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ABSTRACT

Deep neural networks are misguided by simple-to-craft, imperceptible adversar-
ial perturbations to inputs. Now, it is possible to craft such perturbations solely
using model outputs and query-based black-box attack algorithms. These at-
tacks compute adversarial examples by iteratively querying a model and inspect-
ing responses. The attacks’ success in near information vacuums poses a sig-
nificant challenge for developing mitigations. We explore a new idea for a de-
fense driven by a fundamental insight—to compute an adversarial example, the
attacks depend on the relationship between successive responses to queries to op-
timize a perturbation. Therefore, to obfuscate this relationship, we investigate
randomly sampling a model from a set to generate a response to a query. Ef-
fectively, this model randomization violates the attacker’s expectation of the pa-
rameters of a model to remain static between queries to extract information to
guide the search toward an adversarial example. It is not immediately clear, if
model randomization can lead to sufficient obfuscation to confuse query-based
black-box attacks or how best to build such a method. Our theoretical analysis
proves model randomization always increases resilience to query-based black-
box attacks. We demonstrate with extensive empirical studies using 7 state-of-
the-art attacks under all three perturbation objectives (l∞, l2, l0) and adaptive
attacks, our proposed implementation injects sufficient uncertainty through ob-
fuscation to yield a highly effective defense. Code to be released on GitHub at
https://github.com/disco-defense/.

1 INTRODUCTION

Many studies comprehensively demonstrate the vulnerability of deep learning models to adversarial
attacks (Szegedy et al., 2014; Papernot et al., 2017; Carlini & Wagner, 2017; Madry et al., 2018;
Athalye et al., 2018). These attacks craft and apply imperceptible perturbations to inputs to mislead
or hijack the decision of deep learning models.

In white-box settings, malicious actors can mount strong attacks like Projected Gradient Descent
(PGD) with access to model internals and gradient information. However, in practical deployments
of machine learning, as with growing numbers of machine learning as a service (MLaaS) offerings,
access to model information is highly restricted to external parties. Under these practical settings,
an attacker is limited to interacting with a model through a query-response mechanism and only
gains access to model outputs. Consequently, in many real-world scenarios, query-based attacks in
black-box access settings pose the greatest threat. In fact, Ilyas et al. (2018); Guo et al. (2019); Vo
et al. (2024) demonstrated practical query-based attacks against models in a real-world system.

Query-based attack algorithms extract response differences to small modifications to the input to
estimate gradients or to search for a direction towards an adversarial example. But, the iterative
process of making small modifications and estimating gradients or search directions necessitates
a myriad of time-consuming interactions with a model (query-responses). This exposes a critical
weakness defenders can exploit. The large number of model queries with similar inputs over large
time periods is anomalous and raise suspicions. Therefore, a defense objective is to prevent the
extraction of useful information from model responses to compute adversarial examples.
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Our Study. We seek to achieve the objective by injecting uncertainty directly into model responses
without using random noise.

The fundamental insight behind our idea is that computing an adversarial example neces-
sitates successive queries and inspecting responses to make incremental progress towards
an adversarial example—the non-source class in Figure 1—but, this progress hinges on the
relationship between successive query responses to optimize a perturbation, a process that
expects the model parameters to remain static between queries.

So, we propose randomizing models to obfuscate the relationship between the successive queries
and responses to confuse the iterative optimization process. To achieve obfuscation through ran-
domization, we investigate sampling models (or functions) from a set of diverse models to respond
to each query as illustrated in Figure 1 (last tile). To minimize potential impacts of a defense strategy
on performance we investigate learning a set of well-performing models.

Figure 1: Visualization of decision boundaries for 5 well-performing, diverse models from 10 model
parameters (θ1,..., θ10) and a randomly sampled 5 of the 10 for a clean input from the source class
Truck in CIFAR-10. Solely using the responses from a single model, whether they be model
decision labels or scores, a query-based attacker can easily estimate gradient directions or search for
a path to iteratively move the input towards a decision boundary to build an adversarial example as
shown for θ1, θ4, θ5, θ9 & θ10. But, using responses generated from randomized models to mount
attacks is much more challenging due to the uncertainty in information derived from such responses.
This is especially significant as an input approaches a decision boundary as shown in the last tile
where each response to a model query is generated from a random sample of five model parameters.

Our theoretical analysis shows the diversity of responses from randomly sampled models can in-
troduce sufficient uncertainty to degrade gradient estimates or misdirect random search attempts.
Consequently, building adversarial examples with score-based or decision-based attack algorithms
are made significantly more difficult. Unlike previous methods to confuse attackers, we avoid adding
random noise to inputs or features, our thinking mitigates compromising performance for robustness.

Our key contributions can be summarized as follows:

• We investigate the effectiveness of injecting uncertainty into responses by randomized sampling
of diverse and well-trained models to respond to queries with a theoretical analysis.

• We implement our idea with techniques for promoting model diversity and because we also want
random model parameter combinations to be well performing, we introduce a new learning ob-
jective to diversity promotion. The defense framework we investigate is flexible to incorporate
other model diversity promotion methods or even existing random noise adding techniques.

• Extensive evaluations with both score-based and decision-based attacks as well as all three
perturbation objectives (l∞, l2, l0) validate our theoretical analysis and demonstrate our method
can enhance the robustness against query-based attacks.

2 BACKGROUND AND RELATED STUDIES

Query-based Black-Box Adversarial Attacks. In contrast to white-box attacks, black-box attack-
ers do not have access to a victim model. One approach is transfer-based black-box attack crafting
adversarial examples from a surrogate model to create adversarial examples transferable to a victim
model (Papernot et al., 2017; Chen & Liu, 2023). But, transfer-based attacks’ success varies signif-
icantly due to factors like model hyperparameters, training conditions and constraints in generating

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

adversarial samples (Chen et al., 2017) and similarity between the surrogates and target models
(Suya et al., 2024). In this paper, we focus on defending against query-based adversarial attacks.

Query-based black-box adversarial attacks submit an input to obtain a response from a model. When
the response is a confidence score, the attacks operate in a score-based threat model; when it is a
hard label, a decision-based threat model. Two primary approaches to query-based attacks are:

• Gradient estimation methods (Liu et al., 2018a; Ilyas et al., 2018; Cheng et al., 2020; Chen et al.,
2020a). In general, these methods estimate the model’s gradient with respect to an image x by
exploring images surrounding x with queries to assess the model’s gradient.

• Gradient-free (search-based) methods (Andriushchenko et al., 2020; Croce et al., 2022; Vo et al.,
2022). These methods introduce small random modifications to an image x and observe query
response to assess the perturbation’s goodness rather than relying on gradient information.

In general, adversarial attacks aim to yield imperceptible perturbations. Specific query-based attack
algorithm are formulated to minimize three common perturbation objectives l2-norm; l∞-norm;
or l0-norm. In our work, we use both score-based and decision-based attacks. And, in contrast to
past studies, we evaluate attack algorithms covering all three perturbation objectives (l∞, l2, l0).

Defenses against Black-Box Attacks. Methods to understand and exploit the anomalous nature of
queries attempt to detect attacks (Chen et al., 2020b; Pang et al., 2020; Li et al., 2022). Adversarial
training, as a more general method, can be used to defense against adversarial attacks (Tramèr
et al., 2018; Zhang et al., 2020; 2022). Similarly, training with noise (Cohen et al., 2019; Salman
et al., 2019) can make models robust against adversarial inputs. But, these training approaches can
diminish model performance (Zhang et al., 2019; Shafahi et al., 2019; Yang et al., 2020).

By contrast, this paper considers methods to distort information available in responses to deceive at-
tackers. Intuitively, these methods seek ways to alter the response provided to attackers to misdirect
their search towards an adversarial example. To distort information, past work studied: i) adding
noise to inputs Cao & Gong (2017); Qin et al. (2021); or ii) injecting noise to model’s parame-
ters, activation or adding noise layers (Liu et al., 2018b; He et al., 2019) or iii) adding noise to
features (Nguyen et al., 2024). We primarily evaluate the following recent defenses in this paper:

• Randomize Noise Defense (RND) Recently, Qin et al. (2021) proposed adding random noise
to the input once and theoretically analyzed effectiveness against query-based attacks. Interest-
ingly, Byun et al. (2022) also proposed a randomize noise defense dubbed SND. However, since
the two methods are similar, our comparison with RND will extends to both methods.

• Randomized Features Nguyen et al. (2024) introduced and explored the idea of adding random
noise in feature space.

In contrast, we explore randomization in the function space (effectively the parameter space) to
enhance robustness and perhaps do better than noise injections to inputs or features as a defense
whilst mitigating the performance impacts of adding noise.

Adversarial Robustness with Ensemble Diversity. We consider randomization of functions or
models from an ensemble of diverse, well-performing models. Prior studies (Kariyappa & Qureshi,
2019; Pang et al., 2019; Doan et al., 2022) explored ensemble diversity to improve adversarial ro-
bustness in white-box settings at the cost of sacrificing clean accuracy (Tsipras et al., 2019; Qin
et al., 2021). In contrast, we study the potential of ensemble diversity for fortifying models against
query-based black-box attacks without adversarial training, to mitigate potential performance loss.

A number of diversity promotion methods exist in the literature—we elaborate further in Ap-
pendix H.1. In this paper, we evaluate with: i) Deep Ensembles (Ensemble) (Lakshminarayanan
et al., 2017; Fort et al., 2020; Wen et al., 2020); ii) DivDis (Lee et al., 2023); iii) DivReg (Teney
et al., 2022) and iv) together with a learning objective we propose for Stein Variational Gradient
Descent (SVGD) method to learn not only a diverse but also a set of well-performing models.

3 PROPOSED METHOD

In this section, we formally describe the threat as a problem description, explain our thinking be-
hind our approach for confusing attackers with model randomization, and then provide a theoretical
analysis of the convergence of attack algorithms under our our defense method.

3
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3.1 PROBLEM FORMULATION

Score-based Settings. Given a benign input x ∈ Rd and ground truth label y, let f(x,θ) denote a
victim model with logit score outputs. In untargeted settings, the focus in defense domains, the goal
of an adversary is to search for an adversarial example x̃ ∈ Rd such that argmaxỹ p(ỹ | x̃) ̸= y

and ∥x − x̃∥p ≤ B, where p(ỹ | x̃) = softmax
[
f(x̃;θ)

]
, ∥.∥p denotes lp norm and B represents

the perturbation budget. Two main approaches to score-based attacks are:

• Gradient Estimation with Finite Difference Method. An adversary can estimate the gradient
based on the average difference between pairs of output scores returned by the victim model:

g̃s(x̃) =
1

n

n∑
i=1

f(x̃+ ϵui;θ)− f(x̃;θ)

ϵ
ui, ui ∼ N (0, I) (1)

• Gradient-free methods. An adversary can employ random search or evolutionary algorithms
that determine attack direction based on the f(x̃ + ϵu;θ) − f(x̃;θ). An attack direction is
successful if f(x̃+ ϵu;θ)− f(x̃;θ) < 0.

