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Abstract001

Large Language Models (LLMs) have demon-002
strated remarkable generalization capabilities003
across tasks and languages, revolutionizing nat-004
ural language processing. This paper inves-005
tigates the naturally emerging representation006
alignment in LLMs, particularly in the middle007
layers, and its implications for disentangling008
language-specific and language-agnostic infor-009
mation. We empirically confirm the existence010
of this alignment, analyze its behavior in com-011
parison to explicitly designed alignment mod-012
els, and demonstrate its potential for language-013
specific manipulation without semantic degra-014
dation. Building on these findings, we pro-015
pose Inference-Time Language Control (ITLC),016
a novel method that leverages latent injection017
to enable precise cross-lingual language con-018
trol and mitigate language confusion in LLMs.019
Our experiments highlight ITLC’s strong cross-020
lingual control capabilities while preserving021
semantic integrity in target languages. Further-022
more, we demonstrate its effectiveness in al-023
leviating the cross-lingual language confusion024
problem, which persists even in current large-025
scale LLMs, leading to inconsistent language026
generation. This work advances our under-027
standing of representation alignment in LLMs028
and introduces a practical solution for enhanc-029
ing their cross-lingual performance. 1030

1 Introduction031

Large Language Models (LLMs) have revolution-032

ized natural language processing, demonstrating re-033

markable generalization capabilities across diverse034

tasks and languages (Brown et al., 2020; Le Scao035

et al., 2023; Anil et al., 2023; Team et al., 2025; Co-036

here et al., 2025; Singh et al., 2025). Their ability037

to adapt to new tasks in few-shot and even zero-038

shot settings highlights their efficiency and ver-039

satility (Bang et al., 2023; Susanto et al., 2025).040

Prior works have identified a naturally emerging041

1We will release the code under the Apache 2.0 license.
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Figure 1: We inspect the alignment in the middle layer
representation of LLMs, allowing us to disentangle the
language-specific and language-agnostic information.
By exploiting this behavior, we are able to achieve
Inference-Time Language Control (ITLC), alleviating
the language confusion problem in LLMs.

representation alignment across layers in LLMs, 042

particularly in the middle layers of LLMs (Chang 043

et al., 2022; Zhao et al., 2024a). This emerging 044

alignment in LLMs is the key factor in their ability 045

to handle multiple languages (Cahyawijaya, 2024; 046

Tang et al., 2024; Wilie et al., 2025), which is piv- 047

otal for their cross-lingual capabilities. However, 048

several questions remain open, such as whether this 049

emerging alignment behaves similarly to alignment 050

in models trained with enforced alignment objec- 051

tives (Reimers and Gurevych, 2020; Yang et al., 052

2019a; Feng et al., 2022; Limkonchotiwat et al., 053

2022, 2024), how this alignment can be utilized to 054

further enhance LLMs, etc. 055

In this work, we investigate the phenomenon 056

of representation alignment in LLMs, focusing on 057

its occurrence, distinction, and potential applica- 058

tions. We aim to confirm the presence of this rep- 059
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resentation alignment and contrast it with align-060

ment in LLMs with strictly designed alignment,061

such as multilingual SentenceBERT (Reimers and062

Gurevych, 2019) or LaBSE (Feng et al., 2022). Our063

findings highlight that, unlike LLMs with strictly064

designed alignment, the naturally emerging align-065

ment in recent LLMs demonstrates a much stronger066

retention of language-specific information with067

∼30% performance drop compared to LLMs with068

strictly designed alignment, with almost >90% per-069

formance drops relative to other non-aligned layers.070

Upon further investigation, we found a poten-071

tial method to disentangle language-specific and072

language-agnostic information in the aligned repre-073

sentation. By exploiting the disentangled language-074

specific and language-agnostic information, we075

demonstrate a simple but effective method to con-076

trol the generation of language from such a repre-077

sentation, enabling us to achieve Inference-Time078

Language Control (ITLC) as showcased in Fig-079

ure 1. We demonstrate the effectiveness of ITLC in080

two downstream applications: 1) zero-shot cross-081

lingual language generation and 2) mitigating lan-082

guage confusion in LLMs (Marchisio et al., 2024).083

Our contribution in this work is fourfold:084

• We confirm the presence of representation085

alignment in LLMs, providing empirical evi-086

dence of this phenomenon (§3.2).087

• We contrast natural alignment with strictly088

designed alignment, highlighting their compa-089

rable impact on cross-lingual generalization090

while emphasizing their differences in align-091

ment locations and the extent of language-092

specific information retention (§3.2).093

• We investigate a method to extract language-094

specific information from aligned representa-095

tions, showcasing the potential for language-096

specific manipulation while preserving the se-097

mantic integrity of the generation (§4.1).098

• We introduce ITLC, a novel method that en-099

ables cross-lingual language control and miti-100

gates language confusion problems that retain101

semantic integrity in target languages (§5).102

2 Related Work103

2.1 Representation Alignment in LLMs104

Representation alignment refers to the process by105

which semantically identical inputs expressed in106

different languages are mapped to similar inter-107

nal embeddings within LLMs (Park et al., 2024;108

Wu and Dredze, 2020; Chang et al., 2022). Orig-109

inally, representation alignment is strictly embed- 110

ded into the modeling objective to ensure output 111

consistency across languages and to enable gen- 112

eralization in cross-lingual transfer tasks (Pires 113

et al., 2019; Wu and Dredze, 2019; Reimers and 114

Gurevych, 2020; Feng et al., 2022; Choenni et al., 115

2024). Several studies have observed a tendency 116

for LLMs to align representations across differ- 117

ent languages (Wendler et al., 2024; Zhao et al., 118

2024b; Mousi et al., 2024). This is done by mea- 119

suring the similarity between embeddings of par- 120

allel sentences across different languages (Ham 121

and Kim, 2021; Gaschi et al., 2023; Cahyawijaya, 122

2024). Several benchmark datasets can be used 123

for this purpose. Our work measure the degree of 124

alignment across various layers between strictly 125

and naturally aligned models to contrast the two 126

and understand its relation to language-specific and 127

language-agnostic capabilities (Kulshreshtha et al., 128

2020; Libovický et al., 2020; Hua et al., 2024; Wilie 129

et al., 2025) of LLMs. 130

2.2 Latent Controllability in LLMs 131

LLMs controllability is crucial for ensuring that the 132

systems adhere with human intentions. Through 133

mechanisms such as adapter (Pfeiffer et al., 2020; 134

Hu et al., 2022), prompting (Lin et al., 2021; Bai 135

et al., 2022), latent manipulation (Madotto et al., 136

2020; Ansell et al., 2021), etc, we aim to gain 137

control over the behavior of LLMs. Various as- 138

pects have been explored in LLM controllability, 139

including internal knowledge (Madotto et al., 2020; 140

Xu et al., 2022), styles & personas (Lin et al., 141

2021; Wagner and Ultes, 2024; Cao, 2024), lan- 142

guages (Üstün et al., 2020; Ansell et al., 2021), 143

human values (Bai et al., 2022; Cahyawijaya et al., 144

2025a), etc. Recent works show that latent states in 145

LLMs exhibit discernible patterns for distinguish- 146

ing truthful outputs from hallucinated ones, sug- 147

gesting an intrinsic awareness of fabrication (Li 148

et al., 2023; Duan et al., 2024; Ji et al., 2024; Chen 149

et al., 2024). Similar methods are also introduced 150

for stylistic and safety control (Subramani et al., 151

2022; Kwak et al., 2023). These studies underscore 152

the potential of latent interventions for precise con- 153

trol over LLM behavior. ITLC extends the latent 154

manipulation methods for controlling the gener- 155

ated language in inference time, demonstrating 156

how language-specific information can be extracted 157

and manipulated without losing semantic meaning. 158

This opens new avenues for controlling language 159

generation and mitigating confusion problems. 160
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(a) LaBSE

(b) Qwen2.5-0.5B

Figure 2: Cross-lingual similarity across different layers in LaBSE and Qwen2.5-0.5B. LaBSE exhibits high
cross-lingual similarity in its final layer, whereas Qwen2.5-0.5B shows this similarity in the middle layer. This
difference suggests that the alignment of representations occurs at distinct positions within the two models.

3 Understanding Representation161

Alignment in LLMs162

Prior works (Chang et al., 2022; Zhao et al.,163

2024a; Cahyawijaya, 2024; Wilie et al., 2025; Pay-164

oungkhamdee et al., 2025) demonstrate the ex-165

istence of emerging representation alignment in166

LLMs. We take a step further to provide a deeper167

understanding to this behavior by contrasting it168

with alignment in strictly-aligned LLMs. Specifi-169

cally, we observe the correlation between the de-170

gree of alignment with the cross-lingual generaliza-171

tion and language identification (LID) capability,172

which are the proxies to their language-agnostic173

and language-specific capabilities, respectively.174

3.1 Experiment Setting175

Modeling As a measure of alignment, we com-176

pute the average cosine similarity of the latent rep-177

resentation of a sentence in one language with the178

representation of parallel sentences in the other179

languages. For the LLM with strictly designed180

alignment, we employ LaBSE (Feng et al., 2022).181

For the LLM with emerging representation align-182

ment, we employ multilingual decoder-only LLM,183

i.e., Qwen2.5 (Qwen et al., 2025). Specifically, we184

employ Qwen2.5-0.5B with 500M parameters to185

have a comparable scale with the LaBSE model186

with 471M parameters. For measuring the cross- 187

lingual generalization of LaBSE, we perform mono- 188

lingual few-shot fine-tuning with SetFit (Panner- 189

selvam et al., 2024) and evaluate on all other lan- 190

guages. For Qwen2.5-0.5B, we employ few-shot 191

cross-lingual in-context learning. We incorporate 192

10 few-shot samples for SetFit and 2 for in-context 193

learning. To measure the LID capability, we take 194

the latent representation of both models in the first, 195

middle, and last layers. In this case, we are in- 196

terested in comparing the behavior between the 197

strictly aligned representation in LaBSE and the 198

emerging aligned representation in Qwen2.5-0.5B. 199

Following Cahyawijaya et al. (2025b), we measure 200

LID performance by linear probing and kNN to 201

measure linear separability and cluster closeness 202

within each language class. More details about the 203

experiment are presented in Appendix A. 204

Dataset We employ a set of multilingual eval- 205

uation datasets. To measure the degree of align- 206

ment, we employ 7 datasets: FLORES-200 (Team 207

et al., 2022), NTREX-128 (Federmann et al., 2022), 208

NusaX (Winata et al., 2023), NusaWrites (Cahyaw- 209

ijaya et al., 2023), BUCC (Zweigenbaum et al., 210

2017), Tatoeba (Tiedemann, 2020), and Bible Cor- 211

pus (McCarthy et al., 2020). For cross-lingual eval- 212

uation, we incorporate 4 datasets: SIB200 (Ade- 213
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Dataset LaBSE Qwen2.5-0.5B

SIB200 0.210 0.123
INCLUDE-BASE -0.021 0.142
XCOPA 0.144 -0.139
PAWS-X 0.146 0.532

Avg 0.1198 0.1645

Table 1: Pearson correlation between the downstream
cross-lingual performance and the degree of alignment
between the corresponding language pairs.

lani et al., 2024), INCLUDE-BASE (Sridhar et al.,214

2020), XCOPA (Ponti et al., 2020), and PAWS-215

X (Yang et al., 2019b). For LID evaluation, we216

incorporate 3 datasets, i.e., FLORES-200, NTREX-217

128, and NusaX. The detailed description of each218

dataset is shown in Appendix A.219

3.2 Experiment Result220

Strictly and Naturally Aligned LLMs LaBSE221

and Qwen2.5-0.5B demonstrate distinct patterns in222

cross-lingual representation alignment. As shown223

in Figure 2, LaBSE demonstrates a distributed224

alignment strength across deeper layers, with the225

middle and last layers achieving high average simi-226

larity scores (0.758 and 0.754, respectively). This227

aligns with the training objective of LaBSE, which228

aligns the representation on the last layer. In229

contrast, Qwen2.5-0.5B exhibits a more localized230

alignment pattern, with the middle layer showing231

a strikingly higher average similarity (0.922) than232

both the first (0.591) and last (0.375) layers. This233

suggests that Qwen2.5-0.5B concentrates represen-234

tation alignment sharply in the middle layer, achiev-235

ing both higher and more stable cross-lingual rep-236

resentation. See detailed analysis in Appendix B.1.237

This result displays distinct layer-wise behaviors238

in retaining the language-specific and language-239

agnostic information within the two different types240

of LLMs. Specifically, for model with strict align-241

ment, aligned representation is located in the layer242

where the objective is applied to – the last layer in243

the case of LaBSE –, while in LLMs with natural244

alignment, the aligned representation is formed in245

the middle layers and breaks as the representation246

goes closer into the last layer. This aligns with prior247

works (Chang et al., 2022; Tang et al., 2024; Zhao248

et al., 2024a; Wilie et al., 2025), which demonstrate249

the naturally representation alignment emerge in250

the middle layer of LLMs.251

Representation Alignment and Cross-Lingual 252

Generalization We further measure the impact 253

of the degree of representation alignment to the 254

downstream cross-lingual generalization capabil- 255

ity of the models. We measure the cross-lingual 256

performance by training on one language and eval- 257

uating on the other languages in the datasets using 258

the method described in §3.1 and correlate them 259

with the cosine similarity of the corresponding lan- 260

guage pair averaged across all alignment datasets. 261

As shown in Table 1, the degree of alignment 262

shows a positive correlation to the downstream 263

cross-lingual performance. Nonetheless, the corre- 264

lation is weak, which is potentially caused by the 265

few-shot tuning setting conducted on both mod- 266

els. Despite that, the positive correlation between 267

degree of alignment and cross-lingual generaliza- 268

tion on both strictly-aligned and naturally-aligned 269

LLMs signifies the important role of representation 270

alignment in improving the cross-lingual general- 271

ization of LLMs. See Appendix B.2 for detailed 272

and further analysis. 273

Representation Alignment and Language- 274

Specific Information As shown in Table 2, the 275

LID performance of LaBSE and Qwen2.5-0.5B 276

models evaluated using both KNN and linear prob- 277

ing reveals that the first layer consistently achieves 278

the highest LID F1 scores across all datasets. For 279

LaBSE, the aligned representation in the last layer 280

exhibits notably weaker performance, particularly 281

for the FLORES-200 and NusaX datasets. Simi- 282

larly, in Qwen2.5-0.5B, the aligned representation 283

in the middle layer shows weaker LID performance 284

compared to the first and last layers. These em- 285

pirical findings highlight three key insights: (1) 286

language-specific information, such as surface- 287

level features and general linguistic patterns, is 288

more dominant in the early layers; (2) the degree of 289

alignment is negatively correlated with the amount 290

of language-specific information retained; and (3) 291

unlike strictly aligned LLMs, the aligned represen- 292

tation in LLMs with emerging alignment retains 293

more language-specific information, which poten- 294

tially serves as the basis for determining the lan- 295

guage of the generated sequence. 296

4 Inference-Time Language Control 297

Building on the insights presented in §3, we ex- 298

plore a method to control the language of the gener- 299

ated sequence with minimal semantic loss. Specif- 300

ically, we develop a method to extract language- 301
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LaBSE Qwen2.5-0.5B

