
R2R: Efficiently Navigating Divergent Reasoning
Paths with Small-Large Model Token Routing

Tianyu Fu∗1,2, Yi Ge∗1, Yichen You1, Enshu Liu1, Zhihang Yuan2,
Guohao Dai3,2, Shengen Yan2, Huazhong Yang1, Yu Wang† 1

1Tsinghua University 2Infinigence AI 3Shanghai Jiao Tong University

Abstract

Large Language Models (LLMs) achieve impressive reasoning capabilities at the
cost of substantial inference overhead, posing substantial deployment challenges.
Although distilled Small Language Models (SLMs) significantly enhance efficiency,
their performance suffers as they fail to follow LLMs’ reasoning paths. Luckily,
we reveal that only a small fraction of tokens genuinely diverge reasoning paths
between LLMs and SLMs. Most generated tokens are either identical or exhibit
neutral differences, such as minor variations in abbreviations or expressions. Lever-
aging this insight, we introduce Roads to Rome (R2R), a neural token routing
method that selectively utilizes LLMs only for these critical, path-divergent tokens,
while leaving the majority of token generation to the SLM. We also develop an
automatic data generation pipeline that identifies divergent tokens and generates
token-level routing labels to train the lightweight router. We apply R2R to combine
R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challeng-
ing math, coding, and QA benchmarks. With an average activated parameter size of
5.6B, R2R surpasses the average accuracy of R1-7B by 1.6×, outperforming even
the R1-14B model. Compared to R1-32B, it delivers a 2.8× wall-clock speedup
with comparable performance, advancing the Pareto frontier of test-time scaling
efficiency. Our code is available at https://github.com/thu-nics/R2R.

1 Introduction

Large Language Models (LLMs) demonstrate strong capabilities across a wide range of tasks [1–3].
Building upon the largest and strongest LLMs, test-time scaling has become a prominent way to
further boost their abilities on challenging tasks [4–7]. It is typically done by generating extensive
Chain-of-Thought (CoT) reasoning before producing the final answer. However, this approach
requires massive LLMs with hundreds of billions of parameters to generate thousands of tokens per
query [8], resulting in significant inference overhead [9].

Distilled Small Language Models (SLMs), containing only a few billion parameters, offer much
higher generation efficiency. Through supervised finetuning on LLM responses, SLMs can mimic
LLM reasoning behaviors, making them a popular alternative. However, SLMs may still produce
different reasoning paths from their LLM counterparts during inference, causing severe performance
degradation. For example, compared to the R1-32B LLM, the R1-1.5B SLM provides different final
answers on 45% questions in the AIME benchmark [10], suffering a 4.8× reduction in accuracy as
shown in Table 2.

∗Equal contribution.
†Corresponding author: Yu Wang (yu-wang@tsinghua.edu.cn).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/thu-nics/R2R

99992 is hard, rewrite it...Okey, let’s think step by step...

Compute 99992 - 9998×1000.question:

LLM:

99992 is 999801...Okey, let us think step by step...SLM:

neutral divergentidentical✔ ✔ ✘

89%

5%

6%
11%
differentidentical

neutral

divergent

(a) (b)

Figure 1: (a) Examples of R2R routing objective. Given a partial response as context, if SLM
next-token prediction is not identical with LLM’s, it is further categorized as neutral or divergent
based on their effects on the reasoning path. (b) Distribution of identical, neutral and divergent labels
in the R2R training set with 7.6M token labels.

Fortunately, we find that SLMs and LLMs often agree on next-token predictions given the same
context. Instead, large performance gaps between them primarily arise from cumulative errors:
their reasoning paths increasingly drift apart after some crucial differences in partial responses. To
investigate this, we treat each step’s LLM partial response as a prefix context and assess whether the
next-token prediction from SLM is identical to LLM (Figure 1(a)). Across 2,094 queries totaling
7.6M tokens generated by the 32B LLM, the 1.5B SLM differs on only 11% of tokens—far less
frequent than differences observed in final answers. Moreover, some of these differences are merely
neutral variations, such as abbreviations or alternative expressions (e.g., let’s vs. let us), which
do not affect reasoning outcomes. The key drifts start from a subset of different tokens, which we
call divergent tokens. These tokens genuinely alter the meaning, logic, or conclusion of the current
sentence, thus diverging the subsequent reasoning path. This observation motivates us to selectively
use SLM and LLM for different generation steps. It naturally leads to a critical research question:

Can SLMs follow LLM reasoning paths by replacing only divergent tokens?

If addressed, we could unlock substantial efficiency advantage of SLMs for most generation steps,
yet preserving the high-quality reasoning typical of LLMs. This can enable better test-time scaling
by advancing the efficiency-performance Pareto frontier.

The main challenge of SLM-LLM mix inference involves two interconnected parts: labeling the
preferred model under certain objective, and designing the routing scheme to enforce it during
inference. Previous methods typically route at the query level, selecting either SLM or LLM for
entire response to maximize human preference win-rate within a cost budget [11, 12]. However,
these approaches rely on human annotations and complex router designs, whose data labeling and
routing scheme are both too expensive for fine-grained, token-level routing. Alternatively, speculative
decoding methods aim for identical outputs between SLM and LLM at the token level [13–16]. They
draft outputs with SLMs (or draft models) and periodically verify them with LLMs. While accurate,
this strict verification leads to low acceptance rates. Additionally, mid-draft differences invalidate all
subsequent tokens, severely restricting the accepted lengths as shown in Figure 2(b).

To address these challenges, we propose Roads to Rome (R2R), a token-level routing method
that selectively utilizes LLMs only for path-divergent tokens during SLM generation. We begin by
automating token-level model preference labeling under a path-following objective. Starting from
the LLM’s reasoning paths, we identify different predictions for SLM and LLM, briefly continue
generation from the point of difference, then use another LLM as verifier to determine whether the
difference is truly divergent or merely a neutral variation. This labeling approach minimizes the
lower bound of LLM usage by allowing neutral SLM-LLM differences. Using the resulting labeled
dataset, we train a lightweight neural router to predict and immediately route divergent SLM tokens
to the LLM for correction. We further improve routing accuracy by identifying predictive indicators
of divergence such as SLM uncertainty and token rarity, available directly during SLM inference.
Our contributions are summarized as follows.

• Data Labeling Pipeline. We develop an automatic pipeline to label divergent tokens. We
formalize the global token-routing optimization problem, then propose a path-following
strategy to generate routing labels with highly parallel, local decisions. We validate that
SLM can effectively match LLM reasoning quality by following these routing labels.

• Token-Router Design. We introduce a token-level routing scheme using a lightweight
neural router. We investigate SLM outputs that aid accurate token routing and incorporate
them into the router, enabling immediate and more accurate routing of divergent tokens.

2

SLM:

LLM:

output:

It’s 99 It’s 9998

It’s hard It’s 9998✘
hard

It’s 999801

It’s 999801✘
It’s 99 It’s hard,

It’s hard
✔

It’s

hard

It’s hard, re

re

✔

input: It’s(a) (b)

,

It’s hard, rewrite

write

✔ It’s 999801.

It’s 999801.✘

Figure 2: (a) R2R uses neural router to inspect SLM outputs at each step, immediately corrects
divergent tokens with LLM, then continues generation from the corrected outputs. (b) Speculative
decoding uses LLM to periodically verify if SLM outputs are identical to LLM predictions, invali-
dating all tokens after the first correction within the period.

• Performance-Efficiency Pareto Frontier. R2R enables more efficient performance scaling
at test time. Compared to query-level routing and distilled R1-14B, it delivers 1.1–1.5×
higher AIME accuracy with 1.5–1.6× lower latency. R2R also provides a 2.8× wall-clock
speedup over R1-32B LLM at similar accuracy, while raising R1-1.5B SLM accuracy by
4.6× with only 12.9% LLM usage.

2 Related Work

Test-time scaling improves LLM performance at the higher cost of inference, often through the explicit
generation of the CoT reasoning paths [4, 6]. For more effective scaling, previous works optimize the
length and width of reasoning paths, or reduce the generation overhead of each path [17, 18].

Controlling reasoning paths. Some approaches reduce LLM output lengths. They employ
prompting [19], post-training [20], or heuristics [21] to generate concise CoT with fewer decoding
steps [19, 21]. Others explore the width of paths. They let LLMs generate multiple reasoning paths in
parallel, then select the best outcome with methods like best-of-N voting [22] or external verifiers [23].
Both strategies modify the structure of reasoning paths, which are perpendicular to R2R’s focus on
reducing the overhead of each path.

Model routing. Model routing reduces generation cost by selecting the most suitable model for each
query based on difficulty and budget. Current works explore selection criteria of learned human
preferences [11], reward signals [24], query tags [25], and model profiles [12]. Despite simplicity,
they enforce the same LLM for each response, yielding suboptimal performance for the common
mixed-difficulty generations. In contrast, R2R routes at token level to further improve efficiency.

Speculative decoding. Speculative decoding accelerates generation by fixing the low parallelism in
LLM decoding [13–16]. It drafts outputs through SLM sequential decoding, then periodically verifies
them with high-parallel LLM prefilling. However, speculative decoding pursues identical output
token (distribution) between SLM and LLM, causing low acceptance rate. In addition, it is often
that not all tokens generated by SLM within one draft-verify cycle can pass LLM verification. The
mid-draft rejection invalidates all subsequent drafts and LLM verifications as shown in Figure 2(b),
leading to frequent rollbacks. Expanding the single draft-chain to draft-tree alleviates the problem,
but also incurs higher overheads that harm batch serving efficiency [16]. Considering the internality
of CoT process, R2R accepts neutrally different output tokens, and immediately corrects all divergent
tokens to avoid any rollback.

3 Model Preference Labeling

In Section 3.1, we formalize the token-level routing problem, aiming to minimize generation cost
without sacrificing response quality. In Section 3.2, we introduce the path-following strategy for this
problem, which assigns model preference labels to each output token, and empirically validate its
effectiveness.

3

3.1 Token-level Routing Formulation

For autoregressive language models, reasoning can be represented as a sequence of next-token
predictions. Throughout this paper, we focus on greedy sampling for simplicity:

yi = argmax
y
Pmi(y|x0, . . . , xn−1, y0, . . . , yi−1) = argmax

y
Pmi(y|S<i). (1)

Here, xi and yi denote the input and output tokens, respectively. For notational simplicity, we define
the token sequence at step i as S<i = [x0, . . . , xn−1, y0, . . . , yi−1], where S<0 is the input tokens.
The next-token probability Pmi is predicted by model mi ∈ {θs, θl} at step i, where θs and θl denote
the SLM and LLM, respectively.

The essence of the routing strategy is to define a routing functionR that selects the model for each
decoding step:

mi = R(S<i, θs, θl) (2)
Our objective is to minimize the total generation cost while ensuring that the output sequence matches
the quality of LLM-only outputs. We define the cost C as the sum of activated model parameters
per token over the entire generation process. The quality of a response is evaluated by task-specific
criteria, such as correctness for math problems, pass rates for coding tasks, or LLM-based grading
for writing tasks. We define V as the verifier function, which returns 1 if and only if two sequences
are of equivalent quality.

3.2 Path-following Routing Strategy

Optimally solving the token-level routing problem is computationally prohibitive, especially for
large-scale data generation. While better routing sequences—potentially diverging from the LLM’s
reasoning path—may exist, finding them requires exhaustively searching a vast O(2n) space and
generating thousands of output tokens for each search.

