
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LET SSMS BE CONVNETS: STATE-SPACE MODELING
WITH OPTIMAL TENSOR CONTRACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Centaurus, a class of networks composed of generalized state-space
model (SSM) blocks, where the SSM operations can be treated as tensor contrac-
tions during training. The optimal order of tensor contractions can then be sys-
tematically determined for every SSM block to maximize training efficiency. This
allows more flexibility in designing SSM blocks beyond the depthwise-separable
configuration commonly implemented. The new design choices will take inspira-
tion from classical convolutional blocks including group convolutions, full convo-
lutions, and bottleneck blocks. We architect the Centaurus network with a mix-
ture of these blocks, to balance between network size and performance, as well
as memory and computational efficiency during both training and inference. We
show that this heterogeneous network design outperforms its homogeneous coun-
terparts in raw audio processing tasks including keyword spotting, speech denois-
ing, and automatic speech recognition (ASR). For ASR, Centaurus is the first
network with competitive performance that can be made fully state-space based,
without using any nonlinear recurrence (LSTMs), explicit convolutions (CNNs),
or (surrogate) attention mechanism.

1 INTRODUCTION

Sequence or temporal modeling encompasses a wide range of tasks from audio processing to lan-
guage modeling. Traditionally, there have been many (related) statistical methods employed (Box
et al., 2015). In the age of deep learning, neural networks have been predominantly used (LeCun
et al., 2015), including recurrent neural networks (RNNs), convolutional neural networks (CNNs),
transformers (Vaswani, 2017), and neural ODEs (Chen et al., 2018). In many cases, the model will
inevitably suffer from one of two drawbacks: 1) cannot be efficiently trained (or fitted) in parallel
due to the sequential nature of the model, 2) cannot be efficiently configured for online inference
due to its large memory and computational requirement. To address this, deep state-space models
(SSMs) were adapted for sequence modeling, and have shown incredible potential across a wide
range of tasks (Gu et al., 2021; Goel et al., 2022; Gu & Dao, 2023). Due to the linearity of the SSM
layers, they can not only be configured for efficient online inference with small memory and com-
putational resources, but also configured for efficient training using parallel hardware with unrolling
strategies (Gu et al., 2022; Smith et al., 2022; Dao & Gu, 2024; Heinsen, 2023).

Currently, most deep SSM networks (along with most neural networks in general) follow the ar-
chitectural recipe of transformers, where they are composed of uniform “SSM blocks” throughout
the network, containing little to no variations in the shapes of the intermediate features or weights.
This simplifies the designs of deep SSM networks, but may sacrifice performance and efficiency in
practice. To explore the opposite direction, we go “back to the future” to classical CNN designs
instead, where a much more heterogeneous design principle is followed. More specifically, as we go
deeper in the network, we will gradually downsample the temporal dimension, increase the channel
dimension, and increase connective sparsity (Tan & Le, 2021), to balance between size and effi-
ciency (Yanxon et al., 2020). In order to allow for the possibility of such a heterogeneous design,
we make two novel contributions in this work. First, we express SSM blocks as tensor networks (or
with einsum expressions), where we can easily observe the connective structure of existing SSM
blocks as being mostly depthwise-separable. This motivates us to design new SSM blocks using this
tensor network formalism, giving us connective structures such as full and bottleneck SSM blocks,
as inspired by classical CNN blocks. Then, we optimize the contraction order of each SSM block

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

dynamically based on the type of the SSM block, the shape of the input features, and the shapes
of the SSM system matrices. This enables significant speedups during training for all SSM blocks
(both old and new ones). We name this class of efficient CNN-like networks Centaurus1.

2 RELATED WORK

2.1 DEEP STATE-SPACE MODELING

The seminal work proposing a memory encoding using orthogonal Legendre polynomials in a recur-
rent state-space model is the Legendre Memory Unit (LMU) (Voelker et al., 2019), where Legendre
polynomials (a special case of Jacobi polynomials) are used. The HiPPO formalism (Gu et al., 2020)
then generalized this to other commmon orthogonal functions. Later, this sparked a cornucopia of
works interfacing with deep state-space models including S4 (Gu et al., 2021), H3 (Fu et al., 2022),
and Mamba (Gu & Dao, 2023), achieving impressive results on a wide range of tasks from audio
generation Goel et al. (2022) to language modeling. Besides a few recent exceptions (Smith et al.,
2022; Dao & Gu, 2024), These networks mostly use an underlying depthwise structure, which may
limit the network capacity, albeit reducing the compute requirement of the network. An important
focal point of this work is to generalize such SSM models to enable more connective flexibility, such
that design choices of classical convolutional blocks can be carried over to the Centaurus model.

2.2 CLASSICAL CONVOLUTIONAL BLOCKS

Here, we look at the variants besides the standard full convolutional layer (where every pair of input
and output channels is connected). First, the simplest variant is the depthwise convolutional layer,
made popular by the MobileNetV1 architecture (Howard et al., 2017). This variant connects the
input and output channels one-to-one, which drastically reduces the connectivity of the architecture,
hence also its parameters and computational complexity. This architecture is prevalent for both
computer vision and speech domains (Kriman et al., 2020; Hannun et al., 2019). Next, a variant
with moderate connectivity is the grouped convolutional layer, appearing as early as the AlexNet
work (Krizhevsky et al., 2012). In this structure, the input/output channels are divided into groups,
and each input-channel group is associated with an output-channel group one-to-one. The input and
output channels are then only intra-connected within each group, but there are no inter-connections
between groups. Finally, there is a class of convolutional blocks known as bottlenecks, typically
containing a sequence of three convolutional layers. This structure is used prominently in the ResNet
model (He et al., 2016), and also in MobileNetV2 (Sandler et al., 2018) onwards. Typically, the order
of convolutional layers can be pointwise-depthwise-pointwise, resulting in an output feature of the
same tensor shape as the input feature.

2.3 TENSOR NETWORKS

Tensor networks were originally developed as a tool for approximating the wavefunctions of many-
body quantum systems (Orús, 2019). It can be considered as an incredibly generalized form of
low-rank decomposition, where high-dimensional features can be compressed as the contraction
of a few low-dimensional tensors (Kolda & Bader, 2009). It has a direct relationship to the ein-
sum expression, where each einsum operand is considered a node of the tensor network, and each
contraction index is considered a (hyper)edge. The memory- and compute-optimal contraction or
evaluation of a tensor network can be formulated as a congestion optimization problem on the base
graph, allowing tensor networks to contest with “quantum supremacy” (Gray & Kourtis, 2021). The
application of tensor networks to machine learning began with the seminal work of Novikov et al.
(2015), where it is shown that the fully connected layers of a neural network can be exponentially
compressed with minimal degradation in performance. This spawned a series of works applying
tensor networks for compressing convolutional and transformer blocks. Our work extends this line
of “tensorization” technique to deep state-space models.

1As a quick explanation of the name, we are exploring Tensorized Temporal Networks, or TenTeNs, from
which we get a hundred, or CENTaurus. Admittedly, Centaurus is not actually composed of the word root
“cent”, so this wordplay is not too sensible. However, Centaurus is a constellation, usually visualized as stars
being linked; this is visually similar to what a tensor network looks like, so some naming sense is recovered.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 BACKGROUND

3.1 STATE SPACE MODELS

State-space models (SSMs) are general representations of linear time-invariant (LTI) systems
(Hamilton, 1994), and they can be uniquely specified by four matrices: A ∈ RN×N , B ∈ RN×H ,
C ∈ RH′×N , and D ∈ RH′×H . The first-order ODE describing the LTI system is given as

ẋ = Ax+Bu, y = Cx+Du, (1)

where u ∈ RH is the input signal, x ∈ RN is the internal state, and y ∈ RH′
is the output.

The parameters {H,H ′, N} denote the number of features for the input, output, and internal state
respectively. Setting H = H ′ = 1 yields a single-input, single-output (SISO) SSMs (Gu et al.,
2021; 2022), and letting H > 1, H ′ > 1 yields a multiple-input, multiple-output (MIMO) SSMs
(Smith et al., 2022). We discretize the system using zero-order hold (ZOH), which gives us the
discrete-time SSM matrices A and B as follows (Gu et al., 2022):

A = exp(∆A), B = (∆A)−1 · (exp(∆A)− 1) ·∆B. (2)

The discrete SSM is then given by

x[t+ 1] = Ax[t] +B u[t], y[t] = C x[t] (3)

It is then straightforward to check that the discrete-time impulse response is given as k[τ ] = C A
τ
B,

where τ denotes the kernel timestep. During training, k can be considered the “full” long 1D con-
volutional kernel with shape (output channels, input channels, length), in the sense that the output y
can be computed via the long convolution yj [t] =

∑
i(ui ∗ kji)[t].

Similar to previous works (Gu et al., 2022), we assume A to be complex diagonal, but restrict B
and C to be real projection matrices to reduce memory and computational loads. In addition, we
ignore the term Du as it can be absorbed into the SSM system. Justification of these restrictions
is given in Appendix A. Like previous works also, we allow the parameters {A,B,C,∆} to be
directly learnable, which indirectly trains the kernel k. Unlike previous works in deep SSMs, we do
not try to keep the sizes H , H ′, N consistent, to allow for more flexibility in feature extraction at
each layer, mirroring the flexibility in selecting channel and kernel sizes in CNNs2. The flexibility
of the tensor shapes requires a careful choice of the optimal order of operations during training to
minimize memory and computation, which will be the focal point of this work.