Method Layer FLORES-200 NTREX-128 NusaX FLORES-200 NTREX-128 NusaX

Linear
Probing

First 95.13 93.29 97.30 94.21 91.42 95.55
Middle 94.18 92.68 94.51 91.76 90.04 87.09
Last 70.89 74.36 65.44 92.46 90.27 88.77

KNN
First 88.35 90.43 81.78 83.69 86.06 65.79
Middle 78.85 81.30 45.37 55.32 54.73 25.05
Last 3.92 1.63 0.00 71.73 81.86 29.39

Table 2: LID performance by layer and classification method for LaBSE and QWEN2.5-0.5B. Red bold text
highlights the LID scores on the layer where alignment occurs in each corresponding model. LID performance is
consistently lower in a layer where the representation is aligned across all models and classification methods.

specific information at the layer where representa-302

tion alignment occurs in LLMs. Using this infor-303

mation, we gather language-specific vectors from304

each language and use them to manipulate the305

language-specific information during the inference306

time. With this language-specific intervention, we307

aim to steer the model toward utilizing language-308

specific features, allowing us to perform Inference-309

Time Language Control (ITLC).310

4.1 Methods311

Latent Extraction Latent extraction techniques312

are employed to isolate language-specific informa-313

tion from the model’s representations. Specifically,314

we extract Qwen2.5-0.5B (Qwen et al., 2025) hid-315

den states to capture language-specific features at316

its middle representation. Given an input sequence317

from the FLORES-200 dataset (Team et al., 2022),318

we compute the hidden states h ∈ Rd at a specified319

layer, where d = 896 is the embedding dimension320

of Qwen2.5-0.5B. Finally, we apply mean pooling321

to ensure that only meaningful token embeddings322

contribute to the final representation.323

Linear Discriminant Analysis To disentangle324

language-specific information, we apply Linear325

Discriminant Analysis (LDA) to maximize class326

separability and reduce dimensionality. We use327

the Singular Value Decomposition (SVD) solver328

in order to handle high-dimensional embeddings329

efficiently and select the top k eigenvectors corre-330

sponding to the largest eigenvalues to form W ∈331

Rd×k. Let D = {(hi, li)}Ni=1 denote a dataset332

of hidden states hi ∈ Rd labeled with language333

classes li ∈ {1, . . . ,K}, this projects hidden states334

to a lower-dimensional space z = hTW ∈ Rk.335

To validate the quality of the projection and336

select the optimal number of components k, we337

train a neural network classifier with a single linear 338

layer on the projected training data z. We exper- 339

iment with several k values and evaluate classi- 340

fication accuracy on a test set. Finally, we take 341

k = 100 because LID performance significantly 342

drops on higher components, indicating a major 343

loss of language-specific information. More details 344

on the LDA settings are shown in Appendix D.2 345

Language Vector Using the LDA-projected 346

space, we construct language vectors by leverag- 347

ing the neural network’s weights to identify active 348

dimensions for each language. For each language 349

l we extract the weight matrix U ∈ RK×k from 350

the neural network’s linear layer, where ul,j repre- 351

sents the contribution of dimension j ∈ {1, . . . , k} 352

to language l. We define a threshold τ = 0.01 353

and select active dimensions for language l as 354

Al = {j | |ul,j | > τ}. 355

The language vector vl ∈ Rk for language l is 356

computed as the mean of projected hidden states 357

zi over samples of language l, restricted to active 358

dimensions: 359

vl[j] =

{
1
Nl

∑
hi∈l zi[j], if j ∈ Al,

0, otherwise,
360

where Nl is the number of samples for language 361

l, and zi[j] is the j-th component of the projected 362

hidden state. 363

Vector Injection To enable injection, we project 364

the language vector back to the original embedding 365

space using the pseudo-inverse: vorig
l = vlW

† ∈ 366

Rd. By applying this, we retain the original embed- 367

ding of the input and modify it with the language 368

vector inverse projection. For a source language x 369

(e.g., English) and target language y (e.g., Indone- 370
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sian), we compute a shift vector:371

δ = −vorig
x + vorig

y ,372

which is injected into the hidden states at the mid-373

dle layer during inference:374

h′ = h+ αδ,375

where h is the original hidden state, α is a scaling376

factor, and h′ is the modified hidden state.377

Language Shift Strategy We further divide the378

language vector injection into three strategies based379

on the temporal scope of application: (1) prompt380

only, (2) generated tokens only, and (3) both phases.381

Let h(m)
t ∈ Rd denote the hidden state at posi-382

tion t in the middle layer m, and h
(m)′

t denotes its383

language-shifted counterpart:384

• Prompt-Only (prompt-only): Applies injec-385

tion exclusively to input prompt processing:386

h
(m)′

t =

{
h
(m)
t + αδ, ∀t ∈ [1, Tinput]

h
(m)
t , ∀t > Tinput

387

• Generated-Only (gen-only): Restricts injec-388

tion to autoregressive generation:389

h
(m)′

t =

{
h
(m)
t , ∀t ∈ [1, Tinput]

h
(m)
t + αδ, ∀t ∈ [Tinput + 1, Ttotal]

390

• Prompt and Generated (prompt-and-gen):391

Applies injection throughout both phases:392

h
(m)′

t = h
(m)
t + αδ, ∀t ∈ [1, Ttotal]393

where Tinput is the input prompt length and394

Ttotal = Tinput + N the total sequence length af-395

ter generating N tokens.396

5 Implication of Inference-Time397

Language Control (ITLC)398

We demonstrate the effectiveness of ITLC on two399

scenarios: 1) cross-lingual language control and400

2) mitigating language confusion (Marchisio et al.,401

2024). Cross-lingual language control refers to402

guiding the model prompted on a source language403

to switch and generate text in a target language404

(e.g., EN→XX or XX→EN) by manipulating its405

latent representation while maintaining semantic406

relevance and linguistic fidelity across different407

languages. Mitigating language confusion, on the408

other hand, focuses on alleviating the limitation of409

LLMs to consistently generate text in the desired410

language, which can occur at the word level, line411

level, or entire response (Marchisio et al., 2024).412
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Figure 3: Language correctness (%) for Qwen2.5-0.5B
across EN→XX and XX→EN Directions. The result of
its instruct version is shown at Appendix D.3.

5.1 Experiment Setting 413

Cross-lingual Language Control we investigate 414

cross-lingual language control using the Qwen2.5- 415

0.5B model with α = 1.0. We utilize the Dolly 416

multilingual dataset subset 2 by taking 200 QA sen- 417

tences in nine various languages from diverse re- 418

gions and language families: Indonesian (ID), Thai 419

(TH), Turkish (TR), Japanese (JA), French (FR), 420

Spanish (ES), Arabic (AR), Chinese (ZH), and 421

Korean (KO). We evaluate the performance with 422

multiple automatic metrics: FastText LID (Joulin 423

et al., 2016a,b) for language correctness, while 424

BertScore (Zhang et al., 2020) and SacreBLEU (Pa- 425

pineni et al., 2002; Post, 2018) for generation qual- 426

ity. We conduct a human evaluation with native 427

annotators on English (EN), Indonesian (ID), and 428

Thai (TH) in both EN→XX and XX→EN direc- 429

tions to further validate the generation quality. The 430

human evaluation focuses on 30 samples cover- 431

ing 3 aspects: naturalness, prompt-completion 432

relevance, and answer correctness using likert 433

score ranging from [1. . . 5]. The human annotation 434

guideline is presented in Appendix F. 435

Mitigating Cross-Lingual Language Confusion 436

We evaluate the effectiveness of ITLC in mitigat- 437

ing language confusion on the base and instruct 438

versions of Qwen2.5-0.5B. For the hyperparameter 439

α, we use the optimal scaling parameter identified 440

in our ablation study (see Appendix E for details). 441

We analyze the impact of language shift vectors 442

extracted from both the base and instruct models 443

(base shift vector δbase vs. instruct shift vector 444

δinstruct) on cross-lingual control. We also inves- 445

tigate the influence of chat template formatting 446

2https://huggingface.co/datasets/CohereLabs/
aya_evaluation_suite/viewer/dolly_machine_
translated
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Lang Shift Prompt Generated

EN → ID

What is investment banking? Investment bank adalah sebuah perusahaan yang
menawarkan layanan investasi dan jasa lainnya kepada
para investor atau wirausahawan dalam rangka mendirikan
berbagai jenis finansial seperti saham (aset pelanggan) . . .

ID → EN

Tuliskan saya email pengantar ke pengacara
untuk mewakili saya di pengadilan untuk
tiket lampu merah saya tidak pantas

I’ll try to draft an outline for what I might say in my speech
as the "tug of war" between two candidates on behalf of
people who want their lights out and someone else’s lighted
street: A good man will tell me that . . .

Table 3: Examples of generated outputs from Qwen2.5-0.5B-Instruct with injection. Overall, it shows that the
language has successfully shifted to the desired target language and the answers are generally correct. Additional
examples across different language pairs are provided in Appendix D.5.

Target Baseline ITLC

Language BLEU BERTScore BLEU BertScore

ID 19.29 62.9 14.3 63.6
TH 0.0 62.8 15.97 64.1
TR 6.05 60.7 15.97 60.2
JA 0.0 62.0 15.97 60.2
FR 7.78 63.3 10.97 63.2
ES 10.88 64.0 7.17 64.4
AR 7.13 63.8 11.88 65.5
ZH 0.0 63.6 0.0 62.0
KO 7.54 63.1 4.11 63.8

AVG 6.52 62.91 10.70 63.00

Table 4: Generation performance for different target lan-
guages with Qwen2.5-0.5B-Instruct. Baseline denotes
the same model prompted in the same language as the
desired target language.

and few-shot examples on model behavior. Our447

evaluation focuses on cross-lingual settings where448

input and target languages differ, and reports the449

official metrics defined in Marchisio et al. (2024):450

Language Confusion Pass Rate (LCPR), Line-level451

Pass Rate (LPR), and Word-level Pass Rate (WPR).452

5.2 Results453

5.2.1 Cross-Lingual Language Control454

Language Vector Impact Our experiments455

demonstrate that the proposed ITLC method en-456

ables effective control over cross-lingual genera-457

tion. As shown in Table 3, both EN→XX and458

XX→EN directions yield a higher rate of correct459

language identification. This suggests that manipu-460

lating representations of language-specific spaces461

helps align the source language more closely with462

the target language in a newly projected represen-463

tation space. For more details results and compar-464

isons are shown in Appendix D.3 and D.4. Inter-465

estingly, this space not only transforms the repre-466

sentation into the desired target language, but also467

Model Lang Shift Nat. Rel. Cor.