To overcome this practical limitation, we propose a greedy, sentence-level path-following routing
strategy that reduces the search complexity to O(n). Rather than exploring all possible model choices,
our approach incrementally aligns mixed-model generation with the reasoning path established by
the LLM. At each generation step, the strategy prefers the efficient SLM unless this would cause a
meaningful divergence from the LLM’s intended reasoning path, as determined by a continuation-
and-verification mechanism.

Specifically, at each step, we first compare the next-token predictions from the SLM and LLM. If the
predictions are identical, we confidently select the SLM, as this does not affect the output sequence.
When predictions differ, we must determine whether the difference is neutral or divergent. To do
so, we construct two candidate sequences by appending predictions from SLM and LLM to the
previous token sequence, respectively. Both sequences are then continued using the LLM until a
stopping criterion is met (e.g., EOS token is generated). These continuations reveal how the initial
token difference affects subsequent reasoning, measured under optimal yet achievable conditions
(i.e., LLM-only continuation). If the first continuation still matches the quality of the second under
the verifier function V , the difference is considered neutral; otherwise, it is divergent and the token is
routed to the LLM.

mi =


θs, yi(θs|S<i) = yi(θl|S<i)︸ ︷︷ ︸

identical

or V(Ss,Sl) = 1︸ ︷︷ ︸
neutral

θl, V(Ss,Sl) = 0︸ ︷︷ ︸
divergent

(3)

Ss = S<i ⊕ [yi(θs|S<i)]︸ ︷︷ ︸
SLM token

⊕ [yi+1(θl|S<i ⊕ [yi(θs|S<i)]), . . . ,EOS]︸ ︷︷ ︸
LLM continuation

(4)

Sl = S<i ⊕ [yi(θl|S<i)]︸ ︷︷ ︸
LLM token

⊕ [yi+1(θl|S<i ⊕ [yi(θl|S<i)]), . . . ,EOS]︸ ︷︷ ︸
LLM continuation

(5)

Equations 3–5 formalize the routing strategy. Here, yi(mi|S<i) indicates that this output token is
generated by model mi given the previous sequence S<i, as a simplified expression of Equation 1.
The continuation sequences, respectively generated after SLM and LLM token, are denoted by Ss
and Sl. The operator ⊕ indicates concatenation of token sequences.

4

Table 1: Statistics of tokens difference and divergence across query types in the training dataset.

Type #Query #Token #Different Diff. Rate #Divergent Div. Rate
Math 587 2.9M 195.1K 6.8% 81.8K 2.8%
Code 698 3.2M 329.0K 10.3% 151.9K 4.7%
QA 735 1.4M 290.8K 20.2% 139.4K 9.7%

Summary 2094 7.6M 814.9K 10.8% 373.1K 4.9%

When continuation produces the full response by stopping only at the regular EOS token, we call
this full path-following routing. By using the quality verifier from Section 3.1, the mixed-generated
token sequence is guaranteed to achieve the same quality as its LLM-only counterpart, as it always
remains on a path that could achieve LLM-only quality. The formal proof of this quality guarantee is
provided in Appendix E. While the resulting model choice sequence M<i = [m0 . . .mi−1] can be
used as labels for router training, full continuation is computationally expensive for large-scale data
generation. In addition, the effect of current difference to the final output quality thousands of tokens
away is too hard to learn for the neural router to be trained.

In practice, we use sentence-level path-following routing, where the continuation ends at the current
sentence, as shown in Figure 3 (step 2). We monitor sentence-ending symbols, like period, during
continuation and use existing semantical sentence separators [26, 27] to conclude generation if the
sentence truly ends. To verify this local continuation, a capable LLM serves as a sentence-level
verifier V ′, as shown in Figure 3 (step 3). It is prompted to compare the continuations and determine
whether the initial token difference introduces a meaningful divergence from the LLM’s intended
reasoning path, or merely a neutral abbreviation. Instead of verifying the entire generation, this
approach checks the reasoning path at the sentence level, greatly improving data labeling efficiency.

We empirically validate the effectiveness of sentence-level path-following routing using Qwen2.5-
72B [28] as the verifier model, with prompts detailed in Appendix F.1. Among 17 AIME-24
questions correctly solved by R1-32B within an 8K-token limit, our path-following strategy achieves
comparable accuracy (16 questions correctly answered) while relying on the larger R1-32B model
for only 3% of generated tokens.

By locally evaluating token choices through sentence-level path-following routing, we closely align
mixed inference with the LLM’s high-quality reasoning path, eliminating the prohibitive overhead of
global evaluations. However, direct use of this strategy for real-time inference is impractical, as it
relies on costly LLM continuation and verification. Instead, the local nature of our strategy simplifies
routing decisions, creating an easier learning task for a neural router compared to global routing.
We therefore design and train a lightweight neural router that efficiently approximates this strategy,
relying solely on SLM outputs to determine when to use the LLM during inference.

4 Token-Level Neural Router

This section describes our methodology for constructing the neural router. Specifically, we detail how
routing labels are generated for training using the sentence-level path-following strategy (Section 4.1),
identify predictive SLM indicators for the router (Section 4.2), and outline the neural router’s
architecture along with its routing scheme for inference deployment (Section 4.3).

4.1 Training Data Generation

We use sentence-level path-following routing to generate training labels for the neural router, incor-
porating several optimizations to control data labeling overhead.

Figure 3 shows our data generation pipeline. Given queries from existing datasets, we first obtain the
complete LLM response, either directly from the dataset or via batched LLM inference. Next, we use
highly parallel SLM prefilling to efficiently identify tokens where the SLM prediction is identical to
the LLM, allowing us to exclude about 90% of tokens from further processing. For the remaining
10% of differing tokens, we perform batched LLM continuations from each SLM prediction. To
further improve efficiency, we apply prefix caching in current frameworks [29, 30] to reuse KV-Cache

5

step0:
LLM response

Compute 99992 - 9998×1000.

step1:
SLM prefill

Let ’s think step by step . 99 99 2 is hard , re write it

Let us think step by step . 99 99 2 is 99 , re write it

step2:
LLM continuation

query

Let us

Let ’s think step by step . 99 99 2 is 99

step3:
verify

Let’s think step by stepVerify and Let us think about it step by step neutral
99992 is hard, rewrite itVerify and 99992 is 999801 divergent

think about it step by step.
9801.

SLM SLM SLM SLM SLM SLM SLM SLM SLM SLM SLM LLM SLM SLM SLM SLMoutput label

① ②

①
②
①
②

different different

Figure 3: R2R data labeling pipeline. Given a query question, the LLM first generates a response to
establish the desired reasoning path. The SLM then prefills this path to identify identical and different
next-token predictions. For each different SLM token, the LLM continues generation from that point.
Finally, a verifier model determines whether each difference leads to a neutral or divergent outcome,
labeling the model preference as SLM or LLM, respectively.

0 1 2 3 4
Entropy

0

20

40

60

Pe
rc

en
ta

ge
 (%

)

Average:
0.45

Average:
1.70

Data Type
Divergent
Non-Divergent

10 6 10 5 10 4 10 3 10 2

Token Frequency (#Occurrence/#Total Token)

0
20
40
60
80

100

Di
ve

rg
en

ce
 R

at
e

(%
)

Data Type
Math
Code
QA

Figure 4: Oracle insights for router design. (a) SLM entropy distribution, clipped at 99th percentile
for visualization clarity (b) Divergence rate and frequency of different tokens.

computations for shared context prefixes across multiple continuations (e.g., everything preceding
Let in Figure 3). Continuations for the corresponding LLM tokens, S(θl), are directly extracted from
the pre-generated LLM response, eliminating redundant computation. Finally, the verifier model
compares both continuations and label routing preference. Further analysis of the robustness of the
verifier and the comparison to human experts are provided in Appendix B.1.

Using this pipeline, we efficiently generate 7.6 million routing labels in approximately 2.3 days on 8
A800 GPUs, covering topics of math, coding, and QA with queries from the Bespoke-Stratos [31]
dataset. Table 1 summarizes the statistics of the generated training dataset.

4.2 Predictive Indicators of Divergence

We explore predictive indicators that can help identify divergent tokens. To enable immediate routing,
we focus on indicators that can be acquired solely during the SLM’s next-token predictions. The
following analysis is based on 7.6 million tokens in our training set.

SLM logits. As shown in Figure 4(a), divergent tokens exhibit substantially higher entropy in the
SLM’s output logits, with a 3.8× mean value over that of non-divergent tokens. We observe similar
trends with other uncertainty measures [32], and concurrent work [33] also confirms such observation.
These empirical results indicate that increased uncertainty in SLM predictions is strongly correlated
with token divergence. Motivated by this, our router takes top-100 SLM logit values as one of its
input features.

Token frequency. Figure 4(b) shows that low-frequency tokens in the dataset are more likely to be
divergent. This likely arises from the long-tail token distribution in the training data, making rare
tokens harder for SLMs to model effectively due to the limited capacity [34]. Given this insight,
our router explicitly incorporates token-frequency biases by using the token embedding of as router
inputs.

6

4.3 Router Design and Routing Scheme

Model architecture. Guided by insights in Section 4.2, we design the neural router as a lightweight,
six-layer feed-forward network (FFN) with 56M parameters. It takes the SLM’s output logits and
tokenized embedding, along with its last-layer hidden states for additional semantic context. All
inputs are linearly projected, concatenated, and fed into the FFN backbone. The router outputs
a binary classification probability, indicating whether the current token diverges from the LLM’s
reasoning path. Full network architecture detail descriptions are in Appendix A.1.

Training scheme. We train the router with cross-entropy loss using the labeled data described in
Section 4.1. To address class imbalance caused by the low divergence rate, we re-weight the loss
inversely to class frequency. After training, we use the validation set to select the routing threshold
that meets the user-defined LLM usage rate. The full training details are provided in Appendices A.3
and A.2.

Routing scheme. Unlike speculative decoding methods that periodically verify SLM outputs, our
routing scheme aims to immediately decide whether to accept each SLM token, eliminating the need
for rollbacks. As shown in Figure 2, this approach reduces unnecessary draft and verification compu-
tations, which is especially beneficial in computation-intensive batch-serving scenarios. Specifically,
the neural router estimates divergence probability at each generation step using SLM outputs. When
this probability exceeds a predefined threshold pth, the LLM is invoked to correct the current output
token. Following speculative decoding methods [13, 15], we utilize highly parallel prefilling for
efficient LLM KV-Cache updates, whose overhead can be further reduced by overlapping them with
SLM decoding [35].

5 Experiment

5.1 Setup

Baselines. We use DeepSeek-R1-Distill-Qwen models as baselines, denoted by R1-MB, where
M indicates the model size in billions. We designate R1-1.5B and R1-32B as SLM and LLM,
respectively, while intermediate sizes (7B, 14B) capture distillation scaling behavior. We compare
various query-level routing (QR) methods from the RouteLLM framework [11], including similarity-
weighted ranking (QR-SW), matrix factorization (QR-MF), a BERT-based classifier (QR-BERT),
and a Llama3-8B-based classifier (QR-LLM). For speculative decoding, we adopt EAGLE2 [14] and
HASS [15] with R1-32B LLM. We use the official HASS draft model, and train the EAGLE2 draft
model using its official script, as no pre-trained EAGLE2 draft is provided for R1-32B.

R2R setup. R2R routes between R1-1.5B and R1-32B using a lightweight 56M-parameter FFN
router, trained on 7.6M token-level routing labels described in Section 4.1. More details on router
architecture, training data, hyperparameters, and implementation are presented in Appendix A. Note
that the router weights are fixed for all evaluations. The routing threshold pth is selected for 6B
average parameter usage on the validation set. Performance-efficiency trade-offs are controlled solely
by adjusting pth, without retraining the router.