Decision-based Settings. The adversarial objective (untargeted attacks) is to minimize distance
D(x, x̃) = ∥x− x̃∥p such that argmaxỹ p(ỹ | x̃) ̸= y. Similar to score-based settings, to achieve
this objective, an adversary can employ gradient estimation or gradient-free methods. For gradient
estimation methods, the gradient can be estimated as follows:

g̃d(x̃) =
1

n

n∑
i=1

D(x+ ϵui, x̃)−D(x, x̃)

ϵ
ui, ui ∼ N (0, I) (2)

3.2 CONFUSING ATTACKERS WITH MODEL RANDOMIZATION

Recall that query-based black-box attack algorithms do not have prior knowledge of a target model
and are not aware of the defense mechanism employed by the model owner, so they need multiple
queries and observations of the model response to estimate a gradient or a search direction. Our
fundamental insight is to obfuscate the relationship between query-response pairs. With this in
mind, we investigate two ideas we conceptualize in the following hypotheses:

• Hypothesis 1. Randomly selecting a model from a set for responding to a query can obfuscate
the relationship between successive pairs of queries and responses. By employing a different
function or a learned model to process a query input and generate a response, we can expect to
hide the relationship between query-response pairs. Because the attack problem is totally reliant
on this relationship, this should lead to sufficient uncertainty to confuse the task of estimating
gradient directions or determining search directions towards an adversarial example.

• Hypothesis 2. Enhancing model parameter diversity enhances obfuscation. Randomly sam-
pling functions or models from a set with very diverse parameters should increase diversity in
outputs to further degrade the quality of information extracted from pairs of query-responses.

3.3 FORMULATING AND ANALYZING RANDOM MODEL SELECTION

Following on from our first hypothesis, we expect feedback from randomly selected model to mis-
direct gradient and search direction estimation algorithms. However, predicting with an ensemble is
shown to lead to higher prediction accuracy (Krogh & Vedelsby, 1994; Dietterich, 2000). Further,
the task of building a large number of models to randomly select from can become cumbersome.
Consequently, without loss of generality, at each iteration i, we consider randomly selecting a subset
of models rather than selecting a single model randomly.

Then, given a set of models F = {f(·,θ1), f(·,θ2), . . . , f(·,θK)}, where K is the total number of
models and each model f(·,θk) ∈ F with parameters θk, the prediction of a subset of models can
be formulated as follows:

y∗ = argmax
y

p(y | x), where p(y | x) = softmax
[
q(x;π)

]
, (3)

where x is the input, q(x;π) = 1
N

∑N
k=1 πkf(x,θk), and π ∼ B(µ1, . . . , µK) denoting K dimen-

sional vector sampled from K independent Bernoulli distributions and N is the size of the subset of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

models. Here, the µk is the mean of a Bernoulli distribution denoting the expected number of times
each model is selected.

3.3.1 THEORETICAL ANALYSIS OF MODEL RANDOMIZATION AGAINST GRADIENT
ESTIMATION ATTACKS

Consider a constant ϵ > 0, u ∼ N (0, I), u ∈ Rd and x ∈ Rd, with the output logits of all models
expressed as F (x) = 1

K

∑K
k=1 fk(x;θk) and with a slight misuse of notation, the gradient of such

a totality of models can be estimated as follows:

Ĝ(x) = Eu

[
F (x+ ϵu)− F (x)

ϵ
u

]
; Ĝ(x) ∈ Rd. (4)

Under our model randomization approach described in equation 3, the gradient estimator for a pair
of input query samples is:

g(x) =
q(x+ ϵu;π(2))− q(x;π(1))

ϵ
u; g(x) ∈ Rd. (5)

Then, the approximation of the gradient with n different pairs of samples using the finite difference
method is formulated as follows:

ḡ(x) =
1

n

n∑
i=1

q(x+ ϵui;π
(2i))− q(x;π(2i−1))

ϵ
ui; ḡ(x) ∈ Rd. (6)

where defenders generate π(2i)π(2i−1) ∼ B(µ1, . . . , µK) while attackers generate ui ∼ N (0, I).

Proposition 1. Consider an input x where each element of the gradient g(x) estimated at iteration
i given in equation 5 is bounded by aji ≤ g(x)j ≤ bji , where ai, bi ∈ Rd, and the average gradient
estimator is ḡ(x) as defined in equation 6. Then, the number of samples n needed such that for
every element of ḡ(x)− Ĝ(x) is within an error margin ∆ with confidence 1− δ is at least:

n ≥

√
log( 2dδ )

∑n
i=1 [maxj(b

j
i − aji )]

2

2∆2
(7)

Proof. We defer the proof to Appendix A ■

Proposition 1 states that our proposal effectively fortifies against query-based black-box attacks
where the cost of the attack, the queries n required to drive ḡ closer to Ĝ, is made large to thwart
attacks. Additionally, this cost depends on the gradient estimator’s bounds, ai and bi; interestingly,
this can be made large when the underlying set of functions or models are able to generate highly
diverse outputs to given pairs of inputs.

Importantly, proposition 1 still holds true for adaptive attacks applying as we present in Appendix A.
Further, the empirical results in Sections 4.1 and 4.2 confirm our observation about the effectiveness
and robustness of our defense mechanism against adaptive attacks.

3.3.2 THEORETICAL ANALYSIS OF MODEL RANDOMIZATION AGAINST GRADIENT-FREE
ATTACKS

Consider a constant ϵ > 0 and u ∼ N (0, I). Then, the search direction of gradient-free methods
against the ensemble of all of the models relies on the sign of Ĥ(x,u) expressed as sign(F (x +
ϵu)−F (x)), while the search direction of gradient-free methods against randomly selected subsets
of models depends on the sign of H̃(x,u) formulated as sign(q(x+ ϵu;π(i))−q(x;π(j))). As dif-
ferent signs between Ĥ(x,u) and H̃(x,u) or in other words, H̃(x,u)

Ĥ(x,u)
< 0, represents the mismatch

between the attack directions against a random subset of models versus that generated using the
entire set of models, P

(
H̃(x,u)

Ĥ(x,u)
< 0

)
represents the probability of misleading an attack direction.

5
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Proposition 2. If we define γi,j = q(x;π(i)) − q(x;π(j)) and ζi = ∇q(x;π(i)) −
1
K

∑K
k=1 ∇fk(x;θk), then the probability of misleading an attack direction, is bounded by:

P
(H̃(x,u)

Ĥ(x,u)
< 0

)
≤

√
2Eπ

[
γ2
i,j + (ϵuζi)2

]
|Ĥ(x,u)|

(8)

Proof. We defer the proof to Appendix B ■

We can observe from Proposition 2 that the probability of misleading a search-based attack is low
if the model output diversity is low. This is intuitive, since the random selection of diverse models
can result in diverse outputs; alternatively, q(x;π(i)) − q(x;π(j)) is positively correlated with the
diversity in model outputs.

3.4 FORMULATING AND ANALYZING MODEL PARAMETER DIVERSIFICATION

Interestingly, our theoretical analysis of model randomization against gradient estimation and
gradient-free attacks already demonstrates promoting model output diversity improves robustness
to query based black-box attacks. Then following on from our second hypothesis, we investigate
learning diverse model parameters for a machine learning task to enhance model output diversity.

In general, we can train an ensemble of models such that their predictions are consistent while
their response, such as their output scores are diverse. Formally, the training objective of such a
framework can be formulated as follows:

min
Θ

E(x,y)∼D

[
ℓ
(

1
K

∑K
k=1 f(x;θk), y

)]
, s.t. Ω(F), (9)

where D denotes a training set, Ω is a set of constraints on the set of functions F =
{f(·,θ1), f(·,θ2), . . . , f(·,θK)} to ensure diversity is optimized over their parameters Θ =
{θ1,θ2, . . . ,θK} and ℓ(., .) is the loss (i.e. cross-entropy). For our defense, there are two perti-
nent questions that have to be answered in formulation of 9:

• Question 1: Because we seek highly diverse models, what constraints encourage the diversity
of models leading to high output variance?

• Question 2: Since we minimize the loss over the average logits of the set of models, how can we
ensure the asymmetry between models promotes high individual model performance because we
want any random selection of models to be well-performing to minimize the defense strategy’s
impact on performance?

We discuss our solution in the following sections.

3.4.1 PARAMETER DIVERSITY APPROACH

To answer Question 1, we consider the diversity in parameters achieved by adopting an ensemble
training framework incorporating a Bayesian formulation of deep learning with Stein variational
gradient descent (SVGD) method (Liu & Wang, 2016; Wang & Liu, 2019). This framework allows
us to learn a posterior distribution of parameters (weights) and the model parameters sampled from
that posterior distribution can result in diverse representations, leading to model diversity.

In this approach, a neural network f(x,θ) with parameters θ are considered random variables. Then
Bayesian deep learning begins with a prior p(θ) and a likelihood function p(D|θ) that assesses how
well the network with weights θ fits the data D. The Bayesian inference integrates the likelihood
and the prior using Bayes’ theorem to derive a posterior distribution, p (θ|D), over the space of
weights, given by p (θ|D) = p(D|θ)p(θ)

p(D) .

The exact solution for the posterior is often impractical, due to the complexity of deep neural net-
works and the high-dimensional integral of the denominator, even for networks of moderate size.
The true Bayesian posterior distribution is typically a complicated multimodal distribution, making
it challenging to accurately sample from. To address these issues, Liu & Wang (2016) proposed
Stein Variational Gradient Descent (SVGD) as a general-purpose variational inference algorithm.

6
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Notably, the SVGD method is able to push model parameters apart, directly, it is capable of encour-
aging learning diversified parameters and provides an effective solution to Question 1. Interestingly,
the approach is shown to learn different representations Doan et al. (2022) and, consequently, lead
to output variance without compromising clean accuracy. Formally, learning diverse parameters,
where θk denotes the weights of the k-th model, is formulated as follows:

θi = θi − ϵϕ∗(θi) and ϕ∗(θi) =

K∑
k=1

[
κ(θk,θi)∇θi

ℓ(f(x;θk), y)− γ∇θi
κ(θk,θi)

]
. (10)

Here κ(·, ·) is a kernel function that encourages model diversity, and γ is a hyperparameter to control
the trade-off between models’ diversity and the loss ℓ(., .) (i.e. cross-entropy) while ϵ is the learning
rate to determine how much to update each each parameter in each iteration.

Notably, SVGD method was first employed to improve adversarial robustness in white-box set-
tings (Doan et al., 2022). While it incorporates adversarial training, we do not adopt adversarial
training, due to the clean accuracy drop. Importantly, the method proposed by Doan et al. (2022)
does not consider the problem pertinent to our defence method posed in Question 2.

3.4.2 NEW TRAINING OBJECTIVE TO ACHIEVE WELL-PERFORMING MODELS

We can observe the training objective in Equation 9 is not able to address the problem posed in Ques-
tion 2 as we show in Appendix D. Simply, a naive adoption of the Bayesian training framework with
SVGD does not yield models that perform well individually, despite the average performance of all
models for a task being high. To address this problem, we propose a new training objective that en-
courages individual model-learning while training a set of diverse models. We propose incorporating
a sample loss training objective, ℓ(f(x;θi), y), to formulate a new joint loss as follows:

min
Θ

EB∼D, θi∼Θ

[
E(x,y)∼B

[
ℓ
( 1

K

K∑
k=1

f(x;θk), y
)
+ ℓ

(
f(x;θi), y

)]]
, (11)

where B denotes a batch of data sampled from a training set D. Notably, in this training framework,
we aim to train all models simultaneously, and for each batch of data B, we uniformly select θi from
Θ at random with replacement.

4 EXPERIMENTS AND EVALUATIONS

Datasets. We use four different datasets MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky
et al.), STL-10 (Coates et al., 2011) and ImageNet (Deng et al., 2009).

Attacks. We use both score and decision-based attacks across all three perturbation objectives (l∞,
l2, l0). We emphasize score-based attacks more, as state-of-the-art methods succeed with smaller
query budgets. For score-based settings under l2, l∞ and l0 perturbation objectives, we attack with
SQUAREATTACK Croce et al. (2022), NESATTACK (Ilyas et al., 2018), SIGNHUNTER (Al-Dujaili
& O’Reilly, 2020) and SPARSERS (Andriushchenko et al., 2020). For decision-based settings we
use HOPSKIPJUMP (Cheng et al., 2019) (l2) and SPAEVO (Vo et al., 2022) (l0).