Baseline
ID→ID 1.17 1.17 1.13

EN→EN 2.80 2.37 2.07
TH→TH 1.70 1.33 1.13

ITLC

ID→EN 4.73 3.17 1.43
EN→ID 3.43 2.29 1.46
TH→EN 1.73 1.30 1.27
EN→TH 1.10 1.07 1.07

Table 5: Human evaluation of ITLC response quality.
Nat., Rel., and Cor. respectively denote naturalness,
relevance, and answer correctness ranging from [1. . . 5].
Baseline denotes the same model prompted in the same
language as the desired target language.

carries rich semantic information that contributes 468

to more meaningful and contextually accurate gen- 469

eration. This is further supported by the results 470

in Table 4 (for qualitative evidence, refer to Ta- 471

ble 3), where we compare our method against a 472

monolingual baseline—prompted and completed 473

entirely in the target language—as an upper bound. 474

Notably, ITLC achieves comparable and, in many 475

cases, surpasses the baseline in both metrics, indi- 476

cating closer resulting generations to the ground 477

truth answer in the target language. These find- 478

ings highlight that the injection strategy enables 479

effective cross-lingual generation while preserving 480

semantic integrity. 481

Human Evaluation We conducted a human eval- 482

uation to validate our findings on language vector 483

injection, with the overall results summarized in 484

Table 5. Our method performs comparably to the 485

Mono Baseline, demonstrating that ITLC success- 486

fully shifts language and performs cross-lingual 487

generation close to the ideal performance for the 488

target language. Notably, the direction toward 489

Indonesian even outperforms its baseline by 1–2 490
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Method LCPR LPR WPR

Qwen2.5-0.5B

Baseline 29.41 19.75 73.45
+ Q/A template (0-shot) 44.68 35.36 75.94
+ 5-shot 56.78 50.63 76.16
+ ITLC (apply base shift vector)

+ prompt-only (0.8) 65.71 66.41 74.24
+ gen-only (0.6) 71.35 80.46 67.67
+ prompt-and-gen (0.5) 78.93 85.08 77.15

Qwen2.5-0.5B-Instruct

Baseline (w/ chat template) 63.00 57.69 79.50
+ 5-shot 63.53 58.79 75.34
+ ITLC (apply base shift vector)

+ seq-only (0.8) 76.05 77.68 81.11
+ gen-only (0.6) 75.56 82.42 74.51
+ prompt-and-gen (0.5) 81.51 85.32 80.55

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 73.26 76.37 79.20
+ gen-only (0.6) 73.95 84.06 71.40
+ seq-and-gen (0.5) 80.96 86.79 78.84

Table 6: Cross-lingual language confusion performance
(LCPR / LPR / WPR) of Qwen2.5-0.5B models.

points, suggesting particularly strong alignment491

in that case. Specifically, the XX→EN direction492

suggests the presence of strong latent representa-493

tions. In contrast, the EN→XX direction shows re-494

duced performance across both settings, highlight-495

ing persistent challenges in generating text for low-496

resource languages. Nonetheless, the Qwen2.5-497

0.5B-Instruct model used in this study is a rela-498

tively small model, which limits the quality of its499

language generation. Despite this limitation, our500

results demonstrate that injecting the language vec-501

tor into the latent space can effectively guide the502

model toward cross-lingual generation.503

5.2.2 Mitigating Language Confusion504

Crosslingual Language Control and Prompt-505

ing Efficacy As shown in Table 6, our proposed506

method, ITLC, surpasses baseline configurations,507

including QA/chat templates and 5-shot prompting508

for both base and instruct models in crosslingual509

settings. The seq-and-gen strategy with language510

shift vectors achieves the strongest performance.511

For the base model, crosslingual performance im-512

proves progressively with few-shot 3 examples,513

as few-shot examples utilize English inputs with514

explicit target-language, reinforcing input-output515

alignment. In contrast, the instruct model exhibits516

minimal variation across few-shot configurations,517

as its instruction-tuning inherently supports multi-518

3Cross-lingual prompts follow the official format: English
inputs with instructions like Respond in <TARGET_LANG>.

lingual prompting without dependency on few-shot 519

quantity. These results demonstrate that our ap- 520

proach enhances crosslingual language consistency 521

while accommodating architectural differences be- 522

tween base and instruct models. 523

Transferability of Language Vector to Post- 524

Trained Models. Interestingly, as shown on the 525

Qwen2.5-0.5B Instruct in Table 6, applying lan- 526

guage vectors gathered from the base model to the 527

instruct model achieves comparable performance 528

to its native instruct vectors which suggests the ef- 529

fectiveness of language shift from the base model 530

for crosslingual control even in the instruct model, 531

despite the representation space of the model is 532

already shifted by post-training which covers in- 533

struction tuning, preference-tuning and/or RLHF. 534

This transferability indicates that the relative dis- 535

tance between language-specific and that the result- 536

ing language-specific features from the pre-training 537

phase is robust to downstream adaptation, includ- 538

ing tasks generalization from instruction-tuning 539

and value alignment in RLHF and preference- 540

tuning. This evidence implies that – in the case 541

of the Qwen2.5 model family – the cross-lingual 542

symmetry – i.e., the geometric alignment between 543

language representations – constructed during the 544

fine-tuning is preserved even after various down- 545

stream refinement of the model. The preserva- 546

tion of these relationships implies that language- 547

specific cues are retained as invariant properties 548

across model versions, enabling consistent cross- 549

lingual language control through ITLC despite pa- 550

rameter updates during downstream fine-tuning, 551

instruction-tuning, preference-tuning, and RLHF. 552

6 Conclusion 553

Our work explores the phenomenon of representa- 554

tion alignment in LLMs, confirming its occurrence 555

and elucidating its behavior compared to strictly de- 556

signed alignment models. We have demonstrated 557

the potential for disentangling language-specific 558

and language-agnostic information, enabling effec- 559

tive language-specific manipulation without seman- 560

tic loss. Furthermore, we have shown the practical 561

applications of language control manipulation in 562

enhancing language control and mitigating confu- 563

sion problems. Our findings contribute to a deeper 564

understanding of representation alignment in LLMs 565

and open new avenues for improving their perfor- 566

mance in multilingual settings. 567
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Limitations568

The study has several limitations that should be569

considered when interpreting the results. First, the570

coverage of LLMs is limited to a specific set of571

models, particularly Qwen and LaBSE and only572

one model size (0.5B parameters), which may not573

be representative of all LLMs. The findings may574

not generalize to other models with different ar-575

chitectures or training data, as the behavior of rep-576

resentation alignment and language control can577

vary significantly across different LLMs. Future re-578

search should aim to include a more diverse range579

of models to validate the generalizability of the580

results.581

Second, the evaluation is conducted on a lim-582

ited number of languages, especially the evaluation583

of the KNN-based LID method is limited to lan-584

guages included in the FLORES-200, which may585

not capture the full spectrum of linguistic diver-586

sity. The study focuses on a subset of languages,587

and the results may not extend to languages with588

different typological features or those that are un-589

derrepresented in the training data. Expanding the590

evaluation to include a broader range of languages,591

especially low-resource languages, would provide a592

more comprehensive understanding of the model’s593

capabilities and limitations.594

Additionally, the human evaluation is based on595

only 30 samples per language, which may not pro-596

vide a comprehensive assessment of the model’s597

performance. While the sample size is sufficient598

for preliminary analysis, a larger dataset would be599

necessary to draw more robust conclusions. In-600

creasing the number of samples and involving a601

more diverse group of evaluators could enhance602

the reliability and validity of the findings.603

Ethical Considerations604

The research involves the use of LLMs, which605

might raise ethical considerations regarding bias,606

fairness, and transparency on the generated results.607

To ensure ethical conduct, the study adheres to608

the following principles: (1) Bias Mitigation: The609

models used are evaluated for potential biases, and610

efforts are made to mitigate any identified biases.611

(2) Fairness: The evaluation is conducted across612

multiple languages from diverse regions and lan-613

guage families to ensure fairness and inclusivity.614

(3) Transparency: The methodology and results are615

presented transparently to allow for replication and616

verification. (4) Privacy: No personal data is used617

in the evaluation, and all data is anonymized to pro- 618

tect privacy. (5) Accountability: The researchers 619

take responsibility for the ethical implications of 620

the study and are committed to addressing any con- 621

cerns that may arise. 622

We also acknowledge that our research utilized 623

AI tools for writing, rewriting, and generating code. 624

Although these tools offer significant advantages 625

in terms of efficiency and productivity, their use 626

raises important ethical considerations. We recog- 627

nize the potential for bias and errors inherent in 628

AI-generated content and have taken steps to mit- 629

igate these risks through rigorous human review 630

and validation. Furthermore, we are mindful of 631

the potential impact on the broader software devel- 632

opment community, particularly regarding job dis- 633

placement and the need for upskilling. We believe 634

that responsible AI integration should prioritize 635

transparency, accountability, and the empowerment 636

of human developers, ensuring that these tools aug- 637

ment rather than replace human expertise. This 638

research aims to contribute to the ongoing dialogue 639

on ethical AI development and usage, advocating 640

for a future where AI tools are harnessed responsi- 641

bly to enhance human creativity and innovation in 642

the field of software engineering. 643
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Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.940
XCOPA: A multilingual dataset for causal common-941
sense reasoning. In Proceedings of the 2020 Con-942
ference on Empirical Methods in Natural Language943
Processing (EMNLP), pages 2362–2376, Online. As-944
sociation for Computational Linguistics.945

Matt Post. 2018. A call for clarity in reporting BLEU946
scores. In Proceedings of the Third Conference on947
Machine Translation: Research Papers, pages 186–948
191, Belgium, Brussels. Association for Computa-949
tional Linguistics.950

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,951
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan952
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan953
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin954

Yang, Jiaxi Yang, Jingren Zhou, and 25 oth- 955
ers. 2025. Qwen2.5 technical report. Preprint, 956
arXiv:2412.15115. 957

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 958
Sentence embeddings using siamese bert-networks. 959
In Proceedings of the 2019 Conference on Empirical 960
Methods in Natural Language Processing. Associa- 961
tion for Computational Linguistics. 962

Nils Reimers and Iryna Gurevych. 2020. Making 963
monolingual sentence embeddings multilingual us- 964
ing knowledge distillation. In Proceedings of the 965
2020 Conference on Empirical Methods in Natural 966
Language Processing (EMNLP), pages 4512–4525, 967
Online. Association for Computational Linguistics. 968

Shivalika Singh, Angelika Romanou, Clémentine Four- 969
rier, David I. Adelani, Jian Gang Ngui, Daniel 970
Vila-Suero, Peerat Limkonchotiwat, Kelly Marchi- 971
sio, Wei Qi Leong, Yosephine Susanto, Raymond 972
Ng, Shayne Longpre, Wei-Yin Ko, Sebastian Ruder, 973
Madeline Smith, Antoine Bosselut, Alice Oh, Andre 974
F. T. Martins, Leshem Choshen, and 5 others. 2025. 975
Global mmlu: Understanding and addressing cul- 976
tural and linguistic biases in multilingual evaluation. 977
Preprint, arXiv:2412.03304. 978

Advaith Sridhar, Rohith Gandhi Ganesan, Pratyush Ku- 979
mar, and Mitesh Khapra. 2020. Include: A large 980
scale dataset for indian sign language recognition. 981
MM ’20. Association for Computing Machinery. 982

Nishant Subramani, Nivedita Suresh, and Matthew Pe- 983
ters. 2022. Extracting latent steering vectors from 984
pretrained language models. In Findings of the Asso- 985
ciation for Computational Linguistics: ACL 2022, 986
pages 566–581, Dublin, Ireland. Association for 987
Computational Linguistics. 988

Yosephine Susanto, Adithya Venkatadri Hulagadri, 989
Jann Railey Montalan, Jian Gang Ngui, Xian Bin 990
Yong, Weiqi Leong, Hamsawardhini Rengara- 991
jan, Peerat Limkonchotiwat, Yifan Mai, and 992
William Chandra Tjhi. 2025. Sea-helm: South- 993
east asian holistic evaluation of language models. 994
Preprint, arXiv:2502.14301. 995

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dong- 996
dong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei, 997
and Ji-Rong Wen. 2024. Language-specific neurons: 998
The key to multilingual capabilities in large language 999
models. In Proceedings of the 62nd Annual Meeting 1000
of the Association for Computational Linguistics (Vol- 1001
ume 1: Long Papers), pages 5701–5715, Bangkok, 1002
Thailand. Association for Computational Linguistics. 1003

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya 1004
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, 1005
Tatiana Matejovicova, Alexandre Ramé, Morgane 1006
Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey 1007
Cideron, Jean bastien Grill, Sabela Ramos, Edouard 1008
Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, 1009
and 197 others. 2025. Gemma 3 technical report. 1010
Preprint, arXiv:2503.19786. 1011

12

https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://aclanthology.org/2024.dravidianlangtech-1.6/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2502.17956
https://arxiv.org/abs/2502.17956
https://arxiv.org/abs/2502.17956
https://arxiv.org/abs/2502.17956
https://arxiv.org/abs/2502.17956
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.185
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://doi.org/10.1145/3394171.3413528
https://doi.org/10.1145/3394171.3413528
https://doi.org/10.1145/3394171.3413528
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://arxiv.org/abs/2502.14301
https://arxiv.org/abs/2502.14301
https://arxiv.org/abs/2502.14301
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309
https://arxiv.org/abs/2503.19786


NLLB Team, Marta R. Costa-jussà, James Cross, Onur1012
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-1013
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,1014
Jean Maillard, Anna Sun, Skyler Wang, Guillaume1015
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,1016
Gabriel Mejia Gonzalez, Prangthip Hansanti, and1017
20 others. 2022. No language left behind: Scal-1018
ing human-centered machine translation. Preprint,1019
arXiv:2207.04672.1020

Jörg Tiedemann. 2020. The tatoeba translation chal-1021
lenge – realistic data sets for low resource and multi-1022
lingual MT. In Proceedings of the Fifth Conference1023
on Machine Translation, pages 1174–1182, Online.1024
Association for Computational Linguistics.1025

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-1026
jan van Noord. 2020. UDapter: Language adaptation1027
for truly Universal Dependency parsing. In Proceed-1028
ings of the 2020 Conference on Empirical Methods1029
in Natural Language Processing (EMNLP), pages1030
2302–2315, Online. Association for Computational1031
Linguistics.1032

Nicolas Wagner and Stefan Ultes. 2024. On the con-1033
trollability of large language models for dialogue1034
interaction. In Proceedings of the 25th Annual Meet-1035
ing of the Special Interest Group on Discourse and1036
Dialogue, pages 216–221, Kyoto, Japan. Association1037
for Computational Linguistics.1038

