
Machine Unlearning under Overparameterization

Jacob L. Block
UT Austin

jblock@utexas.edu

Aryan Mokhtari
UT Austin & Google Research

mokhtari@austin.utexas.edu

Sanjay Shakkottai
UT Austin

sanjay.shakkottai@utexas.edu

Abstract

Machine unlearning algorithms aim to remove the influence of specific training
samples, ideally recovering the model that would have resulted from training on
the remaining data alone. We study unlearning in the overparameterized setting,
where many models interpolate the data, and defining the solution as any loss mini-
mizer over the retained set—as in prior work in the underparameterized setting—is
inadequate, since the original model may already interpolate the retained data and
satisfy this condition. In this regime, loss gradients vanish, rendering prior meth-
ods based on gradient perturbations ineffective, motivating both new unlearning
definitions and algorithms. For this setting, we define the unlearning solution as
the minimum-complexity interpolator over the retained data and propose a new
algorithmic framework that only requires access to model gradients on the retained
set at the original solution. We minimize a regularized objective over perturbations
constrained to be orthogonal to these model gradients, a first-order relaxation of
the interpolation condition. For different model classes, we provide exact and
approximate unlearning guarantees and demonstrate that an implementation of our
framework outperforms existing baselines across various unlearning experiments.

1 Introduction

The ability to remove the influence of specific samples from a trained model is essential to comply
with privacy regulations such as the GDPR and CCPA [1, 2] and to correct mislabeling or bias that
may compromise model integrity [3]. Machine unlearning [4] refers to algorithms that address these
challenges by modifying a model trained on a dataset D to forget a subset of samples, termed the
forget set Df , and produce a model that acts as if it had been trained only on the remaining data,
denoted the retain set Dr = D \ Df . The ideal, yet costly, “gold standard" unlearning solution is to
retrain the model from scratch on Dr, which perfectly achieves the unlearning objective but is often
infeasible due to high computational cost and potentially limited access to the original training data.
The goal of an unlearning method is to efficiently approximate this outcome using the knowledge of
the original training procedure, the samples to be forgotten, and potentially restricted side-information
related to the retained data, aiming to recover a model that could result from training on Dr alone.

In the underparameterized regime, where the model class cannot fit all training data, the training loss
admits a unique minimizer. Thus, the natural definition of exact unlearning is the unique minimizer
to the loss on Dr. When the loss is further strongly convex, prior work developed efficient unlearning
approximations using influence functions, which estimate the effect of removing a sample via a single
gradient ascent step over the loss on Df , preconditioned by the inverse loss Hessian on D [5–7].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In contrast, this paper focuses on the overparameterized regime, where the model class contains many
interpolating solutions. Crucially, the training loss no longer admits a unique minimizer, and defining
the unlearning solution by loss optimality alone no longer suffices: the original model θ∗ minimizes
the loss over both D and Dr, and θ∗ clearly encodes information about Df , the data to be removed.
Moreover, interpolation causes the loss gradients to vanish, rendering loss-gradient-based methods
such as influence functions ineffective (Theorem 1). This fundamental shift necessitates both a new
definition of unlearning and new algorithmic tools tailored to the overparameterized setting.

We begin by formalizing unlearning in the overparameterized setting. Specifically, we define the
exact unlearning solution as the model which minimizes a model complexity measure R, subject
to minimizing the loss over Dr; see (2). For natural choices of R, such as the parameter norm,
this definition ensures that the unlearned model reveals no information about the forgotten data and
maintains strong generalization using only the retain set. Given this definition of unlearning, we
propose a new algorithmic framework to compute the solution. We focus on settings where the loss
is minimized by any interpolating model, so the constraint reduces to requiring interpolation over
Dr. To solve the resulting problem of minimizing R subject to interpolation, we relax the constraint
via a first-order Taylor expansion around θ∗ and reparameterize as θ∗ +∆, where ∆ is the drift.
Since θ∗ already interpolates Dr, the linearized constraint requires ∆ to be orthogonal to model
gradients at θ∗ on Dr. This simplifies the problem, requiring only gradient access, and avoids the
complex interpolation constraint. To mitigate error from this relaxation, we add a regularizer R̂(∆)

to control the size and direction of the drift. The final objective minimizes R(θ∗+∆) + R̂(∆) under
the relaxed orthogonal gradient constraint, yielding updated parameters θ∗ +∆.

Theoretical Contributions. We prove for linear models and linear networks, there exists a regularizer
R̂ such that minimizing R(θ∗+∆)+ R̂(∆) over our constraint relaxation gives the exact unlearning
solution when R is the ℓ2-norm of either the effective regressor or the full parameter vector. For
two-layer perceptrons with nonlinear activations, where R measures network width, we prove that
the right choice of R̂ yields a solution to our relaxed problem which interpolates Dr and matches the
best known upper bound on the number of neurons required to fit any dataset of a given size.

Algorithmic Contributions. We devise an iterative algorithm MinNorm-OG that accesses a subset
of Dr, aligning with data access assumptions in prior work [8–10], where OG refers to orthogonal
gradient. MinNorm-OG alternates between two steps: solving for the minimizer of R(θ+∆)+R̂(∆)
over ∆ satisfying the orthogonal gradient constraint, and descending on the loss over Dr (Algo-
rithm 1). We take both R and R̂ as scaled squared ℓ2 norms, which apply broadly to parameterized
models and yield a closed-form solution to the relaxed problem. We show strong performance of
our method across three experimental settings: Data Poisoning, Multi-Class Label Erasure, and
Representation Collapse, using natural and interpretable unlearning metrics to compare our method
against existing baselines. Notably, the Multi-Class Label Erasure and Representation Collapse
image-domain experiments introduce novel unlearning settings for effective evaluation.

Related work. Unlearning theory traces back to influence functions [11] which estimate the effect of
down-weighting a sample on a learned function [5]. Extensions explored approximate unlearning
via differential privacy [6, 7]. [6] analyzed the deletion capacity an unlearning method can tolerate
while maintaining generalization. [12, 13] proposed joint learning-unlearning schemes that store
information about data subsets during training for later unlearning. Several works proposed iterative
unlearning methods for large-scale models, combining loss ascent, descent, and noise injection
[14–18]. All these methods rely on loss gradient perturbations, which we show yield vacuous updates
under overparameterization (Theorem 1). In practice, they also struggle to unlearn effectively [9], as
loss ascent encourages misfitting Df rather than forgetting it. Our framework enforces parameter
perturbations to be orthogonal to the gradient over Dr to preserve loss optimality, an idea also used
in continual learning contexts [19]. Recent unlearning methods use similar projections which mix
loss ascent and descent, but their reliance on these objectives inherits prior limitations [20, 21].

2 Unlearning in Overparameterized Settings

We introduce notation (additional standard definitions in Appendix A) for our unlearning setting,
highlighting the unique challenges of the overparameterized regime. We explain why loss optimality
alone no longer suffices to define the ground truth unlearning solution and demonstrate why loss-
gradient-based methods, originally designed for the underparameterized case, prove ineffective.

2

To formalize the unlearning problem, we now define the problem setting and notation, covering
both the underparameterized and overparameterized regimes. We define the full training dataset
D = {(xi,yi)}ni=1, with sample inputs xi ∈ Rm and outputs yi ∈ Rl drawn from the data
domain Z = Rm × Rl. Initially, training is performed on the full dataset D over the model class
{f(θ, ·) | θ ∈ Rd} parameterized by θ ∈ Rd, where f : Rd+m → Rl takes a parameter vector
θ ∈ Rd and an input x ∈ Rm and maps them to a prediction f(θ,x) in the output space Rl. We
define the training procedure, also denoted the learning algorithm, as A : 2Z → Rd, which takes in a
dataset and returns the parameter vector θ∗ corresponding to the trained model. We make the minimal
assumption that A is faithful to a known loss function J , meaning A(D) = θ∗ is only guaranteed to
be a minimizer of J over D, where J is defined as the average of the sample-wise loss L:

A(D) = θ∗ ∈ argmin
θ
J (θ ;D) = argmin

θ

1

n

∑
(x,y)∈D

L (θ ;x,y) . (1)

For our theoretical discussion, we consider sample-wise loss functions L (θ ;x,y) which are mini-
mized when f(θ,x) = y, meaning that sample interpolation implies loss minimization. For example,
this is the case for ℓp-norm regression or classification with 0-1 loss.

With this training setup, we begin the unlearning process given a request for the model to forget a
subset of the training data Df ⊆ D. We then apply an unlearning algorithm M (A, Ir,A(D),Df)
which is given the learning algorithm A, side information Ir (e.g., a subset of the samples, or the
Hessian of the training loss over the retained data), initial solutionA(D), and forget setDf , and which
attempts to recover the desired unlearning solution, denoted by θ∗

r , where the subscript r indicates
that θ∗

r is the parameter vector that would result from training only on the retain set Dr = D\Df . To
formally define θ∗

r , we must distinguish between underparameterized and overparameterized regimes,
as the former’s definition requires refinement to remain meaningful in the latter.

In the underparameterized setting, the loss function over both the full data set J (θ ;D) as well as
the retain set J (θ ;Dr) admits a unique minimizer. To ensure that the unlearning solution remains
consistent with the training loss, the only valid choice is to define θ∗

r as the unique minimizer of
J (θ ;Dr). However, in the overparameterized setting this uniqueness property fails to hold, as both
J (θ ;D) and J (θ ;Dr) may admit multiple minimizers. In order to sidestep the non-uniqueness
issue, one may be tempted to define any minimizer of J (θ ;Dr) as a valid unlearning solution, as
presumably any minimizer to J (θ ;Dr) could be found from just training on Dr alone. However,
following this rationale allows for seemingly valid unlearning solutions to leak information relating
to Df . Specifically, the original solution θ∗ that interpolates all of D is itself a valid minimizer
of the retain set loss J (θ;Dr), but θ∗ can reflect training dynamics influenced by Df , revealing
information that cannot be inferred from Dr alone (see Appendix C for a concrete illustration).

2.1 Defining Unlearning Beyond Loss Optimality

As discussed above, the overparameterized setting requires a more fine-grained definition of the
desired unlearning solution—one that goes beyond loss optimality. We define the unlearning solution
in the overparameterized case to be the specific loss minimizer which minimizes an additional
objective function R(θ), expressed as the output of a training algorithm AR:

AR(Dr) = θ∗
r ∈ argmin

θ
R(θ), subject to θ ∈ argmin

θ′
J (θ′;Dr) . (2)

This bilevel optimization problem searches for the model which minimizes the complexity measure
R among all models which minimize the retain set loss. Indeed, when R admits a unique solution,
this formulation overcomes the prior issues of non-uniqueness and the risk of revealing information
from the forget set. While different choices of R can address these issues, we ultimately want R
to promote desirable model properties. In our theoretical results, we focus on R as a regularization
function that penalizes model complexity. This way, the solution θ∗

r to (2) corresponds to the simplest
model that interpolates Dr – a particularly useful property in the overparameterized regime, where
the simplest interpolating model is often associated with optimal generalization performance [22].

Then given the training algorithm AR, side information about the retain set Ir, a minimizer to the
original training loss A(D), and the forget set Df , an unlearning algorithm M (AR, Ir,A(D),Df)
attempts to recover AR(Dr), the least complex loss minimizer over Dr as measured by R.

3

2.2 Loss Gradient Methods Deployed Under Overparameterization

For the characterization in (2) of the ground truth unlearning solution under overparameterization, we
show that existing unlearning methods based on loss gradient perturbations fail to achieve meaningful
unlearning updates. Prior theoretical works proposed gradient-ascent-style updates based on influence
functions, a principled technique from robust statistics [5–7], while existing empirical unlearning
methods perform combinations of loss ascent over Df , loss descent over Dr, and parameter noising
[14–16, 8]. We characterize these methods as loss-gradient unlearning, and show that they perform
ineffective updates when deployed under overparameterization.

Definition 1. Let θ∗ = A(D). We say an unlearning algorithm M performs loss-gradient unlearning
if for any positive semi-definite Pr,Pf ∈ Rd×d and zero-mean random variable ξ ∈ Rd,

M (A, Ir,A(D),Df) = θ∗ − Pr∇θJ (θ∗;Dr) + Pf∇θJ (θ∗;Df) + ξ (3)

Although versions of loss-gradient unlearning have been theoretically motivated in the underparame-
terized setting [6, 7], we show they fail to unlearn in the overparameterized setting.

Theorem 1. Let f(θ∗, ·) interpolate D, so f(θ∗,x) = y for all (x,y) ∈ D, and let MLG be any
loss-gradient unlearning method. If the sample loss L (θ,x,y) is minimized when f(θ,x) = y, then
for all Df ⊆ D, MLG simply noises θ∗ by some zero-mean random variable ξ.

