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Abstract
We warn against a common but incomplete under-
standing of empirical research in machine learn-
ing that leads to non-replicable results, makes
findings unreliable, and threatens to undermine
progress in the field. To overcome this alarm-
ing situation, we call for more awareness of the
plurality of ways of gaining knowledge experi-
mentally but also of some epistemic limitations.
In particular, we argue most current empirical ma-
chine learning research is fashioned as confirma-
tory research while it should rather be considered
exploratory.

1. The Non-Replicable ML Research Enigma
In his Caltech commencement address “Cargo Cult
Science”∗,1 Richard Feynman (1974) described how re-
searchers employ practices that conflict with scientific prin-
ciples to adhere to a certain way of doing things. This
position paper warns against similar tendencies in empir-
ical research in machine learning (ML) and calls for a
mindset change to address methodological and epistemic
challenges of experimentation.
There is ML research that does not replicate. From an
empirical scientific perspective, non-replicable research is a
fundamental problem. As Karl Popper (1959/2002, p. 66)
phrased it: “non-reproducible single occurrences are of no
significance to science.”2 Consequently, ML research that
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1As our paper contains some jargon, we have included a glos-
sary in the appendix; asterisks (∗) in the text denote covered terms.

2Reproducible here does not refer to exact computational re-
producibility∗ but generally to arriving at the same scientific con-
clusions, termed replicability∗ in this paper.

does not replicate has far-reaching epistemic∗ and practical
consequences. From an epistemological∗ point of view, it
means that research results are unreliable and, to some ex-
tent, it calls into question progress in the field. In practice,
it may jeopardize applied empirical researchers’ confidence
in experimental results and discourage them from applying
ML methods, even though these novel approaches might be
beneficial. For example, ML is increasingly being used in
the medical domain, and this is often promising in terms of
patient benefit. However, there are also examples indicat-
ing that applied researchers (are starting to) have concerns
about ML being used in this high-stakes area. Consider, for
example, this quite drastic warning by Dhiman et al. (2022,
p. 2): “Machine learning is often portrayed as offering many
advantages [...]. However, these advantages have not yet
materialised into patient benefit [...]. Given the increasing
concern about the methodological quality and risk of bias
of prediction model studies [emphasis added], caution is
warranted and the lack of uptake of models in medical prac-
tice is not surprising.” That is, if the ML community does
not improve rigor in empirical methodological research, we
think there may be a risk of a backlash against the use of
ML in practice.
In general, there is a growing body of empirical evidence
showing that conclusions drawn from experimental results
in ML were overly optimistic at the time of publication and
could not be replicated in subsequent studies. For example,
Melis et al. (2018, p. 1) “arrive at the somewhat surprising
conclusion that standard LSTM architectures, when properly
regularized, outperform more recent models”; Henderson
et al. (2018, p. 3213) found for deep reinforcement learn-
ing “that both intrinsic (e.g. random seeds, environment
properties) and extrinsic sources (e.g. hyperparameters,
codebases) of non-determinism can contribute to difficulties
in reproducing baseline algorithms”; Christodoulou et al.
(2019, p. 12) found in a systematic review “no performance
benefit of machine learning over logistic regression for clin-
ical prediction models”; Elor & Averbuch-Elor (2022, p. 1)
found in their study on data balancing in classification “that
balancing does not improve prediction performance for the
strong” classifiers; see also Lucic et al. (2018), Riquelme
et al. (2018), Raff (2019), Herrmann et al. (2020), Fer-
rari Dacrema et al. (2021), Marie et al. (2021), Buchka
et al. (2021), Narang et al. (2021), van den Goorbergh et al.
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(2022), Mateus et al. (2023), McElfresh et al. (2023), or
the surveys by Liao et al. (2021) and Kapoor & Narayanan
(2023) for similar findings. In concrete terms, there is pub-
lished ML research that is, as Popper would say, of no
significance to science, but we do not know how much!
We have been warned; don’t we listen? We are by no
means the first to raise these and related issues, and the very
fact that we are not the first is a matter of even graver con-
cern. We think that empirical research in ML finds itself in
a situation where practicing questionable research practices,
such as state-of-the-art-hacking (SOTA-hacking; Gencoglu
et al., 2019; Hullman et al., 2022), has sometimes become
more rewarding than following the long line of literature
warning against it. Langley wrote an editorial “Machine
Learning as an Experimental Science” as early as 1988, and
Drummond and Hand pointed out problems with experimen-
tal method comparison in ML already in 2006. Apart from
these specific examples, there is a range of literature over the
last decades dealing with similar issues (e.g., Hooker, 1995;
McGeoch, 2002; Johnson, 2002; Drummond, 2009; Drum-
mond & Japkowicz, 2010; Mannarswamy & Roy, 2018;
Sculley et al., 2018; Lipton & Steinhardt, 2018; Bouthillier
et al., 2019; Liao et al., 2021; D’Amour et al., 2022; Raff
& Farris, 2022; Lones, 2023; Trosten, 2023). Specifically
relevant is the paper by Nakkiran & Belkin (2022, p. 2), in
which they note a “perceived lack of legitimacy and real
lack of community for good experimental science” (still)
exists. If we continue not to take these warnings seriously
the amount of non-replicable research will only continue to
increase, as the cited very recent empirical findings indicate.
We do not believe that deliberate actions on the part of indi-
viduals have led to this situation but that there is a general
unawareness of the fact that, while “follow[ing] all the appar-
ent precepts and forms of scientific investigation [in ML],”
one can be “missing something essential.” In particular, this
includes that “if you’re doing an experiment, you should
report everything that you think might make it invalid—not
only what you think is right about it: other causes that could
possibly explain your results; and things you thought of that
you’ve eliminated by some other experiment, and how they
worked” (quotes from Feynman, 1974, p. 11). Misaligned
incentives and pressure to publish positive results contribute
to this situation (e.g., Smaldino & McElreath, 2016).
One of a kind? At the intersection of formal and empiri-
cal sciences. We believe that one of the main reasons for
this is that ML stands, like few other disciplines, at the inter-
face between formal sciences and real-world applications.
Because ML has strong foundations in formal sciences such
as mathematics, (theoretical) computer science (CS), and
mathematical statistics, many ML researchers are accus-
tomed to reasoning mathematically about abstract objects
– ML methods – using formal proofs. On the other hand,
ML can also very much be considered a (software) engineer-
ing science, to create practical systems that can learn and