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,1039
and Robert West. 2024. Do llamas work in English?1040
on the latent language of multilingual transformers.1041
In Proceedings of the 62nd Annual Meeting of the1042
Association for Computational Linguistics (Volume 1:1043
Long Papers), pages 15366–15394, Bangkok, Thai-1044
land. Association for Computational Linguistics.1045

Bryan Wilie, Samuel Cahyawijaya, Junxian He, and1046
Pascale Fung. 2025. High-dimensional interlingual1047
representations of large language models. Preprint,1048
arXiv:2503.11280.1049

Genta Indra Winata, Alham Fikri Aji, Samuel Cahyawi-1050
jaya, Rahmad Mahendra, Fajri Koto, Ade Romad-1051
hony, Kemal Kurniawan, David Moeljadi, Radi-1052
tyo Eko Prasojo, Pascale Fung, Timothy Baldwin,1053
Jey Han Lau, Rico Sennrich, and Sebastian Ruder.1054
2023. NusaX: Multilingual parallel sentiment dataset1055
for 10 Indonesian local languages. In Proceedings1056
of the 17th Conference of the European Chapter of1057
the Association for Computational Linguistics, pages1058
815–834, Dubrovnik, Croatia. Association for Com-1059
putational Linguistics.1060

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:1061
The surprising cross-lingual effectiveness of BERT.1062
In Proceedings of the 2019 Conference on Empirical1063
Methods in Natural Language Processing and the 9th1064
International Joint Conference on Natural Language1065
Processing (EMNLP-IJCNLP), pages 833–844, Hong1066
Kong, China. Association for Computational Linguis-1067
tics.1068

Shijie Wu and Mark Dredze. 2020. Do explicit align- 1069
ments robustly improve multilingual encoders? In 1070
Proceedings of the 2020 Conference on Empirical 1071
Methods in Natural Language Processing (EMNLP), 1072
pages 4471–4482, Online. Association for Computa- 1073
tional Linguistics. 1074

Yan Xu, Etsuko Ishii, Samuel Cahyawijaya, Zihan 1075
Liu, Genta Indra Winata, Andrea Madotto, Dan Su, 1076
and Pascale Fung. 2022. Retrieval-free knowledge- 1077
grounded dialogue response generation with adapters. 1078
In Proceedings of the Second DialDoc Workshop on 1079
Document-grounded Dialogue and Conversational 1080
Question Answering, pages 93–107, Dublin, Ireland. 1081
Association for Computational Linguistics. 1082

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, 1083
Mandy Guo, Qinlan Shen, Daniel Cer, Yun-Hsuan 1084
Sung, Brian Strope, and Ray Kurzweil. 2019a. Im- 1085
proving multilingual sentence embedding using bi- 1086
directional dual encoder with additive margin soft- 1087
max. arXiv preprint arXiv:1902.08564. 1088

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason 1089
Baldridge. 2019b. PAWS-X: A cross-lingual ad- 1090
versarial dataset for paraphrase identification. In 1091
Proceedings of the 2019 Conference on Empirical 1092
Methods in Natural Language Processing and the 1093
9th International Joint Conference on Natural Lan- 1094
guage Processing (EMNLP-IJCNLP), pages 3687– 1095
3692, Hong Kong, China. Association for Computa- 1096
tional Linguistics. 1097

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 1098
Weinberger, and Yoav Artzi. 2020. Bertscore: 1099
Evaluating text generation with bert. Preprint, 1100
arXiv:1904.09675. 1101

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji 1102
Kawaguchi, and Lidong Bing. 2024a. How do large 1103
language models handle multilingualism? In The 1104
Thirty-eighth Annual Conference on Neural Informa- 1105
tion Processing Systems. 1106

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji 1107
Kawaguchi, and Lidong Bing. 2024b. How do large 1108
language models handle multilingualism? Preprint, 1109
arXiv:2402.18815. 1110

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp. 1111
2017. Overview of the second BUCC shared task: 1112
Spotting parallel sentences in comparable corpora. In 1113
Proceedings of the 10th Workshop on Building and 1114
Using Comparable Corpora, pages 60–67, Vancou- 1115
ver, Canada. Association for Computational Linguis- 1116
tics. 1117

13

https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2024.sigdial-1.19
https://doi.org/10.18653/v1/2024.sigdial-1.19
https://doi.org/10.18653/v1/2024.sigdial-1.19
https://doi.org/10.18653/v1/2024.sigdial-1.19
https://doi.org/10.18653/v1/2024.sigdial-1.19
https://doi.org/10.18653/v1/2024.acl-long.820
https://doi.org/10.18653/v1/2024.acl-long.820
https://doi.org/10.18653/v1/2024.acl-long.820
https://arxiv.org/abs/2503.11280
https://arxiv.org/abs/2503.11280
https://arxiv.org/abs/2503.11280
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/2023.eacl-main.57
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/2020.emnlp-main.362
https://doi.org/10.18653/v1/2020.emnlp-main.362
https://doi.org/10.18653/v1/2020.emnlp-main.362
https://doi.org/10.18653/v1/2022.dialdoc-1.10
https://doi.org/10.18653/v1/2022.dialdoc-1.10
https://doi.org/10.18653/v1/2022.dialdoc-1.10
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://openreview.net/forum?id=ctXYOoAgRy
https://openreview.net/forum?id=ctXYOoAgRy
https://openreview.net/forum?id=ctXYOoAgRy
https://arxiv.org/abs/2402.18815
https://arxiv.org/abs/2402.18815
https://arxiv.org/abs/2402.18815
https://doi.org/10.18653/v1/W17-2512
https://doi.org/10.18653/v1/W17-2512
https://doi.org/10.18653/v1/W17-2512


A Details of All Evaluation Datasets1118

The following tables present the full details of1119

dataset sizes used in this study. Refer to Table 7,1120

Table 8, Table 9, Table 10 and Table 11.1121

B Detail Experiment for Understanding1122

Representation Alignment in LLMs1123

B.1 Cosine Similarity Distributions Across1124

Datasets1125

To better understand the representational behavior1126

of the models, we analyzed the distribution of co-1127

sine similarity scores across layers. For LaBSE, the1128

average cosine similarity increases from the first1129

layer (mean = 0.6335, std = 0.0920) to the middle1130

layer (mean = 0.7580, std = 0.1182), and remains1131

comparably high in the last layer (mean = 0.7544,1132

std = 0.1150). This trend suggests that semantic1133

alignment becomes stronger toward the middle and1134

final layers, with relatively low variability, indi-1135

cating consistent behavior across input samples.1136

These observations align with prior findings that1137

intermediate layers in multilingual encoders often1138

capture the most transferable features.1139

In contrast, Qwen2.5-0.5B exhibits a markedly1140

different pattern. While the middle layer achieves1141

the highest average similarity (mean = 0.9218, std1142

= 0.0871), the first layer has a lower mean and1143

higher variance (mean = 0.5913, std = 0.1650),1144

indicating less stable representations early in the1145

network. Notably, the last layer shows a substan-1146

tial drop in similarity (mean = 0.3745) and a sharp1147

increase in variability (std = 0.3988), suggesting a1148

divergence in representational behavior, potentially1149

due to task-specific tuning or greater representa-1150

tional fragmentation. This may help explain the1151

weaker correlations between cosine similarity and1152

task performance observed in Qwen’s final layers.1153

These findings reinforce the role of middle lay-1154

ers in capturing semantically meaningful and trans-1155

ferable representations, particularly in instruction-1156

tuned or general-purpose multilingual models. See1157

Figure 2 for the histogram plot and Figure 4 for the1158

bar chart per alignment dataset.1159

B.2 Additional Analysis For Alignment and1160

Downstream Correlation1161

As shown in Table 12, the correlation between co-1162

sine similarity and downstream performance varies1163

by dataset, layer, and model architecture. The fol-1164

lowing sections provide detailed interpretations.1165

SIB200 For LaBSE, correlation values are con- 1166

sistently strong and statistically significant across 1167

all layers. The first (Pearson r = 0.323), middle 1168

(Pearson r = 0.309), and last (Pearson r = 0.210) 1169

layers all demonstrate meaningful positive corre- 1170

lations with performance (p ≈ 0), indicating that 1171

cosine similarity is well-aligned with task accu- 1172

racy throughout the network. This suggests that 1173

SIB200 benefits from LaBSE’s cross-lingual rep- 1174

resentations, especially in the earlier and middle 1175

layers. In contrast, Qwen2.5-0.5B shows very weak 1176

but statistically significant correlations (r ≤ 0.12 1177

across all layers). While the trends are consistent, 1178

the effect sizes are negligible, suggesting that co- 1179

sine similarity has limited practical influence on 1180

performance for Qwen2.5-0.5B on this dataset. 1181

INCLUDE-BASE For LaBSE, correlations be- 1182

tween cosine similarity and performance are neg- 1183

ligible and statistically non-significant across all 1184

layers, with Pearson r values close to zero (−0.041, 1185

0.005, −0.021). This suggests no meaningful 1186

alignment between representational similarity and 1187

task accuracy. In contrast, Qwen2.5-0.5B exhibits 1188

weak but statistically significant positive correla- 1189

tions (Pearson r range: 0.14–0.18), indicating that 1190

higher cosine similarity is marginally associated 1191

with improved performance. Despite the small ef- 1192

fect sizes, these results highlight a slight but con- 1193

sistent behavioural alignment in Qwen2.5-0.5B on 1194

this dataset. 1195

XCOPA For LaBSE, correlation values across 1196

layers are weak and statistically insignificant, sug- 1197

gesting minimal alignment between representa- 1198

tional similarity and model performance. In con- 1199

trast, Qwen2.5-0.5B exhibits a strong and statis- 1200

tically significant positive correlation in the last 1201

layer (Pearson r = 0.538, p < 0.001), implying 1202

that deeper representations may be more predictive 1203

for XCOPA. 1204

PAWS-X LaBSE shows weak, non-significant 1205

positive correlations across layers. However, 1206

Qwen2.5-0.5B demonstrates a strong positive cor- 1207

relation in the middle layer (Pearson r = 0.532, 1208

p ≈ 0.004), suggesting that intermediate represen- 1209

tations capture more alignment-relevant features 1210

for paraphrase detection. 1211

Downstream Performance Relative to Ran- 1212

dom Baselines To provide a clearer picture 1213

of cross-lingual generalization and behavior 1214

alignment, we present a set of bar charts 1215
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Dataset Train Test Total # Languages

SIB200 143,705 41,820 185,525 205
INCLUDE-BASE 890 22,638 23,528 44
XCOPA 1,100 5,500 6,600 11
PAWS-X 345,807 14,000 359,807 7

Table 7: Dataset sizes and number of languages for downstream tasks.

(a) Mean Cosine Similarity Score on LaBSE Model (b) Mean Cosine Similarity Score on Qwen2.5-0.5B Model

Figure 4: Layer-wise cosine similarity distributions of LaBSE and Qwen2.5-0.5B models across different datasets.

(a) Performance of LaBSE across downstream tasks compared
to random baselines.

(b) Performance of Qwen2.5-0.5B across downstream tasks
compared to random baselines.

Figure 5: Comparison of LaBSE and Qwen2.5-0.5B performance across various downstream tasks and their
corresponding random baselines.

15



Dataset Total # Languages

FLORES-200 1,012 204
NTREX-128 1,997 128
NusaX 400 12
NusaWrites 14,800 9 (language pairs)
BUCC 35,000 4 (language pairs)
Tatoeba 88,877 112 (language pairs)
BibleCorpus 85,533 828 (language pairs)

Table 8: Total example counts and number of languages
for alignment tasks. We only use test set for this align-
ment task.

Dataset Train Test Total # Languages

FLORES-200 997 1012 2,009 204
NTREX-128 - 1,997 1,997 128
NusaX 500 400 400 12

Table 9: Total example counts per language and number
of languages for for LID tasks.

comparing the performance of LaBSE and1216

Qwen2.5-0.5B across four downstream evaluation1217

datasets—SIB200, INCLUDE-BASE, XCOPA,1218

and PAWS-X—relative to their respective random1219

baselines.1220

On XCOPA and PAWS-X, LaBSE yields near-1221

random or below-random performance, indicating1222

that its fixed representations struggle with cross-1223

lingual commonsense reasoning and paraphrase1224

detection. For SIB200, LaBSE performs slightly1225

above the random baseline, suggesting limited task1226

sensitivity in multilingual sentence similarity set-1227

tings. However, its performance on INCLUDE-1228

BASE remains weak, staying near or below the1229

random baseline and highlighting deficiencies in1230

broader multilingual alignment.1231

In contrast, Qwen2.5-0.5B demonstrates1232

stronger generalization on both SIB200 and1233

INCLUDE-BASE, significantly outperforming1234

its baseline and showing evidence of better1235

cross-lingual task adaptation. However, it faces1236

challenges on XCOPA and PAWS-X, where1237

its performance hovers around or falls below1238

baseline, pointing to possible limitations in1239

zero-shot commonsense reasoning and paraphrase1240

Dataset Train Test Total # Languages

FLORES-200 997 1012 2,009 204
Dolly - 1,800 - 9

Table 10: Total example counts per language and num-
ber of languages for Language Control.