MLG (A, Ir,A(D),Df) = θ∗ + ξ

The recovered parameters θ∗ already minimize J (θ∗;Dr), so the loss gradients vanish and MLG
merely adds noise to θ∗. This shows the core issue with loss gradient updates in overparameterized
unlearning: the loss gradient is uninformative, as both θ∗ and θ∗

r minimize the loss on Dr.

3 Our Proposed Framework

We present a new framework to efficiently address the desired unlearning goal in overparameterized
settings without full retraining. A key assumption underlying our method is the richness of the
function class, allowing for perfect fitting of the retain set. This means there exist several mappings
f(θ, ·) where f(θ,xi) = yi for every (xi,yi) in the retain set. This lets us replace the loss
minimization in (2) with the hard constraint f(θ,xi) = yi, leading to the following formulation:

θ∗
r ∈ argmin

θ
R(θ) s.t. f(θ,xi) = yi ∀(xi,yi) ∈ Dr (4)

This problem can be independently solved, but this would be the equivalent of retraining on the retain
set. The main goal of our proposed framework is to solve the above problem efficiently by starting
from the model θ∗ which fits each sample and leveraging the feasibility of this model for the above
optimization problem. To do so, we simplify the problem and replace the constraints in (4) with their
linear approximation around θ∗. While the constraints f(θ,xi) = yi in (4) can be highly nonconvex
and difficult to satisfy in general, we demonstrate that using the proposed first-order approximation

f(θ∗,xi) +∇f(θ∗,xi)
⊤(θ − θ∗) = yi ⇒ ∇f(θ∗,xi)

⊤(θ − θ∗) = 0, (5)

renders it tractable as it leads to a set of linear constraints with respect to θ. Note that in the above
simplification we used the fact that θ∗ perfectly fits the retain set, so f(θ∗,xi) = yi. Now if we
apply this constraint relaxation the resulting optimization problem would be:

min
∆

R(θ∗ +∆) s.t. ∇f(θ∗,xi)
⊤∆ = 0 ∀(xi,yi) ∈ Dr, (6)

where for notational convenience, we define the drift variable as ∆ = θ−θ∗. While this relaxation is
sensible, it presents a clear limitation: approximating a general function with its linearization is only
locally accurate and thus valid when the drift term ∆ remains sufficiently small in some norm. To keep
the surrogate solution close to that of the original problem in (4), we add a regularization term R̂(∆)

to the loss to control the drift. The resulting objective function is R̃(θ∗+∆) := R(θ∗+∆)+ R̂(∆).
Consequently, the optimization problem we propose to solve instead of (4) is given by

∆̃ ∈ argmin
∆

R̃(θ∗ +∆) s.t. ∇f(θ∗,xi)
⊤∆ = 0 ∀(xi,yi) ∈ Dr (7)

4

Indeed, by finding ∆̃ the suggested unlearned model would be θ∗+∆̃. Although (7) employs relaxed
constraints, we will show that for various mapping functions f , there exists a function R̂ such that the
solution to (7) either (i) solves the original unlearning problem (4) exactly, or (ii) yields a model that
both interpolates Dr, remaining feasible for (4), and satisfies a tight upper bound on the complexity
measure R. A key advantage of the formulation in (7), beyond simplifying the constraints, is its
minimal information requirement: it only relies on the gradient of f evaluated at the original trained
model, i.e., the side information Ir = {∇θf(θ

∗,x)}(x,y)∈Dr
. This is significantly less restrictive

than prior work, which requires access to the inverse Hessian of the loss over Dr [5–7], and makes
our method substantially simpler than full retraining.

4 Theoretical Guarantees

This section provides theoretical guarantees for using our proposed relaxation (7) to solve the exact
unlearning problem (4). Going forward, we denote Euclidean projection onto the set S as PS (·) and
define the penalty function δ{a} which is +∞ if condition a is satisfied and 0 otherwise.

4.1 Linear Model

Given a linear model θ∗ with θ∗⊤xi = yi for all (xi, yi) ∈ D, we can easily solve the exact
unlearning problem (4) for R(θ) = ∥θ∥2.

Theorem 2. Let ∆̃ solve (7) for f(θ,x) = θ⊤x and R̃(θ) = ∥θ∥2. Then the recovered solution
θ̃ = θ∗ + ∆̃ solves the exact unlearning problem (4) for R(θ) = ∥θ∥2

This result holds because, in the linear case, the surrogate and original constraints match exactly, and
no approximation error is introduced. Thus, no additional regularizer (i.e., R̂(·) = 0) is needed.

4.2 L-Layer Linear Network

In this section, we extend our analysis to a more complex model: an L-layer linear network. Let
the prediction function be f(θ,x) = c⊤AL−1 · · ·A1x, where the parameter vector is partitioned
θ = [c ; vec(A1) ; . . . ; vec(AL−1)], with Aℓ ∈ Rhℓ×hℓ−1 and c ∈ RhL−1 for ℓ = 1, . . . , L − 1.
The input dimension is m = h0, and we assume n < m to reflect the overparameterized regime.
For clarity, define the effective linear predictor w(θ) = A⊤

1 · · ·A⊤
L−1c, so that f(θ,x) = w(θ)⊤x.

For this model class, we study two natural choices of regularizers in (4): (i) R as the norm of the
prediction function as a linear map, and (ii) R as the norm of all model parameters.

4.2.1 Minimizing Predictor Norm

We first analyze when the R measures the ℓ2-norm of the effective linear predictor: R(θ) =∥∥A⊤
1 · · ·A⊤

L−1c
∥∥
2

= ∥w(θ)∥2. Given θ∗ =
[
c∗ ; vec(A∗

1) ; . . . ; vec(A
∗
L−1)

]
such that

w(θ∗)⊤x = y for all (x, y) ∈ D, we aim to solve (4) for this choice of R. In this case the
mapping f is non-linear with respect to θ. As a result, the first-order approximation for the con-
straints is not tight, so solving the surrogate problem in (7) does not necessarily give a solution for the
problem in (4). However, we show that adding a suitable regularizer R̂ to control model drift ensures
the relaxed and original problems have the same solution. We first present an intermediate result
showing the existence of a feasible perturbation ∆̃ that satisfies the relaxed linearized constraints
and, when added to θ∗, yields an optimal solution to (4).
Lemma 1. Denote the retain set input subspace by Sr = span{x | (x, y) ∈ Dr} and partition the
perturbation as ∆̃ =

[
∆̃c ; vec(∆̃A1

) ; . . . ; vec(∆̃AL−1
)
]

in the same manner as θ. Set

∆̃A1
= −

∥∥A∗⊤
2 · · ·A∗⊤

L−1c
∗∥∥−2

2
A∗⊤

2 · · ·A∗⊤
L−1c

∗PS⊥
r
(w(θ∗))

⊤ (8)

and all other components of ∆̃ to zero. Then ∆̃ is orthogonal to the gradient of mapping f(θ,x)
evaluated at θ = θ∗ for each input x in the retain set and hence feasible for the relaxed problem (7).
Moreover, θ∗ + ∆̃ solves the exact unlearning problem (4) for R(θ) = ∥w(θ)∥2.

The above result shows that the perturbation direction defined in (8) leads to an optimal solution for
(4) once added to θ∗, while satisfying the relaxed linear constraints of the surrogate problem. That

5

said, it does not imply that solving (6), which only differs in the constraints from (4), would recover
∆̃. In fact, we can show that without adding a proper regularization term R̂ to the loss, ∆̃ would
not be a solution of the relaxed problem (see Appendix D.4.1). We next characterize the appropriate
regularization R̂(∆) needed to ensure that ∆̃ is the optimal solution to the surrogate problem in (7).

Theorem 3. The solution to the relaxed unlearning problem (7) with the following choice of R̃ solves
the exact unlearning problem (4) for R(θ) = ∥w(θ)∥2.

R̃(θ ;θ∗) = ∥w(θ)∥2 + δ{c̸=c∗} +

L−1∑
ℓ=2

δ{Aℓ ̸=A∗
ℓ} (9)

4.2.2 Minimizing Parameter Norm

Next, we analyze when the unlearning solution is the loss minimizer with the smallest parameter
norm, so R(θ) = ∥θ∥2. In this case, we can construct an exact unlearning solution from the exact
unlearning solution to the previously analyzed case when R(θ) = ∥w(θ)∥2.

Theorem 4. Let θ̂∗
r solve (4) for R(θ) = ∥w(θ)∥2, so w(θ̂∗

r) is the min ℓ2-norm linear predictor
over Dr. Define ρ = ∥w(θ̂∗

r)∥2 and let vℓ ∈ Rhℓ for ℓ ∈ [L− 1] each satisfy ∥vℓ∥2 = 1. Set

Ã1 = ρ
1−L
L v1w(θ̂∗

r)
⊤, Ãℓ = ρ

1
Lvℓv

⊤
ℓ−1 for ℓ = 2, . . . , L− 1, c̃ = ρ

1
LvL−1.

Then θ̃ =
[
c̃ ; vec(Ã1); . . . ; vec(ÃL−1)

]
solves the exact unlearning problem (4) for R(θ) = ∥θ∥2.

Thus, the solution to the minimum norm predictor problem gives the solution to minimum parameter
norm problem, so we can apply the previous results to find a solution for (4) with R(θ) = ∥w(θ)∥2
using the constraint relaxation and then update the parameters as prescribed by Theorem 4.

4.3 2-Layer Perceptron

We lastly consider a 2-layer perceptron with a non-linear activation. Specifically, we define f(θ,x) =
c⊤ϕ(Ax), where we use the partition θ = [c ; vec(A)] for c ∈ Rh, A ∈ Rh×m. Here, h is the
total number of neurons and ϕ : R→ R is some activation function. We abuse notation and write
ϕ(Ax) to denote the element-wise application of ϕ to Ax. We analyze the case where R measures
the number of active neurons, i.e., the width of the network. Formally, we denote a⊤

i as the ith row
of A, and we set R(θ) =

∑h
i=1 1{|ci| ∥ai∥2 > 0}. With this choice of R, the unlearning solution

promotes recovering a sparse network which fits Dr, where Dr has nr = |Dr| samples. Given that
c∗⊤ϕ(A∗x) = y for all (x, y) ∈ D, we chase the minimum neuron interpolating solution to Dr:

θ∗
r ∈ argmin

θ
R(θ) s.t. c⊤ϕ(Ax) = y ∀(x, y) ∈ Dr (10)

While we aim to solve (10) for any retain set Dr, the exact minimal-width solution remains unknown.
Prior work shows that nr + 1 neurons suffice for general activations [23], while for ReLU, some
nr-sample datasets need at least nr − 2 neurons [24]. Here, we apply our framework to recover
feasible unlearned networks with width at most nr, improving the best known worst-case bound.

We begin by linearizing the constraints of problem (10) around θ∗, as directly solving this problem
may be intractable due to the non-linear activation ϕ, especially since we assume access to only
the model gradients over Dr, not the samples in Dr themselves. We define the drift as ∆ =
[∆c ; vec(∆A)], yielding the specific instance of the linearized problem (6) for this model class:

min
∆

R(θ∗ +∆) s.t. ∆⊤
c ϕ(A

∗xi) + tr
{
∆⊤

A (ϕ′(A∗xi)⊙ c∗)x⊤
i

}
= 0 ∀(xi,yi) ∈ Dr, (11)

where ⊙ denotes element-wise product. Due to the layered structure and non-linear activation ϕ,
solving (11) may not ensure feasibility for (10), as the relaxed constraints are loose. We first show
that a feasible perturbation ∆̃, modifying only the last layer c∗, exists and yields a network satisfying
(10) with at most nr active neurons.
Lemma 2. Assume the finite-width network f(θ∗,x) = c∗⊤ϕ(A∗x) interpolates Dr, where nr =
|Dr| is the number of retain set samples. Let dim

(
span{ϕ(A∗x)}(x,y)∈Dr

)
= s ≤ nr. Then, there

exists a feasible perturbation ∆̃ satisfying the linear constraints in (11), such that f(θ∗ + ∆̃, ·)
interpolates Dr, R(θ∗ + ∆̃) ≤ s, and ∆̃A = 0.

6

Algorithm 1 MinNorm-OG

1: Input: θ∗, loss J (θ), D′
r ⊆ Dr , step size ηt, regularization constant λt ≥ 0, subsample batch size npert

2: Initialize θ ← θ∗

3: for t = 1, . . . , nepochs do
4: for each batch B from D′

r do
5: if λt <∞ then
6: Compute function gradients gi = ∇θf(θ,xi) for xi ∈ B, i = 1, . . . , npert

7: Solve ∆̃← argmin∆ ∥θ +∆∥22 + λt ∥∆∥22 s.t. ∆ ⊥ gi for all i ≤ npert

8: Update θ ← θ + ∆̃

9: Loss descent: θ ← θ − ηt∇θJ (θ;B)
10: return θ

While Lemma 2 provides a feasible point for (11), it is not the solution, as the relaxed problem
linearizes the interpolation constraint without limiting drift size, potentially losing interpolation over
Dr. The following theorem shows that choosing R̂ to restrict perturbations in A∗ ensures that solving
(7) yields a network feasible for (10) with at most nr active neurons.
Theorem 5. For R(θ) which measures the number of active neurons of the network f(θ, ·), define

R̃(θ ;θ∗) = R(θ) + δ{A̸=A∗} (12)

as the surrogate objective. Then the solution to the relaxed unlearning problem (7) with this choice of
R̃ results in a network which interpolates Dr, achieving feasibility for the exact unlearning problem
(10), and admits at most s = dim

(
span{ϕ(A∗x)}(x,y)∈Dr

)
≤ nr active neurons, where nr = |Dr|.