improve their performance by interacting with their envi-
ronment. Lastly, and especially concerning experimentation
in ML, there exists an applied statistical perspective with a
focus on thorough inductive reasoning. With its tradition in
data analysis and design of experiments, it emphasizes the
empirical aspects of ML research.
These different perspectives, with their specific objectives,
methodology, and terminology, have their unique virtues,
but they also have their blind spots. The formal science
perspective aims at providing absolute certainty and deep in-
sights through the definition of abstract concepts and mathe-
matical proofs but is often not well suited to explain complex
real-world phenomena, as these concepts and proofs very
often have to be based on strongly simplifying assumptions.
The engineering perspective brought us incredible applica-
tion improvements, but at the same time, not all conducted
experiments are optimally designed to generalize results
beyond the specific application context (which is also often
only implicitly defined), as the references provided at the
beginning demonstrate.
A statistical perspective, which we adopt here, is very
sensitive to such empirical issues – explaining/analyzing
real-world phenomena and generalizing beyond a specific
context (inductive reasoning) – and thus particularly suited
to explain 1) why ML is faced with non-replicable research,
and 2) how a more complete and nuanced understanding of
empirical research in ML can help to overcome this situation.
With empirical ML we thus mean in a broad sense the sys-
tematic investigation of ML algorithms, techniques, and con-
ceptual questions through simulations, experimentation, and
observation. It deals with real objects: implementations of
algorithms – which are usually more complex than their the-
oretical counterparts (e.g., Kriegel et al., 2017) – running on
physical computers; data gathered and produced/simulated
in the real world; and their interplay. Rather than focusing
solely on theoretical analysis and proofs, empirical research
emphasizes practical evaluations using real-world and/or
synthetic data. Empirical ML, as understood here, requires
a mindset very different from engineering and formal sci-
ences and a different approach to methodology to allow for
the full incorporation of the uncertainties inherent in dealing
with real-world entities in experiments.
In our view, the discussed literature, raising similar points,
has two main shortcomings: 1) they address only specific
aspects of the problem and do not provide a comprehensive
picture; 2) there is a confusion of terminology. For example,
Bouthillier et al. (2019) distinguish between exploratory
and empirical research. Nakkiran & Belkin (2022) use the
term good experimental research and contrast it in particu-
lar with improving applications. Sculley et al. (2018) talk
about empirical advancements and empirical analysis that
are not complemented by sufficient empirical rigor. And
Drummond (2006) discusses ML as an experimental science
hardly using the term empirical at all.
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To overcome these issues, we gather opinions and (empir-
ical) evidence scattered across the literature and different
domains and try to develop a comprehensive synthesis. For
example, similar problems have been discussed in bioinfor-
matics for some time (e.g., Yousefi et al., 2010; Boulesteix,
2010). We also take into account literature from other, more
distant fields facing related issues, such as psychology and
medicine. We believe this comprehensive picture will allow
for a broader and deeper understanding of the complexity of
the situation, which may at first glance appear to be rather
easy to solve, e.g., by more (rigorous) statistical machinery
or more open research artifacts. It is our conviction that
without this deeper understanding, a situation that has been
warned about in vain for so long cannot be overcome.

2. The Status Quo of Empirical ML
Recent advances. It is important to emphasize that there
have been encouraging first steps in terms of empirical ML
research recently. This includes the newly created publica-
tion formats Transactions on Machine Learning Research
(TMLR), Journal of Data-centric Machine Learning Re-
search (DMLR), or the NeurIPS Datasets and Benchmarks
Track launched in 2021. These venues explicitly include in
their scope, e.g., “reproducibility studies of previously pub-
lished results or claims” (TMLR, n.d.), “systematic analyses
of existing systems on novel datasets or benchmarks that
yield important new insight” (DMLR, n.d.), and “system-
atic analyses of existing systems on novel datasets yielding
important new insight” (NeurIPS, n.d.). Further examples
are the I Can’t Believe It’s Not Better! (ICBINB) work-
shop series (e.g., Forde et al., 2020) and Repository of Un-
expected Negative Results (ICBINB Initiative, n.d.) and
efforts towards preregistration (e.g., Albanie et al., 2021)
and reproducibility (e.g., Sinha et al., 2023). These devel-
opments, while very important, are not sufficient in our
view to overcome the problems empirical ML faces. For
example, while computational reproducibility∗ may be a
necessary condition, it is not a sufficient condition for repli-
cability (e.g., Bouthillier et al., 2019). Furthermore, while
the topics in the above formats cover many important as-
pects of empirical ML, we feel that they do not emphasize
enough the importance of true replication of research, which
is paramount from an empirical perspective. Most impor-
tantly, a situation in which a line of research warning us for
a long time has been largely neglected will not be overcome
by such practical changes alone. It also requires a change in
awareness – of the importance of proper empirical ML but
maybe even more of its limitations; and that there are dif-
ferent, equally valid types of proper empirical inquiry. We
see this lack of awareness evidenced by TMLR (n.d.) itself:
“TMLR emphasizes technical correctness over subjective
significance, to ensure that we facilitate scientific discourse
on topics that may not yet be accepted in mainstream venues

[emphasis added] but may be important in the future.” This
is expressed in the talk introducing TMLR, too.3 Judging by
the example of other empirical sciences, this general lack
of awareness of proper empirical ML is certainly the most
difficult thing to overcome. Below we discuss problems we
identified as symptoms of this lack.

Problem 1: Lack of unbiased experiments and scrutiny.
Most method comparisons are carried out as part of a paper
introducing a new method and are usually biased in favor of
the new method (see Section 1 for examples).
Sculley et al. (2018, p. 1) found that “[l]ooking over papers
from the last year, there seems to be a clear trend of multiple
groups finding that prior work in fast moving fields may
have missed improvements or key insights due to things as
simple as hyperparameter tuning studies[∗] or ablation stud-
ies.” Moreover, for a neutral method comparison study of
survival prediction methods, it has been shown that method
rankings can vary considerably depending on design and
analysis choices made at the meta-level (e.g., the selected
set of datasets, performance metric, aggregation method)
and that any method – even a simple baseline – can achieve
almost any rank (Nießl et al., 2022; see also Sonabend et al.,
2022). We are convinced that it is not far-fetched to con-
clude that quite often results demonstrating the superiority
of a newly proposed method are obtained by an experimen-
tal design favorable to that method.
As in other disciplines (Munafò et al., 2017), there are struc-
tural issues (e.g., publication bias, pressure to publish, lack
of replication studies) and questionable practices (e.g., hy-
pothesizing after the results are known [HARKing, Kerr,
1998] and p-hacking [Simonsohn et al., 2014]) that con-
tribute to this lack of unbiased experiments and scrutiny. At
the individual level, in particular, there is a lack of awareness
that method comparisons performed as part of a paper in-
troducing a new method are not well suited to draw reliable
conclusions about a method beyond the datasets consid-
ered, especially if 1) the number of datasets considered is
small (Dehghani et al., 2021; Koch et al., 2021), 2) there is
meta-level overfitting on a single benchmark design (Recht
et al., 2019; Beyer et al., 2020), 3) the set of datasets se-
lected for the experiments is biased in favor of the newly
proposed method, and 4) the authors are much more familiar
with the new method than with its competitors, as is the case
frequently (Johnson, 2002; Boulesteix et al., 2013; 2017).
Furthermore, it is very easy to artificially make a method ap-
pear superior (e.g., Jelizarow et al., 2010; Norel et al., 2011;
Nießl et al., 2022; Ullmann et al., 2023; Pawel et al., 2024;
Nießl et al., 2024), and publication bias towards positive
results is a strong incentive to engage in SOTA-hacking and
demonstrate the superiority of a newly proposed method
(Sculley et al., 2018; Gencoglu et al., 2019).

3TMLR - A New Open Journal For Machine Learning: https:
//youtu.be/Uc1r1LfJtds
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At the system level there is a publication bias and a lack
of replication and neutral method comparison studies (e.g.,
Boulesteix et al., 2013; 2015b). Sculley et al. (2018, p. 1)
“observe that the rate of empirical advancement [larger and
more complex experiments] may not have been matched by
consistent increase in the level of empirical rigor across the
field as a whole.” In unsupervised learning, the problem is
more pronounced than in supervised learning because “there
is much less of a benchmarking tradition in the clustering
area than in the field of supervised learning” (Van Mechelen
et al., 2023, p. 2; see also Zimmermann, 2020).