Setting Total # Languages

Monolingual
Aya 100 5
Dolly 100 5
Okapi 100 10
Native prompts 100 4

Crosslingual
Okapi 100 14
shareGPT 100 14
Complex prompts 99 14

Table 11: Total example counts per language and num-
ber of languages for Language Confusion tasks, taken
from Language Confusion Benchmark. Only test set is
available.

understanding across languages. 1241

These comparisons highlight the differing 1242

strengths and weaknesses of encoder-only and 1243

decoder-only multilingual models across select 1244

zero-shot evaluation tasks. See Figure 5. 1245

B.3 Additional Analysis For Alignment and 1246

LID Correlation 1247

As shown in Table 13, the correlation between 1248

alignment (as measured by cosine similarity) and 1249

downstream LID performance varies notably across 1250

datasets, model architectures, and transformer lay- 1251

ers. The following sections provide detailed inter- 1252

pretations for each dataset to contextualize these 1253

trends. 1254

FLORES-200 On the FLORES-200 dataset, we 1255

observe a moderate negative correlation between 1256

cosine similarity and LID performance for both 1257

LaBSE and Qwen2.5-0.5B. The strength of the 1258

correlation increases in deeper layers, with the 1259

last layer showing the strongest correlation (r = 1260

−0.707, p < 10−31) for LaBSE. Qwen2.5-0.5B, 1261

however, exhibits its strongest negative correlation 1262

in the middle layer (r = −0.432, p < 10−9), indi- 1263

cating that as the embeddings become more aligned 1264

(i.e., higher cosine similarity), the language identity 1265

signal tends to weaken, potentially due to semantic 1266

abstraction. The statistically significant p-values 1267

across all layers confirm the robustness of this rela- 1268

tionship. These findings reinforce the idea that high 1269

alignment may come at the cost of LID separabil- 1270

ity, especially in final layers for LaBSE and middle 1271

layer for Qwen2.5-0.5B, where representations are 1272

more semantically homogenized. 1273

NTREX-128 For NTREX-128, the correlation 1274

trends diverge between the two models. LaBSE 1275
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Dataset Model Layer Pearson r R2 p-value

SIB200

LaBSE
First 0.323 0.104 <10−300

Middle 0.309 0.096 <10−300

Last 0.210 0.044 <10−205

Qwen2.5-0.5B
First 0.060 0.004 <10−17

Middle 0.123 0.015 <10−69

Last 0.043 0.002 <10−9

INCLUDE-BASE

LaBSE
First -0.041 0.002 0.233

Middle 0.005 0.000 0.884
Last -0.021 0.000 0.545

Qwen2.5-0.5B
First 0.183 0.034 <10−7

Middle 0.142 0.020 <10−4

Last 0.168 0.028 <10−6

XCOPA

LaBSE
First -0.115 0.013 0.458

Middle -0.026 0.001 0.867
Last 0.144 0.021 0.352

Qwen2.5-0.5B
First 0.292 0.085 0.055

Middle -0.139 0.019 0.368
Last 0.538 0.289 <0.001

PAWS-X

LaBSE
First 0.141 0.020 0.484

Middle 0.270 0.073 0.173
Last 0.146 0.021 0.467

Qwen2.5-0.5B
First 0.228 0.052 0.252

Middle 0.532 0.283 0.004
Last 0.369 0.136 0.059

Table 12: Pearson correlation coefficients (r), R2, and p-values for the relationship between cosine similarity and
task performance across different transformer layers on LaBSE and Qwen2.5-0.5B. Dashes (–) indicate missing
values due to unavailable data.
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Dataset Model Layer Pearson r R2 p-value

FLORES-200

LaBSE
First 0.024 0.001 0.732

Middle -0.122 0.015 0.084
Last -0.707 0.500 <10−31

Qwen2.5-0.5B
First -0.142 0.020 0.043

Middle -0.432 0.186 <10−9

Last -0.278 0.077 <10−4

NTREX-128

LaBSE
First 0.254 0.065 0.012

Middle -0.173 0.030 0.089
Last -0.621 0.385 <10−11

Qwen2.5-0.5B
First -0.232 0.054 0.021

Middle -0.476 0.226 <10−6

Last -0.340 0.115 0.001

NusaX

LaBSE
First -0.566 0.320 0.112

Middle -0.872 0.760 0.002
Last – – –

Qwen2.5-0.5B
First -0.455 0.207 0.218

Middle -0.873 0.763 0.002
Last -0.045 0.002 0.910

Table 13: Pearson correlation coefficients (r), R2, and p-
values for the relationship between KNN LID F1 score
using mean-pooled embedding and alignment cosine
similarity across different transformer layers on LaBSE
and Qwen2.5-0.5B.

exhibits its strongest negative correlation in the1276

the last layer (Pearson r = −0.621, p < 10−11),1277

with a positive correlation in the first layer (Pear-1278

son r = 0.254, p = 0.012) and weak negative1279

correlation in the middle (Pearson r = −0.173,1280

p = 0.089). This suggests that early representa-1281

tions in LaBSE may still retain relatively distinct1282

language features that diminish with depth. In con-1283

trast, Qwen2.5-0.5B shows more consistent nega-1284

tive correlations across all layers, particularly in1285

the middle layer (Pearson r = −0.476, p < 10−6).1286

These results highlight a more uniform degradation1287

of LID-relevant information in Qwen’s architecture1288

compared to LaBSE.1289

NusaX For NusaX, alignment-LID correlations1290

exhibit distinct patterns. LaBSE shows a weak cor-1291

relation in the first layer (Pearson r = −0.566,1292

p = 0.112), a highly negative correlation in the1293

middle layer (Pearson r = −0.872, p = 0.002),1294

and no measurable correlation in the last layer (–),1295

which we assume reflects a perfect inverse rela-1296

tionship (Pearson r ≈ −1) due to complete LID1297

failure. Qwen2.5-0.5B follows a similar pattern,1298

with its most negative correlation in the middle1299

layer (Pearson r = −0.873, p = 0.002) and negli-1300

gible correlations in the first (Pearson r = −0.455,1301

p = 0.218) and last layers (Pearson r = −0.045,1302

p = 0.910). The correlations for both models are1303

the most negative observed across all datasets, sug-1304

gesting alignment disproportionately degrades lan-1305

guage signals in low-resource settings. This ex-1306

treme inverse relationship likely stems from the1307

models’ lack of prior exposure to NusaX languages 1308

during training, limiting their ability to retain lan- 1309

guage identity in aligned embeddings. 1310

C LID Methods and Results 1311

D Language Control Results 1312

D.1 Generation Hyperparameter 1313

The generation process for the language control 1314

and language confusion results uses specific hyper- 1315

parameter to balance creativity and control. We 1316

set max_new_tokens=50 for language control and 1317

max_new_tokens=256 for language confusion, and 1318

set top_k to 50. We apply nucleus sampling 1319

with top_p=0.9, and use a moderate tempera- 1320

ture of 0.7 to encourage focused yet varied out- 1321

puts. To reduce repetitive phrases, we apply a 1322

repetition_penalty of 1.5. For input prepara- 1323

tion, we follow the formatting conventions and pa- 1324

rameters used by Qwen2.5-0.5 models. 1325

D.2 Language Vector Setting 1326

Linear Discriminant Analysis (LDA) is utilized to 1327

construct language vectors by extracting language- 1328

specific features from the Qwen2.5-0.5B model’s 1329

scaled hidden states, optimizing crosslingual con- 1330

trol through class separability. We evaluate various 1331

component sizes (20, 40, 50, 100, 150, 203) to bal- 1332

ance LID accuracy and unused variance, fitting an 1333

LDA model and training a linear neural network 1334

(with 10 epochs, Adam optimizer, and CrossEn- 1335

tropyLoss) to achieve a peak accuracy of approx- 1336

imately 90.63% at 100 components. The unused 1337

variance is minimized, ensuring retained discrim- 1338

inative information for injection (δ) with pruning, 1339

which enhances language targeting while the Fig- 1340

ure 6 visually confirms this optimal trade-off. 1341

D.3 Language Correctness on Different Shift 1342

Strategies 1343

Comparing language correctness of Base and In- 1344

struct respectively ( Table 15 & Figure 3) re- 1345

veals that the Qwen2.5-0.5B-Instruct model sig- 1346

nificantly enhances cross-lingual language control. 1347

It achieves 100% LID correctness with the Seq + 1348

Gen shift strategy in EN→XX direction, compared 1349

to the Base model’s gen-only average of 87.6%. 1350

It suggests the impact of instruct model and our 1351

ITLC method in improving language separability 1352

and semantic transfer, as supported by prior hu- 1353

man evaluations Table 5. Both models excel in 1354

XX→EN direction (Instruct: 96.7%, Base: 96.0%), 1355
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FLORES-200 NTREX-128 NusaX

Model Method Layer CLS Mean CLS Mean CLS Mean

LaBSE

KNN
First 80.65 88.35 87.02 90.43 64.12 81.78
Middle 65.11 78.85 71.37 81.30 33.89 45.37
Last 7.65 3.92 3.45 1.63 0.54 0.00

Linear
Probing

First 93.47 95.13 92.21 93.29 89.16 97.30
Middle 92.99 94.18 92.33 92.68 88.00 94.51
Last 30.03 70.89 22.91 74.36 56.00 65.44

Qwen2.5-0.5B

KNN
First – 83.69 – 86.06 – 65.79
Middle – 55.32 – 54.73 – 25.05
Last – 71.73 – 81.86 – 29.39

Linear
Probing

First – 94.21 – 91.42 – 95.55
Middle – 91.76 – 90.04 – 87.09
Last – 92.46 – 90.27 – 88.77

Table 14: F1 score for KNN and linear classifiers by layer and pooling on FLORES-200, NTREX-128, and NusaX.
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Figure 6: Controlling the number of language feature representations by using LDA performance accuracy (Left)
and unused variance (Right) across number of components.

Language prompt-only gen-only prompt-and-gen

EN→XX XX→EN EN→XX XX→EN EN→XX XX→EN

ID 90.5 99.0 87.5 100.0 100.0 95.0
TH 99.0 100.0 100.0 100.0 100.0 100.0
TR 76.0 99.0 97.5 100.0 100.0 89.0
JA 85.5 100.0 100.0 100.0 100.0 98.5
FR 71.0 100.0 91.5 100.0 100.0 95.0
ES 88.5 100.0 88.0 100.0 100.0 100.0

ARB 92.5 100.0 91.0 100.0 100.0 100.0
KO 81.0 97.5 86.5 97.0 99.5 91.5
ZH 64.5 99.0 68.5 100.0 100.0 95.0

Table 15: Language correctness (%) for Qwen2.5-0.5B-
Instruct across EN→XX and XX→EN Directions.

reflecting English’s training dominance (Table 4),1356

though linguistic overlaps (e.g., Korean with Chi-1357

nese) and weaker EN→XX direction performance1358

for low-resource languages like Chinese (Instruct:1359

68.5% Generated Only) suggest that Seq + Gen is1360

optimal for Instruct.1361

D.4 Cross-lingual Generation Performance1362

As shown in Tables 16 and 17, the Instruct model1363

consistently outperforms the Base model in both1364

EN→XX and XX→EN direction, particularly in1365

semantic relevance (e.g., ROUGE for Indonesian 1366

prompt-and-gen: 13.6 vs. 14.1 and SacreBLEU: 1367

16.89 vs. 12.20). Despite lower or even zero 1368

SacreBLEU in some EN→XX direction cases (e.g., 1369

Thai and Korean), the Instruct model shows im- 1370

proved performance in low-resource directions 1371

for XX→EN direction, indicating better semantic 1372

transfer. This aligns with human evaluations (Ta- 1373

ble 5) and confirms the effectiveness of our LDA- 1374

based injection method in enabling cross-lingual 1375

generation that maintains both flexibility and se- 1376

mantic fidelity, as further supported by upperbound 1377

comparisons (Table 4). 1378

D.5 Additional Examples of Cross-lingual 1379

Generation 1380

Figure 7 and Figure 8 present several examples 1381

of generated outputs across multiple source lan- 1382

guages (fr, tr, zh, ja, ar) targeting English. Overall, 1383

our ITLC method successfully shifts to the desired 1384

target language and demonstrates effective cross- 1385

lingual generation. For instance, in the Japanese 1386
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Base Instruct

prompt-only gen-only prompt-and-gen prompt-only gen-only prompt-and-gen

Language BS Rog SB BS Rog SB BS Rog SB BS Rog SB BS Rog SB BS Rog SB

ID 51.8 0.9 2.36 57.6 1.3 0.00 53.7 0.3 0.00 63.6 10.4 14.30 63.9 1.2 0.00 63.7 0.9 0.00
TH 58.5 4.9 3.20 52.6 5.6 3.46 58.7 7.6 3.75 64.1 1.5 15.97 58.0 7.0 15.97 58.4 8.7 4.93
TR 47.7 1.0 0.00 54.4 3.1 0.00 47.2 2.0 8.12 60.2 7.9 1.43 58.9 3.0 9.65 57.3 4.0 0.00
JA 60.1 9.1 2.22 55.9 9.7 7.05 59.3 10.8 7.33 61.5 4.4 15.97 59.3 9.7 4.82 58.0 8.6 5.37
FR 51.8 9.5 9.54 54.8 11.2 5.86 47.7 10.4 4.62 63.2 11.1 10.97 60.1 12.7 4.10 59.8 12.7 2.74
ES 39.3 0.7 1.41 52.5 0.9 0.00 40.2 0.4 4.97 64.4 16.0 7.17 63.6 0.4 11.88 65.5 0.2 6.57
AR 59.8 0.8 1.45 52.1 1.3 0.00 56.5 1.4 4.20 63.5 0.8 4.75 62.0 3.0 4.11 55.1 0.8 2.63
KO 53.4 0.8 0.00 58.5 1.2 0.00 53.3 0.8 10.68 62.0 4.1 3.58 63.8 1.66 0.00 59.3 0.1 0.00
ZH 53.0 4.9 2.36 57.1 7.7 6.02 55.7 8.2 10.60 62.3 1.3 0.00 63.3 9.3 6.90 63.1 10.5 5.37

Table 16: Comparison of Generative Performance for Base & Instruct in EN→XX Direction. BS denote as BertScore
(F1), Rog is ROUGE-1, and SB is for SacreBLEU.

