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Abstract
Scientific information extraction (SciIE), which001
aims to automatically extract information from002
scientific literature, is becoming more impor-003
tant than ever. However, there are no existing004
SciIE datasets for polymer materials, which005
is an important class of materials used ubiqui-006
tously in our daily lives. To bridge this gap,007
we introduce POLYIE, a new SciIE dataset008
for polymer materials. POLYIE is curated009
from 146 full-length polymer scholarly articles,010
which are annotated with different named en-011
tities (i.e., materials, properties, values, condi-012
tions) as well as their N -ary relations by do-013
main experts. POLYIE presents several unique014
challenges due to diverse lexical formats of en-015
tities, ambiguity between entities, and variable-016
length relations. We evaluate state-of-the-art017
named entity extraction and relation extraction018
models on POLYIE, analyze their strengths and019
weaknesses, and highlight some difficult cases020
for these models. To the best of our knowl-021
edge, POLYIE is the first SciIE benchmark for022
polymer materials, and we hope it will lead023
to more research efforts from the community024
on this challenging task. Our code and data025
are available on: https://anonymous.4open.026
science/r/PolyIE.027

1 Introduction028

Material science literature is growing at an un-029

precedented rate. For example, a simple search on030

Google Scholar with the term “polymers” returns031

more than 5 million articles on polymer materi-032

als. Such literature reports valuable information033

on the latest advances in material science, rang-034

ing from experimental material properties to mate-035

rial synthesis recipes and procedures. As machine036

learning (ML) has achieved success in different ap-037

plications of material science (Butler et al., 2018;038

Schmidt et al., 2019), Scientific Information Extrac-039

tion (SciIE) from literature for supporting various040

tasks is becoming increasingly important. Automat-041

ically extracting structured information about mate-042

Annotations:

[1] For PBDTTT-TIPS:PC71BM (1:1, w/w) blend, the films

exhibit a typical cluster structure with many aggregated

domains and a root-mean-square (rms) roughness of

1.472 nm. [2] The domain sizes estimated by cross-

section profiles are about 10-20 nm.

Intra-Sentence Relation:
<PBDTTT-TIPS:PC71BM, root-mean-square (rms) roughness, 
1.472 nm, 1:1 w/w> 

Material Condition

Property

Value Property

Value

Inter-Sentence Relation:
<PBDTTT-TIPS:PC71BM, domain sizes, 10-20 nm, 1:1 w/w> 

Material-Property

Property-Value

Value-Condition

Material-Property

Property-Value

Value-Condition

Figure 1: An example of entity and relation annota-
tions in POLYIE from a material science paper (Shi
et al., 2011), including entity mentions as well as intra-
sentence and inter-sentence N-ary relations.

rials from massive unstructured literature data can 043

be invaluable to understanding material properties 044

and synthesis, as well as building data-driven ML 045

tools for material discovery (Court et al., 2021). 046

While SciIE has rapidly developed in domains 047

such as biomedical science (Luan et al., 2018; Gá- 048

bor et al., 2018; Jain et al., 2020; Hou et al., 2019; 049

Jia et al., 2019), it has made limited progress in 050

the material science domain. So far, there are only 051

a handful of datasets for material information ex- 052

traction. Some earlier works use ChemDataExtrac- 053

tor (Swain and Cole, 2016) to automatically gener- 054

ate datasets for battery materials (Huang and Cole, 055

2020) and temperatures (Court and Cole, 2018). 056

More recent datasets are created manually for solid 057

oxide fuel cells (Friedrich et al., 2020) and mate- 058

rial science synthesis procedures (O’Gorman et al., 059

2021). However, none of these datasets cover poly- 060

mer materials, which are an important class of or- 061

ganic materials that play critical and ubiquitous 062

roles in our daily lives. Due to their versatile prop- 063

erties, polymer materials are being widely used 064

in applications such as packaging, coating, energy 065
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saving, and medical applications. As vast amounts066

