (BIC) if for each t ∈ [T ]:

E[µ(A)− µ(A′) | A(t) = A] ≥ 0,

∀A,A′ ∈ A such that P[A(t) = A] > 0.
(1.1)

We will often refer to the algorithm as the planner, and
A(t) as a recommendation made to an agent. Here the
agent knows the (source code for the) planner’s algorithm,
and the value of t (i.e. his place in line) but nothing about
the online feedback. (In particular, each agent appears just
once and never “comes back”.) Thus, (1.1) exactly states
that rational agents will follow the planner’s recommenda-
tion.

This model was formulated in (Kremer et al., 2014), and
is a multi-stage generalization of the well-studied Bayesian
persuasion problem in information design (Bergemann &
Morris, 2019; Kamenica, 2019). Fundamental results on
feasible explorability and vanishing regret for BIC algo-
rithms were obtained in (Mansour et al., 2020; 2022). In
all cases, the fundamental principle is to use information
asymmetry to guide agent decisions toward exploration.

Let us remark that averaging over the choice of A(t) shows
that for any BIC algorthm A and fixed time t,

E[µ(A(t))] ≥ sup
A∈A

E[µ(A)].

That is, the recommended time t action A(t) is always bet-
ter on average than exploiting according to the prior. Hence
as a special case, BIC algorithms are guaranteed to benefit
all users as compared to naive exploitation without learn-
ing. Moreover an agent’s knowledge of the exact time t
only makes the BIC guarantee stronger.

As mentioned, fundamental results on BIC bandit algo-
rithms were obtained in (Mansour et al., 2020; 2022). For
instance, the former work gave “hidden exploration” al-
gorithms which exploit with such high frequency that any
bandit algorithm is BIC on the remaining time-steps given
suitable assumptions on the prior. Unfortunately, all algo-
rithms in these works had to pay exponentially large multi-
plicative factors in their regret compared to non-BIC bandit
algorithms. This “price of incentives” was studied quanti-
tatively in (Sellke & Slivkins, 2022) in the case of indepen-
dent arms. They proved the classical Thompson sampling
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algorithm (Thompson, 1933) is BIC without modification
once a mild number of initial samples per arm have been
collected, leading to a natural two-phase algorithm. The
first phase focused on collecting these initial data in a BIC
way, while the second is simply Thompson sampling. Note
that Thompson sampling obeys many state-of-the-art regret
bounds, both Bayesian (Russo & Van Roy, 2014; Bubeck &
Liu, 2013) and frequentist (Agrawal & Goyal, 2012; Kauf-
mann et al., 2012; Agrawal & Goyal, 2013a). Thus the re-
sult of (Sellke & Slivkins, 2022) implies that the additional
regret forced by the BIC requirement is essentially addi-
tive, and at most the number of rounds needed to collect
the needed initial samples in a BIC way (a quantity which
(Sellke & Slivkins, 2022) studied separately).

The results of (Sellke & Slivkins, 2022) are limited to the
case of independent arms, and it is therefore of interest to
expand the range of models under which Thompson sam-
pling leads to provable incentive compatibility. This is the
goal of the present paper. Our main focus is on the lin-
ear bandit in dimension d. Here the action set A ⊆ Rd

may be infinite, and the reward function ℓ∗ : A → R
is always linear. This is a natural next step and allows
for richer correlations between actions. From the practical
viewpoint, BIC guarantees are relevant for recommending
restaurants, movies, hotels, and doctors (see e.g. (Slivkins,
2019), Chapter 11); in all of these settings it is desirable
to leverage contextual information to obtain sample com-
plexity scaling with the ambient data dimension rather than
the potentially huge number of total actions. We make
no assumptions of independence but instead require nat-
ural geometric conditions, e.g. that the prior µ for ℓ∗ is
uniformly random on a convex body K with bounded as-
pect ratio. This covers a fairly broad range of scenarios,
including centered Gaussian µ by homogeneity. Indeed
we consider the connection with such conditions as a sig-
nificant contribution of this work; in (Sellke & Slivkins,
2022; Hu et al., 2022) the FKG inequality is used crucially
throughout but requires independence properties that are
unavaiable with linear contexts. As a regret benchmark,
recall that for the Bayesian regret of Thompson sampling
is known to be O(d

√
T log T ) by Theorem 2 of (Dong &

Van Roy, 2018) (see also (Russo & Van Roy, 2014)). 1

Relative to this near-optimal guarantee, our first main result
Theorem 3.5 shows that the price of incentives is again ad-
ditive rather than multiplicative. Namely, Thompson sam-
pling is again BIC after obtaining poly(d) initial samples
which are well-spread in a natural spectral sense. Tech-
nically, we require action sets be to ε-separated so that
the recommendation of a given A ∈ A has non-negligible

1To avoid confusion, note the frequentist regret of Thompson
sampling for linear bandits is the slightly suboptimal Θ̃(d3/2

√
T )

(Agrawal & Goyal, 2013b; Hamidi & Bayati, 2020).

probability; this is a mild condition since any action set can
be discretized before running Thompson sampling. Further
as shown in Theorem 3.7, the result extends to the gen-
eralized linear bandit when the link function’s derivative
is bounded above and below. We finally give two coun-
terexamples. The former shows that Thompson sampling
may be BIC at time 1 but not time 2 – this may be sur-
prising as it is impossible for the multi-armed bandit with
independent arms (see Lemma 4.9 of (Sellke & Slivkins,
2022)). The latter gives a natural example in which initial
data collection provably needs eΩ(d) samples. In particular,
the latter counterexample illustrates that further geometric
conditions on the prior and/or action set are necessary for
poly(d) sample complexity of BIC initial exploration. We
leave a further study of this interesting problem for future
work, but remark that exogenous payments could be used
in practice to obtain the required poly(d) initial samples
(see some of the references in Subsection 1.2).

Finally, we give new results for incentivized exploration of
the combinatorial semibandit. Here actions consist of sub-
sets A ⊆ [d] of at most d independent atoms which each
give separate feedback as well as rewards. This is another
natural testing ground for correlated rewards and was the
recent focus of (Hu et al., 2022); they showed that Thomp-
son sampling is still BIC with enough initial samples. (Hu
et al., 2022) gave initial exploration algorithms to bound
the additive regret increase from being BIC, but with ex-
ponentially large sample complexity in typical cases. We
improve this latter aspect of their work by extending the
framework of (Sellke & Slivkins, 2022), linking the initial
sample complexity to the minimax value of a two-player
zero-sum game.