Theorem 5 shows that for general activation functions, linearizing the constraints to (10) and mini-
mizing the sum of the complexity measure R along the appropriate regularizer R̂ for the drift term
recovers a network that interpolates Dr with at most s active neurons, where s is the dimension of
the span of the learned representations {ϕ(A∗x)}(x,y)∈Dr

. Since s can never exceed nr = |Dr| our
method guarantees a worst-case interpolation width of at most nr, thereby improving the general
bound of nr + 1 implied by [23] for minimum width interpolation.

The drift regularizer R̂ only allows perturbations to c∗, so the solution to (7) reduces width via
sparsity in the updated last layer c∗ + ∆̃c, while leaving the first layer A∗ unchanged. Although
c∗+∆̃c relies on a small set of features, the feature map ϕ(A∗x) still reflects representations learned
from all of D. We show, however, that the sparsity of c∗ + ∆̃c can be propagated into A∗, producing
a network with a new, sparser feature map that is less expressive and no longer consistent with having
been trained on the full dataset D, yet still satisfies all unlearning guarantees in Theorem 5.

Proposition 1. Let θ = [c ; vec(A)] be any parameter vector, and define Â = (1c̸=0,1
⊤) ⊙ A.

Then the updated parameters θ̂ =
[
c ; vec(Â)

]
satisfy: (i) f(θ,x) = f(θ̂,x) for all x ∈ Rm, (ii)

R(θ) = R(θ̂), and (iii) Â has at most R(θ̂) number of nonzero rows.

Thus, for any parameters θ, we can apply a simple update to recover new parameters θ̂ which behave
like an R(θ)-neuron network in terms of both the function outputs and at the parameter level. We
apply this result to the solution to the relaxed unlearning problem (7) in the following corollary.

Corollary 1. Let θ̃ = [c̃ ; vec(A∗)] solve (7) for R̃ defined in (12), and define the updated first layer
as Â = (1c̃ ̸=0 1

⊤)⊙A∗. Then network parameterized by θ̂ =
[
c̃ ; vec(Â)

]
similarly interpolates

Dr, has the same number of active neurons R(θ̃) = R(θ̂), and Â has at most R(θ̂) non-zero rows.

Thus, solving the relaxed problem (7) and updating A∗ via Proposition 1 yields a network that reveals
no trace of having been trained on the larger dataset D = Dr ⊔ Df , even at the representation level.

5 From Theory to Practice

We translate our framework into a practical algorithm MinNorm-OG (Algorithm 1). At epoch t, we
alternate between solving a version of the relaxed unlearning problem (7) and descending the loss

7

Table 1: Data Poisoning experiment results, measured as the median sup-norm distance between the
retain set trend y = sin(x) and the unlearned model outputs over 10 trials (smaller is better).

Epochs Retrain MinNorm-OG GD GA NGP NGD Ridge ℓ1-Sparse
10 1.50 1.50 3.23 2.56 2.50 2.73 2.27 3.28

100 1.36 1.08 2.76 23.8 2.62 2.85 2.13 1.79
1000 1.17 0.63 2.61 1400 2.75 2.45 1.96 1.37

on Dr to maintain feasibility for the exact unlearning problem (4), leveraging access to samples in
Dr. Steps 6-8 of Algorithm 1 denote solving (7) for R(θ) = ∥θ∥22 and R̂(∆) = λt ∥∆∥22 where
λt ≥ 0 is a scaling parameter, and step 9 shows the loss descent step. To handle batched data and
large models, we enforce the orthogonality constraint in (7) over a subsample of size npert within
each batch. For this R and R̂, the solution to (7) perturbs θ toward its projection onto the span of
model gradients over this subsample (see Appendix E), which can be interpreted as a proximal update
under the orthogonal gradient constraint. The main overhead relative to gradient descent comes from
solving for ∆̃ via a QR decomposition with complexity O(dn2

pert), which is negligible compared to
the O(dnB) cost of gradient descent when npert <

√
nB , where nB = |B| is the batch size.

5.1 Experiments

We test our algorithm against the following baseline methods. Retrain erases the initial model and
trains from scratch onDr. GD [14] runs gradient descent on J (θ ;Dr), while Noisy GD (NGD) [16]
adds gradient noise to the GD steps. GA [15] runs gradient ascent on J (θ ;Df). NegGrad+ (NGP)
[8] minimizes a weighted combination of the GD and GA objectives. ℓ1-Sparse [25] runs GD with an
ℓ1-norm regularizer. SCRUB [8] optimizes three objectives: minimizing J (θ ;Dr), minimizing KL
divergence of model outputs on Dr relative to the original model, and maximizing KL divergence on
Df . Negative Preference Optimization (NPO) [18] runs a form of gradient ascent over J (θ ;Df)
inspired by preference optimization. SalUn [26] minimizes J (θ ;Dr) while fitting random labels
over Df , updating only the parameters that initially have large gradients with respect to J (θ ;Df).
We apply SCRUB, NPO, and SalUn only in our classification-based experiments, as they are not
directly designed for general regression tasks. To highlight the performance of our algorithm, we
also compare to ridge regression, which approximates our unlearning objective (4) for R(θ) = ∥θ∥2
by minimizing J (θ;Dr) + λt ∥θ∥22. The minimizer of this regularized objective converges to the
minimum-ℓ2-norm loss minimizer in the ridgeless limit as λt → 0 [22].

While recent work proposed various unlearning benchmarks, especially for LLMs [16, 27–29], they
often rely on opaque metrics that emphasize suppressing forget-set generation. In contrast, we present
the following experiments with interpretable quantitative metrics. In each experiment, we evaluate
all methods over a fixed number of unlearning epochs. In the Data Poisoning experiment, each
epoch corresponds to a single unlearning update over the full dataset, D = Df ⊔ Dr. In contrast, for
the larger-scale Multi-Class Label Erasure and Representation Collapse experiments, each method
processes batches from the entire forget set Df and only a subset of the retain set, D′

r ⊂ Dr. Here,
one epoch is defined as a full pass over the forget set batches, where each forget batch is paired with
a retain batch of equal size sampled from D′

r. Complete details of our experimental setup and full
results with uncertainty estimates are provided in Appendix F.

Data Poisoning. We train a shallow neural network on retain samples (xr, yr) ∈ Dr with yr =
sin(xr) and forget samples (xf , yf) ∈ Df with yf = 1.5, over input domain X = [−5π, 5π] ⊆ R.
We evaluate the output θ of each unlearning method by measuring the deviation from the retain set
trend, given by supx∈X |f(θ,x)− sin(x)|. Results are reported in Table 1 as the median over 10
trials with visualizations in Figure 1. Retrain fails to closely capture the retain set trend y = sin(x),
while the (regularized) loss descent methods (GD, NGD, Ridge) struggle to simultaneously escape
the influence of the forget set and fit to the retain set. GA is unstable and diverges from the retain set.
Due to this instability, we found that NGP performed best when the loss-ascent coefficient was near
zero, causing it to behave like GD.

Multi-Class Label Erasure. We use the CIFAR-10 [30] and Tiny ImageNet [31] datasets, creating
red, green, and gray copies of each image. We train modified ResNet-18 and ResNet-50 models on

8

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(a) Retrain

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(b) MinNorm-OG (ours)

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(c) GD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(d) GA

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(e) NGP

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(f) NGD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(g) Ridge

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(h) ℓ1-Sparse

Original Model Unlearned Model sin(x) Retain Points Forget Points

Figure 1: Example unlearned model fits when given 100 unlearning epochs for the Data Poisoning
experiment, where the forget points distort the retain set trend y = sin(x).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
we

r
)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
we

r
)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 2: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure experiment on colored versions of CIFAR-10 (left) and Tiny ImageNet (right). Models
predict color and content, but the retain set contains only gray images. The ground truth unlearned
model (GT) performs well on gray inputs but always predicts gray with probability 1. The x-axis
shows accuracy on gray test images (higher is better), and the y-axis shows mean squared error
between predicted probability of gray on all inputs and the target of 1 (lower is better). MinNorm-OG
(ours) best approaches the ground-truth unlearned model’s performance relative to the other baselines.

CIFAR-10 and Tiny ImageNet, respectively, to jointly predict image class and color. The retain setDr

contains all image content classes only in gray, while the forget setDf contains all colors. The ground
truth unlearned model predicts gray content well and always predicts gray color with probability 1,
regardless of input. We evaluate retain quality by accuracy on gray-colored test samples, and we
measure forget quality error as the mean squared error between the model’s predicted probability of
an image being gray and the target value of 1 for all colored inputs.

Figure 2 presents the Pareto frontier of the mean performance across 5 trials for each method under
different hyperparameter settings. The optimal point (1, 0) indicates perfect retain quality and zero
forget quality error. The ground truth unlearned model is labeled GT. Our method, MinNorm-OG,
performs best across both datasets, as the other methods struggle to unlearn the influence of the
colored forget set samples without harming accurate classification of gray test images. Notably,
retraining from scratch yields a model with nearly perfect forget quality error, as it is trained only
on gray images, but performs no better than random guessing on gray test images due to the limited
training epochs and restricted retain set access.

Representation Collapse. We again use the CIFAR-10 dataset where each of the 10 classes is
assigned a unique color. The retain set Dr contains the CIFAR-10 images colored according to
their unique color, while the forget set Df comprises randomly colored images. The ground truth

9

Table 2: Representation Collapse experiment results across constraints on the number of unlearning
epochs and percentage of accessible retain set samples. Models are trained on colored images where
color perfectly predicts the label in the retain set but not in the full dataset D. Evaluation is measured
as the mean accuracy (%) on test images labeled by color over 5 trials (higher is better).

Retain % Epochs Retrain MinNorm-OG GD GA NGP NGD Ridge ℓ1-Sparse Scrub NPO SalUn

0.1
5 79.1 49.1 24.0 34.5 45.9 12.6 20.9 12.4 37.3 40.6 29.4
10 95.5 78.7 55.2 38.3 73.7 33.0 55.2 23.0 61.9 43.2 53.4
15 96.3 93.2 78.2 39.8 81.5 46.9 78.2 25.1 74.1 44.6 76.3

1 5 92.8 59.5 40.7 34.2 58.3 32.9 33.5 12.5 47.8 42.5 42.5
10 98.5 94.7 73.6 38.2 92.4 70.5 63.4 31.4 75.8 43.5 68.7

Table 3: Average time in seconds to perform a single unlearning epoch on the Multi-Class Label
Erasure experiment on Tiny ImageNet using ResNet-50, averaged over 5 trials.

Method Retrain MinNorm-OG GD GA NGP NGD Ridge ℓ1-Sparse Scrub NPO SalUn
Time (s) 0.90 0.78 0.67 0.68 0.74 0.69 0.68 0.69 0.96 0.94 1.09

unlearned model predicts from color alone, as the color feature completely determines the class label
and is easier to learn than the image content features. In contrast, models trained on the full dataset
D = Dr ⊔ Df must predict based on content, since color is no longer fully predictive of the label.
For evaluation, we label heldout test images by color and assess unlearning via color-label accuracy,
testing if the unlearning methods can collapse the original model into just a color classifier.

Table 2 presents mean results over 5 trials. We observe that Retrain achieves much higher color
classification accuracy than any unlearning method, as image color is an easy feature to learn from
scratch. However, this result is specific to this setup: since the target function over the retain set is
so simple, it is easier to learn from a freshly initialized model than by adapting the original model,
which has learned to rely on complex image content features. Our prior experiments demonstrate that
Retrain is not a viable unlearning strategy in general, so we report its results separately in the leftmost
column. We bold the MinNorm-OG results, as they achieve the highest accuracy for each combination
of constraints on the percentage of accessible retain set samples and number of unlearning epochs.

5.2 Runtime Comparison

In the above experiments, we compare all unlearning methods under a fixed number of epochs.
To assess per-epoch computational efficiency, we measure the runtime required by each method to
complete a single unlearning epoch in the Multi-Class Label Erasure experiment using Tiny ImageNet
with ResNet-50, our largest-scale setting. The results are reported in Table 3.