Benchmark. We evaluate methods across challenging reasoning benchmarks, including mathe-
matics (AIME 2024–2025 [10]; denoted as AIME), graduate-level question-answering (GPQA-
Diamond [36]; denoted as GPQA), and coding tasks (LiveCodeBench 2024-08–2025-01; denoted
as LiveCodeBench [37]). All experiments use a maximum output length of 32K tokens and zero
generation temperature to ensure reproducibility.

Efficiency metric. Following previous works [2, 38], we use the average activated parameters per
token as a hardware-agnostic efficiency metric, referred to as the average parameter (M̄) for brevity.
For query-level routing, M̄ is computed as the weighted average of SLM and LLM parameters based
on their activation ratios across all outputs. For R2R, M̄ includes the SLM and router parameters,
along with the LLM parameters weighted by the LLM activation ratio. We also report the total Cost
(C), defined as average activated parameters multiplied by the average output tokens per query. The
average parameter and total cost reflect the average decoding speed and total latency, respectively.
In addition, we report hardware-specific decoding speed on NVIDIA A800-80GB GPUs using
SGLang [29] framework.

7

1.5 7.0 14.0 32.0
Activated Parameters Per Token (B)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

AIME

Ours
Distill
QR-MF
QR-BERT
QR-LLM
QR-SW
SLM
LLM

1.5 7.0 14.0 32.0
Activated Parameters Per Token (B)

0

10

20

30

40

50 LiveCodeBench

1.5 7.0 14.0 32.0
Activated Parameters Per Token (B)

0

10

20

30

40

50 GPQA

Figure 5: Scaling of accuracy versus average activated parameters per token, evaluated across AIME,
GPQA, and LiveCodeBench. R2R advances the Pareto frontier beyond distillation and query-level
routing methods.

Table 2: Performance and efficiency comparison across benchmarks and methods. Param. denotes
the average activated parameters per token in billions; Cost is the average output tokens (thousands)
per query multiplied by average parameters (billions) .

AIME LiveCodeBench GPQA Average

Type Method Acc. Param. Cost Acc. Param. Cost Acc. Param. Cost Acc. Param. Cost

SLM R1-1.5B 12% 1.5 42 9% 1.5 43 8% 1.5 42 10% 1.5 42
LLM R1-32B 57% 32.0 487 45% 32.0 606 46% 32.0 519 50% 32 537

7B

R1-7B 32% 7.0 148 24% 7.0 168 29% 7.0 147 28% 7.0 154
QR-SW 27% 7.2 168 16% 7.1 188 16% 7.1 179 20% 7.1 178
QR-LLM 27% 7.1 170 13% 7.1 195 19% 7.0 172 20% 7.1 179
QR-BERT 28% 7.1 160 15% 7.0 189 21% 7.0 169 21% 7.0 173
QR-MF 27% 7.5 168 16% 7.1 190 16% 7.1 181 20% 7.2 180

14B

R1-14B 48% 14.0 239 38% 14.0 267 44% 14.0 197 43% 14.0 234
QR-SW 37% 14.5 295 27% 14.0 333 25% 14.1 318 30% 14.2 315
QR-LLM 45% 14.8 277 21% 14.1 356 28% 14.1 299 31% 14.3 311
QR-BERT 37% 14.0 280 25% 14.0 342 29% 14.1 297 30% 14.0 306
QR-MF 42% 14.7 284 25% 14.0 336 20% 14.2 338 29% 14.3 319

R2R Ours 55% 5.5 101 39% 5.1 106 44% 6.3 101 46% 5.6 103

5.2 Performance

Scaling behavior. Figure 5 shows accuracy scaling with average activated parameters per token.
Query-level routing (QR) methods exhibit near-linear accuracy scaling from 1.5B to 32B parameters.
Distilled models (R1-7B, R1-14B) achieve superlinear gains with extensive training, reaching 88%
of R1-32B’s accuracy with just 50% of the parameter size at 14B. By routing only divergent tokens
to the LLM, R2R achieves 92% average accuracy with only 17% average parameters, delivers even
better scaling at a new Pareto frontier. Moreover, due to reduced output lengths, R2R offers an even
better trade-off in terms of accuracy versus total test-time cost C (see Appendix B.7). The routing
threshold in R2R also enables flexible, post-training control of this trade-off.

Numerical comparison. Table 2 shows numerical details of model performance around average
parameter sizes of 7B and 14B. With an average parameter size of 5.6B, R2R outperforms the best
query-level routing methods (in both 7B and 14B) by 1.4–2.4× and 1.2–1.4×, respectively. Compared
to distilled models, R2R improves accuracy by 1.4–1.7× over R1-7B and even surpasses R1-14B
in average accuracy by 1.1×. Relative to the extremes, R2R achieves 4.6× higher accuracy than
R1-1.5B and retains 92% of R1-32B’s accuracy, while using the LLM for only 11–15% of tokens.

Generalizability. Beyond the R1 family, we further train and evaluate R2R on the Qwen3 series
(both dense and MoE variants) spanning 0.6B, 1.7B, 8B, 30B-A3B, and 32B parameter scales. Across
all configurations, R2R consistently surpasses both the base Qwen3 models and query-level routing
baselines, demonstrating strong adaptability and cross-architecture generalization. We also evaluate
on Arena-Hard (dialogue) and MMLU-Redux-Philosophy benchmarks, which are beyond the selected
mathematical reasoning, QA, and code generation tasks. Remarkably, R2R continues to outperform

8

Method #Token(K) Latency(s) Speed(tok/s)
R1-1.5B 28.2 ±10.5 199 ±81 141.6

R1-14B 17.1 ±12.3 328 ±272 52.1
R1-32B 15.2 ±12.4 498 ±456 30.5

QR-SW 20.3 ±13.5 336 ±379 55.5
QR-LLM 18.7 ±13.5 332 ±334 56.1
QR-BERT 19.9 ±13.2 350 ±367 57.0
QR-MF 19.3 ±13.3 347 ±359 55.6

Eagle2 17.4 ±13.1 244 ±194 71.4
HASS 18.8 ±12.9 256 ±197 73.3

Ours 18.4 ±13.5 218 ±161 84.3

Table 3: Comparison of latency, output token
length, and average speed across methods. Sub-
scripts note the standard deviations across AIME.

(a)

(b)

Figure 6: LLM usage rate at different posi-
tions, normalized by (a) thinking and reply
process, (b) each thought.

R1-14B while maintaining an average activated parameter size of only 6.1–6.7B, confirming its robust
generalization across domains and model families (see Appendix B.2.2).

Sampling method extension. Beyond greedy decoding, we extend R2R to nucleus (top-p = 0.95)
with temperature (temperature = 0.6). R2R still greatly advances Pareto frontier, with 1.4-1.5x higher
AIME score over query-level routing, reaching R1-14B score with only 8.6B average parameters.
Implementation details and theoretical analysis are provided in Appendix C.1.

5.3 Efficiency

Wall-clock speedup. Table 3 reports the wall-clock latency and speed for all methods on the AIME
benchmark. All baselines use the official, highly efficient SGLang [29] framework and are evaluated
with tensor parallelism on two NVIDIA A800-80GB GPUs. R2R uses the same thresholds as
in Table 2; query-level routing methods use the 14B version for comparable performance. R2R
achieves 1.62× and 2.76× generation speed over R1-14B and R1-32B, respectively. Compared
to query-level routing, R2R delivers 1.48–1.52× speedup. It also outperforms highly optimized
speculative decoding methods with tree-like drafts, which speedup mostly at the current single-batch
setup [16]. Further system-level optimization can be done to yield even greater gains for R2R. Note
that, in theory, speculative decoding should exactly match the R1-32B LLM’s output. However, we
occasionally observe inconsistencies for very long outputs, likely due to cumulative numerical errors.
We faithfully report this observation without questioning the equivalence guarantee of speculative
decoding.

Computation and memory access. Compared with the LLM baseline, R2R achieves a 5.4×
reduction in per-token memory access. The total computation increases only marginally due to the
additional SLM and router computation. Because decoding is largely memory-bound, the reduced
memory traffic yields higher throughput. This substantial reduction in memory traffic translates into
higher throughput that outweighs the minor compute overhead. Compared with speculative decoding
approaches such as Eagle2 and HASS, R2R requires about 17.0× less total computation, primarily
because its immediate correction prevents the LLM from repeatedly prefilling unused tokens during
periodic verification (see Figure 2). At the same time, it reduces memory access by 2.4–2.5× relative
to these speculative methods, yielding a more balanced compute–memory trade-off. More details are
provided in Appendix B.3.2.

5.4 Ablation Study

Starting from R2R in the first row of Table 4, we evaluate the effectiveness of our design by retraining
the router with alternative objectives or reduced inputs. We adjust the routing thresholds pth of
ablation variants to match or slightly exceed the LLM rate of our original router. All experiments are
conducted on the AIME benchmark with all other settings held constant. Further discussions on the
trade-off between the LLM usage rate and recall are provided in Appendix B.5.3.

9

Table 4: Ablation study on routing objectives and router inputs. HS denotes last-layer hidden states;
Token denotes token embedding. Recall denotes the recall rate of divergent token on the validation
dataset. Italicized words indicate ablation focuses.

Objective Router Input Acc. Recall LLM Rate #Token(K) Param.(B) Cost(KB) Latency(s)

Divergent HS+Token+Logits 55% 95% 12.4% 18.4 5.5 101 218

Different HS+Token+Logits 40% 88% 13.1% 21.0 5.7 119 228

Divergent HS+Token 47% 85% 13.3% 18.8 5.8 109 253
HS 42% 83% 14.1% 18.4 6.0 110 245

Routing objective. As discussed in Section 3, we categorize different next-token predictions as either
neutral or divergent. R2R improves efficiency by tolerating neutral differences and only routing truly
divergent tokens to the LLM. When the router is trained to use the LLM for all different tokens, it
fails to reach the original accuracy within the same amount of LLM usage, facing 1.4× accuracy
degradation, as shown in the second row of Table 4. This confirms that restricting LLM usage to only
divergent tokens is crucial for reducing cost while maintaining high accuracy.

Router input. As discussed in Section 4, both SLM logits and token embeddings are strong indicators
of divergence to be used as router inputs. When gradually remove these features, accuracy drops
by up to 1.3×, underscoring their importance. Note that while SLM logits can be computed from
last-layer hidden states within the router in principle. However, doing so requires the capacity of the
234M-parameter embedding layer, which exceeds the capacity of the 56M-parameter neural router.

SLM–LLM combination. We extend R2R to the Qwen3 family by fixing the LLM and varying
the SLM to form three combinations: Qwen3-0.6B+8B, Qwen3-1.7B+8B, and Qwen3-4B+8B. As
Figure 10 in Appendix B.5.3 shows, with the LLM fixed, smaller SLM delivers a better Pareto frontier.
It indicates that, when selecting SLM–LLM combinations, favoring a smaller SLM is often more
efficient for the same accuracy target due to lower cost. We further analyze R2R alongside orthogonal
techniques such as MoE and query-level routing in Appendix B.4.

5.5 Routing Result Observation

We analyze the routing behavior of R2R on the AIME benchmark, considering finished responses
within the 32K token limit. Figure 6(a) shows the LLM usage rate across response positions. Each
response is divided into the thinking process and the subsequent reply, with positions normalized to
[0, 1]. The subplot widths reflect their respective average lengths. The results show that R2R routes
noticeably fewer tokens to the LLM during the reply phase. It reflects the intuition that after internal
thinking, the reply itself is straightforward and less demanding.