1.2. Other Relevant Work

Here we mention a few other related works in the broad
area of incentivized exploration. (Frazier et al., 2014) stud-
ies a similar problem, again in a Bayesian setting. How-
ever in their work the full history is made public so there
is no information asymmetry. Instead, incentivization is
achieved via exogenous payments. (Wang & Huang, 2018;
Agrawal & Tulabandhula, 2020; Wang et al., 2021) study
incentivized exploration in a non-Bayesian setting, where
empirical averages are used instead of posterior means, and
again incentives are realized through payments. The latter
two works also focus on linear contexts and show Õ(

√
T )

total payment suffices for incentivization. By contrast The-
orem 3.5 implies that Thompson sampling is BIC after a
constant (i.e. T -independent) amount of initial exploration.
If payments can be used for incentivization, this implies in
particular that a constant amount of total payment suffices
for incentivized exploration. However as just mentioned,
our setting and assumptions differ from the aforementioned
works in multiple ways.
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(Kannan et al., 2017) studied the power of exogenous pay-
ments to incentivize related notions of fairness in which
better actions ought to be played with higher probability.
Their model includes information asymmetry in the op-
posite direction; agents observe the full history while the
planner might not. (Immorlica et al., 2020) proposed in-
centivization via selective data disclosure where agents ob-
serve a carefully chosen subset of the history. However
their setting is not precisely Bayesian as they assume agents
perform naive empirical averaging over the chosen sub-
set rather than taking the planner’s algorithm into account.
In fact it can be shown by a form of the revelation princ-
ple (see (Slivkins, 2019), Chapter 11) that in the perfectly
Bayesian setting, general planner-to-agent signals have no
more power than simple action recommendations. Finally
our work and the ones mentioned above assume agents are
identical; a model with heterogenous agents was studied in
(Immorlica et al., 2019).

2. Preliminaries
This paper considers two bandit models with correlated re-
wards. In both cases the unknown optimal action is denoted
A∗ (with some arbitrary fixed tie-breaking rule). The first
of these is the linear bandit, where we assume the action set
A ⊆ B1(0) ⊆ Rd is contained inside the unit ball. More-
over, the reward rt is given by

rt = ⟨ℓ∗, A(t)⟩+ zt

where zt is conditionally mean zero and O(1)-subgaussian
conditioned on (ℓ∗, A(t)). We assume ℓ∗ is such that

E[r] = ⟨ℓ∗, A⟩ ∈ [−1, 1]

for all A ∈ A. This includes rt = ⟨ℓt, A(t)⟩ + z̃t with
E[ℓt] = ℓ∗, as well as binary rewards rt ∈ {−1, 1}. When
the actions (A1, . . . , A

(t)) span Rd, it will be helpful to
consider the ordinary least-squares estimator for the reward
vector, which we denote by ℓ̂∗. We denote θi = ⟨ℓ∗, Ai⟩
the expected reward for Ai ∈ A = (A1, . . . , A|A|).

The second model we consider is the combinatorial
semibandit. Here the action set A ⊆ 2[d] is a family of
subsets; we call A ∈ A an action and ai ∈ [d] an atom.
After playing A(t) ∈ A, the player receives a vector of
reward feedback (ra)a∈A(t) ∈ {0, 1}|A

(t)| and gains their
entrywise sum as a total reward. Each atom ai gives reward
independently with probability θi, and following (Hu et al.,
2022) we assume that the θi are jointly independent under
µ. We let θA =

∑
i∈A θi for each A ∈ A. We let nt(i) de-

note the number of times atom ai has been sampled prior
to time t, and let p̂n(i) be the empirical average reward of
arm i from its first n > 0 samples. For each j ∈ [d] we set
Aj be the subset of A consisting of A containing aj , and
A−j = A\Aj .

Thompson sampling is a Bayesian bandit algorithm, de-
fined from an initial prior µ over ℓ∗. Let Ft denote the ob-
served history strictly before time t and set Et[·] = E[·|Ft],
Pt[·] = P[·|Ft]. Thompson sampling at time t draws an
arm independently at random from the time-t distribution
of A∗, so that

Pt[A(t) = A] = Pt[A∗ = A].

Given a fixed prior µ, we say a bandit algorithm is BIC if it
satisfies (1.1). More leniently, we say it is ε-BIC if for each
t ∈ [T ]:

E[µ(A)− µ(A′) | A(t) = A] ≥ −ε,
∀A,A′ ∈ A such that P[A(t) = A] > 0.

(2.1)

We have mentioned regret guarantees for Thompson sam-
pling with linear contexts. For the combinatorial semiban-
dit, (Bubeck & Sellke, 2022) shows among other things that
Thompson sampling attains the optimal Õ(d

√
T ) regret.

We say a mean-zero scalar random variable X is C-
subgaussian if for all t ∈ R,

E[etX ] ≤ eC
2t2/2. (2.2)

The smallest C such that (2.2) holds is the subgaussian
norm of X . We say a mean-zero random vector X⃗ ∈ Rd

is C-subgaussian if ⟨X⃗, v⃗⟩ is C-subgaussian for all v⃗ ∈ Rd

of norm ∥v⃗∥ ≤ 1.

We use ⪯ to denote the positive semidefinite partial order
on symmetric matrices, i.e. M1 ⪯M2 if and only if M2 −
M1 is positive semidefinite.

2.1. Bayesian Chernoff Bounds

We use the following posterior contraction lemma from
(Sellke & Slivkins, 2022). When θ is taken to be an em-
pirical average, it yields a Bayesian version of the classical
Chernoff bound. The statement below hides some technical
specifications for readability, but all quantities lie in Rm for
some m, all functions are Borel measurable, and all proba-
bility measures are defined on the Borel sigma algebra.

Lemma 2.1. Let ξ ∈ Rd be an unknown parameter and γ
an observed signal with distribution depending on ξ. Sup-
pose there exists an estimator θ = θ(γ) ∈ Rd for ξ depend-
ing only on this signal, which satisfies for some determin-
istic ε, δ > 0 the concentration inequality

P
[
∥θ − ξ∥ ≥ ε | ξ

]
≤ δ ∀ξ. (2.3)

Further, let ξ ∼ µ be generated according to a prior dis-
tribution µ, and let ξ̂ be a sample from the posterior distri-
bution µ̂ = µ̂(γ) for ξ conditioned on the observation γ.
Then

Eξ∼µ
[
Pξ̂∼µ̂

[
∥ξ̂ − ξ∥ ≥ 2ε

]]
≤ 2δ. (2.4)
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Proof. The pairs (ξ, γ) and (ξ̂, γ) are identically dis-
tributed; therefore (ξ, θ) and (ξ̂, θ) are as well. The result
now follows by the triangle inequality.

Lemma 2.2 (Lemma A.13 of (Sellke & Slivkins, 2022)).
Suppose the scalar random variable X is mean zero and
O(1)-subgaussian and the event E has P[E] ≤ δ. Then

E[|X · 1E |] ≤ O
(
δ
√
log(1/δ)

)
.

Though the statement of Lemma 2.1 is abstract, our uses
of it will be very concrete. Namely ξ will be the unknown
mean reward and γ the actions and rewards up to some time
t. The estimate θ will be obtained simply by an empirical
average or linear regression. Then (2.3) amounts to Ho-
effding’s inequality or a multivariate analog. The conclu-
sion (2.4) for posterior samples will be of great use in the
analysis of Thompson sampling.