3.2 EINSTEIN SUMMATION NOTATION

The Einstein summation notation (Einstein, 1922), or einsum, is a concise representation of general
tensor contractions. We do not give a formal description of this notation here, but instead introduce
it in the context of describing a MIMO SSM. Recall that the output of a MIMO SSM is computed
by convolving the input with the impulse response, which we normally would write as

yj [t] =
∑
i

(ui ∗ kji)[t] =
∑
i

(
ui ∗

(∑
n

BniKnCjn

))
[t], (4)

where we defined the basis kernels K[τ ] = ℜ(Aτ
). We get a rather messy expression involving three

summation indices. i denotes the input channel, n denotes the internal state index, and j denotes the
output channel.

To lessen the notation burden, we observe that the summation expression is redundant and can be
inferred from the tensor indices. In particular, if an index appears on the RHS of the equation but
not the LHS, then it must have been summed over (or contracted). This allows us to reduce the
expression down to

yj [t] =

(
ui ∗

(
BniKnCjn

))
[t], (5)

2The size of the internal state h, can be interpreted as the degree of parametrization of a basis temporal
kernel, or some implicit (dilated) “kernel size” in the frequency domain.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

which is much better than before, and we can always assume the indices i and n to be summed
over without the explicit hinting of a summation symbol. We can further simplify equation 5 by
discarding convolution operator ∗. Naturally, we can leverage the convolution theorem, which states
that the convolution operator is mapped to pointwise multiplication in the frequency domain. If we
index the Fourier modes using f , then equation 5 can be expressed in the frequency domain as

ŷj [f ] = ûi[f ]BniK̂n[f ]Cjn or ŷjf = ûifBniK̂nfCjn (6)

where the hat symbol denotes the Fourier transformed features (see Appendix A for details).

3.3 A GENERALIZATION

Looking at Kn, we realize that there is only one oscillation mode per internal coefficient n, which
in certain cases may limit the expressiveness of the network. A natural generalization is to expand
the basis kernels as Knm, and arrive at the following system that is more expressive:

ŷjf = ûifBniK̂nmfEnmCjn. (7)

Here, Enm serves as additional weighting factors for the basis kernels (which again we restrict to
be real), representing the importance of each oscillation mode. The recurrent form of this system is
then

u′
n[t] = Bni ui[t], xnm[t+ 1] = Anm xnm[t] + u′

n, yj [t] = Cjn Enm ℜ(xnm[t]), (8)

which can be considered a parallel cascade of n SISO state-space systems, intra-connected by the
Enm factors, and inter-connected by the Bni and Cjn projection matrices. Alternatively, we can
consider n to index a “state block”, and m to index “sub-states” within the state block, which is
an extension beyond the pure SISO and MIMO configurations. As a sidenote, this configuration is
similar to the Mamba block architecture (Gu & Dao, 2023), but without the data-gating mechanism
and the gated MLP structure.

Like Mamba, it is possible to configure the SSM matrices to be data-dependent: A(u), B(u), C(u),
D(u), in which case the system becomes time-variant (Katsch, 2023; Gu & Dao, 2023; Dao & Gu,
2024). We will not place a major focus on this configuration in our work for two (temporary) rea-
sons. Under the present algorithmic understanding, such dynamic systems require materialization
of the internal states for scan operations (in Mamba 1) or require the introduction of a new sequence
dimension into the tensor operands (in Mamba 2), meaning that it can restrict the flexibility of ten-
sor contraction orders. On the more practical end, such models generally require custom kernels (in
Triton or CUDA) for specialized support currently, making it difficult to build heterogeneous net-
works with different connective configurations. We believe however that there are no fundamental
restrictions to combining our framework with the data-gating mechanism in theory, and leave it as a
future direction of study to achieve this efficiently in practice.

4 SSMS AND CNNS ARE TENSOR NETWORKS

Within an SSM layer, the temporal kernels are constructed via the basis kernels, which are further
generated (or parameterized) by the recurrent coefficients in A. In other words, a temporal kernel
can be generated by a weighted sum of selected Fourier modes, where each mode n is associated
with a complex frequency of An and a (real) weighting factor En. A natural viewpoint is that the
parameters of A and E are analogous to the parameters of convolutional filters, but not directly
parameterized. For instance, if we consider A having 3 complex parameters and E having 3 real
parameters, then they together may contain the same “expressivity” as a 3 × 3 spatial filter, both
representable with 9 real numbers. One may note that standard CNN spatial filters are local in space,
while our temporal IIR filters are global in time. Interestingly however, by themselves, the difference
between local convolutions and global convolutions is not too fundamental. This is because, by the
convolution theorem, a temporal convolution is just simply a pointwise product in the frequency
domain, and vice versa. Therefore, a dual viewpoint is that in the frequency domain, deep SSM
models are simply pointwise operations with “non-local” activation functions in between playing
the “frequency mixing” role. This idea is also explored in the Hyena work (Poli et al., 2023).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝑖input 𝑢

weight matrices

෡𝐾 basis kernels

𝐸

depthwise

𝑖

෡𝐾
𝑛

𝑓

𝐸

full

෡𝐾
𝑛

𝑓

𝑗

𝑖

𝐸

grouped

෡𝐾
𝑛

𝑓

𝑗

𝑔

𝐸

bottleneck

𝑛

෡𝐾

𝑓

𝐵 𝐶𝑖 𝑚
𝑗

ො𝑦𝑖𝑓 = ො𝑢𝑖𝑓𝐸𝑖𝑛 ෡𝐾𝑛𝑓 ො𝑦𝑗𝑓 = ො𝑢𝑖𝑓𝐸𝑗𝑖𝑛
෡𝐾𝑗𝑖𝑛𝑓

ො𝑦𝑔𝑗𝑓 = ො𝑢𝑔𝑖𝑓𝐸𝑔𝑗𝑖𝑛
෡𝐾𝑔𝑗𝑖𝑛𝑓

ො𝑦𝑗𝑓 = ො𝑢𝑖𝑓𝐵𝑖𝑛𝐸𝑛𝑚
෡𝐾𝑛𝑚𝑓𝐶𝑗𝑛

Figure 1: A tensor network representation of the tensorial connection structure of the differ-
ent Centaurus block configurations, inspired by classical convolutional blocks. Here, the indices
{i, j, n, g, f} index the input channel, output channel, internal state, group/head, and Fourier mode
respectively. Each (hyper)edge is denoted with one of the indices, representing the dimension to
contract over. Note that the hyperedge associated with f always connects to three tensors, as it rep-
resents a convolution in the temporal domain, involving two input tensors and one output tensor.

4.1 GENERAL SSM OPERATIONS WITH EINSUM EXPRESSIONS

In standard CNN layers, besides the canonical convolution operation, there is usually an additional
interaction between the input and output channels. For instance, we have configurations such as
“depthwise convolution”, “group convolution”, and “full convolution”, in increasing degree of chan-
nel connectivity. In this section, we will detail how to use the einsum expression to endow the A
tensor with these channel-interaction structures. Naturally, matrices that are purely channel-mixing
like B and C are akin to “pointwise convolution” layers or simply projection operations, which we
will place less emphasis on.

From here on, we will use {i, j, n, g, f} to index the input channel, output channel, internal state,
group/head, and Fourier mode respectively. The simplest example is a “depthwise” SSM block,
or ŷif = ûifEinK̂in, noting the appearance of the “input channel” index i in every operand and
the total absence of the “output channel” index j. Therefore, the layer by itself will not see any
interactions among the “channel” dimension, hence why an additional mixing matrix M is needed
at the end ŷ′jf = ŷifMji. In short, we have a pure sequence-mixing layer followed by a pure
channel-mixing layer, forming a depthwise-separable structure, as also discussed in Gu et al. (2022).

On the other extreme, we have a “full” SSM block, or ŷjf = ûifEjinK̂jin, where both indices i
and j appear for the basis kernels, as each input-output pairing needs to be separately parameter-
ized. In this case, both the sequence-mixing and channel-mixing structures are “baked” into the
full SSM block, so not additional mixing layers are necessary. Figure. 1 depicts a tensor network
representation of the different connectivity structures corresponding to classical CNN blocks.

4.2 OPTIMAL CONTRACTION ORDERS FOR TRAINING: THE DEPTHWISE EXAMPLE

In online inference mode, we have no choice but to explicitly materialize and evolve the internal
states, leaving little room for optimization of the order of operations. This is also true for other
parallelization strategies where the internal states are materialized in some form (Smith et al., 2022;
Heinsen, 2023). Fortunately, we have the flexibility of choosing the order of contraction if we
perform the SSM operations in the frequency domain (e.g. via FFTs), and considerable speedups
(at times, orders of magnitudes) can be achieved by choosing the optimal contraction order. A

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

slight drawback of using FFT is that the time complexity is O(L logL) instead of the desired O(L).
However, this is typically not a practical issue, as FFT is rarely a compute-bound operation unless
the sequence length is exceedingly large or the operation is already kernel-fused (Fu et al., 2022).
At this point of discussion, we will start accounting for the batch dimension as b, omitted previously
for clarity of exposition. In practice, the batch size will factor into the determination of the optimal
contraction order.