We observe that methods which compute loss gradients with simple regularizers on a single data split
(GD, GA, NGD, Ridge, ℓ1-Sparse) are the fastest. NGP is slower, as it requires forward and backward
passes over both retain and forget set batches. Our method, MinNorm-OG, operates only on the
retain set but solves an additional subproblem on top of the loss descent step, while maintaining a
runtime comparable to NGP. Scrub and NPO are slower, as they require extra forward passes using
the original model to evaluate their loss functions, while Retrain is slowed by the need to initialize a
new model from scratch. Lastly, SalUn is the slowest due to an initial pass over the entire dataset to
compute the threshold for deciding which parameters to freeze during unlearning.

6 Conclusion

We proposed a new unlearning framework under overparameterization by seeking the simplest
solution consistent with the retain set. We proved guarantees on solving the exact unlearning problem
through a tractable relaxed formulation. A practical implementation of our framework outperformed
baselines, as the simplest solution aligns with unlearning goals and removes artifacts unrelated
to the retain set. While our theoretical guarantees open the door for unlearning analysis beyond
the underparameterized setting, we focused on model classes like linear networks and two-layer
perceptrons. We naturally aim to analyze unlearning in more complex settings like deep networks in
future work, as well as experiment within broader domains at larger scale.

10

Acknowledgments

This work was supported in part by NSF Grants 2019844, 2107037, and 2112471, ONR Grant
N00014-19-1-2566, the Machine Learning Lab (MLL) at UT Austin, the NSF AI Institute for
Foundations of Machine Learning (IFML), and the Wireless Networking and Communications Group
(WNCG) Industrial Affiliates Program. We are grateful for computing support on the Vista GPU
Cluster through the Center for Generative AI (CGAI) and the Texas Advanced Computing Center
(TACC) at the University of Texas at Austin.

References
[1] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016,

2016.

[2] California State Legislature. California Consumer Privacy Act of 2018. Statute, 2018. Cal. Civ.
Code § 1798.100 et seq.

[3] Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck
Dernoncourt, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. Bias and fairness in large language
models: A survey. Computational Linguistics, 50(3):1097–1179, 2024.

[4] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In
2015 IEEE Symposium on Security and Privacy, pages 463–480, 2015. doi: 10.1109/SP.2015.35.

[5] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence
functions are the answer, then what is the question? Advances in Neural Information Processing
Systems, 35:17953–17967, 2022.

[6] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

[7] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data
removal from machine learning models. In International Conference on Machine Learning,
pages 3832–3842. PMLR, 2020.

[8] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards un-
bounded machine unlearning. Advances in Neural Information Processing Systems, 36:1957–
1987, 2023.

[9] Martin Pawelczyk, Jimmy Z Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, and Seth Neel.
Machine unlearning fails to remove data poisoning attacks. In The Thirteenth International
Conference on Learning Representations, 2025.

[10] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter.
TOFU: A task of fictitious unlearning for LLMs. In First Conference on Language Modeling,
2024.

[11] Frank R Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974.

[12] Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Ayush Sekhari, and Chiyuan
Zhang. Ticketed learning–unlearning schemes. In The Thirty Sixth Annual Conference on
Learning Theory, pages 5110–5139. PMLR, 2023.

[13] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
symposium on security and privacy (SP), pages 141–159. IEEE, 2021.

[14] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based
methods for machine unlearning. In Algorithmic Learning Theory, pages 931–962. PMLR,
2021.

11

[15] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524, 2021.

[16] Rishav Chourasia and Neil Shah. Forget unlearning: Towards true data-deletion in machine
learning. In International Conference on Machine Learning, pages 6028–6073. PMLR, 2023.

[17] Xiaomeng Jin, Zhiqi Bu, Bhanukiran Vinzamuri, Anil Ramakrishna, Kai-Wei Chang, Volkan
Cevher, and Mingyi Hong. Unlearning as multi-task optimization: A normalized gradient
difference approach with an adaptive learning rate. In Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 11278–11294, 2025.

[18] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From
catastrophic collapse to effective unlearning. In First Conference on Language Modeling, 2024.

[19] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics, pages
3762–3773. PMLR, 2020.

[20] Huiqiang Chen, Tianqing Zhu, Xin Yu, and Wanlei Zhou. Machine unlearning via null space
calibration. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pages 358–366, 2024.

[21] Tuan Hoang, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Learn to unlearn for deep neural
networks: Minimizing unlearning interference with gradient projection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 4819–4828, 2024.

[22] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2):949–986, April
2022. doi: 10.1214/21-AOS2144.

[23] Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, and Ji Zhu. ℓ1 regularization in infinite
dimensional feature spaces. In International Conference on Computational Learning Theory,
pages 544–558. Springer, 2007.

[24] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a
tight analysis of memorization capacity. Advances in Neural Information Processing Systems,
32, 2019.

[25] Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay
Sharma, and Sijia Liu. Model sparsity can simplify machine unlearning. Advances in Neural
Information Processing Systems, 36:51584–51605, 2023.

[26] Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun:
Empowering machine unlearning via gradient-based weight saliency in both image classification
and generation. In The Twelfth International Conference on Learning Representations, 2023.

[27] Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. In The Thirteenth International Conference on Learning
Representations, 2025.

[28] Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai Wei Chang, Zhiqi Bu, Bhanukiran Vinzamuri,
Volkan Volkan Cevher, Mingyi Hong, and Rahul Gupta. SemEval-2025 task 4: Unlearning
sensitive content from large language models. In Proceedings of the 19th International Workshop
on Semantic Evaluation (SemEval-2025), pages 2584–2596. Association for Computational
Linguistics, July 2025.

[29] Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei Chang, Zhiqi Bu, Bhanukiran Vinzamuri,
Volkan Cevher, Mingyi Hong, and Rahul Gupta. LUME: LLM unlearning with multitask
evaluations. arXiv preprint arXiv:2502.15097, 2025.

[30] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. Technical Report.

12

[31] Stanford CS231n. Tiny imagenet visual recognition challenge, 2015. Course project from
Stanford University’s CS231n: Convolutional Neural Networks for Visual Recognition.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

13

A General Notation

Vectors and matrices are in bold, with vectors lowercase and matrices uppercase. For sets A,B, A⊔B
denotes disjoint union. 2A is the power set. For a proposition a, 1{a} is 1 if true and 0 otherwise;
δ{a} is +∞ if true and 0 otherwise. For x ∈ Rd and A ⊆ Rd, PA (x) is the Euclidean projection
onto A. For Z ∈ Rm×n, vec(Z) ∈ Rmn is the columnwise vectorization. im(Z), ker(Z), and
row(Z) denote the image, kernel, and rowspace. ∥Z∥F is the Frobenius norm, ∥Z∥∗ is the nuclear
norm, and ∥Z∥2 is the spectral norm. For Y ∈ Rm×n, ⟨Z,Y ⟩ is the Frobenius inner product and
Z ⊙ Y is the element-wise product. tr{·} is the trace. For x ∈ Rdx and y ∈ Rdy , [x;y] ∈ Rdx+dy

stacks x and y. ∥x∥p is the ℓp norm. [n] = {1, . . . , n}. For x ∈ R, (x)+ = max{x, 0} is the ReLU.
Let 0 and 1 denote the vectors with each entry equal to 0 and 1 respectively. Further, for x ∈ Rd

and c ∈ R, let 1x ̸=c denote the vector which is 1 in each entry of x which is not equal to c and 0
otherwise.

B Minimum Norm Solutions to Linear Regression

Here we prove various properties of minimum norm solutions to linear regression problems which we
later use for our unlearning results. Following the notation in Section 2, we consider the full n-sample
dataset D = {(xi, yi)}ni=1 with sample inputs xi ∈ Rm and outputs yi ∈ R. We consider training
a linear model f(θ,x) = θ⊤x parameterized by θ ∈ Rm. We work within the overparameterized
setting, so we assume m > n. Define the span of the input vectors S = span{x | (x, y) ∈ D}, and
assume dim(S) = n so the regression problem is realizable. Consider solving the following problem
for finding the linear regression solution with minimum ℓ2 norm:

θ∗ = argmin
θ
∥θ∥2 s.t. f(θ,x) = y ∀(x, y) ∈ D

Let X ∈ Rn×m be the wide matrix whose ith row is equal to x⊤
i , and let y ∈ Rn be the vector

whose ith element is yi. Then, we can write an equivalent problem in matrix form.

θ∗ = argmin
θ

1

2
∥θ∥22 s.t. y = Xθ (13)

We can then characterize the solution to the above problem relative to the constraint set.
Lemma 3. θ∗ is the unique vector in row(X) which is feasible for (13)

Proof. The objective (13) is a convex objective with linear constraints which is bounded from below
by 0 and has a non-empty feasible set. Thus, the KKT conditions are necessary and sufficient for
optimality. We now derive the solution λ∗ ∈ Rn to the dual problem.

min
θ

1

2
∥θ∥22 s.t. y = Xθ = min

θ
max
λ∈Rn

1

2
∥θ∥22 + λ⊤ (y −Xθ)

= max
λ

min
θ

1

2
∥θ∥22 + λ⊤ (y −Xθ)

= max
λ

1

2

∥∥X⊤λ
∥∥2
2
+ λ⊤ (y −XX⊤λ

)
s.t. θ = X⊤λ

= max
λ
−1

2

∥∥X⊤λ
∥∥2
2
+ λ⊤y s.t. θ = X⊤λ

=⇒ XX⊤λ∗ = y and θ∗ = X⊤λ∗ (14)

Thus the primal solution θ∗ must be of the form X⊤λ∗ ∈ row(X). To show uniqueness, consider
θ∗
1 ,θ

∗
2 ∈ row(X) that are both feasible for (13). Then,

y = Xθ∗
1 = Xθ∗

2 =⇒ X (θ∗
1 − θ∗

2) = 0 =⇒ θ∗
1 − θ∗

2 ∈ ker(X).

But, since row(X) is a subspace, θ∗
1 ,θ

∗
2 ∈ row(X) implies θ∗

1−θ∗
2 ∈ row(X). Further, row(X) =

ker(X)⊥. Thus,
θ∗
1 − θ∗

2 ∈ ker(X) ∩ ker(X)⊥ = {0} =⇒ θ∗
1 = θ∗

2

14

Using the same analysis, we can characterize the entire feasible set in terms of θ∗.

Lemma 4. The feasible set to (13) {θ | y = Xθ} = θ∗ + ker(X).

Proof. Let θ′ satisfy y = Xθ′. Then, X (θ′ − θ∗) = 0 so θ′ − θ ∈ ker(X).

To show the converse, take any z ∈ ker(X). Then X (θ∗ + z) = Xθ∗ +Xz = Xθ∗ = y.

Using this characterization of θ∗ and the feasible set, we can cleanly understand how to achieve
minimum norm solutions over just a subset of the constraints given a feasible point. This is central to
our unlearning setup in later sections.

Lemma 5. Consider any subset Dr ⊆ D, and define θ∗
r as the linear regression solution over just

Dr with minimum norm:

θ∗
r = argmin

θ
∥θ∥2 s.t. f(θ,x) = y ∀(x, y) ∈ Dr (15)

Let Sr = span{x | (x, y) ∈ Dr}. Then θ∗
r = PSr (θ

∗).

Proof. θ∗ already satisfies the feasibility constraint over the whole dataset D, so it must be feasible
for (15). Applying Lemmas 3 and 4 to the minimum norm problem over just Dr (15), we must have
that θ∗

r ∈ Sr and θ∗ = θ∗
r + z for some z ∈ S⊥

r . Then,

PSr (θ
∗) = PSr (θ

∗
r + z) = PSr (θ

∗
r) = θ∗

r .

C Loss Minimization Does not Protect Against Data Leakage

The following example concretely demonstrates how certain minimizers of the retain set loss do not
align with the intended goals of unlearning.

Recall the unlearning problem for linear regression discussed in Section 4.1. In this case, we use
the linear model f(θ,x) = θ⊤x parameterized by θ ∈ Rm. Further suppose the original dataset
D = {(xi, yi)}ni=1 has n samples with xi ∈ Rm, yi ∈ R. Denote the subspace S = span{x |
(x, y) ∈ D}, and assume dim(S) = n so the problem is realizable. We work in the overparameterized
setting where m > n and the objective function is defined as the mean squared error denoted by

J (θ ;D) = 1

n

∑
(x,y)∈D

(
y − θ⊤x

)2
Consider when the learning algorithm A runs gradient descent on the loss, initialized at 0. Due to the
overparameterization, J has an infinite number of minimizers which each achieve 0 loss. However,
A is biased towards a specific minimizer which is the unique minimizer to the loss on the span of the
input samples, denoted as the subspace S.