Problem 2: Lack of legitimacy. The second problem
highlights a specific aspect of the lack of awareness of how
different types of empirical research can contribute to ML.
The problem was addressed by Nakkiran & Belkin (2022)
and we completely agree with their description:
“In mainstream ML venues, there is a perceived lack of legit-
imacy and a real lack of community for good experimental
science – which neither proves a theorem nor improves an
application. This effectively suppresses a mode of scien-
tific inquiry which has historically been critical to scientific
progress, and which has shown promise in both ML and in
CS more generally” (Nakkiran & Belkin, 2022, p. 2).
They identify a strong bias of the ML community towards
mathematical proofs (formal science perspective) and ap-
plication improvements (engineering perspective), while
good experimental science that does not focus on one of
the above is not incentivized nor encouraged. Nakkiran &
Belkin (2022) see this evidenced by the lack of specific sub-
ject areas, the exclusion from recent calls for papers, the lack
of explicit guidelines for reviewers, and the organization of
separate workshops on experimental scientific investigation
at major ML conferences. In particular, reviewers “often ask
for application improvements” and “for ‘theoretical justifi-
cation’ for purely experimental papers” (Nakkiran & Belkin,
2022, pp. 2–3). Together these factors point to a structural
problem hindering the recognition and promotion of some
sorts of experimental research in ML.
We completely agree with this view but think it may not
immediately be clear what distinguishes improving an appli-
cation from good experimental science at first sight.4 As we
understand it, the focus on application improvement means
that much empirical/experimental research in ML focuses
on developing a new method and demonstrating that it is
superior to existing methods by improving some (predic-
tive) performance metric on specific real-world benchmark
datasets. Good experimental science, on the other hand, is
not about improving performance. It is about improving un-
derstanding and knowledge of a problem, a (class of) meth-
ods, or a phenomenon. Sculley et al. (2018, p. 2) emphasize
that “[e]mpirical studies [in ML] have become challenges

4To avoid misunderstandings: we do consider mathematical
proofs and application improvements very valuable research!

to be ‘won’, rather than a process for developing insight and
understanding. Ideally, the benefit of working with real data
is to tune and examine the behavior of an algorithm under
various sampling distributions, to learn about the strengths
and weaknesses of the algorithms, as one would do in con-
trolled studies.” And Rendsburg et al. (2020, p. 9) argue,
“it is particularly important that our community actively at-
tempts to understand the inherent inductive biases, strengths,
and also the weaknesses of algorithms. Finding examples
where an algorithm works is important – but maybe even
more important is to understand under which circumstances
the algorithm produces misleading results.”

Problem 3: Lack of conceptual clarity and operational-
ization. There is a perceived lack of clarity about some im-
portant abstract concepts that are the objects of ML research
on the one side and a lack of clear operationalization∗ in
empirical investigations on the other side. Both aspects af-
fect the validity of experiments in empirical ML.
This problem is the most complex one and probably for
that reason the most difficult to describe in precise terms
(cf. Saitta & Neri, 1998). However, since we think that this
problem affects the validity of empirical research in ML in
a fundamental way, an account of empirical ML that does
not attempt to make it tangible would be incomplete. We
aim to narrow down the problem by explicating examples
for supervised learning and unsupervised learning.
In other sciences such as psychology and physics, validity∗,
the fact that the experimental measurement process actually
measures what it is intended to measure, is fundamental. It
inevitably depends on a strict and thorough operationaliza-
tion in what way abstract concepts that are to be measured
relate to measurable entities in the real world. Note that
“[o]perational analysis is an excellent diagnostic tool for
revealing where our knowledge is weak, in order to guide
our efforts to strengthening it. The Bridgmanian ideal[∗] is
always to back up concepts with operational definitions, that
is, to ensure that every concept is independently measurable
in every circumstance under which it is used” (Chang, 2004,
p. 147). It is puzzling that validity and other quality criteria
of empirical research have gained little attention in ML so
far (e.g., Myrtveit et al., 2005; Segebarth et al., 2020; Raji
et al., 2021).
Experimental validity in supervised learning. For su-
pervised learning, the problem can be exemplified by the
question of inference from experimental results on real data
in method comparison and evaluation studies.5 Typically,
the goal is to generalize the observed performance differ-
ence between methods to datasets that were not included in
a study, which would require specifying when datasets are
from the same/different domain. The problem is that it is not

5Another example independently affecting validity is under-
specification, which “is common in modern ML pipelines, such as
those based on deep learning” (D’Amour et al., 2022, p. 2).
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at all clear in what sense results obtained from one set of real
datasets can be generalized to any other set of datasets, as
this would require a clear understanding of the distribution
of the data-generating processes by which each dataset is
generated (e.g., Aha, 1992; Salzberg, 1997; Boulesteix et al.,
2015a; Herrmann, 2022; Strobl & Leisch, 2024). Without
a definition of the population of data-generating processes,
i.e., (some) clarity about an abstract concept, it can be ar-
gued that it is not clear what a real data comparison study
actually measures. In other words, the collection of datasets
considered “will not be representative of real data sets in any
formal sense” (Hand, 2006, p. 12). Dietterich (1998, p. 4)
even went so far as claiming that how to perform benchmark
experiments on real datasets properly is “perhaps the most
fundamental and difficult question in machine learning.”
Experimental validity in unsupervised learning. Ar-
guably, the situation is even more involved in unsupervised
learning (e.g., Kleinberg, 2002; von Luxburg et al., 2012;
Zimek & Filzmoser, 2018; Herrmann, 2022). First of all,
“there is no [...] direct measure of success. It is difficult to
ascertain the validity of inferences drawn from the output
of most unsupervised learning algorithms” (Hastie et al.,
2009, p. 487). This is aggravated by an ambiguity about the
abstract concepts of interest. Consider, for example, cluster
analysis.6 Usually, clusters are conceptualized as the modes
of a mixture of (normal) distributions. However, there is a
different perspective that considers cluster analysis from a
topological perspective and conceptualizes clusters as the
connected components of a dataset (Niyogi et al., 2011). It
is not clear if these different notions of clusters 1) concep-
tualize clusters equally well, 2) can be related to the same
real-world entities, and 3) whether clustering methods de-
veloped based on these different notions are equally suitable
for all clustering problems. There is some evidence that
suggests this is not the case (Herrmann et al., 2023a).

Problem summary. We argue that much empirical ML re-
search is prone to overly optimistic, unreliable, and difficult-
to-refute judgments and conclusions. Many experiments
in empirical ML research are based on insufficiently opera-
tionalized experimental setups, partially due to ambiguous
and inconclusive conceptualizations underlying the experi-
ments. To draw more reliable conclusions, we need more
explicit, context-specific operationalizations and clearer de-
lineations of the abstract concepts that are to be investigated.
Recall that “[o]perational analysis is an excellent diagnostic
tool for revealing where our knowledge is weak, in order to
guide our efforts in strengthening it” (Chang, 2004, p. 147).
That sometimes good experimental research is not encour-
aged enough in ML (see Problem 2) and biased experiments
still occur more often than desirable (see Problem 1), exacer-
bates the situation considerably. The former is an excellent
approach for improving insight and understanding in the

6See also Herrmann et al. (2023b) for outlier detection.

sense outlined above, biased experiments tend to make this
more difficult. These aspects are becoming specifically
important in deep learning where the sheer complexity of
today’s models, especially of foundation models, makes
mathematical analysis extremely difficult. Instead, the anal-
ysis often needs to be largely experimental and thus requires
thorough experimentation at the highest possible level.