3. Linear Bandit
In (Sellke & Slivkins, 2022), it was shown that Thomp-
son sampling is BIC once a mild amount of initial data has
been collected almost surely at a fixed time. Here we show
a qualitatively similar result for the linear bandit. The no-
tion of “amount” of initial data we adopt is that the action
vectors A(1), . . . , A(t) taken so far satisfy the spectral con-
dition

t∑
s=1

(A(s))⊗2 ⪰ γId. (3.1)

If A = (e1, . . . , ed) forms an orthonormal basis (as in the
multi-armed bandit setting), this simply means that each
action was sampled at least γ times. We say that γ-spectral
exploration has occurred at time t if (3.1) holds. Note that
if one is willing to simply purchase initial samples, then
γd samples are typically needed to achieve γ-spectral ex-
ploration. The next lemma follows from Lemma 2.2 and is
proved in the appendix.

Lemma 3.1. Suppose γ-spectral exploration has occurred
almost surely at some (deterministic) time t, and let v ∈ Rd

be a deterministic vector. Then the random vector ℓ∗ −
Et[ℓ∗] has zero mean and is O(γ−1/2)-subgaussian.

Our results will hold for ε-separated action sets A as de-
fined below. We view this as a generic assumption, e.g.
it holds with high probability when A ⊆ Sd−1 consists
of eO(d) randomly chosen points. Moreover it is common
to discretize infinite action sets for the purposes of analy-
sis. From a technical point of view, requiring discrete A
ensures that the event conditioned on has non-negligible
probability.

Definition 2. The set A ⊆ Sd−1 is said to be ε-separated
if ∥A1 −A2∥ ≥ ε for any distinct A1, A2 ∈ A.

3.1. Convex Geometry

We start with two definitions from convex geometry.
Definition 3. For K ⊆ Rd a compact convex set with non-
empty interior, let U(K) denote the uniform measure on K.
If v ∈ Rd we let

widthv(K) = max
ℓ∈K
⟨ℓ, v⟩ −min

ℓ∈K
⟨ℓ, v⟩.

Definition 4. The convex set K ⊆ Rd is r-regular if
Br(0) ⊆ K ⊆ B1(0).

The next lemma lets us connect convexity conditions to the
BIC property. Its proof follows from standard tools and is
given in the Appendix.
Lemma 3.2. For any convex K ⊆ Rd,

Eℓ∼U(K)|⟨ℓ, v⟩| ≥ Ω(widthv(K)/d).

Our key technical estimate is below. It requires ℓ∗ to have
uniform prior U(K) over a regular convex body K. Note
that since the left-hand side of (3.3) is 1-homogeneous, it is
also fine for ℓ∗ to be drawn from a centered Gaussian with
covariance Σ satisfying λId ⪯ Σ ⪯ ΛId.
Corollary 3.3. Suppose thatA ⊆ Sd−1 is ε-separated, the
convex setK ⊆ Rd is r-regular, and ℓ∗ ∼ µ = U(K). Then
for each Ai, Aj ∈ A, we have

P[Ai = A∗(ℓ∗)] ≥ (rε/4)
d
, (3.2)

E[⟨ℓ∗, Ai −Aj⟩|A∗ = Ai] ≥ Ω

(
rε∥Ai −Aj∥

d

)
. (3.3)

Proof. Fix i and define the convex set Si = {ℓ ∈
B1 : Ai = A∗(ℓ)}. To prove (3.2), we first show

Bε/2(Ai) ⊆ Si. (3.4)

Indeed suppose ℓ ∈ Rd satisfies ∥ℓ − Ai∥ ≤ ε
2 . Then for

any a ∈ A different from Ai,

⟨ℓ, Ai −A⟩ = ⟨Ai, Ai⟩ − ⟨Ai, a⟩+ ⟨ℓ−Ai, Ai −A⟩

≥ 1− ⟨Ai, a⟩ −
ε

2
∥Ai −A∥2

= ∥Ai −A∥22/2−
ε

2
∥Ai −A∥2 ≥ 0.

In the last step we used the fact that t2 − εt ≥ 0 for t ≥ ε
(recall that A is ε-separated). We conclude that ℓ ∈ Si,
hence establishing (3.4). By r-regularity of K and homo-
geneity of Si it follows that

Brε/4(rAi/2) ⊆ K ∩ Si.

SinceK ⊆ B1(0) we find Vol(K∩Si)/Vol(K) ≥ (rε/4)d,
implying (3.2). Next, r-regularity of K and (3.4) imply

widthv(Si ∩ K) ≥ r · widthv(Si)

≥ Ω(rε∥v∥)
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for any v ∈ Rd. Hence by Lemma 3.2, for any fixed v

Eℓ∼U(Si∩K)
∣∣⟨ℓ, v⟩∣∣ ≥ Ω(rε∥v∥/d).

Setting v = Ai − Aj , we note that by definition ⟨ℓ, Ai −
Aj⟩ ≥ 0 for all ℓ ∈ Si. Hence

Eℓ∼U(Si∩K)⟨ℓ, Ai −Aj⟩ ≥ Ω(rε∥Ai −Aj∥/d)

which is equivalent to (3.3).

3.2. Main Result for Linear Bandit

We now show our main result on Thompson sampling
for the linear bandit, namely that γ-spectral exploration
suffices for Thompson sampling to be BIC when γ ≥
Cd3 log(4/rε)

r2ε2 for ε-separated action sets. This roughly
means Õ

(
d4/ε2

)
“well-dispersed” samples are required

for Theorem 3.5 to apply.

Remark 3.4. In fact a more general statement is true.
Given an εt-discretization A(t) of A, let us recommend an
action A(t) ∈ A(t) by performing Thompson sampling on
A(t). Then the proof of Theorem 3.5 shows that a rational
user will always choose an action Ã(t) ∈ A within distance
εt of A(t), since all other actions are inferior to A(t).

Theorem 3.5. Suppose that A ⊆ Sd−1 is ε-separated, the
convex set K ⊆ Rd is r-regular, and ℓ∗ ∼ µ = U(K). If
(3.1) holds almost surely at time t for

γ ≥ Cd3 log(4/rε)

r2ε2
,

then Thompson sampling for the linear bandit is BIC at
time t.

Proof. As in the proof of Theorem 4.1 in (Sellke &
Slivkins, 2022), it suffices to show that

E[1A∗=Ai
· ET0 [⟨ℓ∗, Ai −Aj⟩]] ≥ 0

for any action Aj ̸= Ai. Define

δi = P[Ai = A∗(ℓ∗)]
(3.2)

≥
(rε
4

)d
.

We have

E
[
1A∗=Ai · ⟨ℓ∗, Ai −Aj⟩

]
= E

[
1A∗=Ai · (⟨ℓ∗, Ai −Aj⟩)+

]
= δi · E

[
(⟨ℓ∗, Ai −Aj⟩)+ | A∗ = Ai

]
Lem. 3.2
≥ Ω(δirε∥Ai −Aj∥/d).

Recall that θi = ⟨ℓ∗, Ai⟩ denotes the expected reward for
action Ai. It remains to upper-bound

E
[
1A∗=Ai

·
∣∣ET0 [θi − θj ]− (θi − θj)

∣∣] .

By Lemma 2.1 and (3.1), the value
γ1/2
(
ET0 [θi−θj ]−(θi−θj)

)
∥Ai−Aj∥ is centered and O(1) sub-

gaussian (sans conditioning). Using Lemma 2.2, it follows
that

E
[
1A∗=Ai

·
∣∣ET0 [θi − θj ]− (θi − θj)

∣∣]
≤ O

(
δi∥Ai −Aj∥

√
log(1/δi)

γ

)
.