Taking again the depthwise SSM layer, or ŷbif = ûbifEniK̂nif , intuitively we would opt to contract
the E and K̂ tensors first to “collapse” down the basis kernels along the state dimension (indexed n)
as such, k̂if = EniK̂nif . It then becomes much more manageable to compute the output by simply
taking the product ŷbif = ûbif k̂if . Note that

F(kiτ ) = F(EniKniτ ) = EniF(Kniτ ) (9)

due to the linearity of the Fourier operator F , hence justifying the freedom of the contraction order.
To optimize further, we would ideally compute F(EniτKniτ ) = F(kiτ ) instead of EniF(Kniτ ),
as the former requires performing the Fourier transform on a much smaller tensor (vector). Even
in this simple example, we observe two important points: 1) the contraction order matters, 2) the
placement of the Fourier operators matters.

To make things clearer, it is useful to think of the Fourier operator Fft itself as an operand to be
contracted. This will allow us to write the SSM operations as

ybit′ = F−1
t′f

(
Fftubit

)(
FfτEniKniτ

)
. (10)

Here, we represented the Fourier operator as a matrix (i.e. the DFT matrix), but unlike standard
matrix multiplication, we know that multiplying/contracting with a DFT matrix can be done via
FFT, so that it will not incur the same computational complexity as the standard tensor contraction
operation. Correctly accounting for the FFT complexity is important in determining the optimal
order of contractions, which in this picture also includes the placement of the FFT operators.

This is a simple example where the optimal contraction is somewhat obvious and static, but there are
cases where we have more terms to contract and the differences between the contraction paths are
more subtle. And in these cases, the optimal contraction order is dynamically linked with the shapes
of the tensor operands. Fortunately, there is a systematic way to evaluate the memory and compute
requirement of an einsum contraction path (used prominently in packages such as opt-einsum)
(Daniel et al., 2018), and we make a simple augmentation to this prescription to handle “contrac-
tions” involving FFT operators, while being somewhat mindful of the software and hardware back-
ends (PyTorch and CUDA).

4.3 A PRACTICAL WALKTHROUGH: THE BOTTLENECK BLOCK

The main example that we will walk through here is the bottleneck layer example, or ŷbif =

ûbifBniEnmiK̂nmfCjn, where 5 tensor operands are involved. If we include the Fourier operators
as 3 additional operands, then we have a total of 8 operands, which yields a sufficiently complex
design where the systematic optimization of contraction orders will show its power. See Listing
1 in Appendix C for a minimal pseudocode of the bottleneck block operations with the order of
operations optimized, along with benchmarking on an A100 GPU.

In theory, it is possible to have opt einsum handle optimizing all the contraction orders, and the
pseudocode would appear much simpler (i.e. we only need one einsum expression in line 43 of
Listing 1). However, there are certain SW and HW idiosyncrasies that make it more efficient to ex-
plicitly “force” certain contraction patterns. For instance: 1) complex tensors are not yet “natively”
supported by CUDA, meaning that it is more efficient to operate on real tensors as much as possible.
In other words, we perform computations in the complex frequency domain only if necessary; 2)
torch.compile may not yet be able to identify kernel fusion opportunities within a sufficiently
complex torch.einsum expression. Therefore, it may be more efficient to explicitly modularize
and kernel-fuse certain contraction steps, particularly those that are memory-bound.

We try to achieve a happy medium between full automation with einsum expressions and full spe-
cialization with custom CUDA kernels. In other words, we “semi-manually” inspect all possible
contraction paths and discard the clearly non-optimal ones. Then, we perform some amount of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

practical optimization for the “feasible” contraction paths, as we will explore in the following sec-
tions. Initially, for ease of exposition, we will continue our discussion treating the temporal domain
and frequency domain as almost equivalent, as the two can be easily traversed via FFTs (which is
fairly light in compute). Only at the very end will we make the effort to separate the two domains
as we begin to consider the optimal “insertion points” of the FFT operations, as the second-order
optimization.

First, based on visual inspection of the bottleneck tensor network representation in Fig. 1, we
can clearly see the first step should be to always “contract away” the inner edge m, or equiv-
alently compute the kernel knτ = EnmKnmτ first. However, we note that the basis kernels
Knmτ themselves are generated by ∆n and Anm. Therefore, under kernel fusion, it is possi-
ble to not even materialize the basis kernels Knmτ in the GPU VRAM at all, which shaves off
memory and computational requirements considerably during training. This is encapsulated in the
get kernel function in Listing 1, which is meant to be (jit-)compiled during training, for exam-
ple with torch.compile or custom triton kernels. In the frequency domain, we are now left
with the expression ŷbif = ûbifBnik̂nfCjn, which still allows for many possible contraction paths
in theory. However, heuristically speaking, we should try not to produce any intermediate tensor of
dimension greater than 3, as it will be unfavorable to materialize and operate on it. Lemma 1 will
heavily restrict the “feasible” contraction paths based on this criteria, a full proof of which is given
in Appendix B.

Lemma 1. Given the einsum expression ŷbif = ûbifBnik̂nfCjn arranged in this order, all inter-
mediate tensors will have at most 3 dimensions, if and only if û (and intermediate tensors resulting
from it) is contracted with only its neighboring operands.

Remark. An interpretation of Lemma 1 is that the contraction order should roughly follow the
“natural order of operations” of the underlying state-space system, in some form of “associative”
fashion. The proof sketch is to try contracting u with its non-adjacent operands such as k or C, and
observe the appearance of high dimensional intermediate tensors, for instance, ûbif k̂nf = (ûk̂)binf

ො𝑢 ෠𝑘 ො𝑦𝐵 𝐶
projected evolved projected

a) from “left” to “right”

ො𝑢 ෠𝑘 ො𝑦𝐵 𝐶

b) using the “full” kernel

evaluate full kernel

Figure 2: The two feasible patterns for performing the SSM bottleneck operations. a) Follow
the “natural” order induced by the underlying SSM system: first project the inputs, then convolve
them with the kernels, and finally project the outputs. b) Generate first the “full” SSM kernels, then
convolve them with the inputs in one stage to get the output.

Under the restriction of Lemma 1, there are really only two “feasible” contraction patterns as
showcased in Fig. 2. First, we can perform the operations from left to right, corresponding to
projecting the input, performing the FFT convolution, and then projecting the output. This is
just the “natural” order of operations induced by the underlying state-space system. Alterna-
tively, we can build the “full kernel” first, then perform the full FFT convolution with the input
as x̂bif (Bnik̂nfCjn) = x̂bif k̂jif = ŷbjf in one step3. We see that the optimal contraction order
is intimately linked with the dimensions of the tensor operands. More formally, the first “natural”

3This is how convolutional networks typically handle full convolutions, except there is no “kernel building”
stage as the kernels are explicitly parameterized.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

order of contraction is only optimal when 1
B + 1

N > 1
H + 1

H′ , as shown in Appendix B. For the
first contraction pattern, if additionally the condition N ≤ H is met, then it is clear that we should
perform the input projection xbnt = ubitBni first before performing the FFT on the projected input
F(xbnt) = x̂bnf , as the projected input x is smaller than the input u. Similarly, for the second
contraction pattern, if additionally the condition HH ′ ≤ N is met, then we can produce the full
kernel kijτ = BniknτCjn first before performing the FFT on the full kernel F(kijτ ) = k̂jif , as the
full kernel k is actually smaller than k. These two contraction patterns are explicitly forced via the
if statements in the opt fft conv function in Listing 1.

5 EXPERIMENTS

104 105

Parameters

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

Cl
as

sif
ica

tio
n 

Er
ro

r

Parameter Scaling
DWS (S4D)
DWS (S6)
PW bottleneck (S5)
full
bottleneck
hybrid

107 108

FLOPs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1
Inference Compute Scaling

DWS (S4D)
DWS (S6)
PW bottleneck (S5)
full
bottleneck
hybrid

Figure 3: The scaling of the classification error versus the number of parameters and FLOPs per
second during inference. The performance is evaluated on the SC35 testset. For each network
variant in the ablation studies, we performed 10 training trials and took the median metric. DWS is
short of depthwise-separable (with the S6 variant using selective scan), and PW is short of pointwise.

In our experiments, we study various configurations of Centaurus model architectures (e.g. classi-
fier, hourglass, multi-streams) and block configurations (e.g. depthwise, bottleneck, full). This is to
showcase the structural flexibility of our model and adaptation to different tasks, reminiscent of clas-
sical CNNs. At the same time, we try to keep consistent the training pipeline (e.g. optimizers and
schedulers) and the auxiliary layers (e.g. normalization layers and activations), to isolate the effects
of only the core architectural changes in the SSM blocks. See Appendix E for the training details
and the basic design of the Centaurus block. We will mainly be comparing the following variants:
1) networks with all SSM layers being depthwise-separable (S4D-like and S6-like with data gating),
2) networks with all SSM layers being pointwise bottlenecks (S5-like), 3) networks with all SSM
layers being bottlenecks, 4) networks with all SSM layers being full convolutions, and 5) hybrid net-
works with mixtures of SSM layer types (inspired by classical CNN designs). We will put a strong
emphasis on the computational requirements of the network during online inference, in addition to
the typical parameter count. This is complimentary to the theoretical and algorithmic components of
our work, where optimal contractions are leveraged to speed up training. See Appendix D for a dis-
cussion of how the parameters and FLOPs are estimated for these blocks during online recurrence.
We show that our hybrid Centaurus network can achieve competitive performance as a stand-alone
SSM network. In addition, we show that it can be well augmented by inserting (explicit) convolu-
tional layers or modules into it, following the modern trend of designing hybrid SSM models (Lieber
et al., 2024; Ren et al., 2024; Patro & Agneeswaran, 2024; Glorioso et al., 2024). However, since
we aim for solutions that can be configured for efficient online inference, we will avoid the use of
any attention mechanism4, though we expect it to also integrate well with Centaurus.