Proposition 2. Let Ak(D) be a learning algorithm which runs k steps of gradient descent on
J (θ ;D) initialized at 0, and define S = span{x | (x, y) ∈ D}. If lim

k→∞
Ak(D) converges to some

θ∗, then
{θ∗} = S ∩ argminJ (θ ;D)

Proof. We write the loss function J (θ ;D) in vector form J (θ ;D) = 1
n ∥y −Xθ∥22, where the

ith entry of y ∈ Rn is yi and the ith row of X ∈ Rn×m is x⊤
i . Note that the gradient of the loss for

any value of θ is contained the subspace S, as ∇θJ (θ ;D) = 2
nX

⊤ (Xθ − y) and im(X⊤) = S.
Further, the initial iterate of Ak is 0 ∈ S. Since subspaces are closed under addition, every iterate of
gradient descent on J (θ ;D) starting from 0 must be contained in S. Thus if Ak(D) converges, it
must converge to a zero of the gradient of the loss, and this point must also be in S. Since the loss is
convex, this point must be a loss minimizer.

15

In this case, the original training solution θ∗ which results from simply performing gradient descent
interpolates all of D and lies on S, the span of the input samples in D. Then, given an unlearning
request to forget any subset Df from D, θ∗ itself is a minimizer to the loss on the resulting retain
set Dr = D \ Df . However, since θ∗ ∈ S reveals information about all the input samples in D, it
necessarily leaks information about the samples in Df . Thus, even though θ∗ is a valid minimizer of
J (θ ;Dr), it is not an acceptable unlearning solution.

D Proofs

D.1 Proof of Theorem 1

We assume f(θ∗, ·) interpolates all of D, so f(θ∗,x) = y for all (x,y) ∈ D, and that the sample-
wise loss L (θ,x,y) is minimized when f(θ,x) = y. Thus, θ∗ must minimize each of the sample-
wise losses L (θ,x,y) for all (x,y) ∈ D. Therefore, ∇θL (θ∗,x,y) = 0 for all (x,y) ∈ D.

Since J (θ∗;Dr) =
1

|Dr|
∑

(x,y)∈Dr
L (θ,x,y) and J (θ∗;Df) =

1
|Df |

∑
(x,y)∈Df

L (θ,x,y), we
must have that∇θJ (θ∗;Dr) = ∇θJ (θ∗;Df) = 0.

Then, if MLG is any loss-gradient unlearning method, the update rule must be of the form

M (A, Ir,A(D),Df) = θ∗ − Pr∇θJ (θ∗;Dr) + Pf∇θJ (θ∗;Df) + ξ,

where Pr and Pf are positive semi-definite matrices and ξ is a zero-mean random variable. Applying
the fact that∇θJ (θ∗;Dr) = ∇θJ (θ∗;Df) = 0 to the update of MLG gives the desired result:

MLG (A, Ir,A(D),Df) = θ∗ + ξ

D.2 Proof of Theorem 2

Recall we have a feasible vector θ∗ such that θ∗⊤x = y for all (x, y) ∈ D, and we want to recover
θ∗
r , the minimum ℓ2 norm solution over just a subset Dr ⊆ D:

θ∗
r = argmin

θ
∥θ∥2 s.t. θ⊤x = y ∀(x, y) ∈ Dr (16)

Consider solving the relaxed unlearning problem (7) for R̃(θ) = ∥θ∥2:

∆̃ = argmin
∆

∥θ∗ +∆∥2 s.t. ∆ ⊥ x ∀(x,y) ∈ Dr

Define Sr = span{x | (x, y) ∈ Dr} and write the equivalent problem:

∆̃ = argmin
∆∈S⊥

r

1

2
∥θ∗ +∆∥22

By first order optimality, θ∗ + ∆̃ ∈ Sr, so we must have that

∆̃ = −PS⊥
r
(θ∗)

Thus the updated unlearned vector is

θ∗ + ∆̃ = θ∗ − PS⊥
r
(θ∗) = PSr

(θ∗) .

Then, PSr
(θ∗) = θ∗

r by Lemma 5.

D.3 Proof of Lemma 1

Recall that in this case we are interested in minimizing R(θ) = ∥w(θ)∥2, where w(θ) =
A⊤

1 · · ·A⊤
L−1c returns the effective linear predictor parameterized by θ.

16

We first show that ∆̃ is feasible for the relaxed problem (7). Firstly, ∆̃ is zero in all entries
except those corresponding to the perturbation of A1, so we only need to ensure that ∆̃A1

is
orthogonal to ∇A1

f(θ∗,x) for each (x, y) ∈ Dr. Recall we denote the retain set input space as
Sr = span{x | (x, y) ∈ Dr }, and ∆̃A1

is defined as

∆̃A1 = −
∥∥A∗⊤

2 · · ·A∗⊤
L−1c

∗∥∥−2

2
A∗⊤

2 · · ·A∗⊤
L−1c

∗PS⊥
r
(w(θ∗))

⊤
.

Further, the gradients are computed as

∇A1f(θ
∗,x) = A∗⊤

2 · · ·A∗⊤
L−1c

∗x⊤

Then for any (x, y) ∈ Dr,

⟨∆̃A1
,∇A1

f(θ∗,x)⟩ = tr

{(
∆̃A1

)⊤
∇A1

f(θ∗,x)

}
= tr

{
∇A1

f(θ∗,x)
(
∆̃A1

)⊤}
= −

∥∥A∗⊤
2 · · ·A∗⊤

L−1c
∗∥∥−2

2
tr
{
A∗⊤

2 · · ·A∗⊤
L−1c

∗x⊤PS⊥
r
(w(θ∗)) c∗⊤A∗

L−1 · · ·A∗
2

}
= 0,

where the last step follows from the fact that the inner term x⊤PS⊥
r
(w(θ∗)) = 0 since x ∈ Dr

implies x ∈ Sr by definition.

We now show that θ∗ + ∆̃ achieves the optimal unlearning solution θ∗. By construction of ∆̃,
the only entries of θ∗ that are perturbed are those which correspond to A1. Thus, we compute the
effective linear predictor after the perturbation:

w(θ∗+∆̃) = w(θ∗) + ∆̃⊤
A1

A∗⊤
2 · · ·A∗⊤

L−1c
∗

= w(θ∗)−
∥∥A∗⊤

2 · · ·A∗⊤
L−1c

∗∥∥−2

2
PS⊥

r
(w(θ∗)) c∗⊤A∗

L−1 · · ·A∗
2 A

∗⊤
2 · · ·A∗⊤

L−1c
∗

= w(θ∗)−
∥∥A∗⊤

2 · · ·A∗⊤
L−1c

∗∥∥−2

2
PS⊥

r
(w(θ∗))

(
A∗⊤

2 · · ·A∗⊤
L−1c

∗)⊤ A∗⊤
2 · · ·A∗⊤

L−1c
∗

= w(θ∗)− PS⊥
r
(w(θ∗))

= PSr
(w(θ∗))

Since the linear predictor w(θ∗) already interpolated D, PSr
(w(θ∗)) must be the minimum norm

linear predictor over Dr by Lemma 5. Thus, the effective predictor of the perturbed parameters
w(θ∗ + ∆̃) solves the exact unlearning problem (4) when R(θ) = ∥w(θ)∥2, so θ∗ + ∆̃ achieves
the optimal unlearning solution.

D.4 Proof of Theorem 3

Recall for this theorem we analyze R(θ) = ∥w(θ)∥2. Let ∆̃ be the perturbation which satisfies the
conditions in Lemma 1. Then, ∆̃ is feasible for the relaxed problem (7), and further θ∗ + ∆̃ solves
the exact unlearning problem (4).

Now, let ∆∗ minimize the relaxed problem (7) for this R̃ defined in (9). Then because R̃ ensures that
all elements of ∆∗ which do not correspond to A1 are zero, we must have that for any (x, y) ∈ Dr:

w(θ∗ +∆∗)⊤x = c∗⊤A∗
L−1 · · ·A∗

2

(
A∗

1 +∆∗
A1

)
x

= y + c∗⊤A∗
L−1 · · ·A∗

2 ∆
∗
A1

x

= y + ⟨∆∗,∇θf(θ
∗,x)⟩

= y,

where the last equality follows from the feasibility of ∆∗ to (7). Thus, θ∗ +∆∗ interpolates Dr, so
θ∗ +∆∗ is feasible for the exact unlearning problem (4). We now show this point is also optimal for
(4).

17

Since θ∗ + ∆̃ solves the exact unlearning problem (4) and θ∗ +∆∗ is another feasible point, we
must have that

R(θ∗ + ∆̃) ≤ R(θ∗ +∆∗).

Further, both ∆̃ and ∆∗ are feasible for (7) and ∆∗ is defined as the solution to (7), so we must have
that

R̃(θ∗ +∆∗) ≤ R̃(θ∗ + ∆̃).

But, since both ∆̃ and ∆∗ are non-zero only in the entries corresponding to A1, applying R and R̃
yields the same value:

R(θ∗ + ∆̃) = R̃(θ∗ + ∆̃) and R(θ∗ +∆∗) = R̃(θ∗ +∆∗)

Thus, R(θ∗ +∆∗) = R(θ∗ + ∆̃), so θ∗ +∆∗ achieves the optimal objective value of (4). Since
we established feasibility and optimality, θ∗ +∆∗ must solve (4).

D.4.1 Necessity of Additional Regularizer R̂ for Theorem 3

In this section, we show that minimizing just R over the relaxed constraints, i.e. solving (6), for
R which measures the linear network predictor norm does not solve the exact unlearning solution.
Because there is no control the size and direction of the perturbation ∆, we can construct a simple
example where ∆ satisfies just the linearization of the data interpolation constraints but the updated
network θ∗ +∆ no longer interpolates Dr.

Consider a dataset of two samples D = {(e1, 1), (e2, 1)}, where ei ∈ Rm is the ith standard basis
vector for any m ≥ 3. Consider the original 2-layer interpolating network trained on D defined by
parameters θ∗ = [c∗ ; vec(A∗)], where c∗ = e1 + e2 ∈ Rm and A∗ is the m×m identity matrix
A∗ = Im, so f(θ∗,x) = c∗⊤A∗x = (e1 + e2)

⊤x.

We set Dr = {(e1, 1)} and Df = {(e2, 1)}, and define the perturbation variable ∆ =
[∆c ; vec(∆A)]. Translating the constraints of (6) to this specific problem instance, we have that

∆⊤
c e1 + tr{∆⊤

A(e1 + e2)e
⊤
1 } = 0

We then select the values ∆c = −e3 and ∆A = e3e
⊤
1 − e2e

⊤
2 − e3e

⊤
3 . It is easy to see that these

choices satisfy the above constraint. Further, they achieve exact minimization of (6). We show below
that the resulting network’s predictor (A∗ +∆A)⊤(c∗ +∆c) = 0.

R(θ∗ +∆) =
∥∥(A∗ +∆A)⊤(c∗ +∆c)

∥∥
2

=
∥∥(I + e3e

⊤
1 − e2e

⊤
2 − e3e

⊤
3)

⊤(e1 + e2 − e3)
∥∥
2

=
∥∥(I + e1e

⊤
3 − e2e

⊤
2 − e3e

⊤
3)(e1 + e2 − e3)

∥∥
2

= ∥e1 + e2 − e3 − e2 − e1 + e3∥2
= ∥0∥2 = 0

Thus, the updated network which solves (6) predicts the constant function at 0 for all inputs x, as
f(θ∗ +∆,x) =

(
(A∗ +∆A)⊤(c∗ +∆c)

)⊤
x = 0⊤x = 0.

This clearly does not interpolate Dr, and this example as a whole demonstrates that failing to control
the size and direction of the drift term ∆ beyond just the linearized constraints does not lead to the
exact unlearning solution.

D.5 Proof of Theorem 4

Denote the minimum ℓ2 norm solution w(θ̂∗
r) to y = Xw as just w∗

r for brevity. Using w∗
r , we

construct a solution to the exact unlearning problem (4) for R(θ) = ∥θ∥2, which we restate below:

argmin
θ
∥θ∥2 s.t. w(θ)⊤x = y ∀(x, y) ∈ Dr

18

Expanding θ = [c ; vec(A1) ; . . . ; vec(AL−1)] into the sub-parameters, squaring the objective,
and organizing (x, y) ∈ Dr into input data matrix Xr ∈ R|Dr|×d and output vector yr ∈ R|Dr| gives
an equivalent problem:

argmin
c,A1,...,AL−1

∥c∥22 +
L−1∑
ℓ=1

∥Aℓ∥2F s.t. yr = XrA
⊤
1 . . .A⊤

L−1c (17)

Let c∗,A∗
1, . . . ,A

∗
L−1 be a solution to (17). Then, A∗⊤

1 . . .A∗⊤
L−1c

∗ interpolates Dr, so
A∗⊤

1 . . .A∗⊤
L−1c

∗ = w∗
r + z where w∗

r ∈ row(Xr) and z ∈ ker(Xr) by Lemma 4.