3. Improving the Status Quo: More Richness
in Empirical Methodological Research

A unifying view: We need exploratory and confirmatory.
Confirmatory research∗, also known as hypothesis-testing
research, aims to test preexisting hypotheses to confirm or
refute existing theories. Researchers design specific studies
to evaluate hypotheses derived from existing knowledge
experimentally. Typically, this involves a structured and pre-
defined research design, a priori hypotheses, and often sta-
tistical analyses to draw conclusive inferences. In contrast,
exploratory research is an open-ended approach that aims
to gain insight and understanding in a new or unexplored
area. It is often conducted when little is known about the
phenomenon under study. It involves gathering information,
identifying patterns, and formulating specific hypotheses
for further investigation. One of our main points is that
to improve empirical ML towards more thorough, reliable,
and insightful methodological research both exploratory and
confirmatory research are needed in ML (cf. Tukey, 1980).
In general, the problems described can be placed in this
broader epistemic context. We argue that most empirical
research in ML is perceived as confirmatory research, when
it should rather be considered to be exploratory from an
epistemic perspective (see also Bouthillier et al., 2019). At
the same time, purely exploratory methodological research
focusing on improving insight and understanding experi-
mentally (cf. Dietterich, 1990) and research like neutral
method comparison and replication studies, which can be
considered more rigorous in the confirmatory sense, are not
seen as an equally important contribution to the field.
For the time being, it is worth making this distinction, yet,
we discuss why it is an oversimplification from an epis-
temic perspective in Section 4 – even more so, because we
distinguish two types of exploratory empirical methodologi-
cal research in the following:7 insight-oriented exploratory
research∗ in contrast to method-developing exploratory re-
search∗. We think insight-oriented exploratory research is
what Nakkiran & Belkin (2022) mean by good experimental
research, and what they mean by application improvements
is a conflation of both method-developing exploratory and
(supposedly) confirmatory research.

7It is not our intention to establish a precise terminology, but
we think this structure will be of assistance to the reader.
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More insight-oriented exploratory research. In prin-
ciple, the good thing about moving towards more insight-
oriented exploratory methodological research in ML is that
there are no epistemological obstacles to overcome. The
neighboring field data mining and knowledge discovery
clearly has an exploratory nature and is very much in the
spirit of Tukey’s exploratory data analysis. There are also
already some examples of influential ML research that can
be considered insight-oriented and exploratory, e.g., Frankle
& Carbin (2019), Belkin et al. (2019), Recht et al. (2019),
Rendsburg et al. (2020), Zhang et al. (2021), or Power et al.
(2021). So, rather than epistemic aspects, it is the incentives
and attitudes in scientific practice towards this type of re-
search that are an obstacle to its successful dissemination. In
particular, an alleged lack of novelty and originality is often
invoked, which leads to rejections. Yet, without the esteem
expressed by acceptance for publication, in particular in
major ML venues, there is simply little incentive to engage
in exploratory ML research. More importantly, it reinforces
the impression among students and young scientists that
exploratory research is not an integral part of science. It
is therefore necessary to stimulate, encourage, and provide
opportunities to make such research visible. Nakkiran &
Belkin (2022, pp. 4–5) propose to establish a special sub-
ject area within ML conferences for “Experimental Science
of Machine Learning,” focusing on “experimental investi-
gation into the nature of learning and learning systems.”
The types of papers outlined include those with “surprising
experiments,” “empirical conjectures,” “refining existing
phenomena,” “formalizing intuition,” and presentation of
“new measurement tool[s],” all aiming to improve the under-
standing of ML empirically. They also provide guidelines
specifically tailored to the review of this type of research.

More (actual) confirmatory research. As outlined, we
believe most current empirical ML research (i.e., applica-
tion improvements) is a mixture of method-developing ex-
ploratory research and (supposedly) confirmatory research.8

For this reason, we add a focus on well-designed, neutral
method comparison and replication studies. The scrutiny
and rigor these examples of (actual) confirmatory empirical
research provide are sorely needed if we are to work toward
more reliable and replicable research.
Neutral method comparison studies include experiments
that are less biased in favor of newly proposed methods
(Boulesteix et al., 2013; Lim et al., 2000; Ali & Smith,
2006; Fernández-Delgado et al., 2014). First, this includes
prespecified, strictly adhered-to designs of the experimen-
tal setup, including in particular a clearly specified set of
datasets and tasks. Ideally, neutral comparison studies fo-
cus on the comparison of already existing methods and are
carried out by a group of authors approximately equally fa-

8In a sense, this limits the potential of the former and renders
the latter largely useless, with biased experiments as a result.

miliar with all the methods under consideration (Boulesteix
et al., 2013). Such studies ensure more neutrality and are
less prone to overly optimistic conclusions than studies
proposing a method, since there is much less of an incentive
to promote a particular method. Second, proper uncertainty
quantification is required when analyzing empirical results
in ML, especially w.r.t. the different stages of inference (e.g.,
model fitting, model selection, pipeline construction, and
performance estimation) (see Nadeau & Bengio, 2003; Ben-
gio & Grandvalet, 2004; Hothorn et al., 2005; Bates et al.,
2023). Moreover, if statistical significance testing is to be
conducted to test for statistically significant performance
differences across different real-world datasets, as described,
e.g., by Demšar (2006), Eugster et al. (2012), Boulesteix
et al. (2015a), or Eisinga et al. (2017), the methodological
rigor established in other empirical domains should be ap-
plied (Munafò et al., 2017), in particular, efforts towards
prior sample size calculations are important (Boulesteix
et al., 2017).
Moreover, we need more replication studies and meta-
studies. These types of research face similar reservations
as insight-oriented exploratory experimental research. How-
ever, replication studies are indispensable to assess the
amount of non-replicable research and to prevent it from
being increased. Such studies attempt to reach the same sci-
entific conclusions as previous studies, to provide additional
empirical evidence for observed phenomena. Meta-studies
analyze and summarize the so accumulated evidence on a
specific phenomenon. This process is the default to reach
conclusions in other sciences and is important as single stud-
ies can be false and/or contradict each other. In ML, this can
range from studies that attempt to replicate an experiment
exactly (e.g., Lohmann et al., 2022) or slightly modify an
experiment’s design (e.g., by using a different set of data
in the replication of a neutral comparison study) to more
comprehensive tuning and ablation studies of experiments
conducted in method-developing research (e.g., Rendsburg
et al., 2020; Kobak & Linderman, 2021). The latter cer-
tainly overlaps with insight-oriented exploratory research.
It is important to emphasize that it is in the nature of things
that a replication is not an original or novel scientific con-
tribution in the conventional sense, and not necessarily can
important new insights be gained beyond the replication of
previously observed results. Rather, it is an explicit attempt
to arrive at the same results and conclusions as a previous
study. The scientific relevance, which is well acknowledged
in other empirical sciences such as physics or medicine, lies
in gathering additional empirical evidence for a hypothesis
through a successful replication. Moreover, a replication
study may, but does not necessarily, also raise epistemic
questions, point to experimental improvements, or provide
refined concepts, especially in failed replications.
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More infrastructure. To achieve this, practical limita-
tions also need to be overcome. We require more dedicated
infrastructure to make the proposed forms of research more
(easily) realizable. In particular, there is a need for more and
better open databases of well-curated and well-understood
datasets such as OpenML (Vanschoren et al., 2013) or
OpenML Benchmarking Suites (Bischl et al., 2021). More-
over, well-maintained open-source software for system-
atic benchmark experiments, such as the AutoML Bench-
mark (Gijsbers et al., 2024), HPOBench (Eggensperger
et al., 2021), NAS-Bench-Suite (Mehta et al., 2022), or
AlgoPerf (Dahl et al., 2023), are needed. Platforms for pub-
lic leaderboards and model sharing (e.g., Hugging Face)
are another important aspect, although some of these plat-
forms are geared towards horse racing based on predictive
performance and therefore do not necessarily also provide
scientific insights or interpretability. Yet, the standards and
automatic nature of such platforms have the advantage that
they offer concrete reference points for criticism and debate.
Finally, reviewer guidelines implementing our suggestions
and dedicated venues for currently hard-to-publish empiri-
cal work will allow the full potential of empirical ML to be
realized (Sculley et al., 2018; Nakkiran & Belkin, 2022).
Moreover, without more education, none of this will be
possible. Given the different perspectives – formal science,
engineering, statistical – from which ML can be viewed, it
is very difficult to include each in the appropriate depth in
a single study program. While a recent survey of 101 un-
dergraduate data science programs in the U.S. showed that
all included an introductory course in statistics (Bile Has-
san et al., 2021), statistics has only recently (2023) been
included as a core topic in the curriculum recommendations
for CS∗ (Joint Task Force on Computing Curricula, 2023). It
is also questionable if introductory courses are sufficient to
avoid crucial gaps that can lead to the adoption of question-
able research practices (cf. Gigerenzer, 2018). Furthermore,
nearly no study program contains a dedicated course on de-
sign and analysis of (computer) experiments (Santner et al.,
2003; Box et al., 2005; Dean et al., 2017), which we deem
especially relevant for our context here. In general, we agree
with De Veaux et al. (2017, pp. 16–17) that many “courses
traditionally found in computer science, statistics, and math-
ematics offerings should be redesigned for the data science
[or ML] major in the interest of efficiency and the potential
synergy that integrated courses would offer.”