4Variants of the attention mechanism, such as sliding-window attention, can be used to improve the online
inference efficiency. Any surrogate (linear) attention mechanism admitting a recurrent form (e.g. Linear trans-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 KEYWORD SPOTTING

We begin with the simple task of keyword spotting (KWS) with raw waveforms, using the Google
Speech Commands 35-class subset (Warden, 2018), or SC35. For each SSM configuration, we train
networks of various sizes, to estimate the scalability of the performance with respect to the number of
parameters and FLOPs per second during online inference. See Fig. 3 for the scalability plots, where
our hybrid architecture outperformed all the homogeneous counterparts. All the network variants we
tested have six layers. Our Centaurus hybrid model contains two layers of full SSM blocks, followed
by two layers of bottleneck blocks, followed by two final layers of pointwise bottleneck blocks
(S5). This is in accordance with the classical CNN design philosophy of using sparser connective
structures at deeper layers where the number of channels becomes large. The training and network
details are given in Appendix E.1, along with a comparison against other deep SSMs, where our
hybrid network achieved similar performance with roughly 100 times fewer FLOPs. Additionally in
Appendix E.1, we compare against a hybrid variant where the projection matrices (B, C, and E) are
complex (similar to the original S4D and S5 layers), but it did not outperform the real counterpart;
furthermore, we compare against variants with S6 layers of different state dimensions.

5.2 SPEECH ENHANCEMENT

Table 1: Comparing real-time audio denoising networks. Note that only the Centaurus network
requires no additional signal processing (e.g. STFT). To boost the denoising performance, we can
prepend every SSM block with a causal depthwise Conv1d layer with a kernel size of 4 (last row).

Model PESQ (VB-DMD) ↑ Parameters FLOPs / sec
Real-time Baselines (with processing)

FRCRN (Zhao et al., 2022) 3.21 6.9M 76.2G
DeepFilterNet3 (Schröter et al., 2023) 3.16 2.13M 0.688G
DEMUCS (Defossez et al., 2020) 2.65 33.53M 15.44G
PercepNet (Valin et al., 2020) 2.73 8.00M 1.60G

Centaurus (DWS) - 0.71M 0.39G
Centaurus (DWS data-gated, or S6) - 0.66M 0.50G
Centaurus (bottleneck) - 0.87M 1.15G
Centaurus (PW bottleneck) 3.06 0.83M 0.65G
Centaurus (full) 3.04 2.53M 1.12G

Centaurus (hybrid) 3.12 0.51M 0.29G
Centaurus (hybrid, with Causal Conv) 3.25 0.51M 0.29G

Here, we focus on the task of real-time speech denoising directly on raw audio waveforms. The
macro network architecture used in this experiment is adapted from a deep SSM hourglass autoen-
coder proposed in Goel et al. (2022), where the SSM blocks were originally configured as DWS
blocks (S4D). Here, we modify the network to include multiple variants of SSM blocks to enhance
its connective flexibility, and in addition perform real-time denoising on raw waveforms directly in
the [−1,+1] range without one-hot encoding (Goel et al., 2022) or spectral processing (Schröter
et al., 2023). We will test variants of this network by simply swapping out the pointwise-bottleneck
SSM blocks with other variants. The encoder architecture is based on the 6-layer KWS network
backbone (see Section 5.1), and the decoder is a reflection of the encoder. The performance of
the network is evaluated on the VoiceBank + DEMAND (VB-DMD) testset and given in Table. 1.
Details of the network architectures and the training pipeline are given in Appendix E.2.

Surprisingly, the DWS and bottleneck homogeneous variants suffered from severe training plateaus,
and were not able to generate any meaningful audio samples. In addition, using the data-gating
mechanism (S6 layers) did not solve the issue. The variant with homogeneous full SSM blocks did
manage to train, but despite its size, it did not achieve the best performance. Out of all variants, the
hybrid Centaurus model achieved competitive PESQ scores, while requiring much fewer parameters
and FLOPs. There are concurrent works applying deep SSMs to speech enhancement (in cases

former, RWKV, Mamba) can also be used. We think the Centaurus model can interface well with these blocks,
but do not consider them here to limit the scope of this work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

outperforming Centaurus), but they configure the SSM layers as bidirectional, which sacrifices the
online capability of the network (Zhang et al., 2024; Chao et al., 2024).

5.3 TOWARDS END-TO-END SPEECH RECOGNITION WITH SSMS

Table 2: The reported metrics are word error rates (WERs) for the clean/other splits, on the Lib-
rispeech test/dev-sets. The FLOPs are estimated based on a 20.5-second audio segment.

Model test ↓ dev ↓ Parameters (M) FLOPs (G)
Offline (full-context)

Full Conv (Zeghidour et al., 2018) 3.3 / 10.5 3.1 / 9.9
Transformer (Zhang et al., 2020) 3.1 / 7.3 29
ContextNet (Han et al., 2020) 2.4 / 5.4 31.4
Wav2Vec2 (Baevski et al., 2020) 2.1 / 4.8 1.8 / 4.7 94.4 285
Conformer (Gulati et al., 2020) 2.0 / 4.3 30.7 45.2

Online (streaming)
Transformer 5.0 / 11.6 18.9
ContextNet 4.5 / 10.0 31.4
Conformer 4.6 / 9.9 30.7

Centaurus (online, no attention)
Base (full SSM) 6.0 / 13.1 5.9 / 13.1 12.4 20.6
with FFN 5.4 / 11.5 5.2 / 11.3 18.0 32.1
with causal conv-block 4.8 / 10.6 4.8 / 10.5 23.6 43.7
with Mamba macro-block 5.2 / 11.4 5.1 / 11.1 29.9 46.9

Since this is not a work focused on training methodology, we opt for a rather simple supervised/dis-
tillation pipeline here5. At a high level, we use a hybrid SSM backbone similar to our KWS hybrid
network (see Section 5.1), but wider and deeper (see Appendix E.3). We do not use any additional
lexicon or language model decoding (Zhang et al., 2020; Gulati et al., 2020). And unlike previous
works, we are not integrating SSM layers as auxiliary layers in off-the-shelf transformer models
(Miyazaki et al., 2023; Shan et al., 2023). This means that the Centaurus network is fully SSM
based end-to-end, without any non-linear recurrent mechanism (self-conditioned decoding) or at-
tention mechanism. In Table. 2, we report the performance and size of the base Centaurus model on
Librispeech (Panayotov et al., 2015), along with two augmented variants: 1) one with a feed-forward
(FF) module appended to every SSM block, 2) one with a convolutional (Conv) module appended,
3) and one with the Mamba gated macro-architecture (Gu & Dao, 2023) wrapped around our core
SSM layers. We describe the architecture of these modules in Appendix E.3. Being a fully online-
inference ASR model with minimal optimization, the Centaurus network still remains competitive
with “benchmark” ASR networks like Conformer and Wav2Vec2 in streaming mode.

6 CONCLUSION

We introduced Centaurus, composed of generalized SSM blocks with flexible connectivity struc-
tures. These blocks can be efficiently trained using optimized tensor contractions. Given this new-
found flexibility, we designed task-specific realizations of the Centaurus network balancing between
size and performance. As inspired by classical CNN designs, we used blocks with dense connec-
tions in the shallower layers and opted for sparser connections in the deeper layers. The hybrid
networks achieved competitive results on multiple audio processing tasks, while being fully SSM
based. In the future, it may be fruitful to explore how the data-gating mechanism can be applied
to the Centaurus network, and explore its scalability to tasks that are of larger scales, such as lan-
guage modeling. In addition, it may also be of interest to explore SSM convolutional structures in
higher dimensions, incorporating additional structures such as stride, dilation, and transposition, to
see whether Centaurus can be effective for computer vision tasks as well.

5To train an ASR model from scratch, the prevailing method is typically to perform self-supervised learning
on a large amount of unlabeled speech, then to fine-tune on a relatively small amount of labeled speech.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We presented a novel state-space network for several important audio processing tasks. We made
sure that our networks are lightweight for both training and inference, so that they can be easily
experimented with by both researchers and hobbyists alike. This can be done without requiring too
much computational resource, as part of our commitment to democratizing AI and reducing carbon
emissions. All of the datasets used in our work are publicly available, with no private or sensitive
data used in our experiments.

REPRODUCIBILITY STATEMENT

We give the full details of the training pipeline of our networks in Section 5 of the main text and
Appendix E. Listing 1 in Appendix C provides a pseudocode that can be easily adapted into PyTorch
code, and we additionally submitted the full network architecture code as supplementary informa-
tion.

REFERENCES

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Rong Chao, Wen-Huang Cheng, Moreno La Quatra, Sabato Marco Siniscalchi, Chao-Han Huck
Yang, Szu-Wei Fu, and Yu Tsao. An investigation of incorporating mamba for speech enhance-
ment. arXiv preprint arXiv:2405.06573, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

G Daniel, Johnnie Gray, et al. Opt\ einsum-a python package for optimizing contraction order for
einsum-like expressions. Journal of Open Source Software, 3(26):753, 2018.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. Real time speech enhancement in the wave-
form domain. arXiv preprint arXiv:2006.12847, 2020.