Defenses. Together with ours1, we compare with randomized input, RND (Qin et al., 2021), and
randomized feature, RF (Nguyen et al., 2024), defenses for query-based attacks. Notably, compar-
ing empirical robustness of all adversarial defenses is beyond the scope of this paper. Our aim is to
theoretically and empirically examine the effectiveness of a model randomization defense. Never-
theless, for completeness, we compare robustness: i) provided by adversarial training (AT) (Wang
et al., 2023) in the Appendix L; ii) AAA (Chen et al., 2022) defending against only score-based
attacks in Appendix M; iii) RBC input randomization defense (Cao & Gong, 2017) in Appendix N
and iv) ADP (Pang et al., 2019) a model diversification approach tested with white-box attacks in
Appendix O). Additionally, as baselines, we use undefended single models and ensembles where
ensemble settings make predictions using all of the models.

Evaluation Metrics. Notably, with a defense employing randomness, the same input can result in
different outputs (e.g. different scores). An input can also be correctly or incorrectly predicted when
repeatedly fed to a defended model adopting randomness. Thus, when an adversarial input created

1We call ours Disco, from the phrase, diversity induced stochastic obfuscation, reflective of our idea.
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by an attack aims to fool a model, it could fail or succeed. The more frequently it fails, more robust
the randomness defense. Hence, we define the robustness of a randomness-based defense method as
follows:

Robustness = Exadv∼DADV
[Accr(xadv)], (12)

where Accr(xadv) is the number of correct predictions over 1000 predictions of an adversarial exam-
ple. DADV is a set of adversarial examples generated by an attack.

Evaluation Protocol. Recall, when a benign input is fed to a model incorporating randomness, it can
be correctly or incorrectly classified. The more frequently a benign input is misclassified, the less
reliable the input will be for the purpose of constructing an attack. Although it significantly increases
the computation burden, for a fair and reliable comparison, we select benign inputs correctly inferred
over 1,000 repeated queries, dubbed reliable benign inputs. To manage the computational burden
on three different tasks, we compose each evaluation set with 500 reliable benign inputs and use a
budget of 10K queries for each attack. For our method, we train a set of 40 models for MNIST task
and 10 models for CIFAR-10 and STL-10 tasks and randomly select a subset of 5 models to make
predictions. Other selection schemes and results are presented in Appendix J.

Networks & Model Sets. We use the network in (Cheng et al., 2020) for MNIST, VGG-16 (Liu &
Deng, 2015) for CIFAR-10 and ResNet18 (He et al., 2016) for STL-10, then OpenCLIP Radford
et al. (2021) for ImageNet. As we discussed in Section 3.3, a more diverse models can improve
resilience to attack algorithms. Given our computational constraints and the complexity of differ-
ent datasets (i.e. high dimensional data), we train a larger number of models (40) for the MNIST
task and a lower number of models (10) for high-resolution CIFAR-10 and STL-10 with 5 for
the ImageNet tasks. Notably, with the ability to relatively quickly learn with a large number of
particles (models) with MNIST, we conduct extensive studies using this tasks.

4.1 ROBUSTNESS AGAINST QUERY-BASED BLACK-BOX ATTACKS

We report robustness under 7 state-of-the-art attacks, consider all three perturbation objectives (l2,
l∞ l0) and include decision and score-based attacks. We evaluate ours and 5 defenses, including
adversarial training, with some performance evaluations deferred to the Appendices L–O.
Performance Against Score-Based Attacks. We report the performance of defense methods against
score-based attacks SIGNHUNTER (l2) and SQUAREATTACK (l2) on three different tasks in Table 1.
For MNIST, we configure a random selection strategy of five out of 40 models, for CIFAR-10 and
STL-10, we configure five out of 10 models. The results in SIGNHUNTER and SQUAREATTACK
are strong adversarial attacks. The results demonstrate our method consistently outperforms state-
of-the-art defenses across tasks and perturbation budgets. This empirical evidence supports our
theoretical analysis in Section 3. We provide further evidence, with additional results using different
configurations for model randomization in Appendix J.

Table 1: l2 objective. Robustness (higher ↑ is stronger) of different defense methods against SIGN-
HUNTER and SQUAREATTACK.

MNIST

Methods SIGNHUNTER SQUAREATTACK
l2 =0.8 1.6 2.4 3.2 4.0 l2 =0.8 1.6 2.4 3.2 4.0

Single (undef ) 96.8% 56.6% 11.0% 2.0% 0.0% 81.4% 7.0% 0.0% 0.0% 0.0%
Ensemble (undef ) 98.6% 93.2% 56.6% 13.8% 3.0% 95.2% 38.8% 0.8% 0.0% 0.0%

RND 99.76% 94.19 % 78.04% 63.03% 49.47% 99.42% 92.95% 77.31% 60.59% 45.12%
RF 99.98% 99.68 % 96.95% 86.69% 70.48% 99.99% 99.59% 95.19% 83.54% 68.79%

Disco 100% 99.99% 99.78% 99.78% 99.25% 100% 99.76% 97.46% 88.98% 77.75%
CIFAR-10

l2 =0.8 1.6 2.4 3.2 4.0 l2 =0.8 1.6 2.4 3.2 4.0
Single (undef ) 0.2% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0%

Ensemble (undef ) 15.6% 1.2% 0.2% 0.2% 0.2% 7.8% 0.0 % 0.0% 0.0% 0.0%
RND 99.93% 98.7 % 93.75% 84.1% 73.81% 99.03% 87.49 % 68.68% 49.41% 34.73%
RF 99.98% 99.2 % 94.24% 85.2% 75.14% 99.5% 91.14 % 72.34% 52.31% 39.59%

Disco 99.96% 99.25% 97.61% 93.63% 90.24% 99.56% 95.62% 87.07% 76.5% 65.76%
STL-10

l2 =1.2 2.4 3.6 4.8 6.0 l2 =1.2 2.4 3.6 4.8 6.0
Single (undef ) 27.0% 2.8% 0.6% 0.0% 0.0% 24.6% 1.8% 0.6% 0.0% 0.0%

Ensemble (undef ) 46.2% 11.4% 3.0% 1.0% 0.6% 43.0% 6.6% 1.0% 0.4% 0.2%
RND 99.98% 99.68 % 98.92% 97.19% 92.74% 99.93% 98.63 % 94.32% 87.8% 80.78%
RF 99.99% 99.63 % 99.21% 97.2% 93.86% 99.88% 99.44 % 97.53% 95.06% 89.67%

Disco 99.99% 99.96% 99.8% 99.39% 98.75% 99.97% 99.74% 98.76% 96.86% 93.86%
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Table 2: l∞ objective. Robustness (higher ↑ is
stronger) of different defense methods against NESAT-
TACK, SIGNHUNTER and SQUAREATTACK with the
CIFAR-10 task.

Attack Methods l∞ =0.02 0.04 0.06 0.08 0.1

NESATTACK

Single (undef ) 82.8% 62.0% 41.2% 26.8% 15.4%
Ensemble (undef ) 91.2% 76.6% 58.6% 45.0% 31.6%

RND 99.69% 96.03 % 90.94% 84.75% 77.83%
RF 99.5% 95.57 % 88.69% 85.55% 79.86%

Disco 99.7% 97.93% 94.39% 90.5% 86.77%

SIG
NHUNTER Single (undef ) 1.8% 0.0% 0.0% 0.0% 0.0%

Ensemble (undef ) 29.46% 0.6% 0.0% 0.0% 0.0%
RND 99.98% 98.27 % 88.97% 75.63% 63.73%
RF 99.99% 98.51 % 87.38% 72.23% 61.5%

Disco 99.97% 98.95% 95.56% 90.7% 84.22%

SQUAREA
TTACK Single (undef ) 2.2% 0.0% 0.0% 0.0% 0.0%

Ensemble (undef ) 28.8% 1.2% 0.2% 0.2% 0.2%
RND 99.96% 90.43 % 63.68% 39.44% 22.06%
RF 99.92% 88.97 % 63.4% 40.25% 25.03%

Disco 99.97% 96.91% 86.52% 70.22% 55.77%

We further evaluate the robustness
of defenses against 3 strong, l∞ at-
tacks, NESATTACK, SIGNHUNTER and
SQUAREATTACK as well as l0 attack
SPARSERS. The results in Tables 2 and
3 show that our model randomization
mechanism is more robust than random
noise injection defenses across different
attacks and perturbation objectives.

Performance Against Decision-Based
Attacks. We report results for HOP-
SKIPJUMP (l2) and SPAEVO (l0) at-
tacks in Table 4. Our proposed defense
demonstrates stronger robustness than
the state-of-the-art defenses across dif-

ferent decision-based attacks and perturbation objectives. Importantly, the empirical evidence sup-
ports our theoretical analysis in Section 3.

4.2 ROBUSTNESS AGAINST ADAPTIVE QUERY-BASED BLACK-BOX ATTACKS

Table 3: l0 objective. Robustness (higher ↑ is stronger)
of defenses against SPARSERS with CIFAR-10 task.

Methods l0 =16px 32px 48px 64px 80px
Single (undef ) 0.0% 0.0% 0.0% 0.0% 0.0%

Ensemble (undef ) 1.6% 0.0% 0.0% 0.0% 0.0%
RND 45.27% 23.77% 15.88% 11.98% 8.53%
RF 38.68% 24.35 % 20.66% 15.89% 14.73%

Disco 63.85% 47.84% 41.59% 36.81% 31.24%

We compare RND, RF with our method
under adaptive SIGNHUNTER and
adaptive SQUAREATTACK employ-
ing Expectation Over Transformation
(EOT) (Athalye et al., 2017). Our ex-
planation of EOT-based adaptive attacks
is presented in Appendix A. Figure 2
shows that an adaptive attacker can al-
leviate the effect of defense mechanisms
compare to their non-adaptive counterparts but with a 10× higher cost for queries. Interestingly, our
insights into obfuscating the relationship between query-response pairs with model randomization
outperforms random noise injection methods, RND and RF.

Table 4: Decision-based attacks. Robustness (higher ↑ is stronger) of different defense methods
against HOPSKIPJUMP (l2) and SPAEVO (l0) with the CIFAR-10 task.

Methods HOPSKIPJUMP SPAEVO
l2 =0.8 1.6 2.4 3.2 4.0 l0 =4px 8px 12px 16px 20px

Single (undef ) 0.0% 0.0% 0.0% 0.0% 0.0% 43.2% 19.6% 7.2% 3.8% 3.0%
Ensemble (undef ) 3.2% 0.0% 0.2% 0.2% 0.2% 59.2% 29.6% 17.2% 8.4% 6.4%

RND 99.94% 99.13 % 98.23% 96.71% 95.95% 93.45% 93.08% 92.86% 92.83% 92.82%
RF 99.91% 98.53 % 97.13% 95.57% 94.34% 91.84% 91.49% 91.4% 91.4% 91.4%

Disco 99.94% 99.4% 98.77% 98.04% 97.43% 96.17% 95.99% 95.94% 95.88% 95.84%

A
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Distortion

Disco

RND

RF

SignHunter(  )l2
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Figure 2: Robustness against non-adaptive vs. adaptive l2 and l∞ attacks using SIGNHUNTER and
SQUAREATTACK. For adaptive attacks, the adversary expends extra, m = 10× queries for each
input sample, and averages the outputs to mitigate our obfuscation (we defer details to Appendix A).