Since we assumed

γ ≥ Cd3 log(4/rε)

r2ε2

for a large enough absolute constant C, we obtain

E
[
1A∗=Ai

·
∣∣ET0 [θi − θj ]− (θi − θj)

∣∣]
≤ O

(
δi∥Ai −Aj∥

√
log(1/δi)

γ

)

≤ Ω

(
δirε∥Ai −Aj∥

d

)
≤ E

[
1A∗=Ai

· ⟨ℓ∗, Ai −Aj⟩
]

In the second step we used log(1/δi) ≤ d log(4/rε) which
follows from (3.2). This concludes the proof.

Remark 3.6. The action set A only enters Theorem 3.5 at
time t. Thus it holds even if the preceding γ-spectral ex-
ploration used actions not in A. In particular Theorem 3.5
extends to the case that A(t) changes over time as long as
A(t) is ε-separated.

For example, suppose that each A(t) consists of ecd i.i.d.
uniform vectors on the unit sphere for a small constant c,
but the sets A(t) may be arbitrarily dependent. (For exam-
ple, we might replace the actions gradually.) Each A(t) is
ε-separated with probability 1 − e−Ω(d). Then given a γ-
spectral warm start, the algorithm use Thompson sampling
if ε-separation holds, else act greedily will be BIC and in-
cur expected regret

O
(
d
√
T log T + e−Ω(d)T

)
.

This follows by Proposition 3 of (Russo & Van Roy, 2014),
which allows for changing action sets A(t).

3.3. Extension to Generalized Linear Bandit

Here we give an analogous proof for the generalized linear
bandit, which was introduced in (Filippi et al., 2010). In
this model, the expected reward is

E[rt|A(t)] = χ(⟨A(t), ℓ∗⟩)

for a known strictly increasing link function χ : R → R
and unknown vector ℓ∗. A notable example is the logistic
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bandit where χ(x) = ex

1+ex . Recalling that we assumed
⟨ℓ∗, x⟩ ∈ [−1, 1] for all ℓ∗ ∈ supp(µ) and x ∈ A, we
follow much of the theoretical literature on this model by
fixing the non-negative constants

Mχ = sup
x∈[−1,1]

χ′(x); mχ = inf
x∈[−1,1]

χ′(x).

(See e.g. (Neu et al., 2022) for an analysis that avoids such
dependence.) Our analysis of the linear bandit turns out to
extend to this setting; the proof is given in the Appendix.

Theorem 3.7. Fix a link function µ : R → R. Suppose
that A ⊆ Sd−1 is ε-separated, the convex set K ⊆ Rd is
r-regular, and ℓ∗ ∼ µ = U(K). If (3.1) holds almost surely
at time t for

γ ≥
CM2

χd
3 log(4/rε)

r2m4
χε

2

then Thompson sampling for the generalized linear bandit
is BIC at time t.

3.4. Two Counterexamples

Theorem 4.7 and Lemma 4.9 of (Sellke & Slivkins, 2022)
show that for the multi-armed bandit with an independent
product prior over arms, if Thompson sampling is BIC at
time s then it is also BIC at any future time t > s. (In
fact, this holds even if an arbitrary and possibly non-BIC
bandit algorithm is used between times s and t.) This is an
appealing general “stability” property for Thompson sam-
pling. In particular, the special case s = 0 implies that if
all arms have the same prior mean reward, then Thompson
sampling is BIC with no initial exploration phase.

We give an explicit counterexample (with proof in the ap-
pendix) showing that even the s = 0 case fails for the linear
bandit when (s, t) = (1, 2) with d = 2. Precisely:

Proposition 3.8. Let µ ∼ N (0, I2) and

(A1, A2, A3) =
(
(1, 0), (−1, 0), (1.8, 0.6)

)
.

If Thompson sampling recommends action A1 at time t =
2, this recommendation is not BIC:

E[θ3 | A(2) = A1] > E[θ1 | A(2) = A1]. (3.5)

Note that although A3 has different Euclidean norm from
A1 and A2, this set can be put onto the unit circle by a linear
change of basis (which just changes µ to a non-spherical
Gaussian) in accordance with Section 3.

For our second counterexample, suppose the action set A
is either the polytope

P ≡
{
(x1, . . . , xd) : 10|xd|+ 2

√
dmax

i<d
|xi| ≤ 1

}
⊆ B1

or its set of extreme points. We show that for a suitable
prior µ, any initial exploration algorithm which is BIC or
even ε-BIC can be made to require eΩ(d) timesteps to ex-
plore in the d-th coordinate.

Note that for P as above, all extreme points satisfy xd = 0

except for ±Â =
(
0, 0, . . . , 0,± 1

2
√
d

)
, and so γ-spectral

exploration for any γ > 0 requires exploring these actions.
Our prior distribution ℓ∗ ∼ µ will be uniform over the “bi-
ased” convex body K/

√
d for

K ≡ [−0.5, 1]d−1 × [−1, 1].

Proposition 3.9. With A, µ as above, suppose that an ε-
BIC algorithm A has explored at least one of Â or −Â al-
most surely by time T for ε ≤ 1/20. Then T ≥ exp(Ω(d)).

4. Initial Exploration for Combinatorial
Semibandit

It was found in (Hu et al., 2022) that for incentivized explo-
ration, the semibandit problem is well-suited for generaliz-
ing (Sellke & Slivkins, 2022). Indeed one can still assume
the atoms i ∈ [d] give rewards independently with proba-
bilities θ1, . . . , θd which are independent under the prior µ;
this allowed them to generalize several proofs using inde-
pendence of atoms rather than full actions. However (Hu
et al., 2022) did not extend the initial exploration scheme of
(Sellke & Slivkins, 2022), instead proposing several algo-
rithms with exponential sample complexity. Here we find
the natural extension of (Sellke & Slivkins, 2022), again
connecting the sample complexity of BIC initial explo-
ration to the value of a two-player zero sum game.

Following (Hu et al., 2022), we make some non-degeneracy
assumptions. Namely we require that all atom rewards are
almost surely in [0, 1] and their distributions satisfy:

1. E[θℓ] ≥ τ .

2. Var[θℓ] ≥ σ2.

3. P[θℓ < x] ≥ exp(−x−α).

for fixed constants τ, σ, α > 0.

Under these conditions, we give an initial exploration algo-
rithm in the style of (Sellke & Slivkins, 2022). We will ex-
plore the arms in a deterministic order which is defined via
the lemmas below. Throughout, we say that an atom has
been N -explored if it has been sampled at least N times.
Moreover we define the event

ZEROS<j,N = {p̂N (i) = 0 ∀i < j}

that each i < j receives no reward in its first N samples,
and also set

εj = P[ZEROS<j,N ]. (4.1)

6
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It follows from the assumptions above that for all j ∈ [d],

εj ≥ (1− p)dN exp(−dp−α).