Albert Einstein. The general theory of relativity. In The meaning of relativity, pp. 54–75. Springer,
1922.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum, 5:410,
2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

James D Hamilton. State-space models. Handbook of econometrics, 4:3039–3080, 1994.

Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-Cheng Chiu, James Qin, Anmol Gulati,
Ruoming Pang, and Yonghui Wu. Contextnet: Improving convolutional neural networks for
automatic speech recognition with global context. arXiv preprint arXiv:2005.03191, 2020.

Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert. Sequence-to-sequence speech recog-
nition with time-depth separable convolutions. arXiv preprint arXiv:1904.02619, 2019.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Franz A Heinsen. Parallelization of an ubiquitous sequential computation. arXiv preprint
arXiv:2311.06281, 2023.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly
Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. Quartznet: Deep automatic speech recog-
nition with 1d time-channel separable convolutions. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6124–6128. IEEE, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Koichi Miyazaki, Masato Murata, and Tomoki Koriyama. Structured state space decoder for speech
recognition and synthesis. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. Advances in neural information processing systems, 28, 2015.

Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538–
550, 2019.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Badri N Patro and Vijay S Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv preprint arXiv:2403.15360, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Hendrik Schröter, Tobias Rosenkranz, Andreas Maier, et al. Deepfilternet: Perceptually motivated
real-time speech enhancement. arXiv preprint arXiv:2305.08227, 2023.

Haozhe Shan, Albert Gu, Zhong Meng, Weiran Wang, Krzysztof Choromanski, and Tara Sainath.
Augmenting conformers with structured state space models for online speech recognition. arXiv
preprint arXiv:2309.08551, 2023.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pp. 10096–10106. PMLR, 2021.

Jean-Marc Valin, Umut Isik, Neerad Phansalkar, Ritwik Giri, Karim Helwani, and Arvindh Kr-
ishnaswamy. A perceptually-motivated approach for low-complexity, real-time enhancement of
fullband speech. arXiv preprint arXiv:2008.04259, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Howard Yanxon, David Zagaceta, Brandon C Wood, and Qiang Zhu. Neural network potential from
bispectrum components: a case study on crystalline silicon. The Journal of Chemical Physics,
153(5), 2020.

Neil Zeghidour, Qiantong Xu, Vitaliy Liptchinsky, Nicolas Usunier, Gabriel Synnaeve, and Ronan
Collobert. Fully convolutional speech recognition. arXiv preprint arXiv:1812.06864, 2018.

Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik McDermott, Stephen Koo, and Shankar
Kumar. Transformer transducer: A streamable speech recognition model with transformer en-
coders and rnn-t loss. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 7829–7833. IEEE, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiangyu Zhang, Qiquan Zhang, Hexin Liu, Tianyi Xiao, Xinyuan Qian, Beena Ahmed, Eliathamby
Ambikairajah, Haizhou Li, and Julien Epps. Mamba in speech: Towards an alternative to self-
attention. arXiv preprint arXiv:2405.12609, 2024.

Shengkui Zhao, Bin Ma, Karn N Watcharasupat, and Woon-Seng Gan. Frcrn: Boosting feature
representation using frequency recurrence for monaural speech enhancement. In ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
9281–9285. IEEE, 2022.

A CANONICAL FORM OF A STATE-SPACE MODEL

It is a generic property (though not always true) that a diagonal form exists for the state-space model,
meaning that we can almost always assume A to be diagonal, at the expense of potentially requiring
B and C to be complex matrices. Since the original system is a real system, the diagonal A matrix
can only contain real elements and/or complex elements in conjugate pairs. In this work, we sacrifice
a slight loss in expressivity by continuing to restrict B and C to be real matrices6 and letting A be
a diagonal matrix with all complex elements, but not restricting them to come in conjugate pairs.
During online inference, we then need to maintain the internal states x as complex values but only
need to propagate their real parts to the next layer.

Recall that the discretized state-space system is given by

x[t+ 1] = Ax[t] +Bu[t], y[t+ 1] = Cx[t+ 1] +Du[t+ 1], (11)

To see that the term Du can be absorbed into the state if we double the internal states, we simply
need to make the following substitution

B →
[

B
1N×H

]
A →

[
A 0N×N

0N×N 0N×N

]
, C →

[
C D

]
. (12)

In other words, we can trivially set aside a set of “memoryless” internal states whose sole purpose
is to duplicate the input u, effectively routing directly the inputs to the outputs.

If we allow B and C to be complex matrices, then we can further assume A to be diagonal without
any loss of generality. To see why, we simply let A = P−1ΛAP (where ΛA is the diagonalized A
matrix, and P is the similarity matrix) and observe the following:

∀t, k[t] = C(P−1ΛAP )t−1B

= CP−1 ΛA(PP−1) ...ΛA(PP−1)︸ ︷︷ ︸
repeat t − 1 times

PB

= (CP−1)Λt−1
A (PB)

= C ′Λt−1
A B

′
,

(13)

where B
′

and C ′ are complex matrices that have “absorbed” the similarity matrix P , but WLOG we
can just redefine them to be B and C. Since A is a real matrix, the complex eigenvalues in ΛA must
come in conjugate pairs. And WLOG we can again redefine ΛA as A. Note that in this section, we
only need to ensure that A is a square matrix, and all the other state-space matrices and state vectors
can be of arbitrary shape, as long as they are conformable.

Since we still want to work with real features7, we then only take the real part of the impulse response
kernel as such:

k[τ ] = ℜ(CA
τ
B) = Cℜ(Aτ

)B, (14)
which equivalently in the state-space equation can be achieved by simply letting y[t] = C ℜ(x[t]).
This means that during online inference, we need to maintain the internal states x as complex values,
but only need to propagate their real parts to the next layer. This restriction of propagating real
features is not required, and is merely for better CUDA support, as discussed in Section 4.3.

6This is in deviation of prior works, such as S4D and S5, where B and C are complex.
7This is a prior not required, as technically we can configure our network as complex-valued to handle com-

plex features. However, we do not explore this configuration in this work (complex-valued neural networks).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We can then define the basis kernels to be Kn[τ ] = ℜ(Aτ
). Furthermore, we use the hat symbol to

denote the Fourier transform of the features, or x̂ = F(x) where F is the Fourier operator. To be
more explicitly, if τ ∈ {0, 1, 2, ..., T − 1}, then we have

K̂nf = F(Kn[τ ]) =

T−1∑
τ=0

1√
T
Kn[τ ] exp

(
− 2πiτf

T

)
, (15)

noting that the index n is not of importance, and can be replaced with any (multi)index when needed.
For now, we ignore the artifacts of cyclic convolution (needing padding to ensure causality) and
algorithmic optimizations8, except for the obvious fact that the Fourier transform can be computed
efficiently via the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey, 1965). At this stage,
we then have a condensed einsum expression in the frequency domain that allows us to easily see
the interactions between the input signals, basis kernels, and system matrices.

B BOTTLENECK SSM CONTRACTION ORDERS

Recall that Lemma. 1 states that: Given the einsum expression ŷbif = ûbifBnik̂nfCjn arranged in
this order, all intermediate tensors will have at most 3 dimensions, if and only if û (and intermediate
tensors resulting from it) is contracted with only its neighboring operands.

Proof. If we contract ûbif with k̂nf , this immediately results in a 4D tensor (ûk̂)binf . Similarly,
if we contract ûbif with Cjn, this immediately results in a 5D tensor (ûC)bjinf . This means that
we can only contract ûbif with Bni first (its only neighboring operand), resulting in the 3D tensor
(ûB)bnf .

At the second stage, if we contract (ûB)bnf with Cjn, this will result in a 4D tensor (ûBC)bjnf .
This means that we can only contract (ûB) with k̂nf (again its only neighboring operand), resulting
in the 3D tensor (ûBk̂)bnf .

For the remaining contraction paths, we have to verify that any contraction paths within Bnik̂nfCjn

(not including û) will only result in intermediate tensors of dimension at most 3: Bnik̂nf =

(Bk̂)nif , k̂nfCjn = (k̂C)jnf , and BniCjn = (BC)jni.

An interpretation of Lemma 1 is that the contraction order should roughly follow the “natural order
of operations” of the underlying state-space system, in some form of “associative” fashion. For
example, it clearly makes little sense to contract the input u directly with the output project matrix
C before even passing the input through the internal states first, and this is formally reflected as the
production of a 5D intermediate tensor. Note that this is not to say that the contractions of an einsum
expression should be restricted to neighboring operands. In fact, einsum expressions are agnostic to
the ordering of operands, meaning that contractions can be performed on any two operands at any
stage. The discussion here is only specific to the state-space system ŷbif = ûbifBnik̂nfCjn, for
which this artificial ordering restriction is only needed for efficiency concerns, and not functional
correctness (which will be guaranteed regardless of the contraction path taken).

Under the restriction of Lemma 1, there are really only two “feasible” contraction patterns. First,
we can perform the operations from left to right, corresponding to projecting the input, performing
the FFT convolution, and then projecting the output. This is just the “natural” order of operations
induced by the underlying state-space system. Alternatively, we can build the “full kernel” first,
then perform the full FFT convolution with the input as x̂bif (Bnik̂nfCjn) = x̂bif k̂jif = ŷbjf in
one step9. If we only focus on the computational requirements of the forward pass10, then the first
contraction order will result in BNHF+BNF+BH ′NF ≈ BNF (H+H ′) units of computation.