4.3 INVESTIGATING CLEAN ACCURACY OF UNDEFENDED AND DEFENDED MODELS

Defenses invariably compromise clean accuracy for robustness. We report clean accuracy achieved
by undefended and defended models along with the resulting clean accuracy drop (CAD) denoted
by (↓ ∆) across the tasks in Tables 5. Importantly, our goal to seek well-performing models with the
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incorporation of the new learning objective in Section 3.4.2 has mitigated the CAD drop significantly
better than state-of-the-art random noise defenses. We provide further evidence to demonstrate the
impact of the learning objective in Appendix D.

Table 5: Clean accuracy achieved by undefended and defended models. For our method, SVGD+
(All) is a clean accuracy of the entire model set while Disco(SVGD+) presents the clean accuracy of
random five out of 40 models (MNIST) or random five out of 10 models (CIFAR-10, STL-10)—
we report clean accuracy for other model randomization configurations in Appendix J.3.

Dataset Baselines Defense Methods Ours
Single Model Ensembles RND (↓ ∆) RF (↓ ∆) SVGD+ (All) Disco(SVGD+) (↓ ∆)

MNIST 99.64% 99.72% 98.59% (↓1.05%) 98.45% (↓1.19%) 99.59% 99.34% (↓0.25%)
CIFAR-10 92.09% 94.76% 87.63% (↓4.46%) 89.73% (↓2.36%) 93.19% 92.26% (↓0.93%)
STL-10 90.39% 92.15% 86.38% (↓4.01%) 88.5% (↓1.89%) 90.18% 88.97% (↓1.21%)

4.4 RELATIONSHIP BETWEEN ROBUSTNESS AND DIVERSITY PROMOTING ALTERNATIVES

CIFAR-10

D
iv

er
si

ty

Individual Models

D
iv

er
si

ty

STL-10

DivDis DivReg SVGD+Ensembles

Figure 3: Model diver-
sity using JS divergence
among Ensemble, Di-
vDis, DivReg and SVGD+
(ours).

We assess alternative methods for promoting model diversity (Deep
Ensembles, Ensemble, (Lakshminarayanan et al., 2017); DivDis (Lee
et al., 2023); DivReg (Teney et al., 2022)) to: i) evaluate their perfor-
mance under our model randomization method; and ii) understand the
relationship between robustness and model diversity (we defer formu-
lations of these training objectives to Appendix H.1).
Performance. We compare the robustness of alternatives with SVGD+
under our framework against score-based, l2 adversarial attacks SIGN-
HUNTER and SQUAREATTACK. The results in Table 6 show that
our method outperforms the alternatives. We report additional results
against other attacks in Appendix I.
Model Diversity Analysis. We discussed in Section 3.4 how greater di-
versity among models can enhance obfuscation and lead to enhanced
robustness against query-based attacks. Here, we use Jensen–Shannon
(JS) divergence to understand model diversity promoted by different
methods. While JS divergence and additional results are detailed in
Appendix H.2, here, Figure 3 shows our proposed method (SVGD+)
to achieve greater diversity than the alternatives; importantly, this pro-
vides evidence to support our second hypothesis in Section 3.2 and provides further insights to
explain the better robustness achieved with Disco implemented with SVGD+.

Table 6: l2 objective attacks, CIFAR-10. Robustness (higher ↑ is stronger) of diversity promotion
approaches against SIGNHUNTER and SQUAREATTACK with the CIFAR-10 task.

Methods SIGNHUNTER SQUAREATTACK
l2 =0.8 1.6 2.4 3.2 4.0 l2 =0.8 1.6 2.4 3.2 4.0

Disco(Ensemble) 99.69% 97.72% 93.49% 89.22% 81.55% 98.2% 87.9 % 76.9% 63.5% 52.2%
Disco(DivDis) 99.87% 98.74 % 95.32% 91.97% 85.6% 99.1% 94.1 % 82.7% 70.4% 56.4%
Disco(DivReg) 99.96% 99.07% 96.38% 91.42% 86.95% 99.2% 90.9 % 76.3% 64.6% 51.6%
Disco(SVGD+) 99.96% 99.25% 97.61% 93.63% 90.24% 99.56% 95.62% 87.07% 76.5% 65.76%

4.5 COST ANALYSIS AND AMELIORATING COSTS TO DEFEND IMAGENET ON OPENCLIP

We analyses the cost overhead of Disco in Appendix E. In Appendix F we adopt the method of
model fine tuning to implement Disco for a practical task, represented by ImageNet, and for a
practical, large-scale model, represented by OpenCLIP—now the cost burden is < 1%.

5 CONCLUSION

This study investigates the effectiveness of a model randomization defense against query-based
black-box attacks in both score-based and decision-based settings. We theoretically analyze the
defense and prove the link between diversity of model outputs to model robustness; hence, model
randomization always increases resilience to query-based black-box attacks. We realize the ap-
proach by learning a set of diverse yet well performing models for random selection to provide
robustness whilst minimizing the clean accuracy drop of defended models. We demonstrate the ap-
proach leads to an effective defense with 7 state-of-the-art query-based black-box attacks under all
three perturbation objectives (l∞, l2, l0).
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OVERVIEW OF MATERIALS IN THE APPENDIX

We provide a brief overview of the additional experimental results and findings in the Appendices
that follow.

1. Proofs for theoretical analysis against gradient estimation attacks (Appendix A) and
gradient-free attacks (Appendix B).

2. Analysis of Trade-off Between Subset Set Size and Error Estimation C.
3. Effectiveness of the proposed learning objective in Section 3.4.2 (Appendix D).
4. Cost analysis of Disco method (Appendix E)
5. Cost mitigation strategy and effectiveness on a high-resolution large-scale dataset with a

practical large-scale OpenCLIP model (Appendix F).
6. Effectiveness against an attack in a surrogate model setting (Appendix G).
7. Formulations of and diversity analysis of alternative approaches for promoting model di-

versity (Appendix H).
8. Robustness evaluations of alternative approaches for model diversity promotion against

4 state-of-the-art attacks under l∞ and l0 perturbation objectives (Appendix I).
9. Robustness and clean accuracy evaluations of different randomized model selection strate-

gies with different model diversification methods (Appendix J).
10. Robustness over multiple trials (Monte Carlo experiment) (Appendix K).
11. Robustness comparisons with 3 additional defenses:

• Adversarial Training (AT) defense (Appendix L).
• Adversarial Attack on Attackers (AAA) Defense (Appendix M).
• Region-Based Classification (RBC) (Appendix N).

12. Robustness comparison with Adaptive Diversity Promoting (ADP) method (Appendix O).
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A PROOF FOR THEORETICAL ANALYSIS AGAINST GRADIENT ESTIMATION
ATTACKS

In this section, we provide the theoretical analysis of our defense method against gradient-estimation
attacks and the proof of proposition 1.

Proof. We consider gradient estimation when the entire set of models (or even a single model) is
presented to the attacker versus the expectation of gradient estimation under different subsets.

Given an input x∈ Rd and K models, the output logits of K models is F (x) = 1
K

∑K
k=1 f(x;θk),

where F = {f(·,θ1), f(·,θ2), . . . , f(·,θK)}. Given ϵ > 0, u ∼ N (0, I), u ∈ Rd, the gradient
estimated when the entire model set is used can be formulated as follows:

Ĝ(x) = Eu

[
F (x+ ϵu)− F (x)

ϵ
u

]
; Ĝ(x) ∈ Rd.

Applying Taylor expansion at x, we have F (x+ ϵu) ≈ F (x) + ϵu∇F (x). Then, we have:

Ĝ(x) ≈ Eu

[
F (x) + ϵu∇F (x)− F (x)

ϵ
u

]
≈ Eu[u∇F (x)u]

≈ Eu

[
u

1

K

[ K∑
k=1

∇f(x,θk)
]
u
]

Notably, since u is sampled from a normal distribution, it provides an unbiased estimation of the
gradient.

However, under our defense, a subset of models is sampled uniformly at random with replace-
ment from F and an average is taken to make a prediction. Particularly, we sample q(x;π) =
1
N

∑N
k=1πkf(x,θk) where π ∼ B(µ1, . . . , µK) denotes a K dimensional vector sampled from K

independent Bernoulli distributions and N is the size of the model subset. Thus, the expectation of
the estimated gradient from all subsets of models can be formulated as the following:

G̃(x) = Eu

[
Eπ

[q(x+ ϵu;π(i))− q(x;π(j))

ϵ

]
u
]
, G̃(x) ∈ Rd.

where i, j denotes i- and j − th consecutive iterations (model queries). Applying Taylor expansion
at x, we have q(x+ ϵu;π(i)) ≈ q(x;π(i)) + ϵu∇q(x;π(i)). Then, we have:

G̃(x) ≈ Eu

[
Eπ

[
q(x;π(i)) + ϵu∇q(x;π(i))]− q(x;π(j))

ϵ

]
u

]

≈ Eu

[
Eπ

[
q(x;π(i))− q(x;π(j)) + ϵu∇q(x;π(i))

ϵ

]
u

]

≈ Eu

[
Eπ

[
q(x;π(i))− q(x;π(j))

ϵ
+ u∇q(x;π(i))

]
u

]

≈ Eu

[[
1

ϵ

[
Eπ

[
q(x;π(i))

]
︸ ︷︷ ︸

A

− Eπ

[
q(x;π(j))

]
︸ ︷︷ ︸

B

]
+ uEπ

[
∇q(x;π(i))

]]
u

]

Since:

Eπ

[
q(x;π(i))

]
=

K∑
k

µkf(x;θk) ,

and the difference between the first two expectation terms A and B will approach zero, we have:

G̃(x) ≈ Eu

[
uEπ

[
∇q(x;π(i))

]
u

]
≈ Eu

[
u

[
K∑
k

µk∇f(x;θk)

]
u

]
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Thus, we have:

G̃(x)− Ĝ(x) ≈ Eu

[
u

[
K∑

k=1

(µk − 1

K
)∇f(x;θk)

]
u

]
.

As µk approaches 1
K , the difference between G̃(x) and Ĝ(x) approaches zero.

Given the result above, first we consider non-adaptive attackers.

Non-adaptive attack setting. Generally, an adversary does not have knowledge of defense mecha-
nisms. Hence, under our defense mechanism, the gradient estimator with a pair of samples is:

g(x) =
q(x+ ϵu;π(2))− q(x;π(1))

ϵ
u, g(x) ∈ Rd.

In practice, to achieve a good approximation of gradient, the finite difference method samples mul-
tiple u, obtains multiple g(x) and takes the average. Then, the approximation of the gradient with
n different pairs of samples using the finite difference method is formulated as follows:

ḡ(x) =
1

n

n∑
i=1

q(x+ ϵui;π
(2i))− q(x;π(2i−1))

ϵ
ui, ḡ(x) ∈ Rd.

where the defender generates π(2i),π(2i−1) ∼ B(µ1, . . . , µK), the attacker generates ui ∼
N (0, I). However, there is a gap between this approximation ḡ(x) and the expected gradient es-
timation of all subsets G̃(x) = E[g(x)]. Since we proved the expected gradient estimation G̃(x)

approximates the actual gradient estimation of the entire model set Ĝ(x), |ḡ(x) − G̃(x)| approx-
imates to |ḡ(x) − Ĝ(x)|. If each element of the gradient g(x) estimated at iteration i is bounded
by aji ≤ g(x)j ≤ bji with ai, bi ∈ Rd, n different gradient estimators g(.) are independent ran-
dom variables and Aj is defined as |ḡ(x)j − Ĝ(x)j | ≥ ∆, according to the Hoeffding’s inequality
and employing a union bound over all d dimensions to bound the probability of deviation in any
component, we have:

P (∪d
j=1A

j) ≤
d∑

j=1

P (Aj) =

d∑
j=1

2 exp
(
− 2n2∆2∑n

i=1(a
j
i − bji )

2

)
.