of information on polymer development are being067

reported in literature data, there is a critical need068

for SciIE benchmarks and tools to harvest such069

information from the polymer literature.070

To address this gap, we construct a dataset for071

extracting polymer property knowledge from un-072

structured literature data. Our dataset POLYIE is073

curated from 146 full-length polymer scientific ar-074

ticles, which are annotated by domain experts with075

named entities (i.e., materials, properties, values,076

conditions) as well as the N -ary relations among077

them (see Figure 1). POLYIE contains 41635 en-078

tity mentions and 4443 relations in total. It covers079

four different application domains of polymer ma-080

terials: polymer solar cells (PSC), ring-opening081

polymerization (RP), polymer membranes (PM),082

and polymers in lithium-ion batteries (LB). This083

diversity of content enables the training of models084

with enhanced generalization capabilities. To the085

best of our knowledge, POLYIE is the first bench-086

mark for SciIE from full-text polymer literature.087

From the natural language processing per-088

spective, extracting information for polymers on089

POLYIE introduces unique challenges for both090

named entity recognition and relation extraction:091

Diverse Lexical Formats of Entities. Polymer-092

related entities often have different schemes of093

nomenclature, such as IUPAC names (e.g., ‘poly(3-094

hexylthiophene)’), abbreviations (‘PDPPNBr’),095

trade names (‘Styron’), common names (‘ABS plas-096

tic’), and sample labels (‘PE-HDPE-01’). In ad-097

dition, the identification of polymers can also be098

achieved through the concatenation of homopoly-099

mer names with hyphens or slashes, and the inclu-100

sion of numerical values for the component ratios101

and molecular weights (‘PVC-PS-PC-20/30/50-102

800000’). This diversity of nomenclature in litera-103

ture poses a challenge for named entity recognition.104

Variable-length and Cross-Sentence N -ary re-105

lations. Previous research on relation extraction106

has focused on either binary relations (Luan et al.,107

2018; Yao et al., 2019) or N -ary relations with a108

fixed number N (Jia et al., 2019; Jain et al., 2020;109

Zhuang et al., 2022). In contrast, many relations110

described in polymer literature are variable-length111

N -ary relations. This is because 1) the reported112

properties may be describing one or several materi-113

als; and 2) different properties can be measured un-114

der specific conditions. Furthermore, the elements115

in a relation tuple may span multiple sentences as116

shown in Figure 1. 117

We study six mainstay NER and five N -ary RE 118

models on POLYIE in terms of their overall per- 119

formance and sample efficiency. We find that the 120

models based on domain-specific pre-trained mod- 121

els (e.g., MatSciBERT) yield better performance 122

than other baselines. However, all the models strug- 123

gle with accurately recognizing certain categories 124

of named entities and inferring challenging varied- 125

length N -ary relations. Moreover, our observations 126

indicate that, under few-shot settings, the recently 127

popular large language models (LLMs) demon- 128

strate inferior performance than the other baselines 129

on POLYIE, highlighting potential limitations in 130

comprehending material science concepts. 131

Our main contributions are: (1) The first poly- 132

mer information extraction dataset curated from 133

146 full-length articles for polymer named entity 134

recognition and relation extraction. (2) Thorough 135

evaluation of seven mainstream NER and five N - 136

ary RE models on our curated dataset. (3) Analysis 137

of the difficult cases and limitations of existing 138

models, which we hope will enable future research 139

on this challenging task from the NLP community. 140

2 Related Work 141

Material Science NLP Datasets. Earlier stud- 142

ies (Court and Cole, 2018) leverage tools such 143

as ChemDataExtractor (Swain and Cole, 2016), 144

ChemSpot (Rocktäschel et al., 2012), and Chemi- 145

calTagger (Hawizy et al., 2011) to perform NER an- 146

notation for dataset curation. For example, Chem- 147

DataExtractor is applied to generate datasets for 148

Curie and Neel magnetic phase transition tempera- 149

tures (Court and Cole, 2018) and magnetocaloric 150

materials (Court et al., 2021). Besides, people 151

also create expert-annotated datasets (Wang et al., 152

2021; Weston et al., 2019) for the extraction of 153

non-value named entities (e.g., material and prop- 154

erty names) and their relationships. In recent years, 155

there has been an uptick in efforts to include nu- 156

merical values in datasets for further extraction, 157

with several studies closely related to POLYIE: 158

Friedrich et al. (2020) annotate a corpus of 45 open- 159

access scholarly articles on solid oxide fuel cells, 160

covering entity types of materials, values, and 161

devices. Panapitiya et al. (2021) provide annota- 162

tions of CHEM, VALUE, and UNIT on a set of papers 163

on soluble materials. However, both only provide 164

binary relations between pairs of entities, which is 165

inadequate for describing more complex relations. 166
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N -ary Relation Extraction. N -ary relations are167