Following prior work [21], we further segment the thinking process into sequential thoughts based on
tokens such as Wait and Alternatively. Figure 6(b) examines the LLM usage ratio within each thought.
It shows that R2R relies more on the LLM at the beginning and end of each thought. This aligns with
the expectation that the initial tokens set the direction for the thought, while the concluding tokens
determine whether to end the thought, branch into alternatives, or continue deeper reasoning. Notably,
these routing patterns are not hand-crafted but naturally emerge from router training. It helps R2R to
effectively allocate LLMs for more better test-time scaling.

6 Conclusion

We introduce R2R, a token-level router that lets an SLM track an LLM’s reasoning by correcting only
path-divergent tokens. We propose a path-following labeling strategy and identify predictive signals
that train a neural router for accurate token selection. On challenging benchmarks, R2R outperforms
R1-14B with less than 7B average parameters, boosts SLM performance by 4.6× with under 15%
LLM usage, and achieves a 2.8× wall-clock speedup over the LLM at comparable accuracy.

Limitations. Our routing strategy is chiefly tuned and tested for greedy sampling. While we have
validated R2R on a limited set of alternative sampling policies, broader exploration could improve
versatility. Further system-level optimizations are also needed to realize its full cost benefits.

10

Acknowledgments and Disclosure of Funding

This work was supported by National Natural Science Foundation of China (No. 62325405, 62104128,
U19B2019, U21B2031, 61832007, 62204164, 92364201), Tsinghua EE Xilinx AI Research Fund,
and Beijing National Research Center for Information Science and Technology (BNRist). We thank
Zinan Lin, Xuefei Ning, and Donglin Yang for their valuable discussions and suggestions. We
thank Chao Xiong for his support with the SGLang interface. We also thank all the support from
Infinigence-AI.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[3] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[4] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[5] OpenAI. Openai o3 and o4-mini system card, April 2025. URL https://cdn.openai.com/
pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.
pdf.

[6] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[7] Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.

[8] Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL
https://github.com/huggingface/open-r1.

[9] DeepSeek AI. Day 6: One more thing – deepseek-v3/r1 inference system overview. https://
github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/
day_6_one_more_thing_deepseekV3R1_inference_system_overview.md, 2025.
Accessed: 2025-05-03.

[10] Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

[11] Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In
The Thirteenth International Conference on Learning Representations, 2024.

[12] Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
In Proceedings of the International Conference on Learning Representations (ICLR), 2025.
URL https://openreview.net/forum?id=eU39PDsZtT. Poster presentation.

[13] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling
requires rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

[14] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of
language models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.

11

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://qwenlm.github.io/blog/qwen3/
https://github.com/huggingface/open-r1
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://github.com/deepseek-ai/open-infra-index/blob/main/202502OpenSourceWeek/day_6_one_more_thing_deepseekV3R1_inference_system_overview.md
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://openreview.net/forum?id=eU39PDsZtT

[15] Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized represen-
tations for speculative sampling. arXiv preprint arXiv:2408.15766, 2024.

[16] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference
acceleration of large language models via training-time test. arXiv preprint arXiv:2503.01840,
2025.

[17] Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

[18] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[19] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

[20] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[21] Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian
Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025.

[22] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2023.

[23] Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan,
Wenda Li, and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through
large-scale synthetic data. arXiv preprint arXiv:2405.14333, 2024.

[24] Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren
Zhou. Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv
preprint arXiv:2311.08692, 2023.

[25] Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie
Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. arXiv
preprint arXiv:2502.18482, 2025.

[26] Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint cs/0205028,
2002.

[27] Fengxiang Sun. jieba: Chinese text segmentation. https://github.com/fxsjy/jieba,
2013. Accessed: 2025-04-01.

[28] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[29] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2023.

[30] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[31] Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distil-
lation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

12

https://github.com/fxsjy/jieba

[32] Huan Ma, Jingdong Chen, Guangyu Wang, and Changqing Zhang. Estimating llm uncertainty
with logits. arXiv preprint arXiv:2502.00290, 2025.

[33] Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui
Chen, Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji
Song, Bowen Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority
tokens drive effective reinforcement learning for llm reasoning, 2025.

[34] Rodolfo Zevallos, Mireia Farrús, and Núria Bel. Frequency balanced datasets lead to better
language models. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 7859–7872, 2023.

[35] Yash Akhauri, Anthony Fei, Chi-Chih Chang, Ahmed F AbouElhamayed, Yueying Li, and
Mohamed S Abdelfattah. Splitreason: Learning to offload reasoning. arXiv preprint
arXiv:2504.16379, 2025.

[36] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023.

[37] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code, 2024.

[38] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[39] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[40] Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search, 2024. URL https://arxiv.org/abs/
2408.08152.

[41] Dongwon Jung, Wenxuan Zhou, and Muhao Chen. Code execution as grounded supervision for
llm reasoning, 2025. URL https://arxiv.org/abs/2506.10343.

[42] Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E.
Gonzalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard
and benchbuilder pipeline, 2024. URL https://arxiv.org/abs/2406.11939.

[43] Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
Claire Barale, Robert McHardy, Joshua Harris, Jean Kaddour, Emile van Krieken, and Pasquale
Minervini. Are we done with mmlu?, 2025. URL https://arxiv.org/abs/2406.04127.

[44] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[45] Fan Yang, Xinhao Yang, Hongyi Wang, Zehao Wang, Zhenhua Zhu, Shulin Zeng, and Yu Wang.
Glitches: Gpu-fpga llm inference through a collaborative heterogeneous system. In 2024 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2024.

[46] Wenheng Ma, Xinhao Yang, Shulin Zeng, Tengxuan Liu, Libo Shen, Hongyi Wang, Shiyao Li,
Ke Hong, Zhenhua Zhu, Xuefei Ning, Tsung-Yi Ho, Guohao Dai, and Yu Wang. Cd-llm: A
heterogeneous multi-fpga system for batched decoding of 70b+ llms using a compute-dedicated
architecture. ACM Trans. Reconfigurable Technol. Syst., October 2025. ISSN 1936-7406. doi:
10.1145/3771288. URL https://doi.org/10.1145/3771288. Just Accepted.

13

https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2506.10343
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.04127
https://doi.org/10.1145/3771288

[47] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models. ArXiv, abs/2404.14294,
2024.

[48] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[49] Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi
Wang, Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for
automatic large language model compression. arXiv preprint arXiv:2406.14909, 2024.

[50] Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. In International
Conference on Machine Learning (ICML), 2025.

[51] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda
Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and
natively trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

[52] Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran
He, Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms.
arXiv preprint arXiv:2502.13189, 2025.

[53] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024.

[54] Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guo-
hao Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In
Proceedings of the 41st International Conference on Machine Learning, pages 28480–28524,
2024.

[55] Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit
attention for plug-and-play inference acceleration. In International Conference on Learning
Representations (ICLR), 2025.

[56] Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageatten-
tion2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization. In
International Conference on Machine Learning (ICML), 2025.

[57] Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
exploration of 8-bit training. arXiv preprint arXiv:2505.11594, 2025.

[58] Tengxuan Liu, Shiyao Li, Jiayi Yang, Tianchen Zhao, Feng Zhou, Xiaohui Song, Guohao Dai,
Shengen Yan, Huazhong Yang, and Yu Wang. Pm-kvq: Progressive mixed-precision kv cache
quantization for long-cot llms. arXiv preprint arXiv:2505.18610, 2025.

[59] Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiaotian Han. Speculative thinking: En-
hancing small-model reasoning with large model guidance at inference time. arXiv preprint
arXiv:2504.12329, 2025.

[60] Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

[61] Wenhao Zheng, Yixiao Chen, Weitong Zhang, Souvik Kundu, Yun Li, Zhengzhong Liu, Eric P
Xing, Hongyi Wang, and Huaxiu Yao. Citer: Collaborative inference for efficient large language
model decoding with token-level routing. arXiv preprint arXiv:2502.01976, 2025.

[62] Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo,
and Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv
preprint arXiv:2501.19324, 2025.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims of R2R to let the SLM
follows the reasoning path of LLM with the routing of divergent tokens.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: The theoretical result and proof are provided in Sections 3.1, 3.2 and Ap-
pendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify all the training and test details in Section A and our code will be
open source soon.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is contained in implementation materials and will be open source
soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We set the temperature to zero to allow the reproducibility of the experiment
and report the actual latencies and speeds in Section 5.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We use NVIDIA A800-80GB GPUs, with eight for data generation and two
for inference, as detailed in Section 5.1 and Appendix B.3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not contain potential harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: R2R is a general-purpose method aimed at improving the efficiency of rea-
soning LLMs. It is not tailored to any specific application domains that might pose clear
positive or negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used are properly cited and clarified in Section 5.1
and Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is contained in implementation materials and has been open source.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use the LLM as a verifier when generating the training data. The way of
LLM usage is detailed in Sections 3.2 and 4.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Additional Experiment Setups

A.1 Router Architecture

Inputs projection. At each decoding step, we use the hidden states of the last layer, the top 100
logits with the highest values and the embeddings of the predicted token from the SLM to generate
the routing result. We first apply linear projections to align their dimensions with the hidden states
and then concatenate the features from the logits, hidden states, and token embeddings. Finally, we
use another linear layer to project the concatenated features to match the input feature dimension of
the model backbone.

Neural network backbone. For the router architecture, we adopt a six-layer feed-forward network
(FFN) with residual connections between blocks as the backbone, using a hidden size of 1024. The
architecture of each FFN follows the common design used in previous LLMs [39]. Each block
begins with LayerNorm for input normalization, followed by a pair of linear projections forming
an expand-then-contract structure with an expansion factor of 4. Dropout is applied to each linear
layer, with a GELU activation function between them. These blocks are connected using residual
connections. At the end of the last block, we apply an additional layer normalization and a linear layer
to convert the output to a single value, followed by a sigmoid function to produce the normalized
prediction of the router. A predefined threshold pth between 0 and 1 is used for generating binary
results from the router output. Predictions above the pth are considered that current tokens diverge
from the LLM’s reasoning path.

A.2 Routing Data

Training dataset. Our training data for the router are sourced from tasks across three distinct
scenarios: mathematics, code, and question answering (QA). The mathematics problems are drawn
from the American Invitational Mathematics Examination (AIME) [10], covering the years 1983
to 2022. Code and QA problems are sampled from Bespoke-Stratos-17k dataset [31]. We use only
the formatted questions from these datasets as prompts and generate responses using DeepSeek-R1-
Distill-Qwen-32B, with the temperature set to 0 and a maximum generation length of 32,768 tokens.
Only responses that contain an end-of-sequence (EOS) token within the specified length are retained
as effective samples, which will be used for subsequent stages of our data generation pipeline, as
discussed in Section 4.1.

Validation dataset. Our validation dataset are constructed in the exact same way as the training data,
but with different queries. The validation dataset comprises all 30 problems from AIME 2023, 69
coding problems from the Bespoke-Stratos-17k dataset that are excluded from the training set, and
60 QA problems selected from the GPQA-Extended [36] dataset.

A.3 Training Scheme

Loss function. Due to the significant class imbalance in the training data, we adopt the weighed
BCEWithLogitsLoss as our loss function. The weight of each class is calculated inversely proportional
to its frequency in the class, which encourages the model to pay more attention to underrepresented
classes.

Training hyperparameters. During training, we employ the AdamW optimizer with hyperparame-
ters β1 = 0.9 and β2 = 0.999. The learning rate is set to 5×10−5, with a dropout rate of 0.1 and a
weight decay of 5× 10−4. We train the neural network with float32 precision. The router is trained
for up to 50 epochs using a batch size of 1024, with early stopping applied based on a patience of
10 epochs. Validation is performed at every epoch. We adopt the checkpoint corresponding to the
best-performing epoch on the validation set as the final router used.