Base Instruct

prompt-only gen-only prompt-and-gen prompt-only gen-only prompt-and-gen

Language BS Rog SB BS Rog SB BS Rog SB BS Rog SB BS Rog SB BS Rog SB

ID 59.5 14.1 7.93 59.8 13.8 9.31 59.9 14.1 12.20 62.5 13.9 4.76 63.9 15.7 7.97 62.2 13.6 16.89
TH 62.1 13.7 6.19 60.6 14.3 11.18 62.2 14.4 14.40 62.0 13.8 4.93 62.3 15.4 5.59 62.1 13.8 11.12
TR 53.2 11.1 14.51 60.6 13.2 12.67 55.2 11.8 14.18 62.0 12.8 8.45 62.5 14.3 13.61 61.8 13.1 8.70
JA 62.1 14.1 15.97 57.9 14.3 9.84 61.5 15.2 11.91 62.7 14.9 5.73 63.2 17.0 6.89 62.4 14.7 12.17
FR 61.8 16.7 8.83 58.5 14.7 9.73 60.6 15.6 8.66 64.2 17.1 5.68 64.9 18.0 8.64 64.5 17.2 6.08
ES 63.2 16.8 10.89 60.0 15.4 6.14 63.5 16.7 11.38 64.9 18.1 4.38 65.4 18.5 5.99 64.8 17.6 7.17
AR 62.4 15.0 9.32 56.9 13.3 14.60 63.1 15.1 19.28 63.3 14.4 6.61 63.1 15.3 10.43 62.3 13.7 6.22
ZH 59.3 13.3 15.32 61.1 16.7 11.83 60.7 16.8 9.84 63.2 16.3 6.73 61.5 14.4 6.27 61.0 13.0 10.96
KO 56.4 13.3 15.32 56.9 13.5 6.43 56.6 13.2 16.44 62.9 14.9 9.59 62.0 14.5 4.89 61.2 13.9 6.44

Table 17: Comparison of Generative Performance for Base & Instruct in XX→EN Direction. BS denote as BertScore
(F1), Rog is ROUGE-1, and SB is for SacreBLEU.

Target Language Monolingual ITLC

SacreBLEU BertScore (F1) SacreBLEU BertScore (F1)

ID 4.58 60.4 10.6 57.1
TH 0.0 60.4 1.45 57.6
TR 8.47 57.7 3.75 58.7
JA 0.0 57.5 8.12 54.4
FR 8.61 58.8 7.33 60.1
ES 12.28 60.3 9.54 54.8
AR 4.90 57.0 4.97 52.5
ZH 0.0 59.2 10.68 58.5
KO 9.55 57.2 4.2 59.8

Table 18: Generation performance for different target
languages with Qwen2.5-0.5B. Mono Baseline denotes
the model prompted in the same language as the desired
target language.

example in Figure 7, the input prompt is "Help1387

me come up with three new business ideas." The1388

model’s response with "I have already developed1389

some ideas..." (translate with Google Translate)1390

—shows that it semantically understands the ques-1391

tion, although the correctness of the content re-1392

mains somewhat limited.1393

Another example, such as in the EN→ZH direc-1394

tion, shows that the model generates a well-formed1395

response in Simplified (Hans) Chinese. The output1396

produces: "Dear Mom and Dad, Hello everyone!1397

My dear mother, I am from... I am a member of the1398

research and development..."—demonstrating clear1399

semantic alignment with the prompt. However, as1400

with the previous case, the accuracy and relevance1401

of the content could still be limited.1402

Scaling Monolingual Crosslingual

LCPR LPR WPR LCPR LPR WPR

prompt-0.1 64.86 81.01 65.67 33.97 23.75 74.74
prompt-0.2 66.39 82.14 66.75 38.88 28.91 75.37
prompt-0.3 65.59 82.86 65.78 46.03 37.86 72.56
prompt-0.4 65.45 82.79 65.53 57.20 51.97 72.27
prompt-0.5 65.87 82.73 62.50 62.93 61.63 73.43
prompt-0.6 64.92 82.64 65.24 63.91 63.83 73.20
prompt-0.7 64.78 81.03 65.52 64.63 66.09 71.74
prompt-0.8 63.69 80.40 65.28 65.71 66.41 74.24
prompt-0.9 61.25 75.81 64.15 64.59 64.79 73.30
prompt-1.0 60.39 74.98 63.87 62.97 63.35 72.79

Table 19: Performance (LCPR / LPR / WPR) of the
Qwen2.5-0.5B model under the prompt-only setting
with base shift vector, evaluated across different lan-
guage vector scaling factors.

E Language Confusion Result 1403

Ablation Study of Scaling for Different Lan- 1404

guage Vector Injection Strategies As shown in 1405

Table 19, Table 20 and Table 21 Our analysis re- 1406

veals distinct optimal scaling factors for crosslin- 1407

gual LCPR across injection strategies: prompt-only 1408

achieves peak performance at scaling 0.8 (65.71), 1409

gen-only at 0.6 (71.35), and prompt-and-gen at 1410

0.5 (78.93). Notably, prompt-and-gen outperforms 1411

other strategies, suggesting combined injection bet- 1412

ter preserves crosslingual alignment. However, ap- 1413
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Lang Shift Prompt Generated

FR → EN

Suggérez-moi 5 films d’horreur Sure! Here I go with five horror movies: 1) ”The Con-
juring” - This film is famous for its eerie atmosphere
and supernatural elements. 2) ”Hunger Games: The
First Years.” It also has strong effects of fear on peo-
ple . . .

TR → EN

Bana ev yapımı biramı daha ilginç hale
getirmenin beş yolunu söyle.

A new way to break the cycle of poverty in our society
is key for people who can pay more than 10 dollars
each year on an average per person –one that could
bring those individuals down between $5 and over five
times their own cost . . .

ZH → EN

我可以送些什么东西给一个好奇的孩
子?

It is important to consider what we do and not give
things that could hurt or harm others. Let us be
mindful of the choices around them before giving any-
thing else as well because ultimately who will know if
you truly deserve being treated with care in this case
. . .

JA → EN

新しいビジネスのアイデアを3つ思い
つくのを手伝って下さい

I have already developed some ideas for new busi-
nesses that can take place in the 21st century. To be
clear to me what exactly you need an idea from this
time on? How many times we will use them? What
kind of business . . .

AR → EN

آلية ساعة عمل كيفية شرح The ”hour clock” in the game is to be placed on board
for each player during their turn when they have
completed an action against that particular charac-
ter (e.g., at end of season). A complete stage will
then include one 1/3 . . .

Figure 7: Examples of generated outputs from Qwen2.5-0.5B-Instruct with injection in XX→EN.

Scaling Monolingual Crosslingual

LCPR LPR WPR LCPR LPR WPR

gen-0.1 64.75 83.99 63.85 35.07 24.79 74.92
gen-0.2 65.35 85.09 65.01 39.93 28.96 75.92
gen-0.3 62.61 86.55 59.29 48.08 38.97 71.16
gen-0.4 59.61 86.23 54.95 57.49 57.82 64.37
gen-0.5 59.64 86.54 54.85 62.62 65.94 65.48
gen-0.6 60.05 87.49 58.14 71.35 80.46 67.67
gen-0.7 58.01 87.41 55.72 69.39 80.73 66.57
gen-0.8 52.45 82.78 52.35 65.84 75.74 65.93
gen-0.9 47.07 75.83 50.58 58.61 68.51 63.73
gen-1.0 40.44 71.15 54.91 51.25 61.85 61.83

Table 20: Performance (LCPR / LPR / WPR) of the
Qwen2.5-0.5B model under the generated-only setting
with base shift vector, evaluated across different lan-
guage vector scaling factors.

plying language vector shifts to monolingual4 tasks1414

degrades performance as scaling increases. This1415

suggests that applying shift vectors to monolingual1416

inputs does not amplify language-specific features1417

but instead displaces the original distribution, de-1418

4In monolingual (source = target) settings, δ = vorig
y is

applied via h′ = h+ αδ.

Scaling Monolingual Crosslingual

LCPR LPR WPR LCPR LPR WPR

prompt-and-gen-0.1 64.21 84.27 63.77 39.48 28.69 75.74
prompt-and-gen-0.2 63.25 86.34 61.76 50.04 41.18 75.07
prompt-and-gen-0.3 62.94 88.24 60.85 64.22 64.18 72.53
prompt-and-gen-0.4 60.79 88.06 59.09 75.88 80.58 75.78
prompt-and-gen-0.5 59.98 87.11 59.41 78.93 85.08 77.15
prompt-and-gen-0.6 57.01 86.37 55.90 77.21 84.13 74.90
prompt-and-gen-0.7 53.56 82.91 53.63 72.57 81.98 71.51
prompt-and-gen-0.8 49.00 77.27 51.33 68.22 76.80 70.08
prompt-and-gen-0.9 40.41 70.51 48.16 60.97 69.07 66.44
prompt-and-gen-1.0 36.60 70.01 51.30 52.51 61.07 63.82

Table 21: Performance (LCPR / LPR / WPR) of the
Qwen2.5-0.5B model under the prompt-and-generated
setting with base shift vector, evaluated across different
language vector scaling factors.

grading the performance. 1419

Crosslingual Language Control via Language 1420

Shift Vectors As shown in Table 24 and Ta- 1421

ble 25, our method ITLC substantially improves 1422

cross-lingual language control, as evidenced by 1423

enhanced LCPR scores when applying language 1424

shift vectors. In crosslingual settings, the seq-and- 1425

gen strategy achieves peak performance, with base 1426
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Lang Shift Prompt Generated

EN → FR

Imagine you have to spend a week on
a deserted island. What are 5 items
you’d bring with you and why?

Eh bien, Je vais leave comission de monself Comme I
não j’ai pas un grand capital à risker je me suis put
sortir sans débris que vous couldais take: 1) Alcibi-
ade: Ache . . .

EN → TR

Describe the sensation of taking a cold
shower and explain the rationale for
why someone might take one.

Sırbistan’nde bir aylağda çok güzel su (çocuk) her
sabrabındaki kitlemlerde en az 15min de döşmezken
bu saymaği sonkardan da . . .

EN → ZH

Write a letter to my mum and dad de-
tailing the reasons why they should buy
me a pet tortoise

尊敬的妈妈和爸爸，大家好！我亲爱的母亲，我是来自
台湾花东海岸南太平洋海域采种选育、研发团队之成
员，在1958年3月～4日于台北市选举举行第2 . . .

EN → JA

Write a short paragraph on the impact
of nutrition on human health.

健康的体重管理を可能にするには、合理的に摺入（食
事が量調解）方法は：**“水分充満”と、“筋トレ”的
「効率の良いタンパク質チップレモンフィ . . .

EN → AR

Explain how a mechanical watch works ,"Iزوع لاكود": أخبرتنا "-" : أنوائل علم على منى""أنت "لعلمنا وشاعر: الله بسم
السعودة قائم . . .

Figure 8: Examples of generated outputs from Qwen2.5-0.5B-Instruct with injection in EN→XX.

shift vectors attaining 78.93% LCPR for the base1427

model and 81.51% for the instruct model. While1428

gen-only and seq-only strategies demonstrate mod-1429

erate gains of 71.35% and 65.71% respectively for1430

the base model, and 75.56% and 76.05% for the1431

instruct model, they are consistently outperformed1432

by the seq-and-gen approach. Notably, base shift1433

vectors achieve marginally higher LCPR compared1434

to their instruct counterparts across both models,1435

with 78.93% versus 76.06% LCPR for base model1436

configurations and 81.51% versus 80.96% for the1437

instruct model. This consistent advantage suggests1438

that base vectors retain more language-specific1439

information critical for cross-lingual adaptation,1440

likely attributable to their training objectives em-1441

phasizing multilingual representation rather than1442

task-specific alignment. A detailed breakdown of1443

the LCPR scores per language for both the base1444

and instruct models is presented in Table 22 adn1445

Table 231446

Impact of Few-Shot Prompting on Monolin-1447

gual and Crosslingual Performance As shown1448

in Table 13 and Table 14, for the base model,1449

monolingual settings exhibit performance degrada-1450

tion with increasing few-shot examples, as LCPR1451

drops from 65.27% to 54.47%. This decline1452

likely arises from the inclusion of multilingual1453

few-shot examples5, creating conflicting linguis-1454

5Few-shot examples are drawn directly from the original
benchmark implementation, which includes languages distinct
from the target language.

tic signals. In cross-lingual settings, LCPR im- 1455

proves progressively from 29.41% to 56.78%, as 1456

few-shot examples utilize English inputs with 1457

explicit target-language directives6, reinforcing 1458

input-output alignment. This indicates that the 1459

model demonstrates stronger cross-lingual adap- 1460

tation with English-centric prompting. The in- 1461

struct model exhibits minimal variation across few- 1462

shot configurations, with monolingual LCPR rang- 1463

ing between 74.52% and 75.59%, and crosslin- 1464

gual between 63.00% and 64.56%, suggesting 1465

its instruction-tuning enables robust multilingual 1466

prompting without dependency on few-shot exam- 1467

ples. This stability implies that the instruct model’s 1468

training on aligned multilingual inputs maximizes 1469

its crosslingual capability a priori, rendering few- 1470

shot augmentation redundant. 1471

Chat/QA Template Efficacy Across Settings 1472

As shown in Table 24 and Table 25, struc- 1473

tured templates7 exhibit divergent impacts on 1474

monolingual and crosslingual performance. For 1475

the base Qwen2.5-0.5B, introducing a QA tem- 1476

plate (0-shot) degrades monolingual LCPR from 1477

65.27% to 59.26% but improves crosslingual per- 1478

formance from 29.41% to 44.68%, suggesting that 1479

task-specific formatting disrupts monolingual fo- 1480

cus while aiding cross-lingual alignment. Con- 1481

6Cross-lingual prompts follow the benchmark’s original
structure: English inputs with instructions like Respond in
<TARGET_LANG>.