size-N tuples that describe the factual relation-168

ship between N entities. In general domains, the169

MUC dataset (Chinchor, 1998) describes event170

participants in news articles. In the biomedi-171

cal domain, the BioNLP Event Extraction Shared172

Task (Kim et al., 2009) and PubMed dataset (Jia173

et al., 2019) aim to extract biomedical events from174

biomedical text. In the machine learning domain,175

SciREX (Viswanathan et al., 2021; Jain et al., 2020;176

Zhuang et al., 2022) extracts N -ary relations in177

terms of <Task, Dataset, Method, Metric>.178

Different from these works’ relations, the N -ary179

relations in POLYIE can have a varied number of180

named entities, which is more flexible in describing181

material knowledge but meanwhile introduces new182

challenges to RE. The closest work to POLYIE is183

drug-combo (Tiktinsky et al., 2022), which extracts184

variable-length combinations of different drugs.185

However, POLYIE and drug-combo are curated for186

two different domains, and the relations in POLYIE187

include numerical values.188

3 The POLYIE Dataset189

In this section, we describe the details of the190

POLYIE dataset. We first formulate the two in-191

formation extraction tasks for polymer material192

literature in § 3.1. We then describe the data pre-193

processing and annotation procedures in § 3.2 and194

§ 3.3, and finally present the statistics and charac-195

teristics of the POLYIE dataset in § 3.4.196

3.1 Task Definition197

POLYIE is curated for studying two key informa-198

tion extraction tasks on polymer literature data: (1)199

identifying relevant named entities, and (2) com-200

posing different entities to form N -ary relations.201

Named Entity Recognition. Named Entity202

Recognition (NER) is the process of locating203

and classifying unstructured text phrases into pre-204

defined entity categories such as compound names,205

property names, etc. Given a sentence with n to-206

kens S = (w1, · · · , wn), a named entity mention is207

a span of tokens e = (wi, · · · , wj)(0 ≤ i ≤ j ≤ n)208

associated with an entity type. In POLYIE, we fo-209

cus on NER for describing polymer material prop-210

erties and include four important entity types: ma-211

terial name, property name, property value, and212

condition. An illustrative example can be found in213

Figure 1. Based on the BIO schema (Li et al., 2012),214

NER can be formulated as a sequence labeling task215

of assigning a sequence of labels y = (y1, · · · , yn), 216

each corresponding to a token in the input sentence. 217

Variable-Length N -ary Relation Extraction. 218

Variable-length N -ary relation extraction (RE) 219

refers to the process of identifying and extract- 220

ing relationships between multiple entity mentions 221

where the number of entities in the relationship can 222

vary. Formally, given a list of k context sentences 223

C = (S1, · · · , Sk) in one paragraph, let E be the set 224

of entities appearing in C where each entity e ∈ E 225

belongs to one of the four entity types described 226

in the NER task. The relation extraction task aims 227

to extract a set of m relations R = (r1, · · · , rm) 228

from C. Each relation ri is a tuple of entities ri = 229

(e1, · · · , eNi), (1 ≤ i ≤ m) that describe their 230

<material, property, value, condition> re- 231

lations. Here, the number of entities Ni can be 232

variable in R because: 1) the property value may 233

correspond to several materials instead of one; and 234

2) the condition entity may be absent. Figure 1 235

illustrates this variable-length N -ary RE task. 236

3.2 Data Preparation 237

We curate POLYIE from 146 publicly available 238

scientific papers, covering four different material 239

science domains: polymer solar cells, ring-opening 240

polymerization, polymer membranes, and lithium- 241

ion batteries. These papers are sub-sampled from 242

the corpus of 2.4 million material science articles 243

described in Shetty et al. (2023). This corpus con- 244

sists of papers published between 2000 to 2021 and 245

is collected from 7 different material science pub- 246

lishers (Shetty and Ramprasad, 2021a,b). Keyword- 247

based search was used to locate papers that span 248

multiple application domains within polymers. The 249

resulting dataset consists of 100 papers describ- 250

ing fullerene-acceptor polymer solar cells, 21 pa- 251

pers describing ring-opening polymerization, 20 252

describing lithium-ion batteries, and 5 describing 253

polymer membranes. The text of these papers is 254

parsed from the PDF of these papers using sciPDF 1 255

(a scientific parser based on GROBID (GRO, 2008– 256

2023)) into utf-8 format. The incorrectly parsed 257

units and symbols are corrected using regular ex- 258

pressions. 259

3.3 Data Annotation 260

The POLYIE dataset is annotated by two polymer 261

science domain experts as well as three computer 262

science graduate students who are trained by the 263

1https://github.com/titipata/scipdf_parser
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polymer scientists. Both the NER and RE annota-264