Threshold selection. After training, we use the validation dataset to select a preferred threshold.
We pass the pre-collected neural router inputs from the validation dataset through the neural router
and record the predicted divergence probabilities. By sweeping pth from 0 to 1, we analyze how
different thresholds affect the LLM usage rate and average parameter size., as shown in Figure 8.
This process is efficient, as all router inputs (SLM logits, token embeddings, and last-layer hidden
states) are pre-collected and evaluated in a single pass. During inference, given any user-defined
average parameter budget, we set the threshold to meet the target budget accordingly.

22

A.4 Routing System Implementation

Model initialization. The routing system consists of three components: a SLM (R1-1.5B), a LLM
(R1-32B), and a router model. The SLM is loaded onto a single GPU (GPU 1) using the SGLang
scheduler, with the mem_fraction_static set to 0.15. The LLM employs tenser-parallel inference
distributed across two GPUs (GPU 0 and GPU 1) via SGLang schedulers managed by PyTorch’s
distributed multiprocessing framework with the NCCL backend, with the mem_fraction_static set to
0.80. The router model is directly loaded onto GPU 0 using standard PyTorch, independent of the
SGLang interface. Prior to inference, each of SLM and LLM is individually warmed up using simple
inputs to stabilize GPU kernels and caches, ensuring consistent inference latency.

Inference workflow. During each inference step, the workflow begins with the SLM decoding
a single token, returning the corresponding last-layer hidden states and output logits. The router
generates a divergence probability based on these outputs of SLM. If the probability surpasses the
predefined threshold, the LLM is activated to extend the sequence by one token. Specifically, a new
request, constructed from the input token IDs, is placed into the LLM’s input queue. Subsequently, a
new schedule batch is initialized for the LLM, explicitly setting the forward mode to EXTEND and
allocating appropriate memory for handling input sequences. The system maintains prefix indices
to track processed tokens, enabling efficient token management between models. When the LLM
extends a token, it is communicated back through an output queue to replace the SLM’s predicted
token. A token manager actively tracks the sequence states during the generation process, managing
active sequences and handling termination conditions effectively. At each token position, the dynamic
routing mechanism assesses model outputs, determines the appropriate routing decision, and updates
sequence states accordingly. This iterative process continues until a sequence is completed or reaches
the predefined maximum token limit.

B Additional Experiment Results

B.1 Verifier Robustness

B.1.1 LLM Verifier Against Human Verifier

Setup. We conducted a human evaluation to validate the verifier’s reliability. Specifically, we
recruited four undergraduate students to independently label 1,357 differences as either neutral or
divergent. The differences are between R1-1.5B and R1-32B on the first six AIME-2024 questions.
Three annotators’ labels determined the ground truth for divergence by majority voting (general
divergence, positive rate: 24.8%) and unanimous consent (core divergence, positive rate: 11.9%).
The fourth annotator’s labels, along with several LLM verifiers, were then compared against these
ground truths. All annotators and LLM verifiers received identical contexts and instructions.

Results and discussion. Our selected verifier (Qwen2.5-72B) closely matches human expert perfor-
mance. The detailed results are shown in Table 5.

Table 5: Verifier performance against majority vote (General Divergence, Positive Rate: 24.8%) and
unanimous consent (Core Divergence, Positive Rate: 11.9%) ground truths.

Verifier Majority Voting (General) Unanimous Consent (Core) Positive Rate
Accuracy Recall Precision Accuracy Recall Precision

Human 0.82 0.84 0.59 0.76 0.96 0.32 0.35
Qwen2.5-72B 0.84 0.88 0.62 0.76 0.97 0.33 0.35
Qwen2.5-7B 0.78 0.85 0.54 0.71 0.94 0.28 0.39
Qwen2.5-3B 0.75 0.69 0.50 0.72 0.75 0.26 0.34

B.1.2 Impact of Verifier Quality

Setup. Next, we examined the sensitivity of our method to verifier quality. We applied the sentence-
level path-following routing method (Equations 3–5) to the AIME 2024 benchmark across verifiers
(Qwen2.5-3B to Qwen2.5-72B) within 8K token budget.

23

Results and Discussion. Our analysis reveals that even moderate-recall verifiers (e.g., Qwen2.5-3B)
still significantly improve reasoning path guidance compared to the distilled 7B baseline. Note that
the current verifier prompt is tuned for the Qwen2.5-72B verifier. Empirically, smaller verifiers should
benefit from prompts biased towards classifying ambiguous cases as divergent, thereby enhancing
recall.

Table 6: Impact of verifier quality on path-following routing performance on AIME 2024.

Type Model Param. (B) Labeling Verifier AIME’24 #Acc.@8K
LLM Baseline 32 - 17
SLM Baseline 1.5 - 2
Distilled 7 - 8

Path-following 2.3 Qwen2.5-72B 16
Path-following 2.5 Qwen2.5-7B 12
Path-following 2.2 Qwen2.5-3B 11

B.2 Generalizability

B.2.1 Data Labeling Method Generalizability

The labeling method of R2R, relying on semantic comparison rather than formal verification, can
easily generalize across tasks and achieve high performance even in some out-domain tasks. Unlike
methods requiring task-specific external tools (e.g., formal proofs [40], code execution [41]),
R2R uses an LLM verifier to identify general semantic divergence in meaning, reasoning, logic, or
conclusions F.1.

In practice, we apply the identical labeling strategy and verifier prompt across closed-form math,
coding tasks, and open-ended QA tasks. This consistency enables our router to naturally generalize
to unseen tasks during inference, as demonstrated later.

For tasks with subjective divergence criteria that are challenging to identify semantically within
a single sentence, the continuation length can be extended. This adjustment gradually transitions
from sentence-level routing to full routing, the latter of which only requires overall response quality
evaluation, which is a feasible requirement commonly met for LLM tasks.

B.2.2 Router Generalizability

Generalize across benchmarks. Our router leverages outputs from the SLM (e.g., logits) to predict
token divergence. Benefiting from the inherent generalizability of SLMs, indicators such as logits
entropy robustly identify divergent tokens across different tasks. To validate the router’s general-
izability, we directly apply our router, trained for math, QA, and code, to additional benchmarks:
Arena-Hard for Dialog [42], and the Philosophy split from MMLU-Redux [43], which are never
included in our training dataset. As table 7 shows, although the cost–accuracy trade-off gains are a
bit less pronounced on out-of-domain tasks, R2R nonetheless exhibits strong generalization, which
continues to outperform the 14B model with less than 7B parameter size.

Table 7: Performance of R2R on Arena-Hard for Dialog and MMLU-Redux-Philosophy.

Dialog Philosophy
Type Model(s) Score Param. Cost Acc. Param. Cost
LLM R1-32B 5.0 32 65.9 79 % 32 32.2
SLM R1-1.5B 0.2 1.5 14.3 38 % 1.5 8.7

Distill R1-7B 0.3 7 35.0 57 % 7 20.6
Distill R1-14B 2.2 14 56.5 77 % 14 18.5

R2R Ours 2.8 6.1 40.9 81 % 6.7 8.3

24

Generalize to different LLMs. We test whether a router, trained on data from a specific SLM-
LLM pair (e.g., 0.6B-32B), can be effectively applied to a different pair (e.g., 0.6B-8B) without
retraining. The experiments are conducted with the Qwen3 model family (0.6B, 8B, and 32B), tested
on the AIME (2024+2025) benchmark with a target recall of 0.95 for divergent tokens. The results
are summarized in Table 8. Our empirical results indicate acceptable performance when directly
substituting the LLM of a trained router without additional retraining. This can be attributed to the
common divergence patterns shared by strong LLMs paired with the same weaker SLM.

Table 8: Router generalizability on the AIME benchmark. Param. denotes the average activated
parameters per token in billions; Cost is the average output tokens (thousands) per query multiplied
by average parameters (billions) .

Type Model(s) Router Variant Acc. Param. Cost
SLM Qwen3-0.6B - 12% 0.6 15
LLM Qwen3-8B - 67% 8.0 130
LLM Qwen3-32B - 75% 32.0 469

R2R 0.6B+8B Trained on 0.6B+8B 65% 2.7 49
Generalized from 0.6B+32B 53% 2.6 50

R2R 0.6B+32B Trained on 0.6B+32B 67% 10.2 154
Generalized from 0.6B+8B 70% 9.9 151

B.3 Efficiency Analysis

B.3.1 Data Generation Overhead

Table 9: Latency and GPU usage across different stages of data labeling.
Stage Latency (hours) #GPU GPU Hour
LLM response 35 8 280
SLM Prefill 0.1 8 0.5
LLM Continuation 7 8 56
Verify 14 8 112

Total 56 8 448

As Table 9 shows, our four-stage pipeline completes in 56 h (448 GPU hours). The LLM response
stage dominates runtime (35 h, 280 GPU hours), but it can be mitigated by directly utilizing the
responses of LLMs from open-source SFT datasets, provided they were generated by the same LLM
used for routing. The SLM prefill step is highly efficient, requiring only 0.1 h of wall clock time. The
subsequent LLM continuation and verification stages take 7 h (56 GPU hours) and 14 h (112 GPU
hours), respectively. Compared to downstream tasks, the overall data generation pipeline remains
relatively lightweight and efficient.

B.3.2 Computation and Memory Access

Following prior work [44–46], we analyze the computational and memory access overhead of R2R
against various baselines on the AIME benchmark. Table 10 presents a detailed comparison of total
computation (TFLOPs), total memory access (TB), and the average memory access per token (GB).

Given that the decoding process in large language models is predominantly memory-bound, the
volume of memory access is a critical factor influencing overall throughput. As shown in the table,
our method, R2R, markedly reduces total memory access to just 216 TB, a 4.5x reduction compared
to the R1-32B model. This efficiency is achieved with only a modest increase in total computation,
which primarily arises from the additional KV-cache updates required when switching between the
LLM and SLM.

In contrast, speculative decoding approaches such as Eagle2 and HASS incur substantially higher
computational costs—more than 22x that of R1-32B. This overhead is a direct consequence of their

25

Table 10: Computational and memory overhead on the AIME benchmark. R2R demonstrates a
significant reduction in memory access compared to the large model (R1-32B) and speculative
decoding methods, with only a marginal increase in computation.

Model Total Computation
(TFLOPs)

Total Memory
Access (TB)

Avg. Memory Access
Per Token (GB)

R1-1.5B 157 104 3.7
R1-14B 630 503 29.4
R1-32B 1136 966 63.6

Eagle2 25490 515 29.6
HASS 26809 544 28.9

R2R 1502 216 11.7

complex tree-structured draft and verification processes, which can involve up to 60 tokens per cycle.
Despite this significant computational demand, these methods also achieve considerable throughput
improvements by effectively reducing the memory access bottleneck during the decoding phase.
R2R, however, provides a more balanced trade-off, achieving significant memory savings without the
extreme computational overhead of speculative methods.

B.3.3 Inference Latency Breakdown

We integrated R2R into the production-level SGLang serving infrastructure, which is demonstrated
by the high absolute throughput results for our method and the baselines. To assess the latency
implications of our token-level routing, we performed a detailed runtime breakdown. The analysis
was conducted on the AIME benchmark, averaged over 60 questions, using two A800 GPUs.