Finally, we would like to offer concrete and practicable
advice to specific target groups, in addition to the general
recommendations above.
Advice for junior researchers. (1) Read the positive exam-
ples of insight-oriented exploratory research in ML (listed
above), about the design of experiments, the critical discus-
sion on statistical testing, and the basics of philosophy of
science. (2) Educate yourself in Open Science practices

(e.g., see The Turing Way Community, 2023). (3) Engage
with researchers from other disciplines as data (the one on
which ML models are trained) can only really be understood
if one understands how it was generated. (4) Consider mak-
ing empirical research in ML a (partial) research focus.
Advice for senior researchers. (1) Allow your junior re-
searchers to write (great) papers on empirical aspects of ML,
even if those may be relatively difficult to publish in major
venues for now. Our personal experience is that these papers
can still be highly cited and become very influential. (2)
Learn from other fields; what we are experiencing in terms
of non-replicable research is not a new phenomenon. (3)
Please do not perceive this paper as an attack on ML but
rather as an honest attempt to improve it and, more impor-
tantly, to improve its impact.
Advice for venue organizers and editors (see also Nakki-
ran & Belkin, 2022). (1) Encourage all forms of proper
empirical ML to be submitted (in particular, this includes
insight-oriented exploratory research), e.g., by creating spe-
cial tracks or adding keywords but also by allowing such
work on main tracks. The idea is to create special mea-
sures for the topic to increase awareness but not to isolate
or ban all such papers to special (workshop) tracks with
(potentially) lower perceived value. (2) Consider giving
out awards for positive examples of these types of research.
(3) Consider establishing positions like reproducibility and
replicability editors for venues and journals. (4) Give con-
crete advice for best practices, so authors and reviewers
have clear guidelines to follow. Note that this should not be
confined to asking “Were the empirical results subjected to
statistical tests?” (without further information); this is close
to the opposite of what we think is needed.9

4. Beyond the Status Quo: Rethinking
Empirical ML as a Maturing Science

The exploratory-confirmatory research continuum.
With ML’s strong foundation in formal sciences, where ab-
solute certainty can be achieved by formal proofs, the clear
distinction between exploratory and confirmatory research
that has been invoked so far may seem natural. Yet, from an
empirical perspective, i.e., whenever one deals with entities
in the real world, it is itself an oversimplifying dichotomy,
and empirical research is better thought of as a continuum
from exploratory to confirmatory, with an ideal of purely
exploratory research at one end and of strictly confirma-
tory research at the other (e.g., Wagenmakers et al., 2012;
Oberauer & Lewandowsky, 2019; Szollosi & Donkin, 2021;
Scheel et al., 2021; Devezer et al., 2021; Rubin & Donkin,
2022; Höfler et al., 2022; Fife & Rodgers, 2022).

9One anonymous reviewer also suggested that venues start
collecting metadata on reasons for rejection. Such data could
serve as a basis to evaluate if certain types of ML research face a
systematic bias.
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Based on that notion, Fife & Rodgers (2022) argue that
“psychology may not be mature enough to justify confir-
matory research” (p. 453) and that “[t]he maturity of any
science puts a cap on the exploratory/confirmatory contin-
uum” (p. 462). Given the similarities between research in
psychology and ML as described by Hullman et al. (2022),
we think similar holds for ML and we suggest ML should
be considered as a maturing (empirical) science as well.10

Hullman et al. (2022, p. 355) “identify common themes in
reform discussions, like overreliance on asymptotic theory
and non-credible beliefs about real-world data-generating
processes.” That said, confirmatory research in ML as advo-
cated in Section 3 is still very different from strict confirma-
tory research in other disciplines. Rather it can be seen as
rough confirmatory research (Fife & Rodgers, 2022; Tukey,
1973) that follows the same principles, but – as outlined – it
is unclear how results can be generalized (e.g., using statis-
tical tests) – a cornerstone of strict confirmatory research.
But this should not be taken as a caveat. Rough confirma-
tory research allows for flexibility that strict confirmatory
research does not (Fife & Rodgers, 2022).
The framework proposed by Heinze et al. (2024, p. 1) can
be seen as a way of mapping this rather abstract idea into
more concrete guidelines for scientific practice. In the con-
text of biostatistics, they propose to consider four phases
of methodological research, analogous to clinical research
in drug development: “(I) proposing a new methodologi-
cal idea while providing, for example, logical reasoning or
proofs, (II) providing empirical evidence, first in a narrow
target setting, then (III) in an extended range of settings
and for various outcomes, accompanied by appropriate ap-
plication examples, and (IV) investigations that establish a
method as sufficiently well-understood to know when it is
preferred over others and when it is not; that is, its pitfalls.”