Let Pw∗
r
= 1

∥w∗
r∥2

2

w∗
rw

∗⊤
r be the projection matrix onto span(w∗

r). Then replacing A∗
1 with A∗

1Pw∗
r

maintains feasibility since P⊤
w∗

r
A∗⊤

1 . . .A∗⊤
L−1c

∗ = Pw∗
r
(w∗

r + z) = w∗
r which is feasible by

definition. Further, A∗
1Pw∗

r
achieves smaller objective function value since∥∥A∗

1Pw∗
r

∥∥2
F
= tr{A∗

1Pw∗
r
Pw∗

r
A∗⊤

1 } = tr{Pw∗
r
A∗⊤

1 A∗
1} ≤

∥∥Pw∗
r

∥∥
2

∥∥A∗⊤
1 A∗

1

∥∥
∗ = ∥A∗

1∥
2
F .

The second equality follows from the cyclic property of trace and the fact that Pw∗
r

is both symmetric
and idempotent, and the inequality is a generalized Hölder’s inequality for matrices.

Thus, replacing A∗
1 with the rank-1 matrix A∗

1Pw∗
r

must preserve optimality of any solution that
contains A∗

1. Write A∗
1Pw∗

r
= λ1v1w

∗⊤
r for some λ1 ∈ R, v1 ∈ Rhℓ with ∥v1∥2 = 1.

We can apply an analogous argument with the matrix Pv1
, which projects its input onto span(v1), to

show that any solution that contains A∗
2 must remain optimal with A∗

2 replaced by the rank-1 matrix
A∗

2Pv1 . Continuing this argument for each A∗
ℓ , ℓ = 3, . . . , L − 1 as well as for c∗ shows that we

can search for solution over a much smaller space. Specifically, for some λℓ ∈ R and v ∈ Rhℓ , we
can decompose c∗ and each A∗

ℓ as

A∗
1 = λ1v1w

∗⊤
r A∗

ℓ = λℓvℓv
⊤
ℓ−1 for ℓ = 2, . . . , L− 1 c∗ = λLvL−1

Then, (17) reduces to

min
λi,vℓ

∥λLvL−1∥22 +
∥∥λ1v1w

∗⊤
r

∥∥2
F
+

L−1∑
ℓ=2

∥∥λℓvℓv
⊤
ℓ−1

∥∥2
F

s.t. (λ1w
∗
rv

⊤
1)(λ2v1v

⊤
2) · · · (λL−1vL−2v

⊤
L−1)(λLvL−1) = w∗

r and ∥vℓ∥2 = 1

= min
λi

∥w∗
r∥

2
2 λ

2
1 +

L∑
ℓ=2

λ2
ℓ s.t. λ1λ2 · · ·λL = 1 (18)

We perform a change of variables setting γi = λ2
i and enforcing γi > 0.

min
γi>0
∥w∗

r∥
2
2 γ1 +

L∑
ℓ=2

γℓ s.t. γ1γ2 · · · γL = 1 (19)

Define γ = (γ1, . . . , γL), objective function g(γ) = ∥w∗
r∥

2
2 γ1 +

∑L
ℓ=2 γℓ, and constraint h(γ) =

γ1γ2 · · · γL − 1 = 0. By the AM-GM inequality, we have that for any feasible γ

g(γ) ≥ L
(
∥w∗

r∥
2
2 γ1 · · · γL

) 1
L
= L ∥w∗

r∥
2/L
2 ,

where the last equality follows from the constraint h(γ) = 0. Define feasible point γ∗ such that

γ∗ =

(
∥w∗

r∥
2(1−L)

L
2 , ∥w∗

r∥
2
L
2 , . . . , ∥w∗

r∥
2
L
2

)
.

19

Then g(γ∗) = ∥w∗
r∥

2/L
2 achieves the lower bound, so it must solve (19). Thus, the optimal values

λ∗
1, . . . , λ

∗
L to (18) result from taking square roots of γ∗

ℓ . Then, the following values for the network
parameters must be optimal for (17):

A∗
1 = ∥w∗

r∥
(1−L)

L
2 v1w

∗⊤
r A∗

ℓ = ∥w∗
r∥

1
L
2 vℓv

⊤
ℓ−1 for ℓ = 2, . . . , L−1 c∗ = ∥w∗

r∥
1
L
2 vL−1.

D.6 Proof of Theorem 5

We prove the theorem using the following lemma. See the end of the section for a proof.
Lemma 6. For c ∈ Rh and subspace G ⊆ Rh such that dim(G) = s, there exists ∆c ∈ G⊥r such
that ∥c+∆c∥0 ≤ s, where the ℓ0-“norm" ∥ · ∥0 counts the number of non-zero elements.

Because R̂ does not allow any perturbation of A∗, any solution to (12) must only perturb θ∗ in the
entries corresponding to c∗.

Let s = dim(span{ϕ(A∗x)}(x,y)∈Dr
). Note that by definition we have that s ≤ |Dr|. Apply the

lemma to c∗ and span{ϕ(A∗x)}(x,y)∈Dr
so that there exists ∆̃c ∈ span

(
{ϕ(A∗x)}(x,y)∈Dr

)⊥
such that ∥c∗ + ∆̃c∥0 ≤ s. Define ∆̃ =

[
∆̃c ; 0

]
.

Then the network defined by θ∗ + ∆̃ has at most s active neurons since any zero element of c∗ + ∆̃c

cannot contribute an active neuron. Further, {ϕ(A∗x)}(x,y)∈Dr
= {∇cf(θ

∗,x)}x,y∈Dr , so the
perturbation ∆̃ is feasible for the relaxed problem (7). But, f is linear in c, so this perturbation
must preserve function value on Dr, since the constraints of the relaxed problem are tight when just
perturbing c∗. Thus, the resulting network defined by θ∗ + ∆̃ both interpolates Dr and has at most
s = dim(span{ϕ(A∗x)}(x,y)∈Dr

) active neurons.

Note that this construction of ∆̃ satisfies the conditions of Lemma 2, so we do not include a separate
proof of the lemma since it is contained within the larger proof of the theorem.

Proof of Lemma 6:

Let the columns of some P ∈ Rh×(h−s) form a basis for G⊥ so that im(P) = G⊥. Consider the
reduced column echelon form of P denoted rcef(P) = P̃ . By definition, im(P̃) = im(P) = G⊥,
so rank(P̃) = h− s and thus each of the h− s columns of P̃ has a leading one. Let p̃i be the ith
column of P̃ and let ji denote the index of the leading one in p̃i for all i ∈ [h− s].

Let (p̃i)k denote the kth element of p̃i. By definition of the reduced column echelon form, we have
that (p̃i)k = 0 for all k < ji. Define

∆c =

h−s∑
i=1

γip̃i

for coefficients γi ∈ R defined as

γi = −

(
c∗ +

i−1∑
k=1

p̃k

)
ji

Since each p̃i is only non-zero in the indices ji to h, we must have that (c∗ + ∆c)ji = 0 for all
i ∈ [h− s], so ∥c∗ +∆c∥0 ≤ s.

D.7 Proof of Proposition 1

Consider any parameter vector θ = [c ; vec(A)]. Then for any input x, we can write f(θ,x) =∑h
i=1 ciϕ(a

⊤
i x) where ci is the ith element of c and a⊤

i is the ith row of A. Consider the updated
parameters θ̂ =

[
c ; vec(Â)

]
for Â = (1c̸=0,1

⊤)⊙A. Then,

f(θ,x) =

h∑
i=1

ciϕ(a
⊤
i x) =

h∑
i=1

ciϕ(1{ci ̸= 0}a⊤
i x) = f(θ̂,x),

20

where the second equality follows from the fact that we can set ai to be zero whenever ci = 0 since
that neuron does not contribute to the function output whenever ci = 0. Further, changing ai for any
i where ci = 0 does not change the number of neurons, since if for the ith neuron we have ci = 0,
then this neuron can never be active no matter the value of ai:

R(θ) =

h∑
i=1

1{|ci| ∥ai∥2 > 0} =
∑

i : ci ̸=0

1{ai ̸= 0} =
∑

i : ci ̸=0

1{âi ̸= 0} = R(θ̂),

where â⊤
i is the ith row of Â. Lastly, since âi is always equal to 0 when ci = 0, we must have that

Â has at most R(θ̂) number of nonzero rows.

E MinNorm-OG Algorithm

We derive the closed form solution of (7) for the specific choice R̃(θ +∆) = ∥θ +∆∥22 + λ ∥∆∥22.

Define the span of the model gradients over Dr as the subspace Gr = span{∇θf(θ,x)}(x,y)∈Dr

and consider any λ ≥ 0. We then solve the following problem:

∆̃ = argmin
∆

∥θ +∆∥22 + λ ∥∆∥22 s.t. ∆ ∈ G⊥r . (20)

This is a strongly convex problem over a linear constraint, so its solution ∆̃ is the unique point which
satisfies the following condition for first order optimality:

(1 + λ)∆̃+ θ ∈ Gr.

Note that this is satisfied by the projection

∆̃ = − 1

1 + λ
PG⊥

r
(θ) ,

which must then be the unique solution to (20).

F Experiments

We first standardize the notation for each algorithm. Throughout our experiments, we sweep over
hyperparameters and report the best results for each algorithm, and we sweep related hyperparameters
for each algorithm through the same set of values. For example, every algorithm has a learning rate
which is selected from searching over the same set of values. We first define the hyperparameter
names we use along with the algorithms they apply to.

Table 4: Hyperparameter definitions and their associated methods.
Symbol Methods Description
T All Number of epochs
η All Learning rate
λGA NGP, Scrub, SalUn Loss ascent coefficient
λreg NPO, Scrub, MinNorm-OG, Ridge, ℓ1-Sparse Regularization coefficient
σ NGD Gradient noise standard deviation
TGD Scrub, MinNorm-OG Number of final descent epochs on retain set
γreg MinNorm-OG, Ridge Regularization coefficient decay rate
TProj MinNorm-OG Projection period
npert MinNorm-OG Subsample size to compute gradient space

F.1 Implementations

We now define the exact implementation of each method. Consider a batch of retain samples Br and
forget samples Bf , along with loss function J . For each method, we use the AdamW optimizer with
learning rate η on different effective loss functions. We express the loss functions below.

21

F.1.1 Retrain and GD

Retrain and GD share the same loss function, but Retrain initializes a new model from scratch before
optimizing this loss.

JRetrain(θ ;Br) = JGD(θ ;Br) = J (θ ;Br)

F.1.2 GA

JGA(θ ;Bf) = −J (θ ;Bf)

F.1.3 NGD

JNGD(θ ;Br) = J (θ ;Br) + θ⊤ξ,

where ξ ∼ N (0, σ2I) is a zero-mean Gaussian random vector.

F.1.4 NGP

JNGP(θ ;Br,Bf) = J (θ ;Br)− λGAJ (θ ;Bf)

F.1.5 Ridge

We store a regularization weighting λ which we initialize to λ = λreg. We define the Ridge loss as

JRidge(θ ;Br) = J (θ ;Br) + λ ∥θ∥22 .

After updating the parameter vector using this loss on each batch, we update λ as

λ← γregλ.

Note that γreg is always set within the range (0, 1), so the update to λ approximates the limit as λ
goes to 0 as we iterate through the epochs. This attempts to recover the minimum-norm training loss
minimizer.

F.1.6 ℓ1-Sparse

For each epoch t = 1, . . . , T , we define the ℓ1-Sparse loss as

Jℓ1-Sparse(θ ;Br) = J (θ ;Br) + 2(1− t− 1

T
)λreg ∥θ∥1 .

This follows the linearly decaying regularization schedule proposed in [25].

F.1.7 Scrub

The Scrub loss decomposes into different terms depending on the epoch. Let πθ(y | x) denote the
model’s predicted distribution over classes y for input x for parameter vector θ, and define KL(· ∥ ·)
as the Kullback-Leiber divergence. Recall θ∗ denotes the initial trained model parameters, and denote
the current epoch t ∈ {0, . . . , T − 1}. Then the Scrub loss JScrub(θ ;Br,Bf , λreg, λGA, t) is defined
as:

JScrub(θ ;Br,Bf , λreg, λGA, t) =
J (θ ;Br) + λreg

|Br|

∑
(xr,yr)∈Br

KL(πθ∗(y | xr) ∥πθ(y | xr)) if t even or t ≥ T − TGD

− λGA
|Bf |

∑
(xf ,yf)∈Bf

KL(πθ∗(y | xf) ∥πθ(y | xf)) otherwise

22

F.1.8 NPO

Recall that θ∗ denotes the initial trained model parameters. Then, the NPO loss is

JNPO (θ ;Bf , λGA) =
1

|B|
∑

(xf ,yf)∈Bf

2

λGA
log

(
1 +

πθ(yf | xf)

πθ∗(yf | xf)

)λGA

,

where πθ(yf | xf) denotes the model’s predicted probability of class yf for input xf for parameter
vector θ. Note that this is equivalent to setting the parameter β in [18] to λreg.