8As an example, for a real signal, we only need to extract half the Fourier modes, or up to the Nyquist
frequency.

9This is how convolutional networks typically handle full convolutions, except there is no “kernel building”
stage as the kernels are explicitly parameterized.

10Under reverse-mode automatic differentiation, it is not hard to show that the compute units required for the
backward pass are 2 times that of the forward pass, for any einsum expression.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The second contraction order will result in H ′NH + JNHF +BH ′HF ≈ HH ′F (B +N) units
of computation. Therefore, we see that the optimal contraction order is intimately linked with the
dimensions of the tensor operands. More formally, the first “natural” order of contraction is only
optimal when BNF (H +H ′) < H ′HF (B +N) or 1

B + 1
N > 1

H + 1
H′ .

C BOTTLENECK SSM BLOCK PSEUDOCODE AND BENCHMARKING

Listing 1: Contraction operations for the bottleneck SSM block

1 # assumes opt_einsum backend is enabled
2

3 def fft_conv(equation, x, k, *args):
4 # FFT conv with additional non-sequence tensors as args
5 L = x.shape[-1]
6 x_f = rfft(x, length=2*L)
7 k_f = rfft(k, length=2*L)
8 y_f = einsum(equation, x_f, k_f, *args)
9 return irfft(y_f)[..., :L]

10

11 @compile
12 def get_kernel(delta, A, E, length):
13 dtA = einsum(’n,nm->nm’, delta, A)
14 K = einsum(’nm,t->nmt’, dtA, arange).exp()
15 return einsum(’nmt,nm->nt’, K.real, E)
16

17 def opt_fft_conv(u, k_real, B_discrete, C):
18 # all the input arguments are real tensors
19 # u: (batch, H_in, L)
20 # k_real: (N, L)
21 # B_discrete: (N, H_in)
22 # C: (H_out, N)
23

24 # force certain contraction paths based on the tensor shapes
25 batch, H_in, _ = u.shape
26 H_out, N = C.shape
27

28 # project inputs, perform FFT conv, then project outputs
29 if (1 / H_in + 1 / H_out) < (1 / batch + 1 / N):
30 if N <= H_in:
31 x = einsum(’bit,ni->bnt’, u, B_discrete)
32 x = fft_conv(’bnt,nt->bnt’, x, k_real)
33 return einsum(’bnt,jn->bjt’, x, C)
34 # evaluate the full kernel, then perform full FFT conv with inputs
35 # directly in one stage
36 else:
37 if H_in * H_out <= N:
38 k_full = einsum(’jn,ni,nt->jit’, C, B_discrete, k_real)
39 return fft_conv(’bit,jit->bjt’, x, k_full)
40

41 # can simply just return this and ignore the above
42 # if some loss of efficiency can be accepted
43 return fft_conv(’bit,nt,ni,jn->bjt’, u, k_real, B_discrete, C)
44

45 def ssm_bottleneck(u, delta, A, B, C, E):
46 length = u.shape[-1]
47 k_real = get_kernel(delta, A, E, length)
48 B_discrete = einsum(’n,ni->ni’, delta, B) # ZOH discretization
49 return opt_fft_conv(u, k_real, B_discrete, C)

Here, we acknowledge that this semi-manual method, though efficient, is not the most elegant or
scalable approach, as it requires some amount of “hard coding” for every SMM block variant. For-
tunately, the bottleneck block we walked through in this section is the most involved example, and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the other SSM block variants explored in this work are much simpler in terms of feasible contraction
paths. Nevertheless, we are working on an extension of the opt einsum library specifically for
general temporal sequence modeling using tensor networks that can: 1) identify any kernel-fusion
opportunities in the underlying tensor network, 2) identify the optimal “insertion points” for FFT
and iFFT operations accounting for the preference of real tensors over complex ones.

We compare the training performance of the contraction-optimized SSM block as given in Listing 1
against the naive contraction order following the “natural” order of input projection, state evolution,
and output projection (as typically done for other SSM networks). To isolate just the effect of
optimal contraction, we focus on the total time it takes for the forward plus backward pass on a
single bottleneck SSM block. We perform the benchmark in fp32 precision on 1× A100 40GB
SXM4 with PyTorch 2.5.1 under CUDA 12.4. The baseline dimensions are batch = 256, H = 16,
H ′ = 32, length = 2048, N = 256, and M = 16. We perform three separate scaling studies along
the batch, N , and length dimensions respectively, and scale them from 32 to 2048.

Figure 4: The training time (forward plus backward pass time) scaling with respect to the batch,
state, and length dimensions. Note that the x-axis is in log scale.

D ESTIMATION OF PARAMETERS AND FLOPS

It is very tempting to train network variants that are feasible by optimal contractions, but eventually
turn out to be incredibly memory or computationally expensive during inference. An example would
be to aggressively use “full” SSM blocks with large channels and internal states, which will result
in the internal states of size (out channels, input channels, states) needing to be maintained and
updated during inference. Even though the memory and computational bottlenecks can be mitigated
during training via optimal contractions, this is not possible during online inference time if none of
the internal states can be “contracted away”11. Therefore, following classical designs of lightweight
convolutional networks (Howard et al., 2017; Sandler et al., 2018), we use full SSM blocks sparingly

11Of course, this is a non-problem if the network is to perform inference in an offline setting, where no
internal states need to be explicitly materialized during inference, and the flexibility of contraction order is
restored.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

only in the first few layers where the channel dimensions are still small, and we will mostly be using
(pointwise) bottleneck blocks in the deeper layers where the channel dimensions become larger.

Note that the number of parameters and FLOPs differ between online inference and training. For
inference parameters, certain learnable parameters can be absorbed into the system matrices, such
as the ∆ parameter. For inference computations, the number of FLOPs is always linear with respect
to the sequence length; however, this is often outweighed by the suboptimal order of operations
imposed by the explicit materialization of internal states. In Table. 3, we provide the parameter
count and the FLOPs per recurrent step when various SSM block variants are configured for online
inference. There are a couple of points to note:

• During online inference, the internal states need to be explicitly maintained and updated,
meaning that the order of operation is always first the input projection, internal states up-
date, output projection, and an optional mixer layer (for S4D).

• The internal states are maintained as complex tensors, but we only take the real parts for
the output projection. Note that a complex weight is doubled the parameter count of the
real counterpart, and a complex multiplication is 6 times the FLOPs of the real counterpart
(4 multiplications + 2 additions). In addition, updating the internal state with the projected
real input requires 1 FLOP, and 2 FLOPs if the project input is also complex.

• In the case where the projection matrices (e.g. B and C) are also complex, a complex dot
product (used in matrix multiplications) is performed and will incur additionally 2 extra
FLOPs per accumulation, resulting in a total of 8 FLOPs per matrix element. However, if
we only need the real part of the projected outputs (or analogously only having real inputs),
the projection operation will incur half the number of FLOPs compared to the full complex
projection, or 4 FLOPs per matrix element.

• We do not count peripheral parameters and FLOPs for biases or affine transformations in
normalization layers, as they are negligible compared to the SSM operations.

Table 3: The number of parameters and FLOPs per recurrent step during online inference mode for
the SSM block variants. We assume that all the optimizations for online inference have already been
done, including the pre-computation of the SSM discretization and diagonalization, except for the
S6 block whose SSM matrices need to be dynamically generated.

SSM Block Parameters FLOPs / step
Depthwise 3HN 9HN
Depthwise Separable (S4D-like) 3HN +HH ′ 9HN + 2HH ′

Pointwise Bottleneck (S5-like) HN + 2N +H ′N 2HN + 7N + 2H ′N
Bottleneck HN + 3NM +H ′N 2HN + 9NM + 2H ′N
Full 3HH ′N 9HH ′N

Depthwise (complex) 4HN 11HN
Depthwise Separable (complex) 4HN +HH ′ 11HN + 2HH ′

Pointwise Bottleneck (complex) 2HN + 2N + 2H ′N 4HN + 8N + 4H ′N
Bottleneck (complex) 2HN + 4NM + 2H ′N 4HN + 16NM + 4H ′N
Full (complex) 4HH ′N 11HH ′N

Depthwise Separable (S6-like) 4HN +H2/r +HH ′ 14HN + 4H2/r + 2HH ′

Mamba 8H2 + 8HN + 4H2/r 16H2 + 28HN + 16H2/r

In Centaurus, we restrict all model parameters except for the state transition matrix A to be real. If
we make the projection matrices complex, we can then recover the original S4D and S5 implemen-
tations as DWS and PW bottleneck blocks respectively. Following the original implementations, we
still restrict the inputs and outputs of the SSM layers to be real. Besides using complex projection
matrices, there are some additional idiosyncratic differences:

• The original S4D layer uses a standard where a complex internal state is considered to be
two states, whereas S5 and Centaurus do not and simply consider it as one full state.

• The original S4D layer uses the GLU activation, meaning that the pre-activations hence the
C matrix will have double the size compared to Centaurus.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Note that if a direct residual connection is added to the SSM block, there will only be a trivial
amount of FLOPs added equaling H ′. In the case where the residual connection is a projection
operation (necessary if H ̸= H ′), then there will be HH ′ additional parameters added and roughly
2HH ′ additional FLOPs. Residual projections will be used in our Centaurus networks for keyword
spotting and automatic speech recognition.

