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Abstract

Deciphering the relationship between a gene and its genomic context is fundamen-
tal to understanding and engineering biological systems. Machine learning has
shown promise in learning latent relationships underlying the sequence-structure-
function paradigm from massive protein sequence datasets; However, to date,
limited attempts have been made in extending this continuum to include higher
order genomic context information. Here, we trained a genomic language model
(gLM) on millions of metagenomic scaffolds to learn the latent functional and regu-
latory relationships between genes. gLM learns contextualized protein embeddings
that capture the genomic context as well as the protein sequence itself, and appears
to encode biologically meaningful and functionally relevant information (e.g. enzy-
matic function). Our analysis of the attention patterns demonstrates that gLM is
learning co-regulated functional modules (i.e. operons). Our findings illustrate that
gLM’s unsupervised deep learning of the metagenomic corpus is an effective and
promising approach to encode functional semantics and regulatory syntax of genes
in their genomic contexts and uncover complex relationships between genes in a
genomic region.

1 Introduction

Evolutionary processes result in the linkage between protein sequences, structure and function.
The resulting sequence-structure-function paradigm has long provided the basis for interpreting
vast amounts of genomic data. Recent advances in neural network (NN)-based protein structure
prediction methods Jumper (2021); Baek (2021), and more recently protein language models (pLMs)
Rives (2021); Elnaggar (2020); Madani (2023) suggest that data-centric approaches in unsupervised
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Figure 1: gLM training and inference schematics. A) For training, contigs (contiguous genomic
sequences) containing up to 30 genes are first translated into proteins, which are subsequently
embedded using a pLM encoder (ESM2). Masked inputs are generated by random masking at 15%
probability and gLM (a transformer encoder) is trained to make four predictions for each masked
protein, with associated likelihoods. Training loss is calculated on both the prediction and likelihoods.
B) At inference time, inputs are generated from a contig using ESM2 output. Contextualized protein
embeddings (last hidden layer of gLM) and attention patterns are used for various downstream tasks.

learning can represent these complex relationships shaped by evolution. To date, These models largely
consider each protein as an independent and standalone entity. However, proteins are encoded in
genomes, and the specific genomic context that a protein occurs in is also determined by evolutionary
processes, where each gene gain, loss, duplication and transposition event is subject to selection and
drift Wright (1948); Lynch & Conery (2003); Cordero & Polz (2014). These processes are particularly
pronounced in prokaryotic genomes where frequent horizontal gene transfers (HGT) shape genomic
organization and diversity Treangen & Rocha (2011); Shapiro (2012). Thus, there exists an inherent
evolutionary linkage between genomic context and gene function Kountz & Balskus (2021), which
can be explored by characterizing patterns that emerge from large metagenomic datasets.

Recent machine learning based approaches have shown predictive power of genomic context in gene
function Miller et al. (2022) and metabolic trait evolution Konno & Iwasaki (2023) in prokaryotic
genomes. However, both these models represent genes as categorical entities, despite genes existing
in continuous space, where multidimensional properties such as phylogeny, structure, and function
are abstracted in their sequences. In order to close the gap between genomic-context and gene
sequence-structure-function, we developed the first, to our knowledge, genomic language model
(gLM) that represents proteins using pLM embeddings that have been shown to encode relational
properties Rives (2021) and structure information Lin (2023). Our model, based on the transformer
architecture Vaswani et al. (2017), is trained using millions of unlabelled metagenomic sequences. We
trained gLM with the masked language modeling Devlin et al. (2018) objective, with the hypothesis
that its ability to attend to different parts of a multi-gene sequence will result in the learning of gene
functional semantics and regulatory syntax (e.g. operons). Here, we report evidence of the learned
contextualized protein embeddings and attention patterns capturing biologically relevant information.
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Figure 2: Contextualization of enzyme function. A) Linear probe EC classification accuracy for pLM
(ESM2) representations and gLM (1st hidden layer) representations. B) F1-score comparisons of
statistically significant (Benjamini/Hochberg corrected p-value < 0.05) differences in performance of
pLM- and gLM-based EC number linear probes. EC classes are ordered with the largest gain with
contextualization on the left to the largest loss with contextualization on the right. C) Precision-Recall
curves of pLM- and gLM-based EC number linear probes.

2 Methods

2.1 Masked language modeling of genomic sequences

To model genomic sequences, we trained a 19-layer transformer model (Fig. 1A) on seven million
metagenomic contig fragments consisting of 15 to 30 genes from the MGnify Richardson (2023)
database. Each gene in a genomic sequence is represented by a 1280 feature vector (context-free
protein embeddings) generated by using ESM2 pLM Rives (2021), concatenated with an orientation
feature (forward or backward). For each sequence, 15% of genes are randomly masked, and the
model learns to predict the masked label using the context. Based on the insight that more than
one gene can legitimately be found in a particular genomic context, we allow the model to make
four different predictions and also predict their associated probabilities. Thus, instead of predicting
their mean value, the model can approximate the underlying distribution of multiple genes that can
occupy a genomic niche We assess the model’s performance using a pseudo-accuracy metric, where a
prediction is considered correct if it is closest to the masked protein in euclidean distance compared
to the other proteins encoded in the sequence. Training and inference code and analysis scripts are
available at https://github.com/y-hwang/gLM.