Where ∆ is a gap or margin of error. This term can further be upper bounded by considering the
fact that exp(−x) is monotonically decreasing, we know for any j:

exp
(
− 2n2∆2∑n

i=1(a
j
i − bji )

2

)
≤ exp

(
− 2n2∆2∑n

i=1[maxj(a
j
i − bji )

2]

)
Therefore, we have:

P (∪d
j=1A

j) ≤
d∑

j=1

2 exp
(
− 2n2∆2∑n

i=1(a
j
i − bji )

2

)
≤ 2d exp

(
− 2n2∆2∑n

i=1[maxj(b
j
i − aji )]

2

)
To achieve low margin of error ∆, the upper bound of the probability such that this gap is beyond ∆
must be low. To achieve this with the desired confidence level 1− δ and the given bound as above,
we set the right-hand side of the inequality smaller than δ and solve for n as the following:

2d exp
(
− 2n2∆2∑n

i=1[maxj(b
j
i − aji )]

2

)
≤ δ

− 2n2∆2∑n
i=1[maxj(b

j
i − aji )]

2
≤ log

δ

2d

2n2∆2∑n
i=1[maxj(b

j
i − aji )]

2
≥ log

2d

δ

n2 ≥
log 2d

δ

∑n
i=1[maxj(b

j
i − aji )]

2

2∆2

n ≥

√
log 2d

δ

∑n
i=1[maxj(b

j
i − aji )]

2

2∆2
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This implies that when a set of models is more diverse, the bound aji < g(x)j < bji is larger, and
the number of samples n needed, such that every element of ḡ(x)− Ĝ(x) is more likely within the
error margin ∆, grows significantly. ■

Next we consider adaptive attackers.

Adaptive attack setting. Now, we assume the attacker has knowledge of the defense mechanism
and is aware that a subset of K models is randomly selected to generate the response to a model
query. If an adversary has prior knowledge of our defense mechanism, they can employ Expectation
Over Transformation (EOT) Athalye et al. (2017) to obtain a more accurate gradient estimate.

It is worth noting that, in the original EOT method, the adversarial perturbation gradient is calcu-
lated based on a series of transformed inputs (adversarial examples). The reason is to address the
issue incurred by the ineffectiveness of an adversarial example yielded by an adversary when the
adversarial example is randomly transformed (Athalye et al., 2017) i.e. with different view angles.
Therefore, to maintain the effectiveness of an adversarial example over different transformations,
they model these transformations in their optimization procedure by transforming the inputs. Simi-
larly, to maintain the effectiveness of an adversarial example over different models whose selection
is represented by different π, an adversary seeks a perturbation gradient direction such that it is
effective over different models. Therefore, in our study, the so-called EOT is performed over π. In-
terestingly, the same reasoning is in Athalye et al. (2018) and Nguyen et al. (2024) when applying
EOT to attack defenses involving stochasticity, like with ours.

In practice, similar to a non-adaptive attack, an EOT-based adaptive attack sends m queries to a
target model to estimate the gradient, but for each query, it feeds a target model with the same
input n times to mitigate the impact of randomness. As a result, the number of queries to estimate a
gradient in the adaptive setting is m×n. This is m× higher than a non-adaptive attack. For instance,
if a non-adaptive attack uses 10K queries and m = 10, the total number of queries needed by an
adaptive attacker is 100K. Likewise, for gradient-free attacks, each input is fed into a target model
m times to find a more reliable attack direction.

Formally, under our defense mechanism, the gradient estimator employed by an adaptive attack
using the finite difference method is formulated as follows:

g′(x) =
1

m

m∑
1

f (i)(x+ ϵu;π(i))− f (j)(x;π(j))

ϵ
u =

1

m

m∑
1

g(x)

where π(i),π(j) ∼ B(µ1, . . . , µK) is generated by the defender, u ∼ N (0, I) is generated by the
attacker and f (i)(x;π(i)) =

∑
k π

(i)
k fk(x,θk), f

(j)(x;π(j)) =
∑

k π
(j)
k fk(x,θk).

Similar to the non-adaptive setting, to achieve a good approximation of gradient, the finite difference
method samples multiple u, obtains multiple g′(x) and takes the average g̃(x) = 1

n

∑n
1 g

′(x).
Then, we have g̃(x) = 1

n′

∑n
1

∑m
1 g(x) with n′ = n × m. If each element of the gradient g′(x)

estimated at iteration i is bounded by a′
j
i ≤ g′(x)j ≤ b′

j
i with a′

i, b
′
i ∈ Rd, and A′j is defined as

|g̃(x)j − Ĝ(x)j | ≥ ∆, according to the Hoeffding’s inequality and employing a union bound over
all d dimensions to bound the probability of deviation in any component, we have:

P (∪d
j=1A

′j) ≤
d∑

j=1

P (A′j) =

d∑
j=1

2 exp
(
− 2n′2∆2∑n

i=1(a
′j
i − b′ji )

2

)
The number of samples n′ needed to ensure every element of g̃(x) − Ĝ(x) more likely within an

error margin ∆ with confidence 1− δ is at least:

n′ ≥

√
log 2d

δ

∑n
i=1[maxj(b′

j
i − a′ji )]

2

2∆2

This implies that the number of samples n′ relies on the range of estimator d′ with a given confidence
interval and margin of error. Importantly, as similar to non-adaptive attacks, when a set of models
is more diverse, the bound a′

j
i ≤ g′(x)j ≤ b′

j
i is larger, and the number of samples n′ needed, such

that every element of g̃(x)− Ĝ(x) is more likely within the error margin ∆, grows significantly.
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Interestingly, in adaptive settings, when sampling each u, the attacker has to sample m times with
the same u. Thus, the total number of samples an adaptive attacker needs is significantly higher;
since n′ = n×m.

B PROOF FOR THEORETICAL ANALYSIS AGAINST GRADIENT-FREE
ATTACKS

In this section, we provide the theoretical analysis of our defense method against gradient-free
(search-based) attacks and the proof of proposition 2.

Proof. Given input x, a constant ϵ > 0, u ∼ N0, I), the search direction of search-based attacks
when considered against against the entire set of models (the ensemble or more generally a single
model) relies on the sign of Ĥ(x,u) = F (x + ϵu) − F (x). Similarly, the search direction of
search-based attacks against our defense employing different random subsets of models depends on
the sign of H̃(x,u) = q(x+ ϵu;π(i))− q(x;π(j)).

Applying Taylor expansion at x, we have:

Ĥ(x,u) = F (x+ ϵu)− F (x) ≈ F (x) + ϵu∇F (x)− F (x) ≈ ϵu∇F (x)

Then, we can obtain:

H̃(x,u) = q(x+ ϵu;π(i))− q(x;π(j))

≈ q(x;π(i)) + ϵu∇q(x;π(i))− q(x;π(j))

≈
[
q(x;π(i))− q(x;π(j))

]
+ ϵu∇q(x;π(i))

Thus:

H̃(x,u)− Ĥ(x,u) ≈
[
q(x;π(i))− q(x;π(j))

]
︸ ︷︷ ︸

γi,j

+ϵu
[
∇q(x;π(i))−∇F (x)

]
︸ ︷︷ ︸

ζi

Following the proof of Theorem 3 in Qin et al. (2021), we can now obtain:

P (
H̃(x,u)

Ĥ(x,u)
< 0) ≤ P (|H̃(x,u)− Ĥ(x,u)| ≥ |Ĥ(x,u)|)

≤
Eπ

[
|H̃(x,u)− Ĥ(x,u)|

]
|Ĥ(x,u)|

according to the Markov’s inequality

≤

√
Eπ

[
(H̃(x,u)− Ĥ(x,u))2

]
|Ĥ(x,u)|

according to the Jensen’s inequality

≤

√
Eπ

[
(γi,j + ϵuζi)2

]
|Ĥ(x,u)|

≤

√
2Eπ

[
γ2
i,j + (ϵuζi)2

]
|Ĥ(x,u)|

according to the Cauchy’s inequality

■

C ANALYSIS OF TRADE-OFF BETWEEN SUBSET SET SIZE AND ERROR
ESTIMATION

In this section, we provide an additional analysis of the trade-off between the selection of N (the
subset set size) from K models and the number of queries to achieve a low error estimation.
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• Intuitively, a larger subset size N reduces the number of combinations of model subsets.
This results in a reduction in the number of random models presented to the attacker.

• In addition, a larger subset size N also reduces the variance in estimates of gradient at-
tempted by an attacker. Because, the prediction from a larger subset of models is more
confident and the variance, for example, in output scores between these large subsets is
less.

• Consequently, averaging across larger subsets of models leads to more informative re-
sponses (better gradient estimates, for example) and fewer queries to obtain low error esti-
mations.

• In contrast, smaller K values increase the uncertainty, which leads to increased variance
in gradient estimation, or in other words, the difference in upper and lower bound for the
gradient’s value will be larger. Then following Proposition 1, this increases the cost of the
attack, which forces the attacker to expend more queries to obtain a low error estimation of
a gradient.

D EFFECTIVENESS OF THE PROPOSED LEARNING OBJECTIVE

Table 7: Clean accuracy under different configurations (all models, random selection of subsets
of individual models and each individual model). A comparison between a set of models trained
simultaneously with and without the sample loss objective on MNIST (40 models), CIFAR-10 (10
models) and STL-10 (10 models).

Dataset MNIST CIFAR-10 STL-10
Training
Objective

Without
Sample Loss

With
Sample Loss

Without
Sample Loss

With
Sample Loss

Without
Sample Loss

With
Sample Loss

All Models 99.6% 99.7% 89.8% 93.2% 88.56% 89.93%
Random Selection

8 Models 87.3% 99.6% 59.7% 92.8% 82.07% 89.11%
5 Models 79.4% 99.6% 39.8% 92.4% 78.41% 88.46%
3 Models 69.9% 99.6% 31.0% 91.4% 75.13% 87.63%

Individual Model or Parameter Particle Performance
Model 1 50.7% 99.3% 15.1% 88.5% 58.2% 83.03%
Model 2 36.6% 99.5% 13.8% 88.3% 58.69% 81.44%
Model 3 22.8% 99.3% 13.5% 88.5% 51.51% 82.25%
Model 4 42.2% 99.2% 10.0% 88.1% 51.7% 84.79%
Model 5 32.7% 99.5% 9.3% 88.9% 55.11% 82.7%
Model 6 35.4% 99.4% 12.4% 86.9% 60.39% 84.88%
Model 7 35.6% 99.4% 11.3% 88.4% 52.94% 83.65%
Model 8 32.0% 99.4% 12.4% 89.7% 43.85% 83.79%
Model 9 55.6% 99.3% 10.2% 87.7% 52.79% 80.6%

Model 10 99.3% 99.3% 80.8% 88.4% 71.08% 82.78%

As we discussed in Section 3.4.2, incorporating sample loss as a training objective can encourage
individual model learning and help each model obtain high performance because:

• Minimizing the loss over an average of logits for a subset of model faces the same prob-
lem we tried to address with the introduction of our learning objective (Sample Loss)—
minimizing the loss over an average of logits for a subset of models promotes strong en-
semble performance but does not guarantee that each individual model will perform well.

• Individual model performance, as we mentioned in Section 3.4.2, is very important to en-
sure minimal performance degradation for our defense. Because we want any randomly
selected model or set to be well-performing.

• To this end, the proposed objective, through the joint training process, promotes diversity
among models and ensures each individual model maintains strong performance.