Statistical significance tests: Words of caution, revisited!
The problem of empirical research as a continuum is more
involved epistemologically and cannot be discussed in full
detail here. An important aspect that needs to be discussed
is its relation to the misguided use of statistical testing. This
point has been made by Drummond (2006) before and in
more detail. We revisit it here, enriching it with more re-
cent literature on the issue. In particular, routinely adding
statistical machinery to an (already underspecified and/or bi-
ased) experimental design to test for statistically significant
differences in performance – as is frequently done and/or
explicitly asked for (e.g., Henderson et al., 2018; Marie
et al., 2021) – does not improve the epistemic relevance of
the results by much nor does it add much additional insight
over other data aggregations. In fact, “[s]tatistical signifi-

10There are also differences between ML and psychology con-
siderably simplifying our lives: we usually do not experiment on
humans but algorithms on computers and have more control over
experiments, larger sample sizes, and lower experimental costs.

cance was never meant to imply scientific importance,” and
you should not “conclude anything about scientific or prac-
tical importance based on statistical significance (or lack
thereof)” (Wasserstein et al., 2019, pp. 2, 1). On the con-
trary, the misguided beliefs in and use of statistical rituals
(Gigerenzer, 2018) is largely responsible for the replication
crisis in other empirical disciplines.
The reasons are complex. First of all, the modern theory
of statistical hypothesis testing (SHT) is a conflation of
two historically distinct types of testing theory∗. Impor-
tant epistemological questions about when statistical tests
are appropriate are obscured by this mixed theory (e.g.,
Schneider, 2015; Gigerenzer & Marewski, 2015; Rubin,
2020). More importantly, specifically for experiments in
ML, both theories are developed for experimental designs
based on samples randomly drawn from a population of
interest (Schneider, 2015). In general, the assumptions un-
derlying the theory of statistical testing as an inferential tool
are usually not met in many applications (Greenland, 2023).
In fact, the editors of the The American Statistician special
issue “Statistical Inference in the 21st Century: A World Be-
yond p < 0.05” went so far as to conclude, “based on [their]
review of the articles in this special issue and the broader
literature, that it is time to stop using the term ‘statistically
significant’ entirely” (Wasserstein et al., 2019, p. 2).
Note that we want to warn against an overemphasis on as
well as an uncritical use of statistical tests; we do not ar-
gue against statistical testing in general. Quite the contrary,
we argue for a more diverse set of analysis tools (applied
with care and critical reflection), including but not limited
to statistical testing. We also want to stress that statistical
testing cannot remedy more fundamental problems such as
poor experimental design. To summarize the main points,
we emphasize:

• Valid statistical testing inevitably depends on a thor-
ough and well-designed experimental setup.

• Statistical testing should not be applied routinely and
requires thought and careful preparation to be valid
and insightful.

• Improper statistical testing and/or its uneducated inter-
pretation are – widely acknowledged – a main driver
for non-replicable results in other empirical sciences.

• The discussion about these issues has been going on for
decades and has resulted in a large body of literature,
some of which is condensed in the mentioned special
issue of The American Statistician.

So, while we argue for more experiments in a confirmatory
spirit to improve the status quo of empirical ML (see Section
3), especially using neutral method comparison and replica-
tion studies, we also emphasize that it is important to keep
in mind their current epistemic limitations. In particular,
we warn against common misconceptions about and inap-
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propriate use of SHT. The problem is that the underlying
“misunderstandings stem from a set of interrelated cognitive
biases that reflect innate human compulsions which even the
most advanced mathematical training seems to do nothing
to staunch, and may even aggravate: Dichotomania, the ten-
dency to reduce quantitative scales to dichotomies; nullism,
the tendency to believe or at least act as if an unrefuted null
hypothesis is true; and statistical reification, the tendency to
forget that mathematical arguments say nothing about real-
ity except to the extent the assumptions they make (which
are often implicit) can be mapped into reality in a way that
makes them all correct simultaneously” (Greenland, 2023,
p. 911).

Most current empirical ML research should rather be
viewed as exploratory. As outlined, confirmatory re-
search aims to test preexisting hypotheses, while exploratory
research involves gathering information, identifying pat-
terns, and formulating specific hypotheses for further in-
vestigation. We think, currently, most of the empirical re-
search in ML is conducted as part of a paper introducing
a new method and is fashioned as confirmatory research
even though it is exploratory in nature. In our view, this
is reflected especially in the routine use of statistical tests
to aggregate benchmark results: the exploratory phase of
method development (e.g., trying out different method vari-
ants) largely invalidates post hoc statistical tests. As Strobl
& Leisch (2024, p. 2) put it: “In methodological research,
comparison studies are often published either with the ex-
plicit or implicit aim to promote a new method by means
of showing that it outperforms existing methods.” In other
words, the conducted experiments are set up to confirm the
(implicit) hypothesis that the proposed method constitutes
an improvement. Systemic pressures and conventions, as
well as ML’s strong roots in formal sciences and focus on
improving applications, encourage this mindset and the prac-
tice of invoking confirmatory arguments. This is expressed
in statements such as that “[i]t is well-known that review-
ers ask for application improvements” and “for ‘theoretical
justification’ for purely experimental papers, even when the
experiments alone constitute a valid scientific contribution”
(Nakkiran & Belkin, 2022, pp. 2–3). The problem with
not emphasizing the exploratory nature is that “exploratory
findings have a slippery way of ‘transforming’ into planned
findings as the research process progresses” (Calin-Jageman
& Cumming, 2019, p. 275) and “[a]t the bottom of that
slippery slope one often finds results that don’t reproduce”
(Wasserstein et al., 2019, p. 3). Shifting the focus to an
exploratory notion of method development is an opportunity
to fully allow “to understand under which circumstances the
algorithm produces misleading results” (Rendsburg et al.,
2020, p. 9) and to “learn about [its] strengths and weak-
nesses” (Sculley et al., 2018, p. 2) and clearly report them.

5. Conclusion
This work offers perspectives on ML that outline how it
should move from a field being largely driven by mathemati-
cal proofs and application improvements to also becoming a
full-fledged empirical field driven by multiple types of exper-
imental research. By providing concrete practical guidance
but at the same time moderating expectations of what empir-
ical research can achieve, we wish to contribute to greater
overall reliability and trustworthiness.
For every don’t, there is a do. However, we are aware
that our explanations may initially leave the reader unsat-
isfied when it comes to translating the conclusions into
scientific practice. For example, those who were hoping for
guidelines on the correct use of statistical tests may well
be at a complete loss. However, we do not believe that
this is actually the case. If you are inclined to perform
statistical tests as described by Demšar (2006), do so, but
also be aware of the Do-lists described by Wasserstein et al.
(2019, Ch. 3, 7). In this regard, we consider the following
comment by Wasserstein et al. (ib., p. 6) very noteworthy:
“Researchers of any ilk may rarely advertise their personal
modesty. Yet, the most successful ones cultivate a practice
of being modest throughout their research, by understanding
and clearly expressing the limitations of their work.” Fur-
thermore, do not only rely on real data, use simulated data
as well. Simulations are an excellent tool for operationaliza-
tion, i.e., mapping abstract concepts to measurable entities.
Yet, the most important point is that we should be open to
different ways of doing experimental research and should
not penalize research just because it does not follow certain
established conventions. As Nakkiran & Belkin (2022, p. 6)
put it: “Each paper must be evaluated on an individual ba-
sis”; this is challenging, but they suggest guidelines. The
community should take them up to address this issue.
Embracing inconclusiveness. Summarizing the perspec-
tives on empirical ML covered here, and returning to the idea
of mature sciences, we believe that for ML to mature as an
(empirical) science, a greater awareness of some epistemic
limitations, but also of the plurality of ways to gain insights,
might be all it needs. We believe that if empirical research
is one thing, it is not conclusive and no single empirical
study can prove anything with absolute certainty. It must
be scrutinized, repeated, and reassessed in a sense of epis-
temic iteration∗ (Chang, 2004). That said, we conclude by
quoting Chang’s thoughts (ib., p. 243) on science in general:
“If something is actually uncertain, our knowledge is supe-
rior if it is accompanied by an appropriate degree of doubt
rather than blind faith. If the reasons we have for a certain
belief are inconclusive, being aware of the inconclusiveness
prepares us better for the possibility that other reasons may
emerge to overturn our belief. With a critical awareness of
uncertainty and inconclusiveness, our knowledge reaches a
higher level of flexibility and sophistication.”
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Impact Statement
This position paper aims to advance machine learning by
addressing practical challenges and epistemic constraints
of empirical research that are often overlooked. We believe
this has implications for machine learning research in gen-
eral, as it can help to improve the reliability and credibility
of research results. We also believe that our contribution
can have a broader positive social and ethical impact by
preventing misdirected efforts and resources.
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Systems, volume 31, Montréal, Canada, 2018. Curran
Associates Inc. https://papers.neurips.
cc/paper_files/paper/2018/hash/
e46de7e1bcaaced9a54f1e9d0d2f800d-
Abstract.html.