3 Results

3.1 Model performance

We validate our model’s performance on the Escherichia coli K-12 genome by excluding from training
5.1% of MGnify subcontigs in which more than half of the proteins are similar (>70% sequence
identity) to E. coli K-12 proteins. The goal here is not to remove all E. coli K-12 homologs from
the training, which would have removed a vast majority of training data as many essential genes are
shared across organisms. Instead, our goal was to remove as many E.coli K-12-like genomic contexts
(subcontigs) from training, which is more appropriate for the training objective. gLM achieves 71.9%
in validation pseudo-accuracy and 59.2% in validation absolute accuracy. Notably, 53.0% of the
predictions made during validation are with high confidence (with prediction likelihood > 0.75), and
75.8% of the high confidence predictions are correct, indicating gLM’s ability to learn a confidence
metric that corresponds to increased accuracy. We baseline our performance with a bidirectional
LSTM model trained using the same language modeling task on the same training dataset, where
validation performance plateaus at 28% pseudo-accuracy and 15% absolute accuracy.

3.2 Contextualization improves enzyme function prediction

To test the hypothesis that the genomic context of proteins can be used to aid function prediction,
we evaluated how contextualization can improve the expressiveness of protein representations for
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Figure 3: Attention analysis. A) Correlation coefficients (Pearson’s rho) between attention heads
across layers and operons. Darker color corresponds to stronger correlation with previously identified
operons. Attention patterns of the second layer-seventh head [L2-H7] is most strongly correlated
with the operons. B) Three random examples of contigs and predicted operonic relationship between
neighboring proteins. Proteins are listed in the order they are encoded in the contig. Ground truth E.
coli K-12 operons (top row), raw attention scores in the attention head [L2-H7] most correlated with
operons (middle row) and logistic regression prediction using all attention heads (last row) where
false positive predictions are marked in red. C) Five-fold cross-validation precision-recall curves of
logistic regression trained using all operons and attention heads.

enzyme function prediction. First, we generated a custom MGYP-EC dataset where the train and
test data were split at 30% sequence identity for each EC class Yu (2023). Second, we apply a linear
probe (LP) to compare the expressiveness of representations at each gLM layer, with and without
masking the queried protein (Extended Data 8). By masking the queried protein, we can assess gLM’s
ability to learn functional information of a given protein, only from its genomic context, without the
propagation of information from the protein’s pLM embeddings. We observed that a large fraction of
contextual information pertaining to enzymatic function is learned in the first six layers of gLM. We
also demonstrate that context information alone can be predictive of protein function, reaching up to
24.4 ± 0.8% accuracy. In contrast, without masking, gLM can incorporate information present in
the context with the original pLM information for each queried protein. We observed an increase in
expressivity of gLM embeddings also in the shallower layers, with accuracy reaching up to 51.6 ±
0.5% in the first hidden layer. This marks a 4.6 ± 0.5% increase from context-free pLM prediction
accuracy (Fig. 2A) and mean average precision (Fig. 2C) Thus, we demonstrate that information
that gLM learns from the context is orthogonal to information captured in pLM embedding. We also
observed diminishing expressivity in enzyme function information with deeper layers of gLM; this
reflects the masked pretraining objective that is independent of enzyme function prediction task and
is consistent with previous examinations of LLMs, where specific layers perform better than others
for downstream tasks. Finally, to further examine the expressiveness of these representations, we
compared per-class F1 score gains (Fig. 2B). We observe statistically significant differences in F1
scores (t-test, Benjamini/Hochberg corrected p-value < 0.05) between the two models in 36 out of
73 EC classes with more than ten samples in the test set. Majority (27 out of 36) of the statistical
differences resulted in improved F1 score in LP trained on gLM representations.
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3.3 Transformer’s attention captures operons

The transformer attention mechanism models pairwise interaction between different tokens in the
input sequence. Previous examinations of the attention patterns of transformer models in natural
language processing (NLP) Rogers et al. (2020) have suggested that different heads appear to
specialize in syntactic functions. Subsequently, different attention heads in pLMs Vig (2020) have
been shown to correlate to specific structural elements and functional sites in a protein. For our
gLM, we hypothesized that specific attention heads focus on learning operons, a “syntactic” feature
pronounced in in microbial genomes where multiple genes form regulatory modules. We used the
E.coli K-12 operon database Salgado (2018) consisting of 817 operons for validation. gLM contains
190 attention heads across 19 layers. We found that heads in shallower layers correlated more
with operons (Fig. 3A), with raw attention scores in the 7th head of the 2th layer [L2-H7] linearly
correlating with operons with 0.44 correlation coefficient (Pearson’s rho, Bonferroni adjusted p-value
< 1E-5) (Fig. 3B). We further trained a logistic regression classifier using all attention patterns across
all heads. This classifier predicted the presence of an operonic relationship between a pair of proteins
in a sequence with mean average precision of 0.77 (Fig. 3C).

4 Discussion

The unprecedented amount and diversity of metagenomic data, coupled with advances in deep
learning presents an exciting opportunity for building a large computational model that can learn
hidden patterns and structures of biological systems. Such a model builds upon the conceptual and
statistical frameworks that evolutionary biologists have developed for the past century. The work
presented here demonstrates the concept of genomic language modeling. Our implementation of
the masked genomic language modeling illustrates the feasibility of training, evidence of biological
information being captured in learned contextualized embeddings, and meaningful interpretability of
the attention patterns.

One of the most powerful aspects of the transformer-based language models is their potential for
transfer learning and fine-tuning. Promising future directions for applying gLM for advancing
biological research include: 1) Fine-tuning gLM for the protein-protein-interactome prediction
task, 2) Using gLM features to encode genomic contexts as additional input for improved and
contextualized protein structure predictions. Genomic language modeling presents an avenue to
bridge the gap between atomic structure and organismal function, and thereby bringing us closer to
genomically engineering organisms.
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