The results, shown in Table 11, indicate that the token-level routing decisions made by our 56M
parameter router introduce minimal latency overhead (5.96%). Given the small size of the neural
router, we anticipate that further runtime improvements can be achieved through additional system-
level optimizations.

Table 11: Runtime breakdown of the R2R system components on the AIME benchmark.

Component Percentage of Total Time
Router 5.96%
LLM (R1-32B) 64.97%
SLM (R1-1.5B) 26.77%
Others 2.30%

B.3.4 LLM Activation Intervals

The cost efficiency of the routing system largely depends on how frequently the LLM is activated
during generation. Since the EXTEND operation of the LLM is inherently compute-bounded when
consecutive LLM calls are spaced further apart. In other words, given a fixed LLM activation rate,
longer intervals between two LLM invocations lead to better GPU utilization and less scheduling
overhead per generated token.

To better understand this effect, we analyze the distribution of the interval between consecutive
divergent tokens. Figure 7 illustrates these distributions for both the training dataset and actual
inference traces on AIME25. As shown, the actual distribution closely aligns with that observed
in training dataset, suggesting that the router generalizes well to real inference scenarios. More
importantly, both distributions exhibit a long-tailed shape, indicating that divergence events occur
sparsely and irregularly, which allows R2R to sustain high computational efficiency without overusing
the LLM.

26

1 10 20 30 40 50
Interval Between Consecutive Divergent Tokens

0

5

10

15

20

Fr
eq

ue
nc

y
(%

)

Mean: 8.24
Median: 4.00

Std: 9.59

1 10 20 30 40 50
Interval Between Consecutive Reference Tokens

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y
(%

)

Mean: 6.49
Median: 2.00

Std: 94.54

Figure 7: (a) Divergent token interval distribution for training dataset; (b) Reference token interval
distribution on AIME25

B.4 Comparison and Compatibility with Orthogonal Techniques

B.4.1 R2R and Mixture-of-Experts (MoE)

We compare our method, R2R, with the Mixture-of-Experts (MoE) architecture, another prominent
approach for efficient model scaling. This section begins with a conceptual comparison, followed by
empirical results, and concludes by discussing how the two methods can be integrated to create a
more favorable performance-efficiency trade-off.

Conceptual comparison. As noted, both MoE and R2R leverage partial activation, but they differ in
key design aspects, as summarized in Table 12. This conceptual distinction motivates their potential
integration, which we explore next.

Table 12: Conceptual comparison between MoE and R2R.

Design Aspect MoE R2R
Partial activation Yes Yes
Routing granularity Fine-grained (Experts) Coarse-grained (Models)
Subject model sizes Equal parameters per expert Different parameters per model
Training overhead Full training from scratch Router training only
Supervision Next-token predictions Explicit routing decisions

Empirical comparison. We evaluate the MoE model Qwen3-30BA3B and an R2R model (routing
between Qwen3-0.6B and Qwen3-8B) on the AIME benchmark. The 60 questions are split into
Easy (28) and Hard (32) subsets based on whether the question ID is less than or equal to 7. The
results in Table 13 highlight the complementary strengths of each approach. Thanks to extensive
pretraining, MoE models can match dense model performance on challenging tasks. However, their
fixed per-token overhead limits efficiency on simpler inputs. In contrast, R2R dynamically adjusts
computation based on token-level divergence, achieving lower cost on easier examples, though
its lighter training cannot match MoE performance on harder questions given the same activated
parameters. Given their complementary advantages, we explore the integration of both methods.

Table 13: Empirical comparison of R2R and MoE on the AIME benchmark, split by difficulty.

Type Model(s) Easy Hard
Acc. Param. Acc. Param.

R2R Qwen3-0.6B + Qwen3-8B 93% 2.9 41% 2.6
MoE Qwen3-30BA3B 93% 3.3 59% 3.3

MoE for R2R. R2R is directly compatible with efficiency-optimized models like MoEs. We validate
R2R’s performance using the Qwen3-30BA3B MoE as the LLM, as shown in Table 14. Combining
R2R with an MoE model significantly improves the Pareto frontier, achieving robust accuracy at
extremely low average activated parameters.

27

Table 14: Performance of R2R when using an MoE model as the LLM.

Type Model Acc. Param. Cost
Dense Qwen3-0.6B 12% 0.6 15
Dense Qwen3-1.7B 37% 1.7 33

Dense Qwen3-32B 75% 32.0 469
R2R 0.6B + 32B 67% 10.2 154
MoE Qwen3-30BA3B 75% 3.0 51
R2R 0.6B + 30BA3B 68% 1.3 22

R2R for MoE. Conversely, R2R’s principles can enhance future MoE designs. Current MoE methods
generally use uniform-sized experts; introducing mixed-sized experts could enable query-adaptive
activation. Furthermore, supplementing an MoE’s training objective with explicit divergence or
difficulty-based routing supervision from R2R may encourage more adaptive usage of larger experts
for only the most critical decoding steps. Although retraining MoE models is beyond this paper’s
scope, this presents an exciting direction for future research.

B.4.2 R2R and Query-level Routing (QR)

Query-level routing (QR) is methodologically orthogonal to R2R. Consequently, the composition
of the two is a natural and well-motivated design choice. We investigated combining R2R with
query-level routing methods using the Qwen3 model series with varied sizes, evaluated on the AIME
benchmark. Specifically, we treated R2R-S (0.6B+8B) and R2R-L (0.6B+32B) as the SLM and LLM,
respectively, for query-level routing.

Table 15: Performance of R2R when combining R2R and query-level routing (QR).

Type Model Acc. Param. (B) Cost (KB)
SLM Qwen3-0.6B 12% 0.6 15
LLM Qwen3-8B 67% 8 130
LLM Qwen3-32B 75% 32 469

R2R-S Qwen3-0.6B + 8B 59% 2.1 40
R2R-L Qwen3-0.6B + 32B 67% 10.2 154

R2R-M Qwen3-4B + 8B 65% 5.4 95

QR-BERT Qwen3-0.6B + 32B 25% 5.4 230
QR-LLM Qwen3-0.6B + 32B 23% 5.4 238
QR-MF Qwen3-0.6B + 32B 32% 5.4 216
QR-SW Qwen3-0.6B + 32B 30% 5.4 220

QR-BERT R2R-S + R2R-L 63% 5.4 179
QR-LLM R2R-S + R2R-L 67% 5.4 175
QR-MF R2R-S + R2R-L 58% 5.4 181
QR-SW R2R-S + R2R-L 62% 5.4 183

From Table 15, we can conclude that (1) R2R models generally serve as superior SLM/LLM
candidates for query-level routing compared to original single-model setups, consistently advancing
the Pareto frontier; (2) The interaction between medium-sized R2R models and query-level routing
involving smaller or larger R2R-LLMs is empirically non-trivial. This observation suggests exciting
opportunities for future research into sophisticated routing strategies, which combine the search space
of query and token-level routing methods.

28

0.0 0.2 0.4 0.6 0.8 1.0
threshold pth

0

20

40

60

80

100

Re
ca

ll
(%

)

threshold pth vs Recall

0.0 0.2 0.4 0.6 0.8 1.0
threshold pth

0

5

10

15

20

Pa
ra

m
. (

B)

threshold pth vs Param.

0 5 10 15 20
Param. (B)

0

20

40

60

80

100

Re
ca

ll
(%

)

Param. vs Recall

Figure 8: Relationship between the routing threshold, recall for divergent tokens, and average
parameter size. The average parameter size is computed based on the positive prediction rate of the
router at each threshold.

B.5 Additional Discussions and Analysis

B.5.1 Influence of Routing Threshold

Figure 8 visualizes how the routing threshold pth affects the average parameter size on the validation
dataset. In our experiments, we select thresholds based on the user-specified average parameter budget
(e.g., 6B) measured on the validation set. However, the threshold does not strictly guarantee the same
average parameter size during inference, particularly when query difficulty varies significantly from
the validation set. Empirically, we observe minimal variance between the target and actual parameter
sizes, as the difficulty of our validation and evaluation datasets is generally well aligned. For tasks
that are much easier or harder than those considered in this paper, users can construct a tailored
validation set using our data labeling pipeline to determine an appropriate threshold.

Beyond analyzing the relationship between threshold and average parameter size, we also examine
its effect on divergent token recall. This links the average parameter size to the ability to recall
divergent tokens. As shown in Figure 8, recall rises rapidly with increasing average parameter size,
demonstrating the strong predictive performance of our router model.

B.5.2 Sentence-level Path-following Routing

The sentence-level path-following assumption, while necessary to manage the vast search space,
could be limiting in certain scenarios. For instance, an SLM might rearrange sentences in a paragraph
while still preserving a valid reasoning path, yet our sentence-level verifier might incorrectly flag
this as a divergence. While such mislabeling of a neutral continuation as divergent does not degrade
final performance, it can introduce unnecessary computational overhead by triggering the LLM more
often than required.

To empirically evaluate the impact of this assumption, we extended our routing strategy to a more
general N-sentence path-following approach. In this setup, the continuation-and-verification process
described in Section 3.2 is not stopped by the first sentence-ending token, but continues for N
sentences. As N increases, the strategy transitions smoothly from our default sentence-level approach
(N=1) towards the full path-following routing defined in Section 3.1, which is guaranteed to find the
optimal path (see Appendix E).

We conducted experiments on a subset of the AIME dataset to measure the effect of varying N. We
found that increasing N from 1 to 5 only yields a modest reduction in the measured divergence rate,
from 2.91% to 2.66%. This corresponds to a marginal decrease of 0.08B in the average activated
parameters required to maintain the same level of accuracy.

Given the limited performance gain relative to the substantial increase in data labeling complexity
and cost, we empirically selected N=1 (sentence-level routing) as the most practical and efficient
default setting for our framework.

29

B.5.3 Ablation Study Results

To further investigate the impact of different routing strategies, we perform an ablation study that
analyzes the relationship between Positive Rate, defined as the fraction of tokens routed to the LLM,
and Recall, defined as the proportion of correctly identified positive samples in the training dataset.

Routing objective. As illustrated in Figure 9, R2R (default) consistently achieves higher recall across
all positive prediction rates compared to the other variants, demonstrating that its routing policy is
more accurate in identifying informative tokens. The different variant, which substitutes the semantic
divergence metric with a simpler criterion that only considers mismatched predictions, exhibits
a noticeable drop in recall. This degradation highlights the importance of fine-grained semantic
alignment in accurately distinguishing divergence tokens and maintaining routing precision.

Routing input. Figure 9 also shows that HS and HS+Token variants, which rely solely on hidden-state
distance or only combine it with current token ids, yield similar but lower recall curves, indicating
that low-level representation similarity alone is insufficient to capture reasoning divergence and prove
the significance of the logits during routing. In contrast, R2R achieves both higher efficiency and
better coverage, maintaining near-optimal recall with less than 14% of tokens routed to the LLM.

SLM-LLM combination. To analyze the performance of R2R under difference model pairs, we
apply it to the Qwen3 family with a fixed LLM selection (Qwen3-8B) and vary the SLM to form
three different SLM-LLM combinations: Qwen3-0.6B+8B, Qwen3-1.7B+8B, and Qwen3-4B+8B.
All combinations were tested on AIME with identical settings. Figure 10 shows the relationship
between accuracy and the average activated parameters per token: For a fixed LLM, smaller SLMs
yield a better Pareto frontier, matching accuracy at lower cost or achieving higher accuracy at the
same cost. The intuition is that, for identical tokens that can be predicted by multiple SLMs, routing
them to the smaller SLM can preserve correctness of the prediction with less computational cost,
thereby improving the overall accuracy–efficiency trade-off.