F.1.9 SalUn

Before performing any unlearning, SalUn computes the median of the absolute values of the elements
of the model gradient with respect to the loss over the forget set at the original parameter vector θ∗.
Formally, define

gf = abs(∇θJ (θ∗ ;Df)) ,

where abs(·) denotes the element-wise absolute value. This step requires an initial pass over the
forget set which we do not count toward the number of unlearning epochs T .

The ”saliency mask" mS is then defined as the binary vector that selects parameters whose corre-
sponding gradient magnitudes exceed the median of gf , denoted median(gf):

mS = 1{gf > median(gf)}.

After computing mS , SalUn minimizes the loss

JSalUn(θ ;Br,Bf) = J (θ ;Br) + λGAJ
(
θ ;B′f

)
,

where B′f is a modified version of the forget set batch Bf in which each true label is replaced with a
random incorrect label. During unlearning, SALUN treats only the parameters where mS = 1 as
trainable and freezes the others. Thus, the gradient update is applied only to mS ⊙ θ.

F.1.10 MinNorm-OG

For each batch Br, we always perform a loss descent step:

JMinNorm-OG(θ ;Br) = J (θ ;Br)

Following the AdamW update for this loss, we then (depending on the epoch) perform the model
update corresponding to solving the relaxed unlearning problem (7) for R̃(θ +∆) = ∥θ +∆∥22 +
λ ∥∆∥22, where λ is a saved parameter of the algorithm. We use the parameters TProj and TGD to
determine which epochs to perform the unlearning update. For the TGD last epochs, we only perform
the descent step and skip the unlearning update, similar to Scrub. In the first T − TGD epochs, we
perform the unlearning update every TProj epochs.

We initialize λ = 1
λreg
− 1, and each time we perform the unlearning update, we grow the value of

λ through the update λ← λ+1
γreg
− 1 using the decay factor γreg ∈ [0, 1]. For our algorithm we only

use values of λreg such that λreg ≤ 1. The update for λ leads to solutions to the relaxed unlearning
problem which result in smaller, more conservative perturbations.

To interpret these values, first recall that we solve the relaxed unlearning problem over a subsam-
ple of each batch B′r ⊆ Br where |B′r| = npert. For convenience, define the gradient subspace
G′r = span{∇θf(θ,x)}(x,y)∈B′

r
. As we showed in Appendix E, for any value of λ, the optimal

perturbation is then ∆̃ = − 1
1+λPG′⊥

r
(θ). Thus, the initial value λ = 1

λreg
−1 leads to the perturbation

∆̃ = −λregPG′⊥
r

(θ). Further, the coefficient update λ = λ′+1
γreg
− 1 leads to a more conservative

unlearning perturbation ∆̃ = −γreg
1

1+λ′PG′⊥
r

(θ), as it is down-weighted by γreg. Thus, λreg is the
initial strength of the perturbation and γreg represents a multiplicative decay of this strength through
each update to λ.

23

Table 5: Data Poisoning experiment results showing the median sup-norm distance between the
retain set trend y = sin(x) and the unlearned model outputs across 10 trials (smaller is better). The
parentheses indicate the central range of values over the 10 trials.

Epochs Retrain MinNorm-OG GD GA NGP NGD Ridge ℓ1-Sparse
10 1.50 (1.34, 1.85) 1.50 (1.45, 2.96) 3.23 (2.52, 6.65) 2.56 (2.19, 3.45) 2.50 (2.20, 3.94) 2.73 (2.26, 7.23) 2.27 (1.90, 3.02) 3.28 (2.52, 3.62)

100 1.36 (1.27, 1.44) 1.08 (1.00, 1.63) 2.76 (2.48, 3.54) 23.8 (18.1, 30.0) 2.62 (2.31, 7.87) 2.85 (2.47, 3.57) 2.13 (1.75, 3.12) 1.79 (1.54, 2.48)
1000 1.17 (1.08, 1.26) 0.63 (0.42, 0.96) 2.61 (2.39, 3.38) 1400 (1025, 1869) 2.75 (2.07, 9.80) 2.45 (1.96, 3.67) 1.96 (1.61, 3.84) 1.37 (1.19, 1.55)

We formally write the unlearning update at epoch t as follows, where θ0 is the current parameter
vector, θnew is the updated vector, and mod denotes the modulo operation.

if t mod TProj ̸= 0 or t ≥ T − TGD

θnew = θ0
else

∆̃ = argmin
∆∈G′⊥

r

∥θ0 +∆∥22 + λ ∥∆∥22

θnew = θ0 + ∆̃

λ← λ+ 1

γreg
− 1

Gradients for Classification. We make a special note of how we compute the gradient sub-
space G′r for classification tasks. At the parameter value θ0, the model prediction is f(θ0,x) =
argmax zθ0

(y | x) where zθ(y | x) denotes the model’s unnormalized logits over the classes y for
input x for parameter vector θ. This is not a continuous function of θ, so we cannot compute its
gradient directly. However, following prior works [19], we use the gradient∇θ (zθ0(y | x))j , where
j = f(θ0,x) is the model’s predicted class for input x. In other words, we take the gradient of the
the unnormalized logits at the index of the maximum value, where we do not treat the index as a
function of θ.

F.2 Data Poisoning

We train a 3-layer multilayer perceptron with a hidden dimension of 300 using the sigmoid linear unit
(SiLU) activation function. For each seed, we randomly sample 50 retain set points (xr, yr) ∈ Dr

with yr = sin(xr) and 5 forget set points (xf , yf) ∈ Df with yf = 1.5, over the input domain
X = [−5π, 5π] ⊆ R. We initially train the poisoned model on all the samples using the AdamW
optimizer with a learning rate of 10−3 over 100,000 epochs.

Given these poisoned models, we apply each of the unlearning algorithms over a sweep of hyper-
parameters and evaluate the output θ of each unlearning method by measuring the deviation from
the retain set trend, given by supx∈X |f(θ,x)− sin(x)|. We fix the number of epochs for each
algorithm and allow full data access, so each method has access to all of Dr during unlearning. We
repeat the entire process over 10 trials. For the number of unlearning epochs T ∈ {10, 100, 1000},
we report the best performance of each algorithm in Table 5 along with the central range of each
method’s performance over the 10 trials, discarding the two best and worst trials. We report the best
hyperparameters for each method in Table 6, and the corresponding search spaces in Table 7. We
also include visualizations of the recovered models from each unlearning method in Figures 3, 4, and
5. All experiments were run on either a single NVIDIA A40 GPU or a single NVIDIA H200 GPU.

24

Table 6: Hyperparameter settings for each entry in Table 5. Blank entries indicate that the hyperpa-
rameter is not applicable to the corresponding method.

Epochs Method η λGA λreg σ TGD γreg TProj npert

10

Retrain 1e-4
MinNorm-OG 1e-3 .1 2 .9 1 50

GD 1e-4
GA 1e-4

NGP 1e-4 1.0
NGD 1e-2 .5
Ridge 1e-2 3.0 .6

ℓ1-Sparse 1e-2 .1

100

Retrain 1e-4
MinNorm-OG 1e-3 .1 50 .9 2 50

GD 1e-3
GA 1e-4

NGP 5e-4 .01
NGD 1e-3 .1
Ridge 1e-3 3.0 .9

ℓ1-Sparse 1e-3 .1

1000

Retrain 1e-4
MinNorm-OG 1e-3 .1 500 .9 10 50

GD 1e-3
GA 1e-4

NGP 1e-3 .001
NGD 1e-3 1.0
Ridge 1e-3 3.0 .9

ℓ1-Sparse 1e-3 .1

Table 7: Hyperparameter values tested in the experiments corresponding to Table 5.
Epochs η σ λreg γreg λGA TGD TProj npert

10 {1e-2, 1e-3, 1e-4} {0.1, 0.5, 1.0} {0.1, 1.0, 3.0} {0.3, 0.6, 0.9} {0.001, 0.01, 0.1, 1.0} {1, 2, 5} {1, 2, 5} {50}

100 {1e-3, 5e-4, 1e-4} {0.1, 0.5, 1.0} {0.1, 1.0, 3.0} {0.3, 0.6, 0.9} {0.001, 0.01, 0.1, 1.0} {25, 50} {1, 2} {50}

1000 {1e-3, 5e-4, 1e-4} {0.1, 0.5, 1.0} {0.1, 1.0, 3.0} {0.3, 0.6, 0.9} {0.001, 0.01, 0.1, 1.0} {100, 200, 500} {10, 50, 100} {50}

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(a) Retrain

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(b) MinNorm-OG (ours)

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(c) GD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(d) GA

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(e) NGP

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(f) NGD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(g) Ridge

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(h) ℓ1-Sparse

Original Model Unlearned Model sin(x) Retain Points Forget Points

Figure 3: Example unlearned model fits when given 10 unlearning epochs for the Data Poisoning
experiment, where the forget points distort the retain set trend y = sin(x).

25

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(a) Retrain

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(b) MinNorm-OG (ours)

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(c) GD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(d) GA

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(e) NGP

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(f) NGD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(g) Ridge

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(h) ℓ1-Sparse

Original Model Unlearned Model sin(x) Retain Points Forget Points

Figure 4: Example unlearned model fits when given 100 unlearning epochs for the Data Poisoning
experiment, where the forget points distort the retain set trend y = sin(x).

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(a) Retrain

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(b) MinNorm-OG (ours)

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(c) GD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(d) GA

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(e) NGP

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(f) NGD

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(g) Ridge

15 10 5 0 5 10 15
x

1.0

0.5

0.0

0.5

1.0

1.5

y

(h) ℓ1-Sparse

Original Model Unlearned Model sin(x) Retain Points Forget Points

Figure 5: Example unlearned model fits when given 1000 unlearning epochs for the Data Poisoning
experiment, where the forget points distort the retain set trend y = sin(x).

26

F.3 Multi-Class Label Erasure

We use the CIFAR-10 [30] and Tiny ImageNet [31] datasets, creating red, green, and gray copies
of each image in the training sets. The retain set consists of all gray images, while the forget set is
formed by randomly sampling a proportion pcolor ∈ [0, 1] of the red and green copies. We then train
modified ResNet-18 and ResNet-50 models [32] on CIFAR-10 and Tiny ImageNet, respectively, to
jointly predict image class and color. Each model includes two separate prediction heads, one for
image class and one for color.

For CIFAR-10, we train for 100 epochs using the SGD optimizer with an initial learning rate of
3× 10−2, weight decay of 5× 10−4, momentum of 0.9, and batch size of 256. The learning rate is
reduced to 3× 10−3 at epoch 50. The ground-truth unlearned model is trained on the gray images
alone using the same parameters.

For Tiny ImageNet, we initialize the ResNet-50 architecture with ImageNet-pretrained weights [33]
from the torchvision library. We apply standard data augmentations to reduce overfitting and
train for 100 epochs using a batch size of 512, initial learning rate of 0.1, weight decay of 10−4,
and momentum of 0.9. The learning rate is decayed by a factor of 0.3 every 25 epochs. During
the first 10 epochs, we update the model only using the class prediction loss to adapt the pretrained
weights to the colored-image domain. For the remaining epochs, we optimize both the class and color
prediction losses. The ground-truth unlearned model is trained on the gray images alone using the
same parameters.

We then apply each of the unlearning algorithms over different constraints on the number of unlearning
epochs and the amount of available retain data. We define pretain ∈ [0, 1] as the proportion of Dr

available during unlearning. For each of the 5 trials, we train a new initial model and sample pretain
proportion of Dr to serve as the available retain data. During each unlearning epoch, the algorithms
iterate over batches from the forget set. For every forget set batch, a corresponding batch of the same
size is sampled from the available retained data. The epoch ends once all forget set batches have been
processed, regardless of whether there are unused retain set samples remaining. Any unused retain
batches are not discarded—they will be sampled in subsequent epochs. Once all available retain set
batches have been used at least once, the sampling process begins again from the start of the available
retain set samples.

The ground truth unlearned model is only trained on gray samples, so it achieves strong accuracy on
gray-colored inputs and always predicts the input image to be gray, no matter the input image color.
We thus measure retain quality as accuracy on gray-colored test samples, and forget quality error
by the mean squared error between the predicted gray probability and the ideal value of 1 across
all colored inputs. For each method, we sweep hyperparameters and plot the corresponding Pareto
frontier across the two metrics, where the optimal point at (1, 0) which indicates perfect retain quality
and zero forget quality error. Each point in the frontier for a given method represents the mean results
over 5 trials of a single hyperparameter combination, with error bars representing the standard error
for each metric. We label the performance of the ground truth unlearned model as GT. All training
and parameter searches were performed on a cluster of NVIDIA GH200 GPUs.

Table 8: Hyperparameter values tested for the results in Figure 6 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .01, pretain = .01 and T = 2.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
we

r
)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 6: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .01, pretain = .01 and T = 2. This is an enlarged version of
the left subfigure in Figure 2 with added error bars.