tions are performed using the Doccano (Nakayama265

et al., 2018) platform, which is an open-source266

text annotation tool that facilitates visual annota-267

tion with a Web interface. Below, we detail the268

annotation schemes for the NER and RE tasks.269

3.3.1 Annotating Named Entities270

In POLYIE, we annotate mentions of named enti-271

ties for four categories: material names, property272

names, property values, and conditions. Each men-273

tion is a continuous text span that specifies the274

actual name of an entity or its abbreviation. This275

is done by marking the entity mention on the Doc-276

cano platform with the corresponding entity type.277

Compound Names (Material). Compound Name278

entities include text spans that refer to material279

objects. Only chemical mentions that could be as-280

sociated with a chemical structure are annotated281

as Compound Names. They may be specified282

by a particular composition formula (e.g., “4,9-283

di(2-octyldodecyl) aNDT”), a mention of chemical284

names (e.g., “trimethyltin chloride”), or just an ab-285

breviation (e.g., “PaNDTDTFBT”). General chemi-286

cal nouns (e.g., “ionic liquids”) are not considered.287

Property Names (Property). We annotate the288

properties of chemical compounds as long as they289

can be measured qualitatively (e.g., “toxicity” and290

“crystallinity”) or quantitatively (e.g., “open-circuit291

voltage”, “decomposition temperature”). Corre-292

sponding abbreviations should also be annotated293

(e.g., “PCE”, “HOMO level”).294

Property Values (Value). We annotate the spans295

that can indicate the degree of qualitative properties296

(e.g., “soluble to water”) or describe numerical297

values with units for quantitative properties (e.g.,298

“9.62× 10−5 Ω−1m−1”, “5.14 ppm”).299

Conditions. In material science papers, the proper-300

ties of materials can be constrained by quantitative301

modifiers, and we annotate them as conditions to302

distinguish them from normal property names and303

property values (e.g., “room temperature”, “fre-304

quency range 500 Hz – 3 MHz“).305

3.3.2 Variable-Length N -ary Relations306

For RE, we annotate the N -ary relations between307

the named entities to capture their <Material,308

Property, Value, Condition> relations.309

Primary Binary Relations. As Doccano and310

most other existing text annotation tools only sup-311

port annotations for binary relations, we decom-312

pose the N -ary relation annotation task into sim-313

pler binary relation annotation and later aggre- 314

gate them into full N -ary relations. We split 315

an N -ary relation into multiple binary relations 316

for annotation: Material-Material marks the 317

relations between material names that constitute 318

one material system; Material-Property iden- 319

tifies the relation between a material and its re- 320

ported property name; Property-Value annotates 321

the corresponding property name and value; and 322

Value-Condition marks the property values mea- 323

sured under a specific condition. 324

Transforming Binary to N -ary Relations. We 325

then transform all the binary relations with com- 326

mon involved entities to generate N -ary rela- 327

tions in the format of <Material, (Material), 328

Property, Value, (Condition)>. We abandon 329

all binary relations that cannot be combined with 330

other binary relations, only maintaining the gener- 331

ated N -ary relations with N > 2. 332

3.3.3 Inter-Annotator Agreement 333

All documents in POLYIE are annotated by at least 334

two annotators independently. If annotation con- 335

flicts arise across two annotators, a third annota- 336

tor is then assigned to annotate the corresponding 337

sentences independently. The final annotation is 338

determined by majority voting. 339

We calculate the inter-annotator agreement in 340

terms of Fleiss’ Kappa (Fleiss, 1971). The Fleiss’ 341

Kappa for individual entity types is calculated by 342

treating other entity types as negative samples. The 343

results are shown in 1. The Fleiss’ Kappas for 344

Material, Property, and Value are all in the 345

range of almost perfect agreement, while the cor- 346

responding value for Condition lies in the range 347

of substantial agreement. For RE, we consider all 348

annotated relations as subjects and treat categories 349

as binary. The Fleiss’ Kappa for RE is 0.67. 350

We also compute the average F1-score similar to 351

Friedrich et al. (2020). The F1-score is calculated 352

by treating one annotator as the gold standard and 353

the other annotator as predicted. For the NER, 354

spans and entity types have to exactly match. For 355

RE, all entity mentions within the n-ary relation 356

have to exactly match. The averaged F1-score for 357

the NER and RE task is 0.89 and 0.84 respectively. 358

Overall Material Property Value Condition

0.86 0.88 0.82 0.88 0.71

Table 1: Fleiss’ kappa for all annotators across all men-
tions and each entity type respectively.
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PSC RP LB PM All

documents 100 21 20 5 146
sentences 9,367 3,120 3,031 555 16,073
tokens 288,142 91,421 90,381 15,579 485,523
avg. tokens/doc.∗ 3,201.6 3,102.4 3,227.9 3,115.8 3,325.5

mentions 28,775 5,760 6,013 1,087 41,635
– Material 13,244 3,120 3,390 740 20,494
– Property 9,848 1,597 1,616 187 13,248
– Value 5,294 792 835 111 7,032
– Condition 364 150 167 21 702

entities 7,099 1,621 1,739 431 10,890
avg. mentions/doc.∗ 287.8 274.3 300.7 217.4 285.2

relations 3,084 592 615 152 4,443
– 3-ary 2,554 503 516 123 3,838
– 4-ary 388 89 99 29 605
– 5-ary 142 - - - 142

avg. relations/doc.∗ 30.8 28.2 30.8 30.4 30.4
∗Avg. indicates average and doc. refers to document.

Table 2: POLYIE corpus statistics.

3.4 Data Analysis359

Table 2 shows the key statistics for our corpus.360

POLYIE contains 41635 entity mentions and 4443361

relations in all 146 fully annotated polymer ma-362

terial science literature. We quantitively analyze363

some key properties of POLYIE:364

Statistics of Entities. For all the named entity365

mentions, the distribution of the four entity types366

Material, Property, Value, and Condition are367

49.54%, 31.82%, 17.00%, and 1.70%, respectively.368

In total, those 41365 mentions describe 10890 dis-369

tinct named entities for polymer materials.370

Statistics of N -ary Relations. Among the 4443 re-371

lations on POLYIE, 86.38% are 3-ary; 13.62% are372

4-ary; and 3.20% are 5-ary. Meanwhile, 26.65%373

of the relations are cross-sentence relations, while374

the rest are intra-sentence relations.375

4 Modeling376

In this section, we describe how we model the377

named entity recognition and N -ary relation ex-378

traction tasks on POLYIE.379

Named Entity Recognition. We model the NER380

task as a sequence labeling problem and learn a neu-381

ral sequence tagger, as shown in Figure 2. We study382

both the bi-directional LSTM-CRF (BiLSTM-383

CRF) (Ma and Hovy, 2016) model and BERT-384

based (Devlin et al., 2019) NER models for neural385

sequence tagging. We also study the performance386

of GPT-3.5 and GPT-4 on NER.387

In BiLSTM-CRF, the input text is passed388

through an embedding layer to obtain token repre-389

sentations. These representations are then fed into 390

a BiLSTM layer (Lample et al., 2016) to capture 391

contextual information. The output of the BiL- 392

STM layer is finally sent to a subsequence Condi- 393

tional Random Field (CRF) layer (Lafferty et al., 394

2001) for sequence labeling. For the pre-trained 395

language models (PLM), we study both BERTbase 396

(Devlin et al., 2019) and RoBERTa (Liu et al., 397

2019) for NER. We also include three domain- 398

specific BERT models: SciBERT (Beltagy et al., 399

2019), BioBERT (Lee et al., 2020), and MatSciB- 400

ERT (Gupta et al., 2022). All the NER models in 401

the BERT family are fine-tuned for sequence label- 402

ing, by stacking a linear layer that maps the contex- 403

tual token representations into the label space. In 404

addition, we also evaluate LLMs’ abilities in mark- 405

ing material science concepts. Following the exist- 406

ing work (Tang et al., 2023), We directly prompt 407

GPT-3.5-turbo and GPT-4 with few-shot exem- 408

plars to use special marks “@@” to annotate the 409

boundaries and types of the named entities. De- 410

tailed explanations and examples of prompts are 411

included in App. C. 412

Relation Extraction. For relation extraction, 413

we evaluate the performances of the rule-based 414

method, PLM-based models, and graph-based mod- 415

els. For the rule-based method, we leverage the as- 416

sumption, Proximity-Rule, that relations are more 417

likely to be formed with most proximitive entities. 418

As illustrated in Figure 2, PLM-based models (such 419

as BERT-RE) leverage the strong representation 420

power of pre-trained language models on entities 421

and employ simple aggregation techniques, such 422

as concatenation and summation, to compose rela- 423

tion embeddings for further prediction. Example 424

models in this category are state-of-the-art mod- 425

els PURE (Zhong and Chen, 2021), which inserts 426

a special “entity marker” token around the enti- 427

ties in a candidate relation; and its variant PURE- 428

SUM (Tiktinsky et al., 2022), which uses embed- 429

ding summation for variable-length N -ary RE. We 430

also study graph-based methods for N -ary RE, Dy- 431

GIE++ (Luan et al., 2019), which constructs a dy- 432

namic span graph from the input text, with entities 433

as nodes and relations as edges to reason over multi- 434

hop relations. For models based on LLMs like 435

GPT-3.5-turbo and GPT-4, we randomly choose 436

a subset of examples from the training set to serve 437

as few-shot instances. These are then directly sent 438

to the models as prompts to facilitate the relation 439

extraction. 440
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“For PBDTTT-TIPS:PC71BM (1:1, w/w) blend, the
films exhibit a typical cluster structure with
many aggregated domains and a root-mean-
square (rms) roughness of 1.472 nm. The
domain sizes estimated by cross-section
profiles are about 10-20 nm.”