Interestingly, we found that all seven AIME questions that the SLM answered correctly were also
answered correctly by the LLM, indicating that the LLM consistently outperforms the SLM rather
than specializing in a different subset of math problems.

These results validate that the semantic divergence criterion used in R2R provides a more discrimina-
tive signal for routing, effectively balancing accuracy and efficiency in the overall system. Moreover,
appropriate selection of the SLM–LLM combination can further improve the cost–accuracy Pareto
frontier.

0 10 20 30 40 50
Positive Rate (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

Ablation Variants
R2R (default)
Different
HS+Token
HS

Figure 9: Relationship between the ratio of LLM
usage and the recall of divergent tokens in the
validation dataset.

1 2 3 4 5 6 7 8
Activated Parameters Per Token (B)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

0.6B+8B
1.7B+8B
4B+8B
Distill

Figure 10: Scaling of accuracy versus activated
parameters per token, evaluated on AIME across
different model combinations in Qwen3 family

B.6 Systematic Failure Analysis

To identify systematic failure modes, we analyzed the response status of R2R (routing between
R1-1.5B and R1-32B without sampling) on the AIME and GPQA benchmarks. As shown in Table 16,
the primary failure mode occurs when R2R cannot complete its reasoning within the 32K token
limit. This typically happens due to repetitive reasoning patterns that were not encountered during
the router’s training phase. Additionally, we observe that R2R tends to invoke the LLM slightly

30

more frequently on the GPQA benchmark. This is particularly noticeable for queries involving rare
tokens, such as complex protein or chemical compound names, where the SLM’s uncertainty is
higher, triggering the router.

Table 16: Systematic failure analysis of R2R on AIME and GPQA benchmarks.

Benchmark Correct Unfinished Wrong (Same as) Wrong (Diff. from)
LLM SLM LLM SLM

AIME (60) 33 25 0 0 2 2
GPQA (198) 87 85 6 3 20 23

Total (258) 120 110 6 3 22 25

B.7 Performance-Cost Trade-off

100 200 300 400 500
Cost (K Tokens × Billion Parameters)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

AIME

Ours
Distill
QR-MF
QR-BERT
QR-LLM
QR-SW
SLM
LLM

100 200 300 400 500 600
Cost (K Tokens × Billion Parameters)

0

10

20

30

40

50 LiveCodeBench

100 200 300 400 500
Cost (K Tokens × Billion Parameters)

0

10

20

30

40

50 GPQA

Figure 11: Scaling of accuracy versus total cost, evaluated across AIME, GPQA, and LiveCodeBench.
R2R advances the Pareto frontier beyond distillation and query-level routing methods.

Figure 11 illustrates the trade-off between accuracy and the total cost of generation. As defined in
Section 5.1, the cost metric is calculated as the average number of output tokens multiplied by the
average parameter size, serving as a hardware-agnostic indicator of latency across methods. R2R
consistently outperforms both query-level routing methods and distilled LLMs, establishing a new
Pareto frontier in performance-cost trade-offs.

C Additional Design Discussions

C.1 Extend R2R to More Sampling Methods

C.1.1 Path-Following Routing Under Sampling

R2R naturally extends to sampling-based decoding by adapting divergence labeling to a probabilistic
setting. Specifically, the deterministic continuation sequence pair (Ss, Sl) from Equations 3–5 are
replaced by k sampled continuation pairs under a chosen sampling method. Divergence is then
evaluated for each sampled pair. The routing decision for each token then depends on whether the
overall divergence probability exceeds a predefined threshold:

P (V (Ssi , Sli) = 0|i ∈ [0, k)) ≥ Pthreshold

If setting Pthreshold to the LLM’s self-divergence probability P (V (Sl, Sl) = 0), it ensures the mixed
model, under full path-following routing, maintains the same quality expectation as the LLM alone.

C.1.2 Efficient Data Generation

Due to sampling stochasticity, each mismatched token can branch into multiple continuations.
However, sampling multiple continuations for divergence labeling is computationally expensive.
Since continuations are sentence-level, we empirically observe that the divergence decision primarily
depends on the first differing token between the SLM and LLM samples, rather than the subsequent

31

continuations. To efficiently approximate probabilistic routing, we therefore only sample for next-
token generation yi(θs|S<i) and yi(θl|S<i), while leaving continuations deterministic.

Given the extensive volume of tokens, we set k = 1 and Pthreshold = 0.5, simplifying the setup. This
approximation incurs overhead comparable to our greedy data generation pipeline. In implementation,
our data-generation pipeline adapts to the new setup by using sampling-based generation for both
LLM responses (step 0) and SLM prefill (step 1), while keeping other procedures unchanged.

Table 17: Statistics of tokens difference and divergence across query types in the sampling-based
training dataset.

Type #Query #Token #Different Diff. Rate #Divergent Div. Rate
Math 862 7.3M 858K 11.8% 438K 6.0%
Code 987 6.8M 1.2M 17.5% 627K 9.3%
QA 805 2.1M 443K 21.3% 231K 11.1%

Summary 2654 16.1M 2.5M 15.5% 1.3M 8.0%

Using this modified pipeline, we generate 16.1 million routing labels, covering topics of math, coding,
and QA with queries from the Bespoke-Stratos dataset. Table 17 summarizes the statistics of the
generated training dataset with the sampling method. Compared with the non-sampled dataset in
Table 1, sampling increases the average divergence rate by only 3.1%, which remains low overall,
indicating divergence patterns consistent with greedy decoding.

C.1.3 Experiment Results

For preliminary experiments, we use DeepSeek-R1’s recommended sampling settings (temperature =
0.6, top-p = 0.95) for both dataset generation and evaluation. The neural router remains unchanged,
as it already takes the sampled token’s embedding as input.

We evaluate the extended R2R on the AIME benchmark, reporting its pass@1 accuracy over 16
independent samples per problem, and compare it against query-level routing baselines following
Section 5.1. As shown in Table 18, R2R continues to advance the Pareto frontier, achieving 1.4–1.5×
higher AIME scores than query-level routing methods and matching the R1-14B performance with
only 8.6B average activated parameters. Extending R2R to stochastic decoding preserves its Pareto
optimality relative to both distilled models and query-level routing approaches.

Table 18: Performance and efficiency comparison on AIME and methods with sampling. Param.
denotes the average activated parameters per token in billions; Cost is the average output tokens
(thousands) per query multiplied by average parameters (billions) .

Method Acc. Param. (B) Cost (KB)
R1-1.5B 27% 1.5 24.3
R1-32B 61% 32.0 384.8

R1-14B 58% 14.0 170.5
QR-SW 39% 9.2 135.5
QR-LLM 38% 9.2 138.6
QR-BERT 40% 9.4 136.8
QR-MF 41% 9.1 130.5

R2R 58% 8.6 115.3

C.2 Routing Algorithm Details

As illustrated in Algorithm 1, the objective of our routing algorithm is to identify and correct path-
divergent tokens during inference by using predictions from a large language model (LLM). Both
SLM and LLM perform greedy decoding, and a token is considered identical if both models produce
the same prediction.

32

When the SLM and LLM outputs differ, the algorithm triggers a continuation process for each model:
the SLM and LLM, respectively, continue generating tokens, starting from their initial divergent
prediction, until a special separator (SEP) token is produced. These continuations yield two complete
sequences that differ only at the initial divergence point and subsequent tokens.

To assess whether this divergence impacts reasoning, a separate LLM-based verifier is employed.
This verifier receives the two generated sequences and outputs a binary decision: 0 if the sequences
are semantically neutral, and 1 if they diverge significantly in meaning or logic.

If the verifier outputs 0 (neutral), the router accepts the SLM’s prediction. However, if the verifier
outputs 1 (divergent), the algorithm corrects the current token by adopting the LLM’s prediction, thus
preventing further drift from the intended reasoning path.

This approach ensures that the system maintains high alignment with LLM reasoning, while minimiz-
ing unnecessary reliance on the LLM by routing to the more efficient SLM whenever possible.

Algorithm 1 Path-Following Routing

Input: Partial sequence S<i, models {θs, θl}
Output: Selected model mi

1: ys ← argmaxy Pθs(y | S<i)
2: yl ← argmaxy Pθl(y | S<i)
3: if ys = yl then
4: mi ← θs ▷ identical
5: else
6: Ss ← CONTINUATION(S<i, ys)
7: Sl ← CONTINUATION(S<i, yl)
8: if Je(Ss, Sl) = 0 then
9: mi ← θs ▷ neutral

10: else
11: mi ← θl ▷ divergent
12: end if
13: end if
14: return mi

Algorithm 2 Continuation (S, y)

Input: Prefix sequence S, initial token y
Output: Completed sequence S

1: S ← S + y
2: while y /∈ SEP do
3: y ← argmaxy′ Pθl(y

′ | S)
4: S ← S + y
5: end while
6: return S

Algorithm 3 LLM Verifier V(Ss, Sl)

Input: Sequences Ss, Sl

Output: o (0: neutral, 1: divergent)
1: o← LLM verifies if Ss and Sl diverges
2: return o

D Additional Related Work

D.1 Model-level Compression

Extensive studies have been proposed to accelerate the costly decoding processes of LLM by
compressing the models themselves [47]. Prominent techniques include sparse attention mecha-
nisms [48–52] and model quantization [53–58]. In contrast, our R2R method focuses on optimizing
inference above the model level, complementing these model compression techniques. Therefore, it
can be effectively combined with them to further enhance inference efficiency.

D.2 Concurrent Mix Inference Methods

Given recent rapid advancements in reasoning LLMs, several concurrent studies also explore mix
inference strategies that integrate small and large language models. These methods differ primarily in
their routing granularity, objectives, and specific routing schemes.

Step-level Methods: Speculative Thinking [59], SplitReason [35], and SpecReason [60] operate at
the reasoning step granularity. Speculative Thinking observes that LLMs excel at affirmation and
reflection compared to SLMs. Thus, it employs heuristic triggers—such as affirmations ("yeah"),
reflections ("wait"), or verification signals ("check")—to invoke the LLM selectively after detecting
delimiter tokens (e.g., "\n\n"), enhancing subsequent SLM-generated segments. SplitReason aims
to offload difficult reasoning steps to the LLM. It first uses a strong LLM to identify challenging
reasoning steps, then trains the SLM to generate a special token (i.e., ‘<bigmodel>‘) signaling
the LLM to take over these difficult steps. SpecReason adapts speculative decoding to reasoning

33

step-level. It utilizes the LLM to evaluate steps generated by the SLM, reverting to the LLM only
when the score of SLM-generated steps falls below a certain threshold.

Token-level Methods: Unlike step-level methods, CITER [61] and RSD [62] adopt finer-grained
token-level routing strategies. CITER formulates the routing problem as a long-horizon reinforcement
learning task, optimizing for final answer quality and inference efficiency. Because CITER targets
general decoding tasks (e.g., short-form QA), repeatedly generating the complete response to deter-
mine token-level preferences remains computationally manageable. In contrast, RSD leverages an
existing reward model to dynamically select tokens for LLM generation whenever the SLM-produced
tokens exhibit low reward scores. This approach performs well on tasks with clear and definable
reward signals.

Distinctiveness of R2R: R2R distinguishes itself from concurrent works by specifically targeting
immediate divergence correction at token granularity. Unlike methods focused on offloading complex
reasoning steps, R2R addresses the subtle scenario where the SLM and LLM may agree on challenging
steps, yet diverge unexpectedly on seemingly straightforward tokens (under human or LLM judgment).
Such divergences can significantly alter the subsequent reasoning path, thus requiring immediate
correction. Moreover, R2R differs from the speculative decoding scheme, as it does not rely on
periodic LLM verification steps to inform routing decisions. Instead, R2R immediately routes
divergent tokens to the LLM, effectively preventing divergence without incurring rollback overhead.