Mannarswamy, S. and Roy, S. Evolving AI from research
to real life – Some challenges and suggestions. In
Lang, J. (ed.), Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence,
pp. 5172–5179, Stockholm, Sweden, 2018. AAAI Press.
doi:10.24963/ijcai.2018/717.

Marie, B., Fujita, A., and Rubino, R. Scientific credibility
of machine translation research: A meta-evaluation of
769 papers. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 7297–7306,
Online, 2021. Association for Computational Linguistics.
doi:10.18653/v1/2021.acl-long.566.

Mateus, P., Volmer, L., Wee, L., Aerts, H. J. W. L., Hoebers,
F., Dekker, A., and Bermejo, I. Image based prognosis
in head and neck cancer using convolutional neural net-
works: A case study in reproducibility and optimization.
Scientific Reports, 13:18176, 2023. doi:10.1038/s41598-
023-45486-5.

McElfresh, D., Khandagale, S., Valverde, J., C, V. P., Feuer,
B., Hegde, C., Ramakrishnan, G., Goldblum, M., and
White, C. When do neural nets outperform boosted trees
on tabular data? In Oh, A., Neumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, New Orleans, LA, United States, 2023. Curran
Associates Inc. https://papers.neurips.
cc/paper_files/paper/2023/hash/
f06d5ebd4ff40b40dd97e30cee632123-
Abstract-Datasets_and_Benchmarks.html.

McGeoch, C. C. Experimental analysis of algorithms. In
Pardalos, P. M. and Romeijn, H. E. (eds.), Handbook of
Global Optimization: Volume 2, pp. 489–513. Springer,
2002. doi:10.1007/978-1-4757-5362-2 14.

Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja,
G., Moradian, S., Safari, M., Yu, K., and Hutter, F. NAS-
Bench-Suite: NAS evaluation is (now) surprisingly easy.
In 10th International Conference on Learning Represen-
tations, Online, 2022. https://openreview.net/
forum?id=0DLwqQLmqV.

Melis, G., Dyer, C., and Blunsom, P. On the state of
the art of evaluation in neural language models. In 6th
International Conference on Learning Representations,
Vancouver, Canada, 2018. https://openreview.
net/forum?id=ByJHuTgA-.

Merriam-Webster. Epistemic. In Merriam-
Webster.com dictionary, n.d. Retrieved May
1, 2024, from https://www.merriam-
webster.com/dictionary/epistemic.
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Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 32, Vancouver, Canada, 2019. Curran As-
sociates, Inc. https://papers.neurips.
cc/paper_files/paper/2019/hash/
c429429bf1f2af051f2021dc92a8ebea-
Abstract.html.

Raff, E. and Farris, A. L. A siren song of
open source reproducibility. In ML Evaluation
Standards Workshop at ICLR 2022, Online, 2022.
doi:10.48550/arXiv.2204.04372.

Raji, D., Denton, E., Bender, E. M., Hanna, A., and
Paullada, A. AI and the everything in the whole wide
world benchmark. In Vanschoren, J. and Yeung, S.

16

https://doi.org/10.1109/TSE.2005.58
https://doi.org/10.1023/A:1024068626366
https://ml-eval.github.io/assets/pdf/science_ml_proposal_2am.pdf
https://ml-eval.github.io/assets/pdf/science_ml_proposal_2am.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.17226/25303
https://doi.org/10.1002/widm.1441
https://doi.org/10.1002/bimj.202200238
https://doi.org/10.1111/1365-2664.13571
https://doi.org/10.1137/090762932
https://doi.org/10.1038/msb.2011.70
https://doi.org/10.1073/pnas.1708274114
https://doi.org/10.3758/s13423-019-01645-2
https://doi.org/10.1002/bimj.202200091
https://jmlr.org/papers/v22/20-303.html
https://jmlr.org/papers/v22/20-303.html
https://doi.org/10.3389/fninf.2017.00076
https://mathai-iclr.github.io/papers/papers/MATHAI_29_paper.pdf
https://mathai-iclr.github.io/papers/papers/MATHAI_29_paper.pdf
https://papers.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/c429429bf1f2af051f2021dc92a8ebea-Abstract.html
https://doi.org/10.48550/arXiv.2204.04372


Rethinking Empirical Research in Machine Learning

(eds.), Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks,
volume 1, Online, 2021. Curran Associates, Inc. https:
//datasets-benchmarks-proceedings.
neurips.cc/paper/2021/hash/
084b6fbb10729ed4da8c3d3f5a3ae7c9-
Abstract-round2.html.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V.
Do ImageNet classifiers generalize to ImageNet? In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, pp. 5389–5400, Long Beach, CA, United
States, 2019. PMLR. https://proceedings.mlr.
press/v97/recht19a.html.

Rendsburg, L., Heidrich, H., and von Luxburg, U. Net-
GAN without GAN: From random walks to low-rank
approximations. In Daumé III, H. and Singh, A.
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Glossary
Bridgmanian ideal. Used by Chang (2004) to describe a specific notion of operationalization. Refers to Percy Williams
Bridgman (1882–1961), Nobel laureate in physics for his work on high-pressure physics, who also made contributions to
the philosophy of science. Operational analysis is the topic of his book The Logic of Modern Physics, in which he argues in
particular that “[i]n general, we mean by any concept nothing more than a set of operations; the concept is synonymous with
the corresponding set of operations” (Bridgman, 1927, p. 5). This strict perspective on operationalization (also referred to as
operationalism) has attracted a lot of criticism, see “Operationalism” in The Stanford Encyclopedia of Philosophy (Chang,
2021). In particular, Chang (2004, p. 148) points out that it builds on “an overly restrictive notion of meaning, which comes
down to reduction of meaning to measurement, which [Chang] refer[s] to as Bridgman’s reductive doctrine of meaning.”

Cargo Cult Science. The term cargo cult refers to social movements that originated in Melanesia: “The modal cargo cult was
an agitation or organised social movement of Melanesian villagers in pursuit of ‘cargo’ by means of renewed or invented
ritual action that they hoped would induce ancestral spirits or other powerful beings to provide” (Lindstrom, 2023, p. 1).
Richard Phillips Feynman (1918–1988), theoretical physicist and Nobel laureate, adapted the term to describe ritualized
scientific practices which “follow all the apparent precepts and forms of scientific investigation, but [which are] missing
something essential” (Feynman, 1974, p. 11).

Confirmatory research. Also known as hypothesis-testing research, aims to test preexisting hypotheses to confirm or refute
existing theories. Researchers design specific studies to evaluate hypotheses derived from existing knowledge experimentally.
Typically, this involves a structured and predefined research design, a priori hypotheses, and often statistical analyses to
draw conclusive inferences. It is a well-established term in many fields other than ML. For example, general references
are Schwab & Held (2020), Nosek et al. (2018), and Munafò et al. (2017). Field-specific references include Jaeger &
Halliday (1998) or Nilsen et al. (2020) for biology, Wagenmakers et al. (2012) for psychology, Kimmelman et al. (2014) for
preclinical research, Roettger (2021) for linguistics, or Foster (2024) for educational research. The term confirmatory might
appear to be in conflict with the principle of falsification established by Popper (1959/2002). According to Popper, scientific
theories cannot be conclusively confirmed, only falsified. It is important to emphasize that confirmatory research has a
narrower scope rooted in Neyman-Pearson statistical testing theory (see the glossary entry on Two historically distinct types
of testing theory). This theory provides a framework for a statistically justified decision between a null hypothesis and an
alternative hypothesis based on the available data. The hypothesis to be established (e.g., there is an effect) is usually stated
as the alternative hypothesis and confirmation means rejecting the null hypothesis (e.g., there is no effect) for the alternative.