Contextualizing Embedding

Token Classification

O Material Condition Condition O O … Property 
Property Property O Value Value O Property 
Property O O O O O O Value

Contextualizing Embedding

Aggregation

Relation Classification True

“For <m> PBDTTT-TIPS:PC71BM </m> <m> (1:1,
w/w) </m> blend, the films exhibit a typical
cluster structure with many aggregated
domains and a <m> root-mean-square (rms)
roughness </m> of <m> 1.472 nm </m>. The
<m> domain sizes </m> estimated by cross-
section profiles are about <m> 10-20 nm </m>.”

Figure 2: Model architecture for Named Entity Recognition (left) and N -ary Relation Extraction (right).

5 Experiments441

5.1 Experimental Setup442

Evaluation Protocol. We split the dataset into443

123 training articles, 27 validation articles, and444

27 test articles following a 70%/15%/15% ratio.445

The three sets do not have overlapping scientific446

documents. For NER, we report the entity-level447

precision, recall, and F-1 scores of each baseline448

for different entity categories, as well as the corre-449

sponding micro-average of these metrics. For RE,450

we report the precision, recall, and F-1 score.451

Hyperparameters. For BiLSTM-CRF, we use one452

layer of BiLSTM layer with 256-dimensional hid-453

den states and 128 embedding dimensionality. For454

the BERT-family NER models, we stack a linear455

layer with a hidden size of 128 on the BERT ar-456

chitecture for token classification. For all the NER457

and RE models, we use early stopping on the dev458

set for regularization. See App. B for details.459

5.2 Main Results460

Entity Mention Extraction. Table 3 shows the461

performance of different methods for the NER task462

on POLYIE. From the results, we make the fol-463

lowing observations: (1) BERT-based models sig-464

nificantly outperform BiLSTM-CRF model with465

a 14.8% gain in micro average F1-score. This is466

because BERT-based models have been pre-trained467

on a large corpus of data, allowing them to pos-468

sess more semantic knowledge than BiLSTM-CRF469

and to better understand the context. (2) Domain-470

specific BERT models achieve slightly better per-471

formance than the vanilla BERT due to the encod-472

ing of domain-specific knowledge. MatSciBERT,473

which is fine-tuned on a corpus of materials science474

articles, shows the best performance on almost all475

metrics. (3) Upon comparing the performance of 476

different entity types, we find that it is challenging 477

for all models to discriminate Condition entities 478

from the other categories. We hypothesize that 479

this is because Conditions are relatively rare in 480

the training data, and the Condition entities could 481

resemble property value entities. 482

Relation Extraction. Table 4 shows the perfor- 483

mance of different methods for the RE task on 484

POLYIE, and we make the following observations: 485

(1) Among all the models evaluated, the PURE- 486

SUM model with MatSciBERT as the encoder 487

achieves the highest F-1 score, indicating that 488

MatSciBERT can better understand the context, 489

and the summation operation is an appropriate ag- 490

gregation method for variable-length N -ary rela- 491

tion extraction. (2) The rule-based approach ex- 492

hibits inferior performance in comparison to most 493

deep learning models, indicating that there are 494

many cases that do not conform to the proximity 495

rule, such as cross-sentence relations and parallel 496

relations. (3) Interestingly, the BERT-RE model 497

shows even worse performance than the rule-based 498

method. Compared to PURE-based models, BERT- 499

RE directly averages the embeddings of all tokens 500

related to the relation. As tokens with similar types 501

have similar representations, and N-ary relations 502

are composed of certain entity-type elements, the 503

averaging operation results in similar relation rep- 504

resentations, ultimately leading to poor model per- 505

formance. (4) As DyGIE++ is a model specifically 506

designed for binary relation extraction, it can only 507

determine the presence of N-ary relations by assess- 508

ing the connectivity of arbitrary pairs of elements 509

in the relationship. It thus has stricter judging cri- 510

teria than the other methods, making its precision 511
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Model Material Property Value Condition Micro Average

BiLSTM-CRF 58.9 (68.4/51.7) 70.5 (75.4/66.2) 73.0 (74.6/71.5) 13.1 (36.4/8.0) 65.8 (72.4/60.4)

BERTbase 83.9 (84.0/83.8) 77.8 (81.1/74.7) 81.3 (83.9/79.0) 13.8 (16.2/12.0) 80.6 (82.4/78.8)
RoBERTabase 85.4 (86.4/84.4) 76.2 (77.4/75.2) 81.8 (83.3/80.3) 12.5 (16.7/10.0) 80.7 (82.0/79.4)

SciBERT 85.6 (87.1/84.1) 74.6 (77.2/72.3) 81.9 (84.6/79.4) 11.3 (19.0/8.0) 80.3 (82.7/78.1)
BioBERT 85.1 (84.5/85.7) 76.9 (79.3/74.6) 82.6 (82.6/82.5) 15.2 (16.6/14.0) 81.0 (81.7/80.3)
MatSciBERT 85.8 (84.4/87.3) 77.4 (78.2/76.5) 82.4 (81.9/82.8) 11.4 (13.2/10.0) 81.3 (81.1/81.7)

GPT-3.5-Turbo 63.7 (61.4/67.2) 49.4 (47.5/52.5) 59.5 (86.6/45.9) 2.2 (17.5/1.3) 56.4 (58.8/54.1)
GPT-4 64.7 (57.6/75.2) 61.6 (52.2/76.6) 74.2 (67.1/84.2) 5.7 (8.5/4.8) 64.5 (56.5/75.1)

Table 3: Main NER results on the test dataset, presented as “F-1 Score (Precision/Recall)” in %. We offer scores
under different metrics for each entity category and the overall micro-average performance.