Table 9: Hyperparameter values tested for the results in Figure 7 running the Multi-Label Class
Erasure experiment on Tiny ImageNet with pcolor = .01, pretain = .01 and T = 5.

Hyperparameter Sweep Values

η {5× 10−4, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {2, 3}
γreg {0.2, 0.4, 0.8, 0.9}
TProj {1}
npert {50}

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
we

r
)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 7: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on Tiny ImageNet with pcolor = .01, pretain = .01 and T = 5. This is an enlarged version
of the right subfigure in Figure 2 with added error bars.

28

Table 10: Hyperparameter values tested for the results in Figure 8 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .01, pretain = .01 and T = 1.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 8: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .01, pretain = .01 and T = 1. The left panel omits error bars
for visual clarity.

Table 11: Hyperparameter values tested for the results in Figure 9 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .01, pretain = .001 and T = 2.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

29

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 9: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .01, pretain = .001 and T = 2. The left panel omits error
bars for visual clarity.

Table 12: Hyperparameter values tested for the results in Figure 10 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .01, pretain = .001 and T = 5.

Hyperparameter Sweep Values

η {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {1, 2, 3}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 10: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .01, pretain = .001 and T = 5. The left panel omits error
bars for visual clarity.

30

Table 13: Hyperparameter values tested for the results in Figure 11 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .001, pretain = .001 and T = 10.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0, 1, 2, 5}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 11: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .001, pretain = .001, and T = 10. The left panel omits error
bars for visual clarity.

Table 14: Hyperparameter values tested for the results in Figure 12 running the Multi-Label Class
Erasure experiment on CIFAR-10 with pcolor = .001, pretain = .01 and T = 10.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0, 1, 2, 5}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 12: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on CIFAR-10 with pcolor = .001, pretain = .01, and T = 10. The left panel omits error
bars for visual clarity.

Table 15: Hyperparameter values tested for the results in Figure 13 running the Multi-Label Class
Erasure experiment on Tiny ImageNet with pcolor = .01, pretain = .001 and T = 10.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5, 10−6}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0, 1, 2}
γreg {0.2, 0.4, 0.8, 0.9}
TProj {1}
npert {50}

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 13: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on Tiny ImageNet with pcolor = .01, pretain = .001, and T = 10. The left panel omits
error bars for visual clarity.

32

Table 16: Hyperparameter values tested for the results in Figure 14 running the Multi-Label Class
Erasure experiment on Tiny ImageNet with pcolor = .01, pretain = .01 and T = 10.

Hyperparameter Sweep Values

η {10−3, 10−4, 10−5}
λGA {10−3, 10−2, 10−1}
λreg {10−3, 10−2, 5× 10−2, 10−1}
σ {0.1, 1.0, 10.0}
TGD {0, 1, 2}
γreg {0.2, 0.4, 0.8, 0.9}
TProj {1}
npert {50}

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

0.0 0.1 0.2 0.3 0.4 0.5
Retain Quality (Higher)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fo
rg

et
 Q

ua
lit

y
Er

ro
r (

Lo
w

er

)

GT

Retrain
MinNormOG
GD
GA
NGP
NGD
Ridge
L1Sparse
Scrub
NPO
SalUn
GT

Figure 14: Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label
Erasure task on Tiny ImageNet with pcolor = .01, pretain = .01, and T = 10. The left panel omits
error bars for visual clarity.

F.4 Representation Collapse

We again use the CIFAR-10 dataset with a modified ResNet-18 architecture, assigning each of the 10
image classes a unique color. The retain set Dr consists of images colored according to their assigned
class color, while the forget set Df contains randomly colored images. The ground-truth unlearned
model predicts class labels based solely on color, as color perfectly determines the label and is easier
to learn than image content. In contrast, models trained on the full dataset D = Dr ⊔Df must rely on
content features, since color is no longer fully predictive of the label. Thus, for unlearning evaluation,
we label heldout test images by color and assess unlearning via color-label accuracy, testing if the
unlearning methods can collapse the original model into just a color classifier.

To construct Df , we randomly select 1% of the training images per class and assign each a random
color chosen from the remaining nine class colors. For the initial model, we first warm-start by
training for 20 epochs on gray images (a color not used in the class assignments) to encourage
learning general image structure. We then train for 50 epochs on the combined retain and forget sets,
up-weighting the loss contribution of off-colored samples to promote fast color-invariant learning.
We used the SGD optimizer with an initial learning rate of 3 × 10−2, weight decay of 5 × 10−4,
momentum of 0.9, a batch size of 256, and a multiplicative learning rate decay of 0.1 every 20 epochs.
The ground-truth unlearned model is trained for 50 epochs on the retain set using the same optimizer
settings. All training was performed on a cluster of NVIDIA H200 GPUs.

We report results mean results over 5 trials in Table 17, which presents the same results as Table 2
along with standard errors for each entry. We test each method under different constraints on the
number of unlearning epochs and percentage of accessible retain set samples. Specifically, for each
random trial we randomly sample a proportion of pretain ∈ [0, 1] samples from Dr which is accessible
to each unlearning method. The ”Retain %" column Table 17 represents 100 × pretain. Just as in
the Multi-Class Label Erasure experiment, during each unlearning epoch the algorithms iterate over

33

Table 17: Representation Collapse experiment results across constraints on the number of unlearning
epochs and percentage of accessible retain set samples. Models are trained on colored images where
color perfectly predicts the label in the retain set but not in the full dataset D. Reported values are
mean test accuracies (%) on test images labeled by color (higher is better), averaged over 5 trials ±
standard error.

Retain % Epochs Retrain MinNorm-OG GD GA NGP NGD Ridge ℓ1-Sparse Scrub NPO SalUn

0.1
5 79.1±4.5 49.1±6.1 24.0±3.2 34.5±4.4 45.9±3.4 12.6±0.2 20.9±3.7 12.4±0.3 37.3±3.7 40.6±3.7 29.4±5.5
10 95.5±1.1 78.7±3.4 55.2±4.3 38.3±5.4 73.7±3.8 33.0±2.2 60.0±3.7 23.0±6.5 61.9±3.4 43.2±6.9 53.4±7.9
15 96.3±0.8 93.2±1.3 78.2±3.3 39.8±5.1 81.5±1.6 46.9±3.4 81.3±2.7 25.1±4.7 74.1±3.9 44.6±7.6 76.3±5.3

1 5 92.8±2.6 59.5±6.1 40.7±2.4 34.2±4.7 58.3±6.0 32.9±3.6 33.5±6.1 12.5±0.2 47.8±4.9 42.5±4.1 42.5±2.7
10 98.5±0.1 94.7±1.1 73.6±3.0 38.2±5.4 92.4±2.5 70.5±3.2 63.4±5.0 31.4±6.6 75.8±2.8 43.5±6.9 68.7±4.0

batches from the forget set and sample a corresponding batch of the same size from the available
retained data. The epoch ends once all forget set batches have been processed, regardless of whether
there are unused retain set samples remaining. Any unused retain batches are not discarded—they
will be sampled in subsequent epochs. Once all available retain set batches have been used at least
once, the sampling process begins again from the start of the available retain set samples.

Retrain achieves much higher color classification accuracy than any unlearning method, as image
color is an easy feature to learn from scratch. This result is specific to this setup, as our prior
experiments demonstrate that Retrain is not a viable unlearning strategy in general. For this reason,
we report the Retrain results separately in the leftmost column and highlight the MinNorm-OG results
in bold, as they represent the best performance among the unlearning methods in each row.

For each constraint setting on the number of epochs and the Retain %, we tested different hyperpa-
rameters before reporting the best performance for each method. Tables 18, 19, 20, 21, and 22 report
the set of hyperparameter values we tested for each row of Table 17.

Table 18: Hyperparameter values considered for the Representation Collapse Experiment with T = 5
and pretain = 0.001.

Hyperparameter Values

η {10−3, 5× 10−4, 10−4}
λGA {10−3, 10−2, 10−1}
λreg {0.1, 0.2, 0.5, 0.9}
σ {0.1, 1.0, 10.0}
TGD {1, 2, 3}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

Table 19: Hyperparameter values considered for the Representation Collapse Experiment with
T = 10 and pretain = 0.001.

Hyperparameter Values

η {5× 10−3, 10−3, 5× 10−4, 10−4}
λGA {10−3, 10−2, 10−1}
λreg {0.01, 0.1, 0.5, 0.9}
σ {0.1, 1.0, 10.0}
TGD {3, 5, 7}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

34

Table 20: Hyperparameter values considered for the Representation Collapse Experiment with
T = 15 and pretain = 0.001.

Hyperparameter Values

η {5× 10−3, 10−3, 5× 10−4, 10−4}
λGA {10−3, 10−2, 10−1}
λreg {0.01, 0.1, 0.5, 0.9}
σ {0.1, 1.0, 10.0}
TGD {3, 5, 7}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

Table 21: Hyperparameter values considered for the Representation Collapse Experiment with T = 5
and pretain = 0.01.

Hyperparameter Values

η {5× 10−3, 10−3, 5× 10−4, 10−4}
λGA {10−3, 10−2, 10−1}
λreg {0.01, 0.1, 0.5, 0.9}
σ {0.1, 1.0, 10.0}
TGD {1, 2, 3}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

Table 22: Hyperparameter values considered for the Representation Collapse Experiment with
T = 10 and pretain = 0.01.

Hyperparameter Values

η {5× 10−3, 10−3, 5× 10−4, 10−4}
λGA {10−3, 10−2, 10−1}
λreg {0.01, 0.1, 0.5, 0.9}
σ {0.1, 1.0, 10.0}
TGD {3, 5, 7}
γreg {0.2, 0.4, 0.8}
TProj {1}
npert {50}

F.5 Asset Information

We use the CIFAR-10 [30] and Tiny ImageNet [31] datasets in our experiments. Both datasets are
publicly available but do not specify an explicit license. Additionally, we use the ResNet-18 and
ResNet-50 [32] architectures and pretrained weights from PyTorch’s torchvision library, which
are licensed under the BSD 3-Clause License.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, our main claim centers on the failure of prior definitions and algorithms
for unlearning when applied in the overparameterized setting, which we show in Section
2, and the theoretical guarantees of our new framework and algorithm, which we show in
Section 4. We clearly state the model classes we analyze (linear models, linear networks,
and 2-layer perceptrons) and we provide specific guarantees for each. We lastly provide
strong empirical results in Section 5, supporting our claim that our proposed method can
outperform prior methods in practice.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly state the model classes we analyze as well as the exact guarantees
for our theoretical results in Section 4. When we describe our theoretical contributions
in the Introduction, we mention the specific model classes and the corresponding results
we achieve for each of them. Empirically, we discuss the computational efficiency of our
proposed method in Algorithm 1 relative to other gradient-descent-based methods which we
compare against. In the conclusion, we mention future work includes extending our analysis
to more complex model classes and performing experiments in broader domains at larger
scale.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

36

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each statement of theorems, propositions, and lemmas, we explicitly state
the assumptions we rely on. The proofs of all statements are in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the experiments in the main body, and we include a further
discussion in the appendix. Also, all code for generating our empirical results is publicly
released.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

37

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is publicly released and the datasets we use (Tiny ImageNet, CIFAR-10)
are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental methodology for each setting in the main paper,
while full experimental details are reported in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For our experiments, we either report means along with standard errors or
medians with ranges of values across trials. For clarity, the main text presents only the central
values (means or medians), while the appendix includes full results with corresponding
uncertainty estimates.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report this in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper meets all ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

39

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work helps develop theory and algorithms for unlearning in the overpa-
rameterized setting, which has no direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

40

Answer: [Yes]

Justification: We cite the datasets we use in the main body, and include license information
in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release code for reproducing our experiments which contains documenta-
tion.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

41

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used for any important, original, or core components of this
paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Unlearning in Overparameterized Settings
	Defining Unlearning Beyond Loss Optimality
	Loss Gradient Methods Deployed Under Overparameterization

	Our Proposed Framework
	Theoretical Guarantees
	Linear Model
	L-Layer Linear Network
	Minimizing Predictor Norm
	Minimizing Parameter Norm

	2-Layer Perceptron

	From Theory to Practice
	Experiments
	Runtime Comparison

	Conclusion
	General Notation
	Minimum Norm Solutions to Linear Regression
	Loss Minimization Does not Protect Against Data Leakage
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Theorem 3
	Necessity of Additional Regularizer R̂ for Theorem

	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Proposition 1

	MinNorm-OG Algorithm
	Experiments
	Implementations
	Retrain and GD
	GA
	NGD
	NGP
	Ridge
	l1-Sparse
	Scrub
	NPO
	SalUn
	MinNorm-OG

	Data Poisoning
	Multi-Class Label Erasure
	Representation Collapse
	Asset Information