Curricula recommendations for CS. The report Computer Science Curricula 2013 lists “Intelligent Systems” (including
basics in ML) as a Core (Tier2) topic but “still believe[s] it is not necessary for all CS programs to require a full course in
probability theory [or statistics]” (Joint Task Force on Computing Curricula, 2013, p. 50). This has changed with the latest
(2023) version insofar as statistics is now considered a CS Core topic in “Mathematical and Statistical Foundations”, which
is one of several knowledge areas (Joint Task Force on Computing Curricula, 2023).

Epistemic, epistemological. Both coming from the Greek word for knowledge or understanding, the terms are sometimes
used synonymously and sometimes with distinct, more precise meanings. If the distinction is made, epistemic relates to
knowledge itself, while epistemological relates to “the study of the nature and grounds of knowledge” (Merriam-Webster,
n.d.), i.e., epistemology. For epistemology, an early edition of The Stanford Encyclopedia of Philosophy gives the following
definition: “Defined narrowly, epistemology is the study of knowledge and justified belief. [...] Understood more broadly,
epistemology is about issues having to do with the creation and dissemination of knowledge in particular areas of inquiry”
(Steup, 2006). The most recent edition states in more abstract terms that “[m]uch recent work in formal epistemology is an
attempt to understand how our degrees of confidence are rationally constrained by our evidence [...]” and that “epistemology
seeks to understand one or another kind of cognitive success [...]” (Steup & Neta, 2020).

Epistemic iteration. Chang (2004) introduced the concept and defined it in his glossary as a “process in which successive
stages of knowledge, each building on the preceding one, are created in order to enhance the achievement of certain epistemic
goals. It differs crucially from mathematical iteration in that the latter is used to approach a correct answer that is known, or
at least in principle knowable, by other means” (p. 253). For thorough discussions, see Chapters 1 (pp. 46–48) and 5.

Exploratory research. As also specified in the main body of the paper, refers to an open-ended approach that aims to gain
insight and understanding in a new or unexplored area (in contrast to confirmatory research). It is often conducted when
little is known about the phenomenon under study. It involves gathering information, identifying patterns, and formulating
specific hypotheses for further investigation.
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Hyperparameter tuning studies. Aim to find the best-performing configuration for an ML model class, including baselines
(Feurer & Hutter, 2019; Bischl et al., 2023). Tuned models can then be compared more objectively and fairly. Hyperparameter
tuning (or the lack of it) is an important source of variation in benchmark studies (Bouthillier et al., 2021) and has been
shown to have a strong effect on the outcome of results (see for example the references in Bouthillier et al., 2021 or our
introduction). Treating the hyperparameter optimization as part of the problem of quantifying the performance of an
algorithm has been suggested by Bergstra et al. (2011) and Bergstra et al. (2013).

Insight-oriented exploratory research. Refers to experimental research in ML that aims to gain insight, rather than
inventing/developing a new method. It does not necessarily involve a very specific hypothesis to be pursued, but it is about
improving the understanding and knowledge of a problem, a (class of) existing methods, or a phenomenon.

Method-developing exploratory research. Refers to experimental research in ML carried out in the process of developing
a new ML method. This can include method comparison experiments, but in particular, it refers to exploration that takes
place during the development process. This may include, for example, trying different method variants or specifying
hyperparameter configurations and implementation details.

Operationalization. Chang (2004, p. 256) provides the following definition in his glossary: “The process of giving
operational meaning to a concept where there was none before. Operationalization may or may not involve the specification
of explicit measurement methods.” Operational meaning refers to “the meaning of a concept that is embodied in the physical
operations whose description involves the concept.” For a thorough discussion, see Chapter 4 (pp. 197–219).

Replicability (vs. reproducibility). There is no consistent use of these terms in the broader literature (for discussions, e.g.,
see Barba, 2018; Plesser, 2018; Gundersen, 2021; Pineau et al., 2021). We use the term reproducibility in a narrow technical
sense (see the glossary entry on computational reproducibility). In contrast, replicability here means arriving at the same
scientific conclusions in a broad sense. This terminology is in line with the National Academies of Sciences, Engineering,
and Medicine (2019). In terms of the reliability of results, it means that replicability is more important than reproducibility.
Note that Drummond (2009), for example, uses the terms the reverse way.

Reproducibility (computational). Means that the provided code technically achieves the same result on the provided data,
and not that code, experimental design, or analysis are error-free and that we can qualitatively reach the same conclusions for
the same general question under slightly different technical conditions. It is thus not a sufficient condition for replicability.
Note that Tatman et al. (2018) differentiate three levels of reproducibility.

Two historically distinct types of testing theory. This refers to two approaches to statistical testing developed by Ronald
Aylmer Fisher (1890–1962) on the one side and Jerzy Neyman (1894–1981) and Egon Sharpe Pearson (1895–1980) on
the other. Only the former includes p-values and a single (null) hypothesis. The latter includes two hypotheses and hinges
on statistical power and Type I and II errors (Schneider, 2015, p. 413). More generally, Fisher’s approach is “[b]ased
on the concept of a ‘hypothetical infinite population’,” “[r]oots in inductive philosophy” and “[a]pplies to any single
experiment (short run),” while Neyman-Pearson’s approach is “[b]ased on a clearly defined population,” “[r]oots in deductive
philosophy,” and “[a]pplies only to ongoing, identical repetitions of an experiment, not to any single experiment (long run)”
(Schneider, 2015, p. 415, Table 1).

Validity. Note that there is no concise definition of the term. In psychology, internal and external validity are differentiated
in particular. According to Campell (1957, p. 297) internal validity asks if “in fact the experimental stimulus make some
significant difference in this specific instance?” External validity, on the other hand, asks “to what populations, settings,
and variables can this effect be generalized?” The former appears to be closely related to in-distribution generalization
performance in ML, the latter to out-of-distribution generalization. In contrast, The Stanford Encyclopedia of Philosophy
states for experiments in physics (Franklin & Perovic, 2023): “Physics, and natural science in general, is a reasonable
enterprise based on valid [emphasis added] experimental evidence, criticism, and rational discussion.” Several strategies that
may be used to validate observations are specified. These include the following: 1) “Experimental checks and calibration, in
which the experimental apparatus reproduces known phenomena”; 2) “Reproducing artifacts that are known in advance to
be present”; 3) “Elimination of plausible sources of error and alternative explanations of the result”; 4) “Using the results
themselves to argue for their validity”; 5) “Using an independently well-corroborated theory of the phenomena to explain
the results”; 6) “Using an apparatus based on a well-corroborated theory”; 7) “Using statistical arguments.” However, it is
emphasized that “[t]here are many experiments in which these strategies are applied, but whose results are later shown to be
incorrect [...]. Experiment is fallible. Neither are these strategies exclusive or exhaustive. No single one of them, or fixed
combination of them, guarantees the validity of an experimental result” (Franklin & Perovic, 2023).
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