Model Precision Recall F-1 Score

Proximity-Rule 26.49 30.83 28.50
BERT-RE 12.06 40.28 18.57
DyGIE++ 67.53 50.28 57.64

PURE 60.27 54.04 56.98
PURE-SUM (SciBERT) 42.86 82.50 56.41

PURE-SUM (MatSciBERT) 51.91 83.06 63.89

GPT-3.5-Turbo 16.37 34.27 21.73
GPT-4 37.82 54.16 44.06

Table 4: Main RE results on the test dataset, presented
as Precision, Recall, and F-1 Scores in %.

higher at the cost of lower recall.512

Analysis on LLMs. LLMs such as GPT-3.5-turbo513

and GPT-4 exhibit worse performance compared to514

most baseline models on both NER and RE tasks.515

This discrepancy is likely due to the small propor-516

tion of polymer material science content in their517

pre-training corpus. When these models are di-518

rectly prompted with few-shot examples, as op-519

posed to being fine-tuned with training data, they520

receive less domain-specific information. This limi-521

tation hinders their ability to effectively understand522

and process concepts related to polymer material523

science. Potential updates on LLMs, like exter-524

nal tools (e.g., knowledge retriever) (Shi et al.,525

2023; Zhuang et al., 2023) or collaborations be-526

tween LLMs and smaller pre-trained language mod-527

els (Yu et al., 2023; Xu et al., 2023), may further528

boost the performance via injecting more domain-529

specific knowledge. Due to the poor performance530

obtained under the few-shot prompting setting and531

the high cost when fine-tuning LLMs, we rec-532

ommend fine-tuning smaller domain-specific pre-533

trained language models, like MatSciBERT in Ta-534

ble 3 and PURE-SUM (MatSciBERT) in Table 4,535

to extract polymer material science entities and536

relations.537
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Figure 3: Effect of training data size on NER task.
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Figure 4: Performances of PURE-SUM on RE task with
limited training data and few-shot setting.

5.3 Impact of Data Size 538

We evaluate the NER model performance as a func- 539

tion of the amount of training data in Figure 3. 540

Compared to BERT-based models, the performance 541

of the BiLSTM-CRF model is consistently infe- 542

rior, with only slight changes with varying sizes of 543

training data. This trend demonstrates the superi- 544

ority of language model pre-training stage, which 545

allows BERT-family NER models to encode rele- 546

vant knowledge for the downstream task. Compar- 547

ing different BERT models, MatSciBERT consis- 548

tently outperforms vanilla BERT by a slight margin, 549

which reflects the benefit of developing domain- 550
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Noise Types Input Text

Interweaving Relations The corresponding HOMO and LUMO energy levels for PIDTT-TzTz and PIDTT-TzTz-TT
are (-5.24, -3.21 ) and (-5.34, -3.03) eV, respectively.

Partially Correct Rela-
tions

For example, OFETs made using a porphyrin-diacetylene polymer give mobilities of

1×10−7cm2V−1s−1 at room temperature and 2× 10−6cm2V −1s−1 at 175◦C.
Inverted Sentences For polymer PDTG-DPP , the thermal stability is even better than the Sibridged analogue, PDTS-

DPP, and the Td = 409◦C of PDTG-IID is the same as the Si-bridged analogue, PDTS-IID.

Table 5: Examples incorrectly predicted by MatSciBERT. Entities highlighted in green indicate the gold N -ary
relation in the input text. Predicted relations made by the model are shown in bold fonts. Red fonts represent the
location of errors.

specific pre-trained language models.551

Figure 4(a) shows the performance of the best552

RE model PURE-SUM as training data size varies.553

With more training data, the model’s performance554

generally increases in all the metrics. However,555

after training on 60% data, the recall starts to de-556

crease, while the other metrics still slightly increase.557

This is because the imbalance between positive and558

negative cases starts to influence the training, where559

models are more likely to predict relations as nega-560

tive, making the false negative cases increase and561

the recall decrease. Additional details about the562

impact of data size on RE tasks can be seen in563

Appendix D.564

5.4 Error Analysis565

We analyze the key error types of the BERTbase566

NER model by drawing its confusion matrix on567

the test set, as shown in Figure 5. The confusion568

matrix shows that the majority of entities are cor-569

rectly predicted as their gold label, with the excep-570

tion of Condition entities. The limited number571

of training samples containing Condition entities572

makes it difficult for the model to distinguish them573

from other irrelevant entities (labeled “O”). Addi-574

tionally, the resemblance between Condition and575

Property Value entities often results in incorrect576

predictions between them.577

For RE, Table 5 illustrates the major error types578

made by the PURE-SUM model, including: (1) In-579

terweaving or parallel relations in the text present580

a significant challenge for models in understand-581

ing the alignment between multiple sets of entities;582

(2) The task of flexible-length N -ary relation ex-583

traction is challenging, and errors often occur when584

encountering relations that cover more entities (e.g.,585

determining whether to include the Condition in586

the prediction); (3) The last type of error frequently587

arises when the sentence organization is atypical,588

Material Property Value Condition O

Material

Property

Value

Condition

O

3080 17 0 0 362

7 2909 8 4 667

0 2 1650 13 189

2 0 19 60 151

246 370 143 80 34776
0

200

400

600

800

1000

Figure 5: The confusion matrix of BERT on NER task.