In particular setting p = 1
dN we find:

log(1/εj) ≤ Ω
(
d1+αNα

)
. (4.2)

Lemma 4.1. Let Sj−1 = {a1, . . . , aj−1} ⊆ [d] and as-
sume that all atoms in Sj−1 have been N -explored almost
surely at time Tj−1, for

N ≥
(
20d/τ

)1+α
log(20d/τ). (4.3)

Then conditioned on the event ZEROS<j,N , the action with
highest posterior mean contains an action in [d]\Sj−1.
More generally, let

xj = max
(
1ZEROS<j,N

, bj
)

for yj = bj ∼ Ber (qj) an independent Bernoulli random
variable. Then the conclusion remains true conditionally
on the event xj = 1 whenever qj ≤ εj = P[ZEROS<j,N ].

Proof. We claim that for any actions A,A′ ∈ A with A ⊆
Sj−1 and A′ ̸⊆ Sj−1, we have

E[θA | ZEROS<j,N ] ≤ E[θA′ | ZEROS<j,N ]/2.

Thanks to the factor of two, this implies that

arg max
A′∈A

E[θA′ | xj = 1] ̸⊆ Sj−1

for qj ≤ εj . (Note that the left-hand side is a deterministic
subset of [d] because {xj = 1} is just a single event; we do
not condition on all the information of FTj−1 .)

First, if a /∈ Sj−1, then E[θa | ZEROS<j,N ] = E[θa] ≥ τ
by assumption. It remains to show that

E[θa | ZEROS<j,N ]
?
<

τ

2d
, ∀ a ∈ Sj−1. (4.4)

We will show that in fact

P
[
θa ≥

τ

5d
| ZEROS<j,N

]
≤ τ

5d
(4.5)

which implies (4.4) since θa ≤ 1 almost surely. To see
(4.5) we use likelihood ratios to bound probabilities. Note
that for any a ∈ Sj−1

P
[
θa ≥

τ

3d
| ZEROS<j,N

]
≤

P[θa ≥ τ
3d | ZEROS<j,N ]

P[θa ≤ τ
6d | ZEROS<j,N ]

≤
(
1− τ

3d

1− τ
6d

)N P[θa ≥ τ
3d ]

P[θa ≤ τ
6d ]

≤ e−(Nτ/10d)

P[θa ≤ τ
6d ]

≤ exp

((
10d/τ

)α − Nτ

10d

)
.

Since N is at least(
20d/τ

)1+α
log(20d/τ) ≥ 2

(
10d/τ

)1+α
log(10d/τ)

the upper bound on P
[
θa ≥ τ

3d | ZEROS<j,N

]
is at most

exp(−
(
10d/τ

)α
log(10d/τ)) ≤ (τ/10d)

(
10d/τ

)α
≤ τ

3d
.

This concludes the proof.

4.1. Algorithm 1

In light of Lemma 4.1, we can assume without loss of
generality that the atoms are ordered such that aj is BIC
conditioned on the event 1 = max(1ZEROS<j,N

, bj), for
bj ∼ Ber(qj) as in the lemma. Then we will explore the
atoms in increasing order. For each j ∈ [d], our high-level
strategy is as follows:

1. On the event ZEROS<j,N , obtain N samples of aj .

2. Exponentially grow the probability to have N -
explored aj .

Similarly to (Sellke & Slivkins, 2022), the main insight is
that it is possible to achieve an exponential growth rate.
This enables sample efficiency even when the probability
from the first phase is exponentially small. We will assume
N is large enough to satisfy (4.3); if not, one simply in-
creases N and obtains some additional samples in using
the algorithm.

Pseudo-code for our Algorithm 1 is given below; note that
when we say to “exploit” given a signal, we simply mean
the planner should recommend the greedy action given
some signal he generated; this is BIC by definition. The
policies πj are important for the exponential growth strat-
egy and are non-obvious to construct. However much of
the algorithm can be understood more easily. First, in the
j-th iteration of the outer loop, we collect N samples of
atom aj almost surely, this having been accomplished for
all i < j in the previous iterations. The starting point for
each loop is to sample aj on the event ZEROS<j,N that all
atoms i < j received no reward during their first N sam-
ples. While ZEROS<j,N has tiny probability (denoted εj),
we grow the probability to sample aj exponentially using
πj . The sample complexity is largely dictated by the op-
timal such exponential growth rate, which is the minimax
value of a two-player zero sum game; therefore we take πj

to be an approximately optimal strategy for said game.

4.2. The Policy πj

The policy πj is constructed via a j-recommendation game,
a two-player zero sum game which generalizes the one con-
sidered in (Sellke & Slivkins, 2022). In particular, the opti-
mal exponential growth rate of exploration is dictated by its

7
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Algorithm 1: Semibandit BIC Exploration

1 Parameters: Number of desired samples N satisfying
(4.3), Minimax parameter λ = λ/2d.

2 Given: recommendation policies π2 · · ·πd for
PADDED PHASE.

3 Initialize: EXPLORATION PHASE for arm 1
4 for each arm j = a1, . . . , ad do

// each arm ai for i < j has been
sampled at least N times

5 Generate yj = bj ∼ Ber(εj) and set
xj = max(1ZEROS<j,N

, bj).
6 EXPLOITATION PHASE with depth N ,

conditionally on the signal xj .
// If xj = 1, then this explores aj

7 pj ← εj .
// main loop: exponentially grow
the exploration probability

8 while pj < 1 do
// Try to increase bj to 1, and
maintain yj = P[bj = 1].

9 Generate bj ∼ Ber
(
min(1,

pjλ
1−pj

)
)

and set
zj = max(bj , yj).

10 if zj = 1 then
11 PADDED PHASE: use policy πj for N

time-steps
12 Otherwise, exploit for N time-steps
13 Update pj ← min (1, pj (1 + λ)).

minimax value in the perfect information (infinite-sample)
setting. In the Appendix, we treat finite-sample approxi-
mations to it which are required for constructing πj .

Definition 5. The infinite sample j-recommendation game
is a two-player zero sum game played between a planner
and an agent. The players share a common independent
prior over the true mean rewards (θi)i≤j , and the planner
gains access to the values of (θi)i≤j . The planner then ei-
ther: 1) Recommends an arm Aj ∈ Aj containing aj , or 2)
Does nothing.

In the first case, the agent observes Aj ∈ Aj and chooses
a response A−j from a mixed strategy on A−j which can
depend on Aj . The payoff for the planner is zero if the
planner did nothing, and otherwise θAj

− θA−j
. Let the

minimax value of the game for the planner be λj ≥ 0 and

λ ≡ min
j∈[d]

λj .

It is clear that λj ≥ 0 since the first player can always do
nothing. In general, the value of this game measures the
planner’s ability to convince the agent to try arm j. As in
(Sellke & Slivkins, 2022), this can be much larger than the
expected regret from not being able to play arm j. The

importance of the value λ is explained by the following
lemma, which ensures that with some care, it is possible to
increase the j-exploration probability by a factor 1 + Ω(λ)
at each stage.

Lemma 4.2. Let λ = λ/2d, so in particular λ ≤ λj/2. For

N ≥ Ω
(

d2 log |A|
λ2

)
, let z be a signal such that conditioned

on z = 1, with probability at least 1
1+λ the first j arms have

all been N -explored. Moreover, suppose that the event z =
1 is independent of the true mean reward vector µ⃗. Then
there is a BIC policy which always plays an action in Aj

when z = 1.