The resulting diverse and well-trained models lead to the success of our proposed approach while
minimizing impacts on clean accuracy. Therefore, in this section, we aim to show the effectiveness
of and insights from the new training objective—sample loss—by considering models with and
without sample loss.
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We employ the SVGD method to train a set of models simultaneously, with and without sample loss
for three tasks, MNIST (40 models), CIFAR-10 (10 models) and STL-10 (10 models). We train
up to 1,000 epochs and select the best model set based on test accuracy. The results in Table 7 show
that each individual model in a set trained with the sample loss objective achieves high performance
on both datasets. As a result, any randomly selected five individual models are able to obtain high
accuracy (92.4%) albeit slightly lower than the accuracy achieved by the set of All Models (93.2%).
In contrast, without the sample loss objective, most models exceed 50% accuracy, and the random
selection of five models does not result in high accuracy (79%).

E COST ANALYSIS

Our approach provides significant improvements in robustness. However, achieving robustness re-
quires training (a one-time cost) and model storage cost. In this section, we analyze these costs and
investigate a method for mitigating the cost. Followed by an experimental evaluation of the method
with the high resolution ImageNet task.

Cost and complexity comparisons shown in Table 8 and Table 9 for training a single model versus
sets of models as used in our experiments show that achieving better robustness does come at some
cost.

Table 8: Training and inference times of different models between different defense mechanisms
RND, RF and Disco(SVGD+) (40 models for MNIST, 10 models for CIFAR-10/STL-10). Here,
for fairness, we assume the Disco methods process inputs one model at a time (sequential); in
practice, the inference times can be similar to a single model as the forward pass of the input can
occur in parallel across an ensemble.

Training Time Inference Time

Datasets Single Model
(RND and RF)

A set of models
(Disco) Undefended RND RF Disco (sequential)

MNIST ∼0.5 hr ∼12.5 hrs 10.17 ms 12.14 ms 12.53 ms 15.12 ms
CIFAR-10 ∼1.5 hr ∼72 hrs 10.56 ms 12.61 ms 12.92 ms 20.62 ms

STL-10 ∼1.2 hr ∼60 hrs 11.26 ms 13.12 ms 13.48 ms 24.85 ms

Table 9: Trainable Parameters and Storage Consumption of models trained on different datasets
between a single model and a set of models (Disco(SVGD+))—40 models for MNIST, 10 models for
CIFAR-10/STL-10.

Trainable Parameters Storage Consumption

Datasets Single Model
(RND and RF)

A set of models
(Disco)

Single Model
(RND and RF)

A set of models
(Disco)

MNIST 0.312 M 12.5 M 1.19 MB 47.7 MB
CIFAR-10 14.73 M 147.3 M 56.18 MB 561.84 MB

STL-10 11.18 M 111.8 M 43.12 MB 426.55 MB

F COST MITIGATION METHOD

In general, the use of multiple models does lead to increasing the training and storage burden. RND
and RF use a single model, whereas we employ a set of n models, so the number of parameters in
our approach is n× higher, and the memory consumption is also larger. In practical applications,
the cost can be mitigated:

• Recent work research in the area of model tuning with low-rank adapters (LoRAs) Hu et al.
(2021) can mitigate the cost of building large-scale practical ensembles.

• The study in Doan et al. (2024) develops a method for a pre-trained model to be tuned with
only a 1% increase in trainable parameters and storage costs to build ensembles of diverse
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models using SVGD. The authors employ the pre-trained OpenCLIP Radford et al. (2021)
model for the ImageNet task and LlaVA for a visual question and answer task.

Next, we adopt the method of model fine tuning to demonstrate how Disco(), the model randomiza-
tion method, can be implemented for practical tasks, represented by ImageNet, and for a practical,
large-scale model, represented by OpenCLIP.

F.1 EFFECTIVENESS ON HIGH-RESOLUTION LARGE-SCALE DATASET AND THE PRACTICAL
LARGE-SCALE OPENCLIP MODEL

In this section, we demonstrate the effectiveness of our method on high-resolution datasets like
ImageNet and with a large-scale, piratical model, OpenCLIPRadford et al. (2021).

Robustness Comparison

Inspired by recent work Doan et al. (2024), we adopt the technique of fine-tuning pre-trained models
to obtain well-trained, large-scale models at a fraction of the cost of training an ensemble from
initialization. The authors employ SVGD to achieve model diversity and use low-rank adapters to
significantly reduce the cost of building the ensemble to better approximate a multi-modal Bayesian
posterior.

As a demonstration of a practical application with a large-scale model, we also use the pre-trained,
OpenCLIP, large-scale model with low-rank adaptors (LoRA) Hu et al. (2021) as in Doan et al.
(2024) to build a sample of five models for the ImageNet task. The ensemble achieves approxi-
mately 78% clean accuracy on the test set. We used a random selection of two out of five models in
our method for the defense, where the clean accuracy of two out of 5 models is approximately 77%.
For RND and RF defenses, we fine-tune the CLIP model for the ImageNet task to achieve 76.07
% clean accuracy and, for a fair comparison, we choose hyperparameters such that the clean accu-
racy drop, after injecting noise, is approximately 1%. In this experiment, we randomly select 100
correctly classified images from the ImageNet test set and use the SQUAREATTACK (l∞) against
the models.

The results in Table 10 show that our approach achieves the best results across various perturbation
budgets on ImageNet task compared to both RND and RF methods. Importantly, our approach is
able to achieve up to 9.6% increase in robustness above the next best performing method RF with
an ensemble of just 5 models.

Table 10: l∞ objective. Robustness (higher ↑ is stronger) of defenses against SQUAREATTACK on
the ImageNet task with an OpenCLIP model.

Methods l∞ =0.025 0.05 0.075 0.1
RND 83.39% 61.95% 43.37% 24.89%
RF 86.45% 65.1 % 51.14% 35.83%

Disco 90.76% 72.51% 56.17% 45.4%

Cost Mitigation Analysis

The results in Table 11 show that our approach can be realized in large-scale network architecture
like OpenCLIP and yet achieve the best robustness results across various perturbation budgets on
the ImageNet task compare to both RND and RF methods. Now, only a marginal cost increase is
needed to achieve significant improvements in robustness.

Table 11: Trainable Parameters and Storage Consumption of five OpenCLIP with LoRA trained
on ImageNet. Notably, we begin with a single pre-trained OpenCLIP model and subsequently
construct the ensemble of five models while tuning the model for the ImageNet task.

Models Single CLIP A set of CLIPs with LoRA
Trainable Parameters 114 M 1.84 M (1.6%, 0.32% per model)
Storage Consumption 433 MB 439 MB (↑1.38%, 0.28% per model)

Summary
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What we are proposing are marginal cost increases to achieve significant improvements in robust-
ness.

• Effectively, we demonstrate <1.6% increase in overhead can yield up to 9.6% better ro-
bustness (when compared to the next best defense method) on a large-scale network of
practical significance.

• Now, adding a model incurs <0.32% overhead in terms of trainable parameters or storage.

Overall, these results also demonstrate that our model randomization method is:

• Practical for implementation
• Effective across different datasets and model types.

G EFFECTIVENESS AGAINST AN ATTACK IN A SURROGATE MODEL SETTING

In this section, we further assess the robustness of the different defense mechanisms against the state-
of-the-art attack using a surrogate model. In the Prior-Bayesian Optimization (P-BO) attack Cheng
et al. (2024), it integrates transfer-based and query-based techniques. The results in Table 12 demon-
strate that our defense outperforms RND and RF and effectively fortifies against the strong P-BO
attack setting. This underpins the capability of Disco to withstand even the most advanced query-
based attacks. This reinforces the strength and general applicability of our approach in defending
against cutting-edge black-box attack methods such as P-BO.

Table 12: l∞ objective. Robustness (higher ↑ is stronger) of defenses against P-BO with
CIFAR-10 task.

Methods l∞ =0.02 0.04 0.06 0.08 0.1
Single (undef ) 0.0% 0.0% 0.0% 0.0% 0.0%

RND 70.33% 31.47% 15.75% 7.23% 6.65%
RF 66.43% 28.04 % 13.67% 8.34% 6.21%

Disco 79.98% 47.94% 29.8% 18.08% 12.16%

H ALTERNATIVE APPROACHES FOR MODEL DIVERSITY PROMOTION

H.1 FORMULATION OF TRAINING OBJECTIVES

Ensembles employing Random Initialization Approaches. Lakshminarayanan et al. (2017) pro-
posed to train a set of models—Ensemble—with random initializations independently. This training
is formulated as follows:

min
θk

E(x,y)∼D

[
ℓ(fk(x;θk), y)

]
, (13)

where θi denotes the weights of the i-th model, and ℓ(., .) is the loss (i.e. cross-entropy).

Gradient-based Approach. Teney et al. (2022) introduced a method encouraging diversity over a
set of models by quantifying the similarity of the gradient of the top predicted score of each model
with respect to its features. This method aims to train a model set to discover predictive patterns
commonly missed by learning algorithms and promote diversity across the model set. In our study,
we adopt their Diversity Regularizer (DivReg) to encourage the model diversity and formulate the
training objective as follows:

min
Θ

E(x,y)∼D

[ K∑
k=1

ℓ(fk(x;θk), y) + λreg

∑
i ̸=j

δfi,fj

]
, (14)

where δfi,fj = ∇hfi(hi) . ∇hfj(hj), λreg controls the strength of the regularizer, ∇hfi and ∇hfj
denote the gradient of the top predicted score of models fi and fj w.r.t their own features hi and hj .
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Score-based Approach. Lee et al. (2023) proposed an approach to training a collection of diverse
models by independently training each head pair to make predictions. In our study, we adopt their
loss function to encourage model diversity. The training objective is formulated as follows:

min
Θ

E(x,y)∼D

[ K∑
k=1

ℓ(fk(x;θk), y) + λMI

∑
k ̸=i

LMI(fk(x;θk), fi(x;θi))
]
, (15)

where LMI(f(x;θk), f(x;θi)) = DKL(p(ŷk, ŷi) ∥ p(ŷk)⊗ p(ŷi)), DKL(. ∥ .) is the KL divergence
and ŷi is the predicted label from fi(x;θi), λMI controls the strength of mutual information loss
LMI, p(ŷk, ŷi) is the empirical estimate of the joint distribution and p(ŷk), p(ŷi) are the empirical
estimates of the marginal distributions.

H.2 DIVERSITY ANALYSIS

As we discussed in Section 3.4, more diversity among individual models or particles results
in enhanced output diversity. Therefore, we use Jensen–Shannon divergence as a metric to il-
lustrate model diversity promoted by different methods. We measure diversity by calculating
the Jensen–Shannon divergence between the average softmax outputs of all models p̂(xi) =
1
K

∑K
k=1 softmax[f(xi;θk)] versus the softmax output of each individual model pk(xi) =

softmax[f(xi;θk)] and then averaging across all samples from a test set as follows:

D
(k)
JS =

1

2

N∑
i

(
DKL

(
p̂(xi) ∥

p̂(xi) + pk(xi)

2

)
+ DKL

(
pk(xi) ∥

p̂(xi) + pk(xi)

2

))
,

where DKL(. ∥ .) is the KL divergence, k represent the individual model k-th and N denotes the
size of a dataset. The results as shown in Section 4.4 and Figure 3 demonstrate that our proposed
method (SVGD+) is able to achieve greater diversity among individual parameter particles. These
empirical findings support the assertions of our hypotheses in Section 3 and the robustness of the
defense method we formulated.

H.3 DIVERSITY ANALYSIS OF INDIVIDUAL MODELS LEARNED WITH DIFFERENT
TRAINING OBJECTIVES

Similar to Section4.1, we measure the diversity between every pair of individual models which can
be computed with Equation 16. The results demonstrated in Figure 4 show highly diverse nature
of the models (larger range of colors for model vs. model results) and that each individual model
trained by our proposed approach obtains higher diversity (denoted by lighter colors).