For the S6 layer used in Mamba (Gu & Dao, 2023), we only extract the core selective scan op-
eration, and replace the depthwise SSM layer with it for our ablations, while still maintaining the
output mixer layer. Note that every parameter and operation involved in the S6 layer is fully in real
space. The core of the S6 layer is the selective scan mechanism, where the state matrices are data-
controlled. This mechanism is only meaningful if the channel (feature) dimension is greater than 1,
so for mono-channel layers we will always fallback to the standard depthwise layer. The estimation
of parameters and FLOPs for this layer is as follows:

• For the data-gating operation, the generation of ∆ requires roughly H2/r parameters and
4H2/r FLOPs, where r is the low-rank factor and the low-rank dimension being ⌈H/16⌉,
chosen to be 16. The generation of the B and C matrices requires a total of 2HN parame-
ters and 4HN FLOPs.

• The discretization process has to occur dynamically due to the dynamicity of the ∆ pa-
rameter. It does not incur additional parameters but does require additional FLOPs. This
involves applying softplus to ∆, performing an element-wise multiplication with the input
and the transition matrix A, and exponentiating the latter. We conservatively estimate the
FLOPs required to be 5HN , under the assumption that the expf operation takes at least 4
FLOPs per element.

• Finally, we have the actual depthwise SSM operations, which in real space, incur 2HN
parameters and 5HN FLOPs.

In the original Mamba block, r = 16 is kept constant. The channel dimension H also gets doubled
before passing into the core S6 layer. On top of this, the network has an additional non-linear
“gating” path that also has 2H features. The input and output projection layers allowing for this
macro structure will then result in a total of 8H2 parameters and 16H2 FLOPs, in addition to the
core S6 operations. There is also a lightweight causal depthwise Conv1D layer that has negligible
parameters and FLOPs. The Mamba block is like a “bottleneck” block that does not alter the channel
dimension H , hence we can perform a channel projection during downsampling to project H to H ′

(see next Section).

E EXPERIMENT DETAILS

SSM Block LayerNorm SiLU Down
sampling

Projection

Dropout1d

Figure 5: We use a basic design for our Centaurus block, where the lighter-shaded blocks are
optional. The skip path is typically just an identity connection, but can be a pointwise projection
layer to change the channel dimension. Similarly, the (optional) downsampling layer can be a simple
average pooling to preserve the channel dimension, or a downsampling convolutional layer to project
the channel dimension at the same time. The downsampling layer can be replaced by the upsampling
layer if needed (e.g. in a decoder block of an auto-encoder).

Unless otherwise mentioned, all of our network variants are trained with:

• AdamW optimizer with the PyTorch default configs

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• a cosine decay scheduler with a linear warmup period equal to 0.01 of the total training
steps, updating after every optimizer step

• gradient clip value of 1
• layer normalization (over the feature dimension) with elementwise affine parameters
• SiLU activation
• no dropout layers except for the keyword-spotting network

Additionally, we trained with automatic mixed precision (AMP) along with torch.compile,
except for the FFT convolution operations which are performed in full fp32 precision and without
compilation (due to inability to handle complex data types currently).

Training configs not mentioned in the above list will be mentioned separately in the following in-
dividual subsections. We initialize the B and C projection matrices with the standard Kaiming
uniform distribution. For the initialization of the ∆ and A parameters, we follow the S4D initializa-
tion strategy due to its simplicity. In other words, we set ∆ to be geometrically ranged from 0.001
to 0.1, and An = −1/2+ inπ. We suspect any sensible initialization method should also work fine.
Below, we explicitly mention the dimension for which the initialization range is applied, with the
indices denoting the dimensions of the ∆ and A parameters (slight abuse of notation).

• For S4D, we initialize ∆cn over the c dimension, and Acn over the n dimension.
• For S5, we split the internal states into groups of 4. ∆n is initialized across the groups, and
An is initialized within each group.

• For the full SSM block, we initialize ∆in over the i dimension, and Ajin over the n dimen-
sion.

• For the bottleneck block, we initialize ∆n over the n dimension, and Anm over the m
dimension.

All of our training runs and trials are done with PyTorch with torch.compile enabled except
for operations involving complex numbers (e.g. FFTs). In addition, we enabled tensorfloat32
for matrix multiplications, and the opt einsum backend for all torch.einsum operations.

E.1 KEYWORD SPOTTING

Architecture Channels States
depthwise-separable (S4D/S6-like) [2, 4, 8, 16, 32, 64] 4

[4, 8, 16, 32, 64, 128] 4
[8, 16, 32, 64, 128, 256] 4
[16, 32, 64, 128, 256, 512] 4

pointwise bottleneck (S5-like) [2, 4, 8, 16, 32, 64] [4, 8, 16, 32, 64, 128]
[4, 8, 16, 32, 64, 128] [8, 16, 32, 64, 128, 256]
[8, 16, 32, 64, 128, 256] [16, 32, 64, 128, 256, 512]

full [2, 4, 8, 16, 32, 64] 4
[4, 8, 16, 32, 64, 128] 4
[8, 16, 32, 64, 128, 256] 4

bottleneck [2, 4, 8, 16, 32, 64] [4, 8, 16, 32, 64, 128]
[4, 8, 16, 32, 64, 128] [8, 16, 32, 64, 128, 256]
[8, 16, 32, 64, 128, 256] [16, 32, 64, 128, 256, 512]

full × 2 + bottleneck × 2 + S5 × 2 [2, 4, 8, 16, 32, 64] [4, 4, 16, 32, 64, 128]
[4, 8, 16, 32, 64, 128] [4, 4, 32, 64, 128, 256]
[8, 16, 32, 64, 128, 256] [4, 4, 64, 128, 256, 512]

Table 4: The different network variants tested. For the bottleneck blocks, it is always assumed that
the number of sub-states is 4.

For all our trials in this experiment, we

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• train for 200 epochs

• use a learning rate of 0.01 with a weight decay 0.05

• use a linear warmup period of 0.1 for the scheduler.

• Dropout1d with probability 0.1, only applied if the number of features is greater than 4

• perform training on a single NVIDIA A30 GPU with a batch size of 512

The network contains six SSM blocks, with output channels and internal states given in Table. E.1.
Besides the first block of the network, every SSM block is a residual block where the skip path is
a pointwise projection. We apply LayerNorm after the SSM operations but before the skip merge,
and apply the SiLU activation after the skip merge, following the classical ResNet residual block
design. After each SSM layer, we perform 1D average pooling with window sizes {4, 4, 2, 2, 2, 2}
respectively. We apply this network over one-second durations of raw audio waveforms, and a
global-average-pooling (GAP) on the features generated by the SSM backbone, followed by a 2-
layer MLP classification head12.

In addition, we test against a hybrid network variant where the projection matrices are made com-
plex, shown in Fig. 6. Over the model sizes tested, it appears that real variants outperform the
complex variants when accounting for the model parameters and inference FLOPs. Furthermore,
we compare against network variants with S6 layers having different state dimensions, as the num-
ber of states appears to be an important factor for data-controlled SSM layers (Gu & Dao, 2023).

105

Parameters

4 × 10 2

6 × 10 2

Cl
as

sif
ica

tio
n 

Er
ro

r

Parameter Scaling
hybrid
hybrid (complex proj.)

107 108

FLOPs

4 × 10 2

6 × 10 2

Inference Compute Scaling
hybrid
hybrid (complex proj.)

Figure 6: The scaling of the multiclass classification error with respect to the number of parameters
and the number of FLOPs per second during inference. The performance is evaluated on the SC35
testset. We compare the scaling of the hybrid network against its counterpart where the projection
matrices are made complex.

To compare with the top results achieved on KWS by other state-space models, we use our largest
Centaurus hybrid network architectured as given in Table. E.1. We report the performance and
size of each model in Table. 5 on the Speech Command 10-class subset (SC10), as it is a common
benchmark for all the models. Centaurus achieves SOTA results with less parameters and orders of
magnitude less FLOPs.

E.2 RAW SPEECH DENOISING

The high-level training pipeline for the raw audio denoising model is to simply generate synthetic
noisy audios by randomly mixing clean and noise audio sources. The noisy sample is then used as

12The application of the GAP layer is in accordance with previous works. In a practical real-time inference
setting, the GAP layer will likely be removed, and the classification head will be likely attached directly to the
streaming output features of the SSM backbone. Standard post-processing techniques such as majority-filtering
and early prediction can then be applied.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

104 105

Parameters

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

Cl
as

sif
ica

tio
n 

Er
ro

r

Parameter Scaling
S6 (state = 4)
S6 (state = 8)
S6 (state = 16)
S4D (state = 4)
Centaurus (hybrid)

107 108

FLOPs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1
Inference Compute Scaling

S6 (state = 4)
S6 (state = 8)
S6 (state = 16)
S4D (state = 4)
Centaurus (hybrid)

Figure 7: We compare the scaling of the hybrid network compared to homogeneous network variants
where all SSM layers are S6 layers (or equivalently depthwise-separable SSM blocks where the SSM
matrices are data-controlled).

Table 5: Comparing our Centaurus hybrid network against other deep state-space models on the
SC10 testset. All networks operate on raw input waveforms sampled at 16000kHz. Note that only
our Centaurus network performs downsampling, hence the small computational footprint (despite
having more parameters). The numbers with an asterisk are estimated and not reported in the original
works.