Theorem 4.3. Algorithm 1 is BIC and almost surely ob-
tains N samples of each atom within T timesteps for

T = O

(
d3+αN1+α

λ

)
. (4.6)

Proof. For the j-th of the d− 1 iterations of the outer loop,
in the first step Lemma 4.1 implies that if xj = 1, then
Line 6 explores a new action ak for k ≥ j, which is without
loss of generality aj .

For the inner loop, note that we do not consider the event
ZEROS<j,N and only use the “clean” data coming from the
event bj = 1. This prevents the data-dependent trajectory
of the algorithm from causing unwanted correlations. In
particular Line 11 is then BIC by the defining property of
πj since the required independence holds. Other steps of
the algorithm are BIC by virtue of being exploitation con-
ditionally on some signal.

To complete the analysis, we have pj = 1 in the final iter-
ation of the inner loop, and so bj = 1 almost surely here.
Hence some action in Ai is chosen each of these times by
definition of πj . This holds for each j, so N samples of
each atom are obtained. For sample complexity, the inner
loop requires O

(
dN log(1/εj)

λ

)
steps; recalling the bound

(4.2) now yields (4.6). The last line in the algorithm con-
tributes a lower order term O(dN/λ).

4.3. Lower Bound

We now give a sample complexity lower bound for each
aj . The lower bound is inversely proportional to the min-
imax value λj ≥ λj,∞ of the infinite-sample easy j-
recommendation game in which all values (θi)i ̸=j are
known exactly to player 1.

Proposition 4.4. For any j ∈ [d], the sample complexity to

almost surely BIC-explore arm aj is at least Ω
(

σ2

dλj

)
− 2.

The question of which values θi should be treated as known
when proving a lower bound on aj leads to a mismatch
with our upper bound, i.e. we may have λ < λ in general.
This issue was not present in the multi-armed bandit case

8
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of (Sellke & Slivkins, 2022); without combinatorial action
sets, one can actually explore the arms in decreasing order
of prior mean. This was justified using the FKG inequality,
see Appendix B and Definition 3 therein. However with
combinatorial action sets there is no canonical ordering of
atoms, which leads to the mismatch above.
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A. Proofs for Section 3
Proof of Lemma 3.1. The mean zero property just says
E[Et[ℓ∗]] = E[ℓ∗], which follows by the tower rule for
conditional expectations. Let ℓ̂ be the natural ordinary
least squares estimator. Theorem 20.5 of (Lattimore &
Szepesvári, 2020) implies that for any unit vector v ∈ Rd,
ℓ∗− ℓ̂∗ is O(γ−1/2)-subgaussian (recall that ℓ̂∗ denotes the
ordinary least squares estimator for ℓ∗). From Lemma 2.1
we find that ℓ∗ − ℓ̃∗ is also O(γ−1/2)-subgaussian, for ℓ̃∗

a posterior sample for ℓ∗ at time t. The result now fol-
lows since the sum of two arbitrarily coupled O(γ−1/2)-
subgaussian vectors is still O(γ−1/2)-subgaussian (by ap-
plying the AM-GM inequality to (2.2)).

Proof of Lemma 3.2. By Theorem 4.1 of (Kannan et al.,
1995), √

Varℓ∼U(K)⟨ℓ, v⟩ ≥ Ω(widthv(K)/d).

Since U(K) is a log-concave distribution, Theorem 5.1 of
(Guédon et al., 2014) implies

Eℓ∼U(K)|⟨ℓ, v⟩| ≥ Ω
(√

Varℓ∼U(K)⟨ℓ, v⟩
)
.

Combining yields the desired estimate.

A.1. Proofs for Generalized Linear Bandit

As explained in (Filippi et al., 2010), the maximum likeli-
hood estimator (MLE) ℓ̂ at time t is unique, and is in fact
the solution to

t∑
s=1

(
Rs − χ(⟨As, ℓ̂⟩)

)
As = 0. (A.1)

The next result essentially shows that γ-spectral explo-
ration for

γ ≥
CM2

χd
2

m4
χ

suffices for the estimation error of the MLE to be subgaus-
sian.
Theorem A.1 (Theorem 1 of (Li et al., 2017)). Suppose
γ-spectral exploration has occurred for

γ ≥
CM2

χ

m4
χ

(
d2 + log(1/δ)

)
.

Then the MLE estimate ℓ̂ has error (ℓ̂ − ℓ∗) satisfying for
any fixed v ∈ Rd:

P
[
|⟨ℓ̂− ℓ∗, v⟩| ≤ ∥v∥

mχ
√
γ

]
≥ 1− δ.

The following result follows directly from Corollary 3.3.
Lemma A.2. Fix a link function χ. Suppose that A ⊆
Sd−1 is ε-separated, the convex set K ⊆ Rd is r-regular,
and ℓ∗ ∼ µ = U(K). Then for each Ai, Aj ∈ A, we have

P[Ai = A∗(ℓ∗)] ≥
(ε
2

)d
,

E
[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩) | A∗ = Ai

]
≥ Ω(rε∥Ai −Aj∥mχ/d).

We now extend Theorem 3.5 to the generalized linear ban-
dit model.

Proof of Theorem 3.7. As before it suffices to show that

E
[
1A∗=Ai · ET0

[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩)

]]
≥ 0

for any action Aj ̸= Ai. Define

δi = P[Ai = A∗(ℓ∗)]
(3.2)

≥
(rε
4

)d
.

We have

E
[
1A∗=Ai

·
[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩)

]]
= E

[
1A∗=Ai

·
[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩)

]
+

]
= δi · E

[[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩)

]
+
| A∗ = Ai

]
Lem. 3.2
≥ Ω

(
δirεmχ∥Ai −Aj∥

d

)
.

10
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We now use χi = χ(⟨ℓ∗, Ai⟩) to denote the expected re-
ward for action Ai. It remains to upper-bound

E
[
1A∗=Ai

·
∣∣ET0 [χi − χj ]− (χi − χj)

∣∣] .
By Theorem A.1 and Lemma 2.1, the value
mχγ

1/2
(
ET0 [χi−χj ]−(χi−χj)

)
∥Ai−Aj∥ is centered and O(1)-

subgaussian (again sans conditioning).2 Using Lemma 2.2
and the fact that χ is Mχ-Lipschitz, we find

E
[
1A∗=Ai

·
∣∣ET0 [χi − χj ]− (χi − χj)

∣∣]
≤ O

(
δiMχ∥Ai −Aj∥

mχ

√
log(1/δi)

γ

)
.

Since we assumed

γ ≥
CM2

χd
3 log(4/rε)

r2m4
χε

2

for a large enough absolute constant C, we obtain

E
[
1A∗=Ai

·
∣∣ET0 [χi − χj ]− (χi − χj)

∣∣]
≤ O

(
δiMχ∥Ai −Aj∥

mχ

√
log(1/δi)

γ

)

≤ Ω

(
δirεmχ∥Ai −Aj∥

d

)
≤ E

[
1A∗=Ai ·

[
χ(⟨ℓ∗, Ai⟩)− χ(⟨ℓ∗, Aj⟩)

]]
In the second step we used log(1/δi) ≤ d log(4/rε) which
follows from (3.2). This concludes the proof.