D
(k,j)
JS =

1

2

N∑
i

(
DKL

(
pk(xi) ∥

pk(xi) + pj(xi)

2

)
+ DKL

(
pj(xi) ∥

pk(xi) + pj(xi)

2

))
, (16)

Table 13: CIFAR-10. Robustness (higher ↑ is stronger) of different defense methods against NE-
SATTACK, SIGNHUNTER and SQUAREATTACK attacks under the l∞ perturbation objective.

Attack Methods l∞ =0.02 0.04 0.06 0.08 0.1

NESATTACK

Disco(Ensemble) 98.82% 95.32 % 89.77% 85.43% 81.11%
Disco(DivDis) 99.51% 98.5 % 95.05% 92.64% 88.54%
Disco(DivReg) 99.45% 97.54 % 92.94% 89.53% 84.65%
Disco(SVGD+) 99.7% 97.93% 94.39% 90.5% 86.77%

SIGNHUNTER

Disco(Ensemble) 99.88% 96.95 % 90.03% 81.75% 73.79%
Disco(DivDis) 99.88% 98.11 % 92.83% 84.97% 77.44%
Disco(DivReg) 99.98% 98.30 % 90.13% 77.4% 64.86%
Disco(SVGD+) 99.97% 98.95% 95.56% 90.7% 84.22%

SQUAREATTACK

Disco(Ensemble) 99.77% 91.08 % 71.69% 52.67% 39.69%
Disco(DivDis) 99.96% 96.85 % 85.23% 67.96% 52.29%
Disco(DivReg) 99.99% 96.06 % 83.1% 64.1% 48.63%
Disco(SVGD+) 99.97% 96.91% 86.52% 70.22% 55.77%
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Figure 4: The diversity measurement (using Jensen–Shannon divergence) between every pair of
individual models trained by Ensemble, DivDis, DivReg and our proposed method SVGD+ (Ours) on
CIFAR-10 and STL-10.

I ROBUSTNESS EVALUATION OF ALTERNATIVE APPROACHES

In this section, we conduct extensive experiments to evaluate the robustness of alternative ap-
proaches for model diversity promotion (Ensemble, DivDis and DivReg) together with our pro-
posal (SVGD+) against score-based adversarial attack NESATTACK (l∞), SIGNHUNTER (l∞),
SQUAREATTACK (l∞), SPARSERS (l0) and decision-based attacks HOPSKIPJUMP (l2) and
SPAEVO (l0) on CIFAR-10. The results in Tables 13, 14 and 15 demonstrate that our proposed
defense mechanism outperforms all other alternative approaches.

Table 14: CIFAR-10. Robustness (higher ↑ is stronger) of different model diversity promotion
schemes against SPARSERS (l0).

Methods l0 =16px 32px 48px 64px 80px
Disco(Ensemble) 50.12% 36.82% 25.97% 23.16% 19.06%

Disco(DivDis) 57.94% 41.2% 35.15% 29.75% 25.59%
Disco(DivReg) 61.38% 44.95% 39.17% 32.62% 28.0%
Disco(SVGD+) 63.85% 47.84% 41.59% 36.81% 31.24%

Table 15: Decision-based, CIFAR-10. Robustness (higher ↑ is stronger) of different model diver-
sity promotion schemes against HOPSKIPJUMP (l2) and SPAEVO (l0).

Methods HOPSKIPJUMP SPAEVO
l2 =0.8 1.6 2.4 3.2 4.0 l0 =4px 8px 12px 16px 20px

Disco(Ensemble) 99.82% 99.12 % 97.94% 96.95% 96.31% 92.07% 91.79 % 91.69% 91.67% 91.66%
Disco(DivDis) 99.94% 99.59 % 98.94% 98.04% 97.33% 93.68% 93.3% 93.1% 93.07% 92.97%
Disco(DivReg) 99.98% 99.25 % 98.26% 97.39% 96.41% 93.9% 93.53% 93.42% 93.35% 93.32%
Disco(SVGD+) 99.94% 99.4% 98.77% 98.04% 97.43% 96.17% 95.99% 95.94% 95.88% 95.84%
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Table 16: MNIST. A robustness comparison (higher ↑ is stronger) between our proposed method
and other methods against SQUAREATTACK. For the evaluation of different diversity-promotion
methods, we train a set of 10 models and randomly select a subset of a different number of models.

Random Methods l2=0.8 1.6 2.4 3.2 4.0

1

Disco(Ensemble) 98.4% 91.9% 87.1% 82.0% 74.6%
Disco(DivDis) 98.3% 92.9% 86.6% 78.9% 70.9%
Disco(DivReg) 96.1% 88.5% 80.9% 72.5% 66.5%
Disco(SVGD+) 98.7% 94.4% 89.3% 86.0% 80.0%

3

Disco(Ensemble) 99.9% 98.7% 91.6% 78.7% 68.0%
Disco(DivDis) 99.8% 97.6% 87.8% 76.9% 62.5%
Disco(DivReg) 99.8% 85.5% 88.1% 77.6% 69.1%
Disco(SVGD+) 99.9% 99.6% 95.4% 83.3% 70.3%

5

Disco(Ensemble) 100% 98.6% 90.5% 74.4% 55.8%
Disco(DivDis) 99.8% 96.3% 85.0% 71.6% 57.0%
Disco(DivReg) 99.9% 94.4% 83.8% 72.1% 60.0%
Disco(SVGD+) 100% 99.4% 95.3% 81.1% 63.8%

8

Disco(Ensemble) 100% 98.5% 90.3% 73.5% 54.2%
Disco(DivDis) 99.5% 94.3% 82.6% 67.1% 53.5%
Disco(DivReg) 99.9% 93.2% 80.7% 72.3% 59.7%
Disco(SVGD+) 100% 99.4% 95.3% 81.1% 63.8%

J EVALUATIONS WITH DIFFERENT RANDOMIZED MODEL SELECTION
STRATEGIES

J.1 ON MNIST

In this section, we provide additional results for training a set of 10, 20 and 40 models using Ensem-
ble, DivDis, DivReg and our proposed method under SQUAREATTACK (l2). Table 20 shows clean
accuracy under different model training and random selection strategies. For robustness evaluation
and comparison, we choose different settings with different sizes of model subsets. For instance,
we sample 1, 3, 5, 8 of 10 models and sample 1, 3, 5, 10 of 20 models. For 40 models, we sample
1, 3, 5, 20 and 30 of 40 models. The results in Tables 16, 17 and 18 provide further evidence to
demonstrate that our proposed method is more robust than other diversity promotion methods across
different distortions and settings.

Table 17: MNIST. A robustness comparison (higher ↑ is stronger) between our proposed method
and other methods against SQUAREATTACK. For the evaluation of different diversity-promotion
methods, we train a set of 20 models and randomly select a subset of a different number of models.

Random Methods l2= 0.8 1.6 2.4 3.2 4.0

1

Disco(Ensemble) 99.2% 96.1% 91.6% 85.1% 75.4%
Disco(DivDis) 99.0% 95.5% 91.1% 82.7% 74.5%
Disco(DivReg) 96.5% 91.8% 83.7% 76.8% 68.6%
Disco(SVGD+) 99.4% 97.3% 94.2% 90.2% 83.5%

3

Disco(Ensemble) 100% 99.5% 95.4% 85.7% 70.8%
Disco(DivDis) 100% 97.8% 89.9% 79.3% 66.5%
Disco(DivReg) 100% 97.0% 91.1% 83.9% 76.5%
Disco(SVGD+) 100% 99.8% 98.1% 90.5% 78.8%

5

Disco(Ensemble) 100% 99.3% 93.2% 77.5% 62.8%
Disco(DivDis) 99.8% 97.5% 90.6% 76.8% 60.4%
Disco(DivReg) 99.9% 97.8% 90.6% 76.8% 60.4%
Disco(SVGD+) 100% 99.4% 94.8% 85.1% 70.0%

10

Disco(Ensemble) 99.9% 98.2% 86.5% 67.1% 46.0%
Disco(DivDis) 99.7% 93.1% 79.1% 65.0% 50.1%
Disco(DivReg) 99.9% 94.0% 83.0% 72.9% 62.6%
Disco(SVGD+) 100% 99.5% 95.0% 76.8% 60.0%

J.2 ON CIFAR-10

In this section, we provide additional results for robustness evaluation and comparison in different
settings with different sizes of model subsets (i.e. 1, 3, 5, and 8) under SQUAREATTACK (l2). The
results in Table 19 show that our proposed method is more robust than other diversity promotion
methods across different distortions and settings.
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Table 18: MNIST. A comparison of robustness (higher ↑ is better) between Disco(SVGD+) and
other learning methods against SQUAREATTACK. For the evaluation of different diversity promotion
methods, we train a set of 40 models and randomly select a subset of a different number of models.

Random Methods l2 = 0.8 1.6 2.4 3.2 4.0

1

Disco(Ensemble) 99.6% 97.3% 93.4% 89.0% 80.2%
Disco(DivDis) 99.6% 97.4% 93.9% 88.1% 82.6%
Disco(DivReg) 99.2% 96.2% 91.8% 84.3% 77.4%
Disco(SVGD+) 99.7% 98.9% 97.2% 93.5% 88.2%

3

Disco(Ensemble) 100% 99.4% 94.2% 85.2% 74.6%
Disco(DivDis) 100% 98.6% 93.8% 83.7% 73.1%
Disco(DivReg) 100% 99.0% 93.0% 79.7% 67.6%
Disco(SVGD+) 100% 99.8% 98.0% 91.4% 77.8%

5

Disco(Ensemble) 100% 99.5% 95.8% 84.9% 70.8%
Disco(DivDis) 100% 98.6% 94.3% 79.9% 68.9%
Disco(DivReg) 100% 98.4% 90.5% 79.5% 67.9%
Disco(SVGD+) 100% 99.8% 97.9% 90.1% 76.5%

20

Disco(Ensemble) 100% 97.6% 86.4% 68.0% 49.0%
Disco(DivDis) 99.8% 95.9% 85.5% 72.2% 54.8%
Disco(DivReg) 99.7% 96.1% 83.3% 67.0% 51.3%
Disco(SVGD+) 100% 99.3% 94.4% 77.5% 56.8%

30

Disco(Ensemble) 99.9% 96.8% 81.2% 60.6% 40.0%
Disco(DivDis) 99.9% 95.9% 80.0% 64.9% 46.9%
Disco(DivReg) 99.5% 93.9% 77.3% 59.7% 43.2%
Disco(SVGD+) 100% 98.6% 91.9% 70.4% 52.2%

Table 19: CIFAR-10. A robustness comparison (higher ↑ is stronger) between our approach and
other methods against SQUAREATTACK. For the evaluation of different diversity promotion meth-
ods, we train a set of 10 models and randomly select a subset of a different number of models.