including sentences written in the passive voice. 589

6 Conclusion 590

We have curated a new dataset POLYIE for named 591

entity recognition and N -ary relation extraction 592

from polymer scientific literature. POLYIE cov- 593

ers thousands of <Material, Property, Value, 594

Condition> relations curated from 146 full poly- 595

mer articles. We have evaluated mainstay NER and 596

RE models on POLYIE and analyzed their perfor- 597

mance and error cases. In addition, we have also 598

tested the performance of the strongest LLMs, GPT- 599

3.5 and GPT-4, on POLYIE. We found that even 600

state-of-the-art models, either domain-specific pre- 601

trained language models or most advanced LLMs, 602

can struggle with hard NER and RE cases. Through 603

error analysis, we found that such difficulties arise 604

from the diverse lexical formats and ambiguity of 605

polymer named entities and also variable-length 606

and cross-sentence N -ary relations. Our work con- 607

tributes the first polymer scientific information ex- 608

traction dataset as well as insights into this dataset. 609

We hope POLYIE will serve as a useful resource 610

that will and attract more research efforts from the 611

NLP community to push the boundary of this task. 612
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Limitations613

One limitation of POLYIE is that we have anno-614

tated only the text modality of the polymer lit-615

erature corpus. While tables and figures are not616

included in POLYIE, they are two important modal-617

ities that contain a considerable amount of infor-618

mation about polymer properties. It will be in-619

teresting to explore annotation schemes that can620

extend POLYIE to include tables and figures and621

enable multi-modal information extraction jointly622

from text, tables, and figures. In addition, POLYIE623

currently covers four application subdomains for624

polymer materials. In the future, POLYIE can ben-625

efit from including more sub-domains for poly-626

mers, as well as scientific publications for other627

organic materials. Such extensions will not only628

make POLYIE more comprehensive for studying629

polymer information extraction, but also allow it to630

be used to study cross-domain transfer of different631

information extraction models.632
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A T-SNE Visualization of Entity917

Embeddings918

Figure 6 shows t-SNE (Van der Maaten and Hinton,919

2008) visualization of entity embeddings generated920

by BERTbase, SciBERT and MatSciBERT. Com-921

pared with all the visualization of different entity922

embeddings, we can observe that pre-training on923

a more similar domain of corpus to fine-tuning924

corpus will make model generate high-quality em-925

beddings. From the figures, we can easily observe926

that MatSciBERT embeddings of the same entity927

type are more clustered than those of BERTbase,928

which is also consistent with what we observe from929

the quantitive results.930

B Implementation Details931

All the NER and RE models are trained with the932

Adam optimizer (Kingma and Ba, 2014), with dif-933

ferent learning rate: The BiLSTM-CRF model is934

trained with a learning rate of 0.005 and batch size935

of 64; While fine-tuning the BERT-family NER936

models, we select the learning rate of 3e− 4; For937

relation extraction, instances with lengths exceed-938

ing 300 are broken into several shorter segments,939

without cutting off relations, and the models are940

trained with a learning rate of 2e− 4 and a batch941

size of 8. All experiments are conducted on CPU:942

Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz and943

GPU: NVIDIA GeForce RTX A5000 GPUs using944

python 3.8 and Pytorch 1.10.945

C Implementation Details of LLMs946

We conduct experiments on Azure OpenAI plat-947

form, with GPT-3.5-turbo and GPT-4 in 0613 ver-948

sion. We set the temperature as 0 to obtain a stable949

and faithful evaluation of the LLMs’ results. Fol-950

lowing the existing work (Tang et al., 2023), we951

have 4 components in our NER prompt: general952

instruction, annotation guideline, output indicator,953

and few-shot exemplars. (1) The general instruc-954

tion part specifies the objective of the LLM to mark955

the polymer material science entities or relations.956

(2) The annotation guideline is to provide addi-957

tional explanation and guidelines for the LLM to958

follow when annotating different types of entities959

and relations. (3) The output indicator specifies960

the output format of the LLM. (4) The few-shot961

exemplars allow LLM to form a more cohesive962

understanding of previous instructions.963

The NER and RE prompts are presented below.964

Listing 1: NER prompt.
1 As a proficient linguist , your objective 965

is to identify and label specific 966
entities within a provided paragraph 967
. These entities include chemical 968
names (CN), property names (PN), 969
property values (PV), and conditions 970
(Condition). Chemical names , 971

polymer material names and their 972
abstractions are entities. Polymer 973
material names might contain 974
multiple chemical names within it, 975
label them as a single entity. 976
Abstractions of property names are 977
also considered entities. Property 978
values contain both the number and 979
the unit. To represent recognized 980
named entities in the output text , 981
enclose them within special symbols 982
'@', followed by their respective 983
types '(CN)', '(PN)', or '(PV)' 984
before the ending '@'. The remaining 985
text should remain unchanged. 986

Listing 2: RE prompt.
1 As a skilled linguist , your mission is 987

to analyze a provided paragraph that 988
contains four distinct types of 989

entities: Chemical Names (CN), 990
Property Names (PN), Property Values 991
(PV), and Conditions (Condition). 992