B. Proofs for Counterexamples
Proof of Proposition 3.8. We show that (3.5) holds condi-
tionally on A(1) ̸= A3, and that equality holds condition-
ally on A(1) = A3. Together these imply the result.

First if A(1) = A1 or A(2) = A2, then at time 2 we
have learned the first coordinate of ℓ∗. So in this case, if
P2[A∗ = A2] then E2[ℓ∗ = (µ1, 0)] for some µ1 > 0 al-
most surely. In particular, on this event

E2[⟨ℓ∗, A3 −A1⟩] > 0

so we conclude that

E[µ3 | (A(1), A(2)) = (A1, A1)] > E[µ1 | (A(1), A(2)) = (A1, A1)],

E[µ3 | (A(1), A(2)) = (A2, A1)] > E[µ1 | (A(1), A(2)) = (A2, A1)].

2Technically we need to do the estimates more carefully, but
basically the d2 + log(1/δ) in Theorem A.1 is just O(d2) unless
δ ≤ e−d2 . And we should only need δ ≈ e−d.

Next if A(1) = A3, then at time 2 we have learned the value
µ3 = ⟨ℓ∗, A3⟩. We claim that for any µ3,

P2[A∗ = A1 | µ3] = P2[A∗ = A1 | − µ3]. (B.1)

Indeed it is easy to see that A∗ = A1 if and only if ℓ∗ lies in
the angles spanned by the outward normal cone to A1 for
the triangle A1A2A3. In other words, we must have

arg(ℓ∗) ∈
[
− π/2, tan−1(−4/3)

]
.

By construction, ∥A1∥ = ∥A1 − A3∥ and so the angle bi-
sector to this normal cone is orthogonal to A3 by elemen-
tary geometry. It is easy to see that (B.1) now follows, and
implies

E[µ3 | (A(1), A(2)) = (A3, A1)]

= E[µ1 | (A(1), A(2)) = (A3, A1)].

Averaging over the conditioning on A(1) now yields the
result (since P[A(1) = A1] > 0, say).

B.1. Exponential Lower Bound for Initial Exploration

First, we observe that settingA = E(P) to be the set of ex-
treme points of P is essentially equivalent to takingA = P
itself. The proof is easily seen to generalize to any convex
polytope. This means that our lower bound below applies
to the classes of convex action sets as well as separated ac-
tion sets.

Proposition B.1. Suppose there exists a BIC algorithm A
which explores in P and achieves γ-spectral exploration
almost surely within T timesteps. Then there exists a BIC
algorithm A′ which explores in A = E(P) and achieves
γ-spectral exploration almost surely within Td timesteps.

Proof. We show how to simulate each step of A using
exactly d steps of A′, in a BIC way. For each t ∈
{0, 1, . . . , T − 1}, at the start of time-step td + 1 we will
have a simulated version of A which has received some ar-
tifical feedback and recommends an action A(t) ∈ P . To
construct A′ we do the following:

1. Write A(t) =
∑d

i=1 pt,iÃt,i as a convex combination
of d not-necessarily-distinct Ãt,i ∈ A, with pt,i ≥ 0

and
∑d

i=1 pt,i = 1.

2. At timestep td + i for i ∈ {1, 2, . . . , d}, play action
Ãt,i and receive reward r̃t,i ∈ {0, 1}.

3. After timestep (t + 1)d, choose rt = r̃t,i with prob-
ability pt,i independently of the past, and take this as
the feedback for A.

11
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It is easy to see that rt has the correct expected value by
linearity of rewards for the linear bandit problem. It then
follows that after receiving (r1, . . . , rt−1), the recommen-
dation A(t) ∈ P is BIC within P by the BIC property of
A. By linearity it follows that conditioned on observing
A(t), each extreme point Ãt,i is also a BIC recommenda-
tion, since they all must have the same conditional mean
reward.

It remains to show that A′ also achieves γ-spectral explo-
ration. Indeed

d∑
i=1

pt,iÃ
⊗2
t,i ⪰ (A(t))⊗2

follows by testing against any v⊗2 and using Cauchy-
Schwarz. This completes the proof.

Based on Proposition B.1, we state Proposition 3.9 below
in the discrete action set setting A = E(P), with the un-
derstanding that it extends also to the convex action set
A = P . Note that for P as above, all extreme points satisfy
xd = 0 except for ±Â =

(
0, 0, . . . , 0,± 1

2
√
d

)
, and so γ-

spectral exploration for any γ > 0 requires exploring these
actions. Our prior distribution ℓ∗ ∼ µ will be uniform over
the “biased” convex body K/

√
d for

K ≡ [−0.5, 1]d−1 × [−1, 1].

Proof of Proposition 3.9. Consider a modification A′ of A
which changes all plays of ±Â to the prior-optimal action
A1 = (1,1,...,1,0)

2
√
d

. If A′ and A play different actions at m
times in expectation, then by definition the expected total
rewards satisfy

RT (A′) + εm ≥ RT (A). (B.2)

Recall that one of ±Â must be explored at least once re-
gardless of ℓ∗. Moreover at the first such modification time
(denoted by τ ),

Eτ [⟨ℓ∗, Â⟩] = Eτ [⟨ℓ∗,−Â⟩] = 0.

This implies

E[rτ (A′) + ε− rτ (A)] ≤ ε− E[⟨ℓ∗, A1⟩]
≤ ε− 1/3 ≤ −1/6.

Moreover A′ makes at most T−1 additional modifications;
at each time s that such a modification occurs,

Es[rs(A′)+ε−rs(A)] ≥
(
|Es[⟨ℓ∗, Â⟩]|+ε−Es[⟨ℓ∗, A1⟩]

)
+
.

Summing over times s and applying Jensen in the second
inequality, we find

RT (A′) + εm−RT (A)

≤ −1/6 +
T∑

s=1

E
[(
|Es[⟨ℓ∗, Â⟩]|+ ε− Es[⟨ℓ∗, A1⟩]

)
+

]
≤ −1/6 + T · E

[(
|⟨ℓ∗, Â⟩|+ ε− ⟨ℓ∗, A1⟩

)
+

]
.

A simple Chernoff estimate shows that

E
[(
|⟨ℓ∗, Â⟩|+ ε− ⟨ℓ∗, A1⟩

)
+

]
≤ E

[( 1

10
− ⟨ℓ∗, A1⟩

)
+

]
≤ e−Ω(d).

(B.3)

Recalling (B.2), we conclude T ≥ eΩ(d) as desired.