Model Accuracy ↑ Parameters ↓ FLOPs / sec ↓
S4 (Gu et al., 2021) 98.32 0.306M 11.8G*
S4D-Lin (Gu et al., 2022) 96.25 0.306M 11.8G*
LiquidS4 (Hasani et al., 2022) 98.51 0.224M -
S5 (Smith et al., 2022) - 0.280M 13.5G*

Centaurus (hybrid) 98.53 0.378M 0.134G

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: Resampling factor and output channel of each block of the network, which consists
of an encoder performing down-samplings, an intermediate bottleneck, a decoder performing up-
samplings, and finally an output processor. The number of sub-states for the “neck” SSM block is
always 4.

Layers Resampling Factor Channels States
Encoder

Block 1 (full) 4 16 16
Block 2 (full) 4 32 4
Block 3 (neck) 2 64 128× 4
Block 4 (neck) 2 96 128× 4
Block 5 (pw-neck) 2 128 256
Block 6 (pw-neck) 2 256 256

Bottleneck
Block 1 (pw-neck) 1 256 256
Block 2 (pw-neck) 1 256 256

Decoder
Block 1 (pw-neck) 2 128 256
Block 2 (pw-neck) 2 96 256
Block 3 (neck) 2 64 128× 4
Block 4 (neck) 2 32 128× 4
Block 5 (full) 4 16 4
Block 6 (full) 4 1 16

Output
Block 1 (full) 1 1 16
Block 2 (full) 1 1 16

input to the model, and the clean sample is used as the target output. For the clean training samples,
we use the processed VCTK and LibriVox datasets that can be downloaded from the Microsoft DNS4
challenge. We also use the noise training samples from the DNS4 challenge as well, which contains
the Audioset, Freesound, and DEMAND datasets. For all audio samples, we use the librosa
library to resample them to 16 kHz and load them as numpy arrays.

For the LibriVox audio samples which form long continuous segments of human subjects reading
from a book, we simply concatenate all the numpy arrays, and pad at the very end such that the array
can be reshaped into (segments, 217), or roughly 8.192 second segments. For all the other audio
samples consisting of short disjoint segments, we perform intermediate paddings when necessary,
to ensure a single recording does not span two rows in the final array. For audio samples longer than
length 217, we simply discard them. The input length to our network during training is then also 217.

For every epoch, we use the entirety of the VCTK dataset and 10 percent of a randomly sampled
subset of the LibriVox dataset. For each clean segment, we pair it with a randomly sampled noise
segment (with replacement). The clean and noise samples are added together with an SNR sampled
from -5 dB to 15 dB, and the synthesized noisy sample is then rescaled to a random level from
-35 dB to -15 dB. Furthermore, we perform random temporal and frequency masking (part of the
SpecAugment transform) on only the input noisy samples.

For all our trials in this experiment, we

• train for 500 epochs

• use a learning rate of 0.005 with a weight decay 0.02

• perform training on a single NVIDIA A30 GPU with a batch size of 192, resulting in around
1573 seconds of audio data per batch.

For the loss function, we combine SmoothL1Loss with spectral loss on the ERB scale, with-
out any equalization procedure on the raw waveforms or spectrograms. The β parameter of the

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

SmoothL1Loss is set at 0.5, and the spectral loss is weighted by a factor that grows from 0 to 1
linearly during training.

See Table. 6 for the Centaurus network architecture. The SSM blocks themselves do not change
the channel dimensions of the features. The downsampling and upsampling layers are trainable
convolutional layers, which at the same time perform channel projections. For example, if the input
features are monoaural with shape (1, 16000), then the first SSM block will retain this shape, but
the following downsampling block will project it to the shape (16, 4000). The network follows an
hourglass architecture, with a long-range skip connection branching after every SSM block in the
encoder, and merging before every corresponding SSM block in the decoder (i.e. output features of
encoder block 1 is added to the input features of decoder block 6).

The homogeneous variants of the network is configured with the same architecture, with the same
resampling factors and channels. To keep the parameters and FLOPs of the variants roughly at the
same order, we use the following state configurations:

• For the depthwise-separable variants (S4D-like and S6-like), we use 64 states.

• For the pointwise bottleneck variant (S5-like), we use 256 states.

• For the bottleneck variant, we use 256 states, with 4 sub-states per state.

• For the full variant, we use 4 states per input-output channel pairing.

Surprisingly, using the Mamba blocks in their original form (including the highly complex nested
macro-architecture) resulted in severe training plateaus, and resulted in many runs that did not out-
perform random guessing, despite much effort in hyper-parameter tuning and following the sug-
gested “no weight decay” training recipe for the A and D matrices.

E.3 SPEECH RECOGNITION

Table 7: Resampling factor, input/output channels, and internal states of each block of the Centau-
rus ASR network. The number of sub-states for the “neck” SSM block is always 4. The SSM block
itself maintains the feature shape, followed by the downsampling layer projecting the temporal and
channel dimension simultaneously. An optional feedforward or convolutional module can be addi-
tionally appended to the end of each block (again maintaining the feature shape). A block with a
multiplier means that the block is stacked multiple times, with only the first occurrence of the block
containing the downsampling layer (feature projection).

Layers Resampling Factor In Channels Out Channels States
Backbone (12 layers)

Full Block 5 1 16 64
Full 4 16 32 4
Neck ×2 2 32 64 128× 4
Neck ×2 2 64 128 256× 4
PW-Neck ×2 2 128 256 512
PW-Neck ×4 2 256 512 1024

Head (6 layers)
PW-Neck 4 512 512 1024
PW-Neck 2 512 512 1024
PW-Neck ×4 1 512 512 1024

The backbone is a 12-layer encoder, performing a total downsampling factor of 320, effectively
streaming output features at a period of 20 ms. The output features from the encoder are then
branched into two heads: 1) a smaller “character” head that is a 2-layer MLP, producing charac-
ter logits, 2) and a larger “language” head, consisting of six additional pointwise-bottleneck SSM
blocks, producing BERT token logits13, additionally downsampling the features by a factor of 8. The

13Note that nowhere in our solution will we actually use the BERT network. We only use the BERT tokenizer
for the token encoding of transcriptions and the token decoding of the network predictions.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

character head is supervised with the soft logits from the WAV2VEC2 ASR LARGE LV60K 960H
teacher model, and the language head is supervised via CTC loss with the tokenized transcripts.
During inference, we simply extract the most probable token produced by the final layer of the
“language head”.

The training pipeline involves supervised learning on transcribed audio samples. The training dataset
includes the LibriSpeech full 960h training set, and the Multilingual LibriSpeech (MLS) English
training set. The training lasts 100 epochs, with each epoch containing the full LibriSpeech training
set and 1% of the MLS English training set randomly sampled (so that a full training run will see all
training data). To guarantee no data leakage, we check every sample in the training set and remove
it if it is sufficiently similar to any sample in the development and testing sets. All the audio data
are sampled at 16kHz before being fed into the network. Similar to the data pre-processing pipeline
for speech denoising (see E.2), we pack the audio clips into segments of length 327680 (or roughly
20.5 seconds), introducing paddings when necessary to ensure a single recording does not span two
segments.

For training the network, we

• train for 100 epochs
• use a learning rate of 0.02 with a weight decay of 0.1
• perform training with 8× 40GB A100 with a batch size of 32 per GPU. This results in

around 1.46 hours worth of audio data per effective batch.

The base Centaurus network can be augmented by appending an additional module after every SSM
block, to promote more local modeling capabilities. We experiment with three types of (residual)
modules here.

• Feed-forward network (FFN): This consists of two pointwise layers in the main path, mak-
ing it purely feature mixing. Both layers preserve the channel dimension, with no expansion
factors.

• Convolutional module (Conv): This is a residual module adapted from the Conformer ar-
chitecture (Gulati et al., 2020). It consists of the pointwise-depthwise-pointwise pattern
with an expansion ratio of 2 in the main path; the depthwise layer is a causal convolutional
layer with a kernel size of 4.

• Mamba block: This is a complex residual gated block containing three nested skip con-
nections, adapted from the Mamba macro-architecture (Gu & Dao, 2023). It begins by
projecting the input channels into 4 times the original dimension, and splitting the channel
features into two paths, one path for the core SSM operations, and another path for gating.
The SSM layer itself contains an inner skip connection via the D matrix (which we ignored
for our Centaurus block). Additionally, there is an outer residual connection wrapping the
entire Mamba block itself.

For using the Mamba block, we only applied it for the last 4 “language head” blocks as they are
homogeneous. We also tested replacing the shallower blocks with Mamba blocks but it resulted in
unstable training, which we believe was due to the highly complex Mamba blocks being too “close”
to the less featurized raw audio signals. In addition, we also tested the Mamba blocks in their original
form (with DWS gated S6 layers), but it also resulted in unstable training.

25


	Introduction
	Related Work
	Deep State-space Modeling
	Classical convolutional blocks
	Tensor Networks

	Background
	State space models
	Einstein summation notation
	A generalization

	SSMs and CNNs are tensor networks
	General SSM operations with einsum expressions
	Optimal contraction orders for training: the depthwise example
	A practical walkthrough: the bottleneck block

	Experiments
	Keyword spotting
	Speech enhancement
	Towards end-to-end speech recognition with SSMs

	Conclusion
	Canonical form of a state-space model
	Bottleneck SSM contraction orders
	Bottleneck SSM block pseudocode and benchmarking
	Estimation of parameters and FLOPs
	Experiment details
	Keyword spotting
	Raw speech denoising
	Speech recognition