7QA template: Q: A: format; chat template: model-
specific structure from instruction-tuning.
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Monolingual

AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B 65.27 92.68 63.57 45.29 70.99 59.46 2.02 68.70 60.71 81.21 85.55 55.04 94.27 72.47 37.96 89.11
+ Q/A template (0-shot) 59.26 59.56 71.46 50.98 74.57 62.64 0.00 65.58 63.10 46.40 69.64 61.47 76.76 42.58 58.63 85.57
+ 1-shot 56.12 72.37 65.25 52.24 60.05 41.22 2.04 67.18 67.88 36.74 78.44 49.31 80.84 50.66 60.78 56.79
+ 2-shot 51.59 66.87 57.53 53.90 64.04 50.61 0.00 69.51 57.44 35.07 42.73 45.60 66.81 48.13 50.90 64.74
+ 3-shot 52.52 65.04 50.91 55.18 73.01 62.51 6.00 70.36 53.43 29.06 61.98 48.50 54.37 57.60 44.07 55.76
+ 4-shot 54.16 66.91 50.36 53.80 68.50 63.79 6.32 62.89 72.09 39.24 59.63 49.35 78.60 34.68 59.03 47.25
+ 5-shot 54.47 68.36 67.17 49.14 71.24 62.67 7.89 69.72 60.08 31.92 53.69 48.92 78.94 37.62 51.87 57.79

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 63.69 94.24 67.06 32.69 70.51 47.82 0.00 82.15 59.35 78.86 71.04 55.92 89.26 71.99 46.62 87.82
+ gen-only (0.6) 60.05 93.86 59.82 6.95 47.89 23.20 15.24 74.16 49.98 88.18 73.91 35.17 88.42 82.46 67.74 93.74
+ prompt-and-gen (0.5) 59.98 94.70 59.59 7.82 55.13 26.13 4.04 74.82 43.01 85.28 83.74 34.48 94.24 80.98 60.93 94.85

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 63.11 93.82 59.95 38.97 70.31 48.53 0.00 72.45 63.44 85.45 76.42 52.98 87.61 65.56 44.49 86.68
+ gen-only (0.6) 55.89 95.67 57.57 9.76 38.31 18.47 4.04 72.47 43.50 85.43 76.10 27.18 90.30 75.99 57.39 86.19
+ prompt-and-gen (0.5) 58.48 94.94 58.88 3.11 43.66 29.49 6.00 71.94 56.36 85.67 80.18 25.30 89.33 76.51 67.98 87.82

Crosslingual

AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B 29.41 29.98 36.11 – 37.52 35.01 5.48 37.29 34.14 12.45 10.36 32.04 42.23 37.63 33.72 27.75
+ Q/A template (0-shot) 44.68 47.08 49.89 – 58.09 59.10 5.88 57.08 50.16 24.36 17.90 48.78 62.13 48.29 46.28 50.48
+ 1-shot 47.42 43.69 52.73 – 56.13 58.55 10.13 62.77 57.21 25.30 37.61 48.29 66.68 54.92 46.57 43.33
+ 2-shot 49.36 50.88 53.62 – 61.12 63.58 8.93 67.67 60.27 27.93 40.40 52.86 65.56 58.32 48.10 31.48
+ 3-shot 53.16 63.00 56.57 – 62.67 68.08 7.84 65.21 65.78 28.84 38.33 54.44 71.05 65.83 54.10 42.52
+ 4-shot 55.03 61.82 52.35 – 64.14 64.13 12.06 71.80 65.13 30.72 43.88 61.73 77.83 64.57 57.66 42.55
+ 5-shot 56.78 67.70 57.20 – 63.01 62.19 21.43 71.42 67.88 37.83 44.35 57.55 76.36 68.56 58.15 41.21

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 65.71 83.36 62.48 – 75.77 67.50 10.48 73.30 70.83 60.04 61.90 69.90 83.27 69.29 57.15 74.67
+ gen-only (0.6) 71.35 79.36 82.60 – 82.03 73.65 45.68 79.38 71.78 56.47 72.54 71.29 56.98 86.33 66.59 74.16
+ prompt-and-gen (0.5) 78.93 96.23 79.77 – 86.94 76.30 50.05 81.14 75.33 62.18 78.08 77.27 90.44 89.11 79.00 83.15

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 63.08 81.38 65.14 – 77.39 66.16 14.03 74.94 66.50 49.36 55.18 66.28 77.59 67.34 60.07 61.79
+ gen-only (0.6) 68.70 82.17 79.48 – 80.57 67.16 37.69 76.92 68.98 56.01 72.72 78.02 44.59 85.17 83.96 48.33
+ prompt-and-gen (0.5) 76.06 94.23 82.17 – 81.49 70.67 41.06 80.42 71.20 61.02 80.39 79.89 86.78 89.33 84.36 61.85

Table 22: Language Confusion Pass Rate (LCPR) of the base model across monolingual and crosslingual settings,
with a detailed language-wise breakdown.

versely, the instruct model Qwen2.5-0.5B-Instruct1482

maintains stable monolingual LCPR performance1483

with its chat template from 74.79% to 74.52% ,1484

while achieving substantial crosslingual gains from1485

38.75% to 63.00%. This contrast underscores a1486

critical trade-off: task-aligned templates enhance1487

crosslingual consistency for both models but in-1488

troduce monolingual interference in base architec-1489

tures. The instruct model’s robustness stems from1490

its training on conversational formats, which har-1491

monizes template usage with its intrinsic multilin-1492

gual capabilities.1493

E.1 Measuring Language-Specific1494

Information in LLMs1495

E.1.1 Methods1496

To investigate language-specific information in1497

multilingual representations, we analyze two dis-1498

tinct paradigms: (1) frozen embeddings from1499

pretrained decoder-only LLMs (Qwen-2.5) and1500

(2) specialized multilingual sentence encoders1501

(LaBSE). We evaluate whether linguistic identity1502

is recoverable from their hidden states and how1503

pooling strategies affect clusterability (via non-1504

parametric KNN retrieval) and linear separability1505

(via supervised classification heads). 1506

KNN-based Language Identification We hy- 1507

pothesize that language identity manifests as sep- 1508

arable clusters in the hidden space, which can be 1509

detected via non-parametric nearest-neighbor re- 1510

trieval. 1511

For both Qwen-2.5 and LaBSE, hidden states 1512

are extracted from the first (ℓ = 1), middle (ℓ = 1513

m), and final (ℓ = L) layers. Let Hℓ ∈ RT×d 1514

denote the hidden states at layer ℓ for a sequence of 1515

length T . Sentence-level embeddings are derived 1516

as follows: 1517

• Qwen-2.5: Only mean pooling is applied: 1518

eℓmean =
1

T

T∑
t=1

Hℓ
t ∈ Rd. 1519

• LaBSE: Both CLS and mean pooling are com- 1520

pared: 1521

eℓCLS = Hℓ
[CLS], eℓmean =

1

T

T∑
t=1

Hℓ
t ∈ Rd. 1522

For each layer ℓ ∈ {1,m,L} and pooling strat- 1523

egy pool ∈ {mean,CLS}, we construct reference 1524
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Monolingual

AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B-Instruct 74.79 93.58 73.98 48.80 85.14 77.26 0.00 84.86 68.60 76.09 85.08 81.02 93.78 80.58 84.47 88.63
+ Chat template (0-shot) 74.52 92.09 58.59 43.26 88.17 78.38 0.00 81.37 84.41 79.98 84.94 84.31 87.47 85.37 75.98 93.51
+ 1-shot 74.04 90.73 71.13 40.45 88.07 77.80 4.04 75.02 82.54 81.83 86.58 80.82 88.01 82.06 68.82 92.66
+ 2-shot 74.46 93.32 68.33 44.00 87.13 73.94 7.67 78.43 83.85 81.20 79.84 82.20 87.31 87.13 70.33 92.17
+ 3-shot 74.59 92.80 67.53 39.84 86.74 77.08 4.04 78.88 80.62 79.95 82.77 82.63 91.38 89.91 73.06 91.64
+ 4-shot 75.59 90.18 65.06 48.57 87.71 77.91 0.00 81.06 82.06 80.39 89.78 82.45 92.64 83.44 80.46 92.20
+ 5-shot 74.15 93.91 65.20 47.13 88.29 78.05 3.96 77.72 84.10 78.72 84.82 82.77 88.62 82.06 66.08 90.74

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 67.33 95.38 66.65 26.10 90.89 81.03 0.00 83.17 76.72 85.44 76.09 86.10 16.00 86.38 48.05 91.88
+ gen-only (0.6) 67.00 94.18 66.43 6.82 87.25 68.22 13.08 77.38 70.97 68.02 75.42 84.97 41.77 83.31 70.00 97.22
+ prompt-and-gen (0.5) 67.73 94.02 63.95 13.12 89.30 71.87 7.77 80.41 66.67 80.31 65.43 81.93 48.58 83.76 71.83 96.95

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 66.78 94.72 78.69 21.89 88.08 81.47 1.98 75.28 81.25 81.85 66.88 82.68 15.49 82.22 58.21 91.01
+ gen-only (0.6) 67.42 95.32 55.00 4.95 84.18 65.16 24.28 84.21 73.80 75.07 57.39 79.23 59.88 85.18 75.43 92.18
+ prompt-and-gen (0.5) 68.20 94.37 68.64 9.52 84.98 67.53 12.94 79.18 79.52 80.00 69.97 79.83 47.74 85.60 69.94 93.24

Crosslingual

AVG AR DE EN ES FR HI ID IT JA KO PT RU TR VI ZH

Qwen2.5-0.5B-Instruct 38.75 44.30 42.95 – 48.06 43.43 0.66 37.95 38.65 37.06 30.16 45.25 49.84 41.91 44.24 38.10
+ Chat template (0-shot) 63.00 74.74 61.66 – 77.35 70.44 5.86 67.16 70.20 58.01 53.94 72.04 82.30 67.27 64.49 56.57
+ 1-shot 63.95 75.31 66.12 – 80.44 72.65 5.25 70.23 70.03 57.57 53.42 74.46 81.45 70.14 61.64 56.62
+ 2-shot 64.56 75.83 67.02 – 78.82 75.76 2.68 67.62 70.97 56.57 54.69 74.87 79.45 71.55 66.39 61.59
+ 3-shot 64.25 74.91 64.20 – 79.27 73.69 4.57 70.46 70.71 60.90 52.55 74.44 78.99 70.51 64.15 60.15
+ 4-shot 63.80 78.38 62.61 – 77.70 71.23 6.51 65.33 68.04 60.90 53.70 74.73 79.07 70.74 63.96 60.28
+ 5-shot 63.53 75.76 63.36 – 75.19 75.44 2.61 69.80 69.20 56.86 51.94 74.81 79.62 68.07 70.17 56.56

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 76.05 93.60 71.59 – 90.78 82.49 12.44 80.52 83.92 78.46 76.41 84.95 67.93 82.36 72.52 86.68
+ gen-only (0.6) 75.56 92.44 82.65 – 86.31 80.93 72.07 72.22 83.15 54.31 75.74 81.85 31.36 87.29 73.29 84.22
+ prompt-and-gen (0.5) 81.51 94.49 84.06 – 91.91 85.26 63.23 79.22 84.94 55.01 80.40 86.46 80.19 85.92 82.87 87.25

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 73.26 91.28 74.62 – 87.32 76.08 6.49 82.48 83.50 71.94 77.84 83.83 54.01 78.22 74.54 83.48
+ gen-only (0.6) 73.95 92.41 84.15 – 82.26 77.59 64.81 71.76 83.04 62.62 73.90 85.09 23.87 84.18 72.57 77.07
+ prompt-and-gen (0.5) 80.96 94.68 86.56 – 88.33 82.43 65.21 74.37 86.26 64.68 78.02 88.78 65.62 87.66 81.74 89.12

Table 23: Language Confusion Pass Rate (LCPR) of the instruct model across monolingual and crosslingual settings,
with a detailed language-wise breakdown.