C. j-Recommendation Game
We first formally define the j-recommendation game. We
proceed more generally than in the main body, defining it
relative to any d-tuple (N1, . . . , Nd). We recall the defini-
tion of the static σ-algebra GN1,...,Nd

which is generated by
Ni samples of each atom i. When considering arm j, we
will always have Nk = 0 for all k > j. If Ni = N for
all i we recover the (j,N)-recommendation game as de-
fined in the main body. The definition of (j,N)-informed
generalizes readily to (j,G)-informed.
Definition 6. The j-recommendation game is a two-player
zero sum game played between a planner and an agent.
The players share a common independent prior over the
true mean rewards (θi)i≤j , and the planner gains access
to the static σ-algebra G = G(N1,...,Nj). The planner then
either:

1. Recommends an arm Aj ∈ Aj containing Aj .

2. Does nothing.

In the first case, the agent observes Aj ∈ Aj and chooses
a response A−j from a mixed strategy on A−j which can
depend on Aj . The payoff for the planner is zero if the
planner did nothing, and otherwise θAj

− θA−j
.

Definition 7. A planner strategy π for the j-
recommendation game is said to be (j, λ)-padded,
for a function λ : Aj → R≥0, if for each Aj ∈ Aj and
A−j ∈ A−j :

min
A−j∈A−j

E[(θAj
− θA−j

) · 1π=Aj
] = λAj

. (C.1)

Such a strategy has total j-padding at least

λj ≡
∑

Aj∈Aj

λAj .

12
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Note that since λAj
≥ 0, a planner strategy need not be

(j, λ)-padded for any λ, and hence need not have a total
padding value.

We can without loss of generality view all j-
recommendation game strategies as depending only on
the posterior means of each arm conditional on G. In the
below, we set θ̃i = E[θi|G] for the relevant static σ-algebra
G. Given a planner strategy in the j-recommendation
game, we naturally obtain a corresponding (j,G)-informed
policy for our original problem in which we recommend
arm Aj when the planner would, and recommend the
G-conditional-expectation-maximizing arm otherwise.
The key point of this game is as follows.

Lemma C.1. If a strategy π for the planner in the j-
recommendation game has minimax value λj , then its total
j-padding value equals λj .

Proof. Simply note that the left-hand side of (C.1) is the
contribution of playing Aj to the minimax value of π for
the planner.

Lemma C.2. Suppose there exists a planner strategy π in
the j-recommendation game with total j-padding at least
λj . Let p ≥ d/(d+λj) and let bj ∼ Ber(p) be independent
of the signal.

Consider a modified game where the planner observes G if
and only if bj = 1 (and where the agent never observes bj).
There exists a BIC planner strategy π̃ in this game such that
if bj = 0, then π̃ always recommends an action in Aj .

Proof. The planner follows π if bj = 1. Conditioned on
bj = 0, the planner plays from the probability distribution
q on Aj given by

q(Aj) =
λAj

λj
.

We call this modified strategy π̂. Noting that E[θAj −
θA−j ] > −d, we find that if the agent observes π̂ =
Aj , then Aj has higher conditional mean reward than any
A−j ∈ A−j :

E[(θAj
− θA−j

) · 1π̂=Aj
]

= E[(θAj
− θA−j

) · 1bj=1,π=Aj
]

+ (1− p)q(Aj) · E[θAj
− θA−j

]

> pλAj
− jd(1− p)q(Aj).

Since p ≥ d/(d+λj), it easily follows that the last expres-
sion is non-negative.

Therefore the greedy strategy conditioned on observing
π̂ = Aj is to choose some A′

j ∈ Aj (any A−j ∈ A−j

is inferior to Aj hence suboptimal). The claimed BIC strat-
egy π̃ is given by playing A′

j when π̂ = Aj . Note that

by definition, π̃ exploits conditioned on the signal from π̂,
hence is BIC.

Next we upper bound the number of samples required in
G to ensure λ ≥ Ω(Gpad). The point is that the game
has an N → ∞ limit that can be approximated by cou-
pling. To this end, we let λj,∞ be the minimax value for
the N = ∞ version where the planner observes the exact
values of θ1, . . . , θj . We note that in the simpler setting of
(Sellke & Slivkins, 2022), λj,∞ = infq∈∆j

E[(θj − θq)+]
has a simple interpretation by using the minimax theorem
to choose the agent’s strategy first. It is similarly possible
to apply the minimax theorem here but the result is not par-
ticularly interpretable since the planner chooses a different
mixed strategy for each Aj ∈ Aj .

Lemma C.3. For N ≥ Ω
(

d2 log |A|
λ2
j,∞

)
, there is an N -

informed policy with minimax value at least λj,∞/2.

Proof. Given the signal, first generate a posterior sample
(θ̂1, . . . , θ̂j) for θ1, . . . , θj and then consider the infinite-
sample policy π∞. We claim that π∞ has minimax value
at least λj,∞/2

To find the minimax value of this policy, we use Lem-
mas 2.1 and 2.2. In particular they imply that for each
(A,Aj),

E[|θ̂A − θA| · 1π=Aj ] ≤ CdN−1/2pπ(Aj)
√
log(1/pπ(Aj)).

Taking A = Aj and A = A−j , we find that the minimax
value of this policy is at least

λj,∞ −O(dN−1/2) ·
∑
A

pπ(A)
√

log(1/pπ(A))

≥ λj,∞ −O(dN−1/2
√
log |A|).

The last expression is at least λj,∞/2 for N ≥
Ω
(

d2 log |A|
λ2
j,∞

)
as desired.

Proof of Lemma 4.2. By Lemma C.3, conditioned on z =
1 the minimax value of the game is at least λj,∞/2. We
now apply Lemma C.2, with bj the signal z. The policy
π̃ is the desired one, proving the lemma. (Note that by
definition λ = λ/2d in Lemma 4.2.)

Proof of Proposition 4.4. We assume T < T0 and consider
two agents. The first, an obedient agent, simply obeys
recommendations. The second, a j-avoiding agent, when
recommended to play some Aj ∈ Aj , instead plays from
cA−j using the minimax optimal response for the easy j-
recommendation game. We claim that if T < T0 and al-
most surely some Aj ∈ Aj must be recommended, then
the j-avoiding agent attains larger expected reward than the

13
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obedient one against any planner. This will contradict the
BIC property. First note that each time-step, by definition
the alternative agent loses at most λj per round compared
to an obedient agent. To get the lower bound, we will show
that the alternative agent does better the first time tj that Aj

is recommended (i.e. the random value tj is minimal such
that Aj ∈ Atj ).

At this time, note that

θAj
− E[θA−j

| Aj ]

has standard deviation at least σ for each Aj ∈ Aj and
any agent strategy. (Aj can depend on θ1, . . . , θj−1 but is
independent of θj .) In particular, we have

E
[(

θAtj
− E[θA−j

| Atj ]
)
+

]
+ E

[(
θAtj

− E[θA−j
| Atj ]

)
−

]
= E

[∣∣∣θAtj
− E[θA−j

| Atj ]
∣∣∣]

≥ E
[(

θAtj
− E[θA−j | Atj ]

)2]
/d

≥ σ2/d.

The first term is at most λj for any strategy, so

E
[
θAtj

− E[θA−j | Atj ]
]

= E
[(

θAtj
− E[θA−j | Atj ]

)
+

]
− E

[(
θAtj

− E[θA−j
| Atj ]

)
−

]
≤ 2λj −

σ2

d
.

Thus in total, the j-avoiding agent outperforms the obedi-
ent one by

σ2

d
− (T + 2)λj ,

which is non-positive if recommendations are BIC. This
implies the claimed estimate.

14
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