Given these distinct objectives and design choices, integrating R2R with these concurrent methods
represents a promising direction for future research, enabling even more effective mix inference
frameworks.

E Proof of Quality Guarantee for Full Path-Following Routing

E.1 Notations

We summarize the notations used throughout this proof:

• θl, θs: the large and small language models (LLM, SLM), respectively.
• S<i = [x0, . . . , xn−1, y0, . . . , yi−1]: the prefix sequence up to, but not including, position
i, where S<0 contains only the input tokens.

• yi(m|S<i): the token generated at position i by model m ∈ {θs, θl} given prefix S<i.
• V(·, ·) ∈ {0, 1}: the quality verifier function, returning 1 iff the first sequence achieves the

same quality as the second.

• S
(L)
<i : sequence up to i generated by the LLM only.

• S
(M)
<i : sequence up to i generated by the mixed (routed) strategy.

• Ss, Sl: continuation sequences as defined in Equations 8 and 9.

• T<i: the sequence formed by S
(M)
<i concatenated with the LLM’s continuation tokens:

T<i = S
(M)
<i ⊕ [yi(θl|S(M)

<i), yi+1(θl|S(M)
<i ⊕ yi(θl|S(M)

<i)), . . . ,EOS] (6)

The routing decision at each step i is given by:

mi =


θs, yi(θs|S<i) = yi(θl|S<i)︸ ︷︷ ︸

identical

or V(Ss,Sl) = 1︸ ︷︷ ︸
neutral

θl, V(Ss,Sl) = 0︸ ︷︷ ︸
divergent

(7)

The continuation sequences after the i-th token are:

Ss = S<i ⊕ [yi(θs|S<i)]⊕ [yi+1(θl|S<i ⊕ yi(θs|S<i)), . . . ,EOS] (8)
Sl = S<i ⊕ [yi(θl|S<i)]⊕ [yi+1(θl|S<i ⊕ yi(θl|S<i)), . . . ,EOS] (9)

where ⊕ denotes sequence concatenation.

34

E.2 Theorem

The sequence S(M), generated by the path-following routing strategy, is guaranteed to achieve the
same quality as its LLM-only counterpart S(L) under V .

E.3 Proof

Base Case. At i = 0, S(M)
<0 = S

(L)
<0 = [x0, . . . , xn−1], so T<0 is simply the LLM’s full sequence.

Thus, V(T<0, S
(L)) = 1.

Inductive Hypothesis. Suppose that for some k with 0 ≤ k < n, we have V(T<k, S
(L)) = 1; i.e.,

continuing from S
(M)
<k with the LLM produces a sequence of equal quality to S(L).

Inductive Step. Consider the (k + 1)-th token y
(M)
k determined by Eq. 7. There are three cases:

(a) Identical: yk(θs|S(M)
<k) = yk(θl|S(M)

<k). Then y
(M)
k matches the LLM’s output, so the

sequence remains identical and V(T<k+1, S
(L)) = 1.

(b) Neutral: yk(θs|S(M)
<k) ̸= yk(θl|S(M)

<k) but V(Ss,Sl) = 1. The router selects the SLM
token, so T<k+1 = Ss. By definition, V(T<k+1, S

(L)) = 1.

(c) Divergent: V(Ss,Sl) = 0. The router selects the LLM token, so the mixed sequence again
matches the LLM’s output, and thus V(T<k+1, S

(L)) = 1.

Conclusion. By mathematical induction, for all i ∈ [0, n], the continuation T<i maintains the same
quality as S(L) under V . At generation completion (i = n), S(M) = S

(M)
<n+1, so V(S(M), S(L)) = 1.

■

F Prompts and Examples

F.1 Prompt for Verifier Model

As discussed in Section 4.1, we design a structured prompt for the verifier model (Qwen2.5-72B-
Instruct) to assess whether divergences between two sentences affect their meaning, reasoning, logic,
or conclusions. Please refer to Text 2. for the exact prompt. The prompt highlights the divergence
point and provides explicit criteria for labeling. It instructs the model to justify its judgment with
a brief explanation and includes illustrative examples to guide the model’s understanding of both
scenarios.

F.2 Response Example

We use an example question from AIME and responses from R1-1.5B, R1-32B and R2R to provide
an intuitive understanding of our method.

Text 1. Question

Find the largest possible real part of

(75 + 117i)z +
96 + 144i

z

where z is a complex number with |z| = 4.

Text 3-5 shows the example responses. The R1-1.5B and R1-32B models produce distinct final
answers for the maximum real part, reflecting a divergence in their reasoning paths. By contrast, R2R
identifies and corrects this divergence, navigating the correct reasoning path to get the final answer
matches that of the stronger 32B model. At the same time, R2R tolerates neutral differences—such

35

as minor phrasing or presentation—between models when these do not affect the core reasoning
or conclusions. This selective routing mechanism enables R2R to deliver both high efficiency and
accuracy by only invoking the large model for tokens that would otherwise lead to substantive
differences in meaning or logic.

36

Text 2. Prompt For Verifier Model

Task:
Determine if the divergence between Sentence 1 and Sentence 2 affects the meaning, reason-
ing, logic, or conclusions derived from them.
Instructions:

• The marker « » indicates where the sentences diverge. It is not part of the original
text.

• Assess whether this divergence changes the meaning, reasoning, logic, or conclu-
sions, or if it introduces new information or contradictions.

Output 1 if:
• The divergence causes a change in meaning, reasoning, logic, or conclusions.
• It introduces new information, shifts focus, or contradicts prior facts.
• The sentences follow different reasoning paths or focus on different aspects.

Output 0 if:
• The divergence is superficial and does not affect meaning, reasoning, logic, or

conclusions.
• Both sentences follow the same reasoning path or lead to the same conclusion.

Reasoning: Provide a brief explanation of how the divergence impacts (or does not impact)
meaning, reasoning, logic, or conclusions.

—
Example 1 (Same - 0):
Sentence 1:
"The ratio of adults to total people «is» now 11/25."
Sentence 2:
"The ratio of adults to total people «chang»ed from 5/12 to 11/25
after adding 50 people."
Output: 0
Reasoning: The change from "is" to "changed" does not affect the overall meaning,
reasoning, logic, or conclusions.

Example 2 (Different - 1):
Sentence 1:
"Let’s solve this using «integration» by parts."
Sentence 2:
"Let’s solve this using «u-»substitution."
Output: 1
Reasoning: The change in method (from integration by parts to substitution) alters the
reasoning and approach to solving the problem.

—
Now complete the task:
Common Context:
{CONTEXT}
Sentence 1:
{SENTENCE1}
Sentence 2:
{SENTENCE2}
Answer (Output: <0 or 1>)
Reasoning:

37

Text 3. R1-1.5B Re-
sponse

Okay, so I have this
problem: I need to find
the largest possible real
part of the expression

(75+117i)z+
96 + 144i

z

, where z is a com-
plex number with |z| =
4. Hmm, complex num-
bers can sometimes be
tricky, but let me try to
break this down step by
step.
First, I know that any
complex number z can
be written in polar form
as z = 4eiθ since its
magnitude is 4. That
might make things eas-
ier because then I can ex-
press z in terms of its an-
gle θ. So, let me write
that down:
z = 4eiθ

Then, 1
z would be 1

4e
−iθ

because the reciprocal
of eiθ is e−iθ.
So, substituting back
into the expression, we
have:
(75 + 117i) · 4eiθ +
96+144i

4eiθ

Let me compute each
term separately. First,
let’s compute (75 +
117i) · 4eiθ.
Multiplying 75 + 117i
by 4 gives:
4 × 75 = 300 and 4 ×
117i = 468i, so the first
term is 300 + 468i.
· · ·
The final answer is:

300 + 12
√
13

Text 4. R1-32B Re-
sponse

Okay, so I have this
problem here: I need to
find the largest possible
real part of the expres-
sion

(75+117i)z+
96 + 144i

z

where z is a complex
number with |z| = 4.
Hmm, that sounds a bit
tricky, but let me try to
break it down step by
step.
First, I know that z is
a complex number with
magnitude 4. So, I
can represent z in po-
lar form. That might
make things easier be-
cause working with po-
lar forms can simplify
multiplication and divi-
sion. So, let me write
z = 4eiθ, where θ is the
argument of z. That way,
|z| = 4 is automatically
satisfied.
Now, let’s substitute
z = 4eiθ into the expres-
sion. So, the expression
becomes:
(75 + 117i) · 4eiθ +
96+144i

4eiθ

Simplify each term sep-
arately. Let’s start with
the first term:

(75 + 117i) · 4eiθ

=4(75 + 117i)eiθ

· · ·
4×75 cos θ = 300 cos θ
4 × (−117 sin θ) =
−468 sin θ
· · ·
Thus, the largest possi-
ble real part is:

540

Text 5. R2R Response

Okay, so I have this
problem: I need to find
the largest possible real
part of the expression

(75+117i)z+
96 + 144i

z

, where z is a complex
number with |z| = 4.
Hmm, that sounds a bit
tricky, but let me try to
break it down step by
step.
First, I know that z is
a complex number with
magnitude 4. So, I can
represent z in polar form
as z = 4eiθ, where
θ is the argument of z.
That might make things
easier because working
with exponentials can
sometimes simplify mul-
tiplication and division.
So, let me rewrite the ex-
pression using this polar
form. The expression is:

(75+117i)z+
96 + 144i

z

Substituting z = 4eiθ,
we get:
(75 + 117i)(4eiθ) +
96+144i

4eiθ

Simplify each term:
First term:

(75 + 117i) · 4eiθ

=4(75 + 117i)eiθ

· · ·
Which is:
300 cos θ − 468 sin θ +
i(300 sin θ + 468 cos θ)
· · ·
Thus, the largest possi-
ble real part is:

540

38

	Introduction
	Related Work
	Model Preference Labeling
	Token-level Routing Formulation
	Path-following Routing Strategy

	Token-Level Neural Router
	Training Data Generation
	Predictive Indicators of Divergence
	Router Design and Routing Scheme

	Experiment
	Setup
	Performance
	Efficiency
	Ablation Study
	Routing Result Observation

	Conclusion
	Additional Experiment Setups
	Router Architecture
	Routing Data
	Training Scheme
	Routing System Implementation

	Additional Experiment Results
	Verifier Robustness
	LLM Verifier Against Human Verifier
	Impact of Verifier Quality

	Generalizability
	Data Labeling Method Generalizability
	Router Generalizability

	Efficiency Analysis
	Data Generation Overhead
	Computation and Memory Access
	Inference Latency Breakdown
	LLM Activation Intervals

	Comparison and Compatibility with Orthogonal Techniques
	R2R and Mixture-of-Experts (MoE)
	R2R and Query-level Routing (QR)

	Additional Discussions and Analysis
	Influence of Routing Threshold
	Sentence-level Path-following Routing
	Ablation Study Results

	Systematic Failure Analysis
	Performance-Cost Trade-off

	Additional Design Discussions
	Extend R2R to More Sampling Methods
	Path-Following Routing Under Sampling
	Efficient Data Generation
	Experiment Results

	Routing Algorithm Details

	Additional Related Work
	Model-level Compression
	Concurrent Mix Inference Methods

	Proof of Quality Guarantee for Full Path-Following Routing
	Notations
	Theorem
	Proof

	Prompts and Examples
	Prompt for Verifier Model
	Response Example