Method Monolingual Crosslingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-0.5B 65.27 81.58 65.15 29.41 19.75 73.45
+ Q/A template (0-shot) 59.26 59.91 73.35 44.68 35.36 75.94
+ 1-shot 56.12 55.38 73.70 47.42 37.95 75.42
+ 2-shot 51.59 49.70 70.98 49.36 41.64 75.03
+ 3-shot 52.52 51.51 72.07 53.16 46.65 77.07
+ 4-shot 54.16 52.95 74.15 55.03 48.23 77.60
+ 5-shot 54.47 53.62 70.40 56.78 50.63 76.16

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 63.69 80.40 65.28 65.71 66.41 74.24
+ gen-only (0.6) 60.05 87.49 58.14 71.35 80.46 67.67
+ prompt-and-gen (0.5) 59.98 87.11 59.41 78.93 85.08 77.15

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 63.11 79.95 64.18 63.08 63.77 73.04
+ gen-only (0.6) 55.89 86.38 55.32 68.70 78.99 65.36
+ prompt-and-gen (0.5) 58.48 87.24 57.21 76.06 82.31 75.74

Table 24: Performance (LCPR / LPR / WPR) of base
model under monolingual and crosslingual settings.

sets:1525

Rℓ
pool =

{(
e
ℓ,(i,j)
pool , y(j)

)}200,204

i=1,j=1
,1526

where y(j) is the language label for the j-th lan-1527

guage in FLORES-200, and i indexes the examples1528

within each language. This results in a total of1529

200 × 204 = 40, 800 reference embeddings. For1530

Qwen-2.5, only Rℓ
mean is used, while LaBSE em-1531

ploys both Rℓ
CLS and Rℓ

mean.1532

We evaluate on three test sets: Flores-200,1533

Method Monolingual Crosslingual

LCPR LPR WPR LCPR LPR WPR

Qwen2.5-0.5B-Instruct 74.79 82.61 77.94 38.75 27.22 78.40
+ Chat template (0-shot) 74.52 83.66 77.12 63.00 57.69 79.50
+ 1-shot 74.04 82.75 76.52 63.95 59.24 79.50
+ 2-shot 74.46 83.47 74.07 64.56 59.86 78.76
+ 3-shot 74.59 84.11 76.27 64.25 59.74 78.45
+ 4-shot 75.59 84.45 77.52 63.80 58.89 79.52
+ 5-shot 74.15 82.87 76.37 63.53 58.79 75.34

+ ITLC (apply base shift vector)
+ prompt-only (0.8) 67.33 74.82 76.35 76.05 77.68 81.11
+ gen-only (0.6) 67.00 84.07 65.83 75.56 82.42 74.51
+ prompt-and-gen (0.5) 67.73 81.70 68.96 81.51 85.32 80.55

+ ITLC (apply instruct shift vector)
+ prompt-only (0.8) 66.78 74.96 73.08 73.26 76.37 79.20
+ gen-only (0.6) 67.42 83.64 65.46 73.95 84.06 71.40
+ prompt-and-gen (0.5) 68.20 82.20 68.05 80.96 86.79 78.84

Table 25: Performance (LCPR / LPR / WPR) of instruct
model under monolingual and crosslingual settings.

NTREX-128, and NusaX. To ensure fair compari- 1534

son, we retain only languages overlapping with the 1535

FLORES-200 train set: 1536

Loverlap = Ltest ∩ LFLORES-train, 1537

where Ltest is the language set of the test dataset, 1538

and LFLORES-train contains the 204 languages in 1539

the FLORES-200 train set. For a test embedding 1540

eℓtest,pool, we compute its L2 distance to all refer- 1541
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ence embeddings in Rℓ
pool:1542

d
(
eℓtest,pool, e

ℓ,(i,j)
ref,pool

)
=

∥∥∥eℓtest,pool − e
ℓ,(i,j)
ref,pool

∥∥∥2
2
,

∀i ∈ {1, . . . , 200},
∀j ∈ {1, . . . , 204}.

1543

The predicted language ŷtest is obtained via ma-1544

jority vote over the k = 256 nearest neighbors:1545

ŷtest = argmax
l∈Loverlap

∑
(i,j)∈Nk

1(y(j) = l),1546

where Nk denotes the set of indices for the top-k1547

neighbors, and 1 is the indicator function.1548

Linear Classification Head To complement our1549

non-parametric analysis, we probe the linear sep-1550

arability of language identity in Qwen-2.5 and1551

LaBSE embeddings. This evaluates whether lin-1552

guistic boundaries are geometrically aligned with1553

hyperplanes in the hidden space, which would sug-1554

gest that language control can be achieved through1555

simple affine transformations.1556

Similar to the KNN-based approach, embed-1557

dings are extracted identically. For each dataset1558

D ∈ {FLORES-200, NTREX-128, NusaX} and1559

each layer ℓ ∈ {1,m,L} representing early, mid-1560

dle, and last layers respectively, we train a separate1561

linear layer to map embeddings eℓ ∈ Rd to lan-1562

guage logits zℓ ∈ RC , where C is the number of1563

languages. The classifier for each layer is defined1564

as:1565

zℓ = Wℓeℓ + bℓ, Wℓ ∈ RC×d,bℓ ∈ RC ,1566

with cross-entropy loss minimized during training.1567

E.1.2 Results1568

Our analysis reveals distinct layer-wise behav-1569

iors in language identification (LID) performance1570

across LaBSE and Qwen2.5-0.5B models, focus on1571

mean-pooled embedding.1572

KNN-based Language Identification The KNN1573

method highlights significant performance vari-1574

ations across layers. As shown in Table 2, for1575

LaBSE, the first layer achieves robust results,1576

with mean F1 scores of 88.35% on FLORES-200,1577

90.43% on NTREX-128, and 81.78% on NusaX.1578

Performance declines moderately in the middle1579

layer, yielding 78.85% for FLORES-200, 81.30%1580

for NTREX-128, and 45.37% for NusaX. The last1581

layer exhibits catastrophic degradation, collapsing1582

to 3.92%, 1.63%, and 0.00% on the respective 1583

datasets. This suggests that deeper LaBSE lay- 1584

ers lose language-discriminative features critical 1585

for KNN classification. 1586

For Qwen2.5-0.5B, the first layer similarly out- 1587

performs middle layers, with mean F1 scores of 1588

83.69% on FLORES-200, 86.06% on NTREX-128, 1589

and 65.79% on NusaX. The middle layer shows 1590

the weakest results across all datasets: 55.32%, 1591

54.73%, and 25.05%, respectively, while the last 1592

layer partially recovers to 71.73%, 81.86%, and 1593

29.39%. This non-monotonic trend suggests lim- 1594

ited retention of language-specific signals in the 1595

middle layer of Qwen2.5-0.5B. 1596

LaBSE, trained for semantic alignment, shows 1597

severe degradation in its final layer, with near-zero 1598

F1 scores across datasets, as deeper layers erase 1599

language-specific signals required for KNN classi- 1600

fication. In contrast, Qwen2.5-0.5B, a standard pre- 1601

trained LLM, experiences a performance dip in its 1602

middle layer but recovers partially in the final layer, 1603

retaining sufficient linguistic discriminability. This 1604

divergence underscores a key architectural trade- 1605

off: contrastive models like LaBSE discard lexical 1606

or syntactic patterns in deeper layers to prioritize 1607

semantic invariance, while standard LLMs preserve 1608

partial language-identifying features across layers 1609

despite progressive abstraction. 1610

Linear Classification Head For LaBSE, the 1611

First Layer consistently achieves the highest LID 1612

F1 scores across all datasets, with a significant 1613

drop in performance observed in the Last Layer. 1614

The NusaX dataset delivers the best overall results, 1615

particularly in the First Layer, where it reaches 1616

97.30% F1 score. However, the Last Layer shows 1617

notably weaker performance, especially for the 1618

FLORES-200 and NusaX datasets. These findings 1619

suggest that earlier layers of LaBSE retain more 1620

language-identification-relevant features, such as 1621

surface-level linguistic cues, compared to deeper 1622

layers (see Table 2). 1623

Similarly, in the Qwen2.5-0.5B model, the First 1624

Layer consistently outperforms the Middle Layer 1625

in LID F1 scores across all datasets. The NusaX 1626

dataset again produces the best results, with 95.55% 1627

F1 score, while NTREX-128 exhibits the lowest 1628

performance across all layers. These results indi- 1629

cate that the shallow First Layer of Qwen2.5-0.5B 1630

is more effective for language identification tasks 1631

than deeper layers, such as the Middle Layer, which 1632

shows weaker performance (refer to Table 2). 1633
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Overall, both models show that their highest1634

LID performance occurs in the First Layer, with1635

F1 scores declining as the layers get deeper. The1636

NusaX dataset consistently yields the best perfor-1637

mance, while the Last Layer in LaBSE and the1638

Middle Layer in Qwen2.5-0.5B exhibit the weak-1639

est results. These trends suggest that shallow layers1640

retain more language-specific information, which1641

is crucial for language identification, likely due to1642

their greater focus on surface-level features and1643

general linguistic patterns. Table 14 further il-1644

lustrate the comparative performance across lay-1645

ers and pooling techniques for both LaBSE and1646

Qwen2.5-0.5B models.1647

Classifier Comparison: KNN vs. Linear Head1648

As shown in Table 14, linear classifiers achieve1649

superior F1 scores compared to KNN across lay-1650

ers, suggesting their ability to identify language-1651

discriminative features within linearly separable1652

subspaces. However, linear methods exhibit at-1653

tenuated performance gaps between layers, for in-1654

stance, the difference between first and middle lay-1655

ers in Qwen2.5-0.5B is less than 5% with linear1656

classifiers, while KNN reveals differences exceed-1657

ing 30%. Similarly, LaBSE’s linear classifier re-1658

duces the last-layer performance gap to under 25%,1659

whereas KNN shows near-complete degradation.1660

This contrast implies that parametric linear meth-1661

ods, while more accurate overall, may obscure1662

layer-specific language information degradation1663

due to their reliance on learned projections. In1664

contrast, KNN’s non-parametric nature might more1665

directly reflect the geometric structure of embed-1666

dings, amplifying sensitivity to layer-wise shifts in1667

language information quality.1668

Pooling Method Comparison: CLS Token vs.1669

Mean As shown in Table 14, the effectiveness1670

of pooling strategies varies across layers. In first1671

and middle layers, mean pooling achieves superior1672

performance, with F1 margins exceeding 10% over1673

CLS token pooling under KNN. However, in last1674

layers, CLS token pooling shows limited resilience1675

under KNN, marginally outperforming mean pool-1676

ing in isolated cases despite near-random overall1677

performance. Linear classifiers amplify mean pool-1678

ing’s advantage across all layers, suggesting its1679

robustness to layer-specific degradation.1680

This suggests that mean pooling better pre-1681

serves language-discriminative signals across lay-1682

ers, likely due to its aggregation of token-level1683

features. In contrast, the CLS token, optimized1684

for semantic tasks, exhibits sharper performance 1685

declines in deeper layers, particularly under non- 1686

parametric methods like KNN. These observations 1687

highlight the interplay between pooling strategy, 1688

layer depth, and classification method in language 1689

identification tasks. 1690

F Annotation Guideline 1691

F.1 Context of the Annotation Task 1692

The annotation task involves evaluating the qual- 1693

ity of cross-lingual language generation, where a 1694

model generates responses in a target language 1695

based on input prompts in a source language. The 1696

goal is to assess how well the model performs in 1697

terms of naturalness, relevance, and answer correct- 1698

ness. This evaluation is crucial for understanding 1699

the model’s capabilities and identifying areas for 1700

improvement. 1701

F.2 Detailed Scoring Guidelines 1702

F.2.1 Naturalness (1-5): 1703

• 1: The response sounds very unnatural, 1704

robotic, or translated. It lacks fluency and typ- 1705

ical language patterns of the target language, 1706

making it sound artificial and unnatural. 1707

• 2: The response is somewhat unnatural, with 1708

noticeable awkwardness or unnatural word 1709

choices. It may sound stilted or forced. 1710

• 3: The response is moderately natural, with 1711

some minor awkwardness but generally un- 1712

derstandable. It flows reasonably well but has 1713

room for improvement. 1714

• 4: The response is mostly natural, with only 1715

slight deviations from typical language use. It 1716

sounds almost native-like but may have minor 1717

imperfections. 1718

• 5: The response is completely natural, in- 1719

distinguishable from text written by a native 1720

speaker. It flows smoothly and uses language 1721

patterns typical of the target language. 1722

F.2.2 Relevance (1-5): 1723

• 1: The response is completely irrelevant to the 1724

input prompt. It fails to address the topic or 1725

question posed. 1726

• 2: The response is somewhat relevant but 1727

misses key points or goes off-topic. It may 1728

touch on related ideas but does not fully ad- 1729

dress the prompt. 1730
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• 3: The response is moderately relevant, ad-1731

dressing some aspects of the prompt but lack-1732

ing completeness. It covers some key points1733

but omits important details.1734

• 4: The response is highly relevant, addressing1735

most key points of the prompt. It provides a1736

comprehensive answer but may miss minor1737

details.1738

• 5: The response is completely relevant, fully1739

addressing all aspects of the prompt. It covers1740

all key points and provides a thorough answer.1741

F.2.3 Correctness (1-5):1742

• 1: The response contains major factual errors1743

or inaccuracies. It provides incorrect informa-1744

tion or contradicts known facts.1745

• 2: The response contains some factual errors1746

or inaccuracies. It may be partially correct but1747

includes misleading or incorrect details.1748

• 3: The response is mostly correct but may1749

have minor inaccuracies or omissions. It is1750

generally accurate but requires minor correc-1751

tions.1752

• 4: The response is highly accurate, with only1753

minor details potentially incorrect. It is reli-1754

able and trustworthy but may have small er-1755

rors.1756

• 5: The response is completely accurate and1757

factually correct. It provides precise and reli-1758

able information without any errors.1759

F.3 Additional Notes1760

• Contextual Understanding: Annotators1761

should consider the context of the input1762

prompt and the intended audience when eval-1763

uating naturalness and relevance. A response1764

that is natural and relevant in one context may1765

not be in another.1766

• Consistency: Annotators should strive for1767

consistency in their annotations across differ-1768

ent examples. This helps ensure that the eval-1769

uation is fair and reliable.1770

• Examples: Providing clear examples of each1771

rating level for each category can help anno-1772

tators understand the expected standards and1773

make consistent judgments.1774

• Feedback: Encourage annotators to provide1775

feedback on ambiguous cases or areas where1776

the guidelines could be improved. This can1777

help refine the annotation process and improve1778

the quality of the evaluations.1779
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