Each of these entities is enclosed 993
within "@" symbols , with their 994
entity type specified in brackets 995
before the closing "@". Your 996
objective is to identify and extract 997
relationships among these entities , 998
and then present them in one of two 999
possible formats: (Chemical Names , 1000

Property Names , Property Values , 1001
Condition) or (Chemical Names , 1002
Property Names , Property Values). 1003
Please only establish relationships 1004
using the provided entities , and 1005
only provide a list of the extracted 1006
relations. Below are some examples: 1007

D Few-Shot Learning 1008

Figure 7 shows the performance of different NER 1009

models under few-shot settings. We can see 1010

BERT-based NER models consistently outperform 1011

BiLSTM-CRF models by large margins. However, 1012

the variances of such BERT-based NER models are 1013

also much larger. This is likely due to the differ- 1014

ent quality and representativeness of the training 1015

samples and the capacity of pre-trained language 1016

models. The MatSciBERT model, for instance, 1017

has already captured a significant amount of do- 1018

main knowledge during pre-training. When it is 1019

fed with critical cases during the fine-tuning stage, 1020

it can quickly adapt such knowledge to fine-tuning, 1021

resulting in high-quality decision boundaries on 1022
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Figure 6: t-SNE visualization of entity embeddings generated by BERT, SciBERT, and MatSciBERT.
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Figure 7: Effect of the few-shot learning on NER task.

the corpus. However, if the training samples are of1023

poor quality and not representative, the model’s per-1024

formance can be limited. Such instability of BERT-1025

based fine-tuning is also observed on GLUE (Mos-1026

bach et al., 2021).1027

E Impact of Negative Sampling in1028

Training1029

As the RE models are trained with negative sam-1030

pling, we investigate the impact of negative sam-1031

ples during the training process. We study three1032

ways to create negative samples from existing rela-1033

tions, by corrupting entities with other irrelevant en-1034

tities of the same type in the context sentences. (1)1035

Easy: all possible random corruptions; (2) Medium:1036

single or double element corruption; and (3) Hard:1037

only single-element corruption. Figure 8(a) shows1038

the results when training with different negative1039

sampling policies, with a fixed k = 10. We find1040

that the hard negative sampling strategy achieves1041

superior performance, suggesting that using hard1042

negative cases can help the model learn better deci-1043

sion boundaries. In Figure 8(b), we also evaluate1044

the model performances when varying the num-1045

ber of negative samples k from 5 to 20. The trend1046

shows that k = 20 achieves the best performances 1047

with all different negative sampling strategies. 1048

P R Acc F-10.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es
Hard
Medium
Easy

(a) Quality

5 10 20
# Number of Negative Samples
0.2

0.3

0.4

0.5

0.6

F-
1 

Sc
or

e

Hard
Medium
Easy

(b) Amount

Figure 8: Effect of the quality and amount of negative
samples during training in N -ary relation extraction.

F Annotation Guidance 1049

In this section, we will introduce the annota- 1050

tion guidance. There are 4 types of entities that 1051

should be annotated: Chemical Compound, Prop- 1052

erty Name, Property Value, and Condition. 1053

F.1 Chemical Compound 1054

• Only chemical nouns that can be associated with 1055

a specific structure should be labeled as Chemical 1056

Compounds: e.g., “4,9-di(2-octyldodecyl) aNDT”, 1057

“trimethyltin chloride”; 1058

• Abbreviation of the chemical nouns should also 1059

be labeled as Chemical Compounds as long as it 1060

can be associated with a specific structure: e.g., 1061

“PaNDTDTFBT”; 1062

• General chemical concepts (non-structural or non- 1063

specific chemical nouns), adjectives, verbs, and 1064

other terms that can not be associated directly with 1065

a chemical structure should not be annotated: e.g., 1066

“polymer”, “conjugated polymers” should not be 1067

annotated; 1068

• Spans: Spans of Chemical Compounds should 1069

not contain leading or trailing spaces. If the ab- 1070

breviation of Chemical Compound appears inside 1071

brackets, the brackets should not be included in the 1072

annotation. 1073
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F.2 Property Name1074

• Properties of chemical compounds should be an-1075

notated as long as they can be measured qualita-1076

tively (such as toxicity and crystallinity) or quan-1077

titatively (with a unit and a value). Property1078

Names that occur without a corresponding value1079

should also be annotated: e.g., “Hole mobility”,1080

“Open-circuit voltage”, “decomposition tempera-1081

ture”, “conductivity”, “toxicity”;1082

• Abbreviations of Property Names should be an-1083

notated: “PCE”, “HOMO level”, “LUMO level”;1084

• Laboratory methods should not be annotated as1085

Property Names: “Titration”, “Cyclic voltammetry”1086

should not be annotated as Property Names;1087

• Spans: Spans of Property Names should not con-1088

tain leading or trailing spaces.1089

F.3 Property Value1090

• Both quantitative and qualitative Property Values1091

should be annotated;1092

• Do not annotate overly vague adjectives;1093

• Spans of Property Values should not contain lead-1094

ing or trailing spaces. Property Value and its units1095

should be contained as a single span. Ranges of1096

Property Value should be contained as a single1097

span.1098

F.4 Condition1099

• Only quantitative modifiers that constrain the1100

numerical Property Value should be annotated as1101

Conditions;1102

• Spans of Conditions should not contain leading1103

or trailing spaces.1104

The screenshots of the official annotation guid-1105

ance shared with all the annotators are listed in1106

Figure 9 and Figure 10.1107
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Figure 9: Overview of documents to annotate on the annotation platform.

Figure 10: Instructions on assigning pre-defined labels to named entities.
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