Random Methods l2 = 0.8 1.6 2.4 3.2 4.0

1

Disco(Ensemble) 90.0% 83.6% 75.4% 64.2% 55.1%
Disco(DivDis) 95.1% 90.1% 82.6% 72.0% 59.1%
Disco(DivReg) 90.6% 86.2% 79.5% 69.6% 59.5%
Disco(SVGD+) 90.2% 86.9% 82.2% 75.2% 67.6%

3

Disco(Ensemble) 97.1% 88.3% 78.6% 67.4% 55.4%
Disco(DivDis) 99.2% 96.1% 86.2% 75.8.3% 62.1%
Disco(DivReg) 99.6% 93.5% 84.3% 72.1% 60.3%
Disco(SVGD+) 99.8% 96.7% 90.0% 82.2% 72.6%

5

Disco(Ensemble) 97.7% 89.0% 76.1% 63.1% 52.3%
Disco(DivDis) 99.0% 93.9% 83.0% 70.8% 55.7%
Disco(DivReg) 99.0% 91.6% 78.5% 65.3% 53.6%
Disco(SVGD+) 99.6% 95.6% 87.1% 76.5% 65.8%

8

Disco(Ensemble) 98.2% 87.9% 76.9% 63.5% 52.2%
Disco(DivDis) 99.1% 94.1% 82.7% 70.4% 56.4%
Disco(DivReg) 99.2% 90.9% 76.3% 64.6% 51.6%
Disco(SVGD+) 99.7% 96.0% 86.2% 76.2% 66.0%
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J.3 CLEAN ACCURACY OF DIFFERENT SUBSET

We demonstrate clean accuracy obtained by models trained by different model diversity promotion
methods with different selection configurations in Table 20.

Table 20: Clean accuracy achieved by different defended models employing diversity-promotion
techniques on different datasets with a different random number of models.

MNIST

Quantity Random Disco(Ensemble) Disco(DivDis) Disco(DivReg) Disco(SVGD+)

10

1 99.5% 99.5% 97.5% 99.4%
3 99.6% 99.6% 99.2% 99.6%
5 99.7% 99.6% 99.4% 99.6%
8 99.6% 99.6% 99.5% 99.6%

20

1 99.5% 99.5% 97.6% 99.0%
3 99.6% 99.6% 99.3% 99.5%
5 99.6% 99.6% 99.4% 99.5%

10 99.7% 99.6% 99.6% 99.6%

40

1 99.3% 99.5% 98.6% 98.7%
3 99.5% 99.5% 99.4% 99.2%
5 99.5% 99.6% 99.5% 99.4%

20 99.6% 99.7% 99.6% 99.6%
30 99.6% 99.7% 99.6% 99.6%

CIFAR-10

Quantity Random Disco(Ensemble) Disco(DivDis) Disco(DivReg) Disco(SVGD+)

10

1 92.2% 90.5% 91.8% 87.9%
3 93.8% 92.5% 93.9% 91.1%
5 94.0% 93.3% 94.3% 92.3%
8 94.4% 93.5% 94.5% 92.5%

STL-10

Quantity Random Disco(Ensemble) Disco(DivDis) Disco(DivReg) Disco(SVGD+)

10 5 91.6% 90.2% 89.7% 88.2%

K ROBUSTNESS OVER MULTIPLE TRIALS

In this section, we conduct an extensive experiment to study the robustness of different defense
mechanisms with randomness involvement. We evaluate RND, RF, and our proposed method
against SQUAREATTACK (l2) on an evaluation set of 500 correctly classified images drawn from
CIFAR-10. Each defense is evaluated five times with different random seeds. Figure 5 presents the
mean accuracy under attacks, with the upper and lower error bars representing the mean ± standard
deviation. The results in Figure 5 show that the variation of our method is similar to other defenses
and our lower error bar is far higher than the upper error bar of both RND and RF.

L COMPARISON WITH ADVERSARIAL TRAINING (AT)

We conduct an experiment to demonstrate the robustness of our proposed method Disco, RND, RF
and a state-of-the-art adversarial training (AT) (Wang et al., 2023) used for the CIFAR-10 task. We
used the strong, query-based black-box attack, SQUAREATTACK under the l2 objective. We use the
implementation and the pre-trained model (l2) from Robustbench2 (Croce et al., 2021).

The results in Figure 6, demonstrate that our simpler approach employing model radomization is
better than the state-of-the-art adversarial training for a query-based black-box attack. Notably, our
result comparison with AT also confirms those found in the recent black-box defense, RF Nguyen
et al. (2024) where the AT methods itself was not as robust at the dedicated black-box defense (see
AT vs. Ours in Table 4 in Nguyen et al. (2024)).

2https://github.com/RobustBench/robustbench
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Figure 5: A comparison of the average robustness between different defenses against SQUAREAT-
TACK (l2). Mean accuracy under attacks, with the upper and lower error bars representing the
mean ± 1σ (standard deviation).
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Figure 6: A comparison between Disco, RND, RF and AT against SQUAREATTACK (l2).

Notably, it should be mentioned here that the model randomization methods can also be adopted
with adversarial trained models. We expect the robustness afforded by AT methods to then further
improve the robustness from our approach. However, employing AT methods are likely to come at
the cost of noticeable clean accuracy drops.

M COMPARISON WITH ADVERSARIAL ATTACK ON ATTACKERS (AAA)

A
cc

u
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cy

Distortion

AAA
Disco

Defense methods vs SquareAttack (  )l2

Figure 7: A robustness comparison between AAA and our method against SQUAREATTACK (l2).

AAA is a defense algorithm mainly designed for score-based attacks so it is expected to be success-
ful against these attacks. Notably, it does not strongly withstand decision-based attacks as reported
in evaluations by Nguyen et al. (2024). Nevertheless, we conduct an experiment to demonstrate
the robustness of our proposed method versus AAA (Chen et al., 2022) on CIFAR-10 against the
strong query-based black-box SQUAREATTACK (l2) under the score-based setting. The results in
Figure 7 demonstrate that our proposed defense mechanism is much more robust than AAA, espe-
cially at high perturbation budgets.
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N COMPARISON WITH REGION-BASED CLASSIFICATION (RBC)

Region-Based Classification (RBC) method (Cao & Gong, 2017) is a defense initially designed and
evaluated with white-box attacks. It aims to add noise to the input and employ majority voting
to make decisions. Given its strategy of adding random-noise to inputs, it can also be employed
with black-box attacks. Therefore, in this section, we conduct extensive experiments to compare the
robustness of our defense and the RBC method against score-based adversarial attacks NESATTACK
(l∞), SIGNHUNTER (l2, l∞), SQUAREATTACK (l2, l∞), SPARSERS (l0) and decision-based attacks
HOPSKIPJUMP (l2) and SPAEVO (l0) on CIFAR-10. The results in tables 21, 22, 23 and 24 show
that our method is more robust than both RBC.

Table 21: l2 objective attacks, CIFAR-10. Robustness (higher ↑ is stronger) of different defense
methods against SIGNHUNTER and SQUAREATTACK.

Methods SIGNHUNTER SQUAREATTACK
l2 =0.8 1.6 2.4 3.2 4.0 l2 =0.8 1.6 2.4 3.2 4.0

RBC 25.86% 10.34% 3.55% 1.79% 1.18% 8.64% 2.65 % 0.95% 0.28% 0.05%
Disco 99.96% 99.25% 97.61% 93.63% 90.24% 99.56% 95.62% 87.07% 76.5% 65.76%

Table 22: l∞ objective attacks, CIFAR-10. Robustness (higher ↑ is stronger) of different defense
methods against attacks NESATTACK, SIGNHUNTER and SQUAREATTACK.

Attack Methods l∞ =0.02 0.04 0.06 0.08 0.1

NESATTACK
RBC 94.06% 86.07 % 79.08% 76.03% 73.34%
Disco 99.7% 97.93% 94.39% 90.5% 86.77%

SIGNHUNTER
RBC 29.69% 6.99 % 3.75% 0.93% 0.53%
Disco 99.97% 98.95% 95.56% 90.7% 84.22%

SQUAREATTACK
RBC 37.4% 6.32 % 2.63% 0.1% 0.1%
Disco 99.97% 96.91% 86.52% 70.22% 55.77%

Table 23: l0 objective attacks, CIFAR-10. Robustness (higher ↑ is stronger) of different model
diversity promotion schemes against SPARSERS.

Methods l0 =16px 32px 48px 64px 80px
RBC 0.43% 0.29% 0.2% 0.17% 0.01%
Disco 63.85% 47.84% 41.59% 36.81% 31.24%

Table 24: Decision-based.. Robustness (higher ↑ is stronger) of different model diversity promotion
schemes against HOPSKIPJUMP (l2) and SPAEVO (l0) on the CIFAR-10 task.

Methods HOPSKIPJUMP SPAEVO
l2 =0.8 1.6 2.4 3.2 4.0 l0 =4px 8px 12px 16px 20px

RBC 94.44% 79.24 % 61.47% 57.54% 57.89% 55.21% 31.18% 16.16% 8.29% 8.29%
Disco 99.94% 99.4% 98.77% 98.04% 97.43% 96.17% 95.99% 95.94% 95.88% 95.84%
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O COMPARISON WITH ADAPTIVE DIVERSITY PROMOTING (ADP) METHOD

Adaptive diversity promoting (ADP) method employs a regularizer while training an ensemble to
encourage model diversity. This results in enhancing the robustness for the ensemble because it is
difficult to transfer adversarial examples among individual models.

Here, we investigate the performance afforded by the model diversification method against query-
based black-box attacks under our proposed model randomization method and compare it with our
proposed SVGD+ method for building a set of diverse and well-performing models.

We conduct extensive experiments to compare the robustness of our approach using SVGD+ and ADP
under our framework with a configuration of random five out of 10 models against black-box attacks,
SQUAREATTACK (l2, l∞) and SIGNHUNTER (l2, l∞). The results in Tables 25 and 26 show that
our proposed model randomization performs well with the learning objective introduced in Pang
et al. (2019). The results also demonstrate that ADP can encourage diversity and Disco(ADP) can
achieve comparable robustness to Disco(SVGD+) under low perturbation budgets. Under increasing
perturbations, models learned with SVGD+ demonstrates improved robustness.

Table 25: CIFAR-10. Compare the robustness (higher ↑ is stronger) of our approach using SVGD+
versus ADP against SQUAREATTACK (l∞) and SIGNHUNTER (l∞). We randomly select a subset of
five models (from ten models).

Groups Methods l∞ =0.02 0.04 0.06 0.08 0.1

SIGNHUNTER (l∞) Disco(ADP) 99.99% 99.59% 96.01% 89.78% 82.19%
Disco(SVGD+) 99.97% 99.95% 95.56% 90.71% 84.22%

SQUAREATTACK (l∞) Disco(ADP) 99.99% 96.31 % 83.99% 65.28% 50.41%
Disco(SVGD+) 99.97% 96.91% 86.52% 70.22% 55.77%

Table 26: CIFAR-10. Compare the robustness (higher ↑ is stronger) of our approach using SVGD+
versus ADP against (SQUAREATTACK (l2), SIGNHUNTER (l2)). We randomly select a subset of five
models (from ten models).

Groups Methods l2 =0.8 1.6 2.4 3.2 4.0

SIGNHUNTER (l2) Disco(ADP) 99.98% 99.62 % 97.54% 94.06% 89.07%
Disco(SVGD+) 99.96% 99.24 % 97.61% 93.63% 90.24%

SQUAREATTACK (l2) Disco(ADP) 99.91% 97.12 % 87.71% 76.35% 63.81%
Disco(SVGD+) 99.56% 95.62% 87.07% 76.50% 65.76%
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Interestingly, from the analysis of clean accuracy drop in Table 27, we can observe the learning
objective we introduced in Section 3.4.2 allows Disco(SVGD+) to achieve a lower clean accuracy
drop than Disco(ADP).

Table 27: Clean accuracy and clean accuracy drop (↓ ∆) comparison between ADP models versus
SVGD+ training objective based models on CIFAR-10. All represents results from the entire en-
semble of models while Disco(.) represents performance under the model randomization configured
with five out of 10 models.

ADP (All) Disco(ADP) (↓ ∆) SVGD+ (All) Disco(SVGD+) (↓ ∆)
94.56% 93.29% (↓1.27%) 93.19% 92.26% (↓0.93%)
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