
Hallucination Mitigation in Natural Language Generation from
Large-Scale Open-Domain Knowledge Graphs

Xiao Shi, Zhengyuan Zhu, Zeyu Zhang, Chengkai Li
Department of Computer Science and Engineering

The University of Texas at Arlington
Arlington, TX, USA

{xiao.shi,zhengyuan.zhu,zeyu.zhang}@mavs.uta.edu, cli@uta.edu

Abstract

In generating natural language descriptions for
knowledge graph triples, prior works used ei-
ther small-scale, human-annotated datasets or
datasets with limited variety of graph shapes,
e.g., those having mostly star graphs. Graph-
to-text models trained and evaluated on such
datasets are largely not assessed for more re-
alistic large-scale, open-domain settings. We
introduce a new dataset, GraphNarrative, to fill
this gap. Fine-tuning transformer-based pre-
trained language models has achieved state-of-
the-art performance among graph-to-text mod-
els. However, this method suffers from infor-
mation hallucination—the generated text may
contain fabricated facts not present in input
graphs. We propose a novel approach that,
given a graph-sentence pair in GraphNarrative,
trims the sentence to eliminate portions that
are not present in the corresponding graph,
by utilizing the sentence’s dependency parse
tree. Our experiment results verify this ap-
proach using models trained on GraphNarrative

and existing datasets. The dataset, source
code, and trained models are released at https:
//github.com/idirlab/graphnarrator.

1 Introduction

The task of graph-to-text generation aims to auto-
matically produce natural language descriptions
of knowledge graphs. A knowledge graph G
stores factual information as subject-predicate-
object triples, where each triple (s, p, o) corre-
sponds to an edge from the subject entity s to the
object entity o. The graph-to-text generation task
entails, given a subgraph G⊂G, generating a token
sequence (y1, ..., yn) to describe G. This task can
be accomplished by constructing machine learning
models (Clive et al., 2021; Castro Ferreira et al.,
2019; Trisedya et al., 2018). The input to such a
model is a graph itself—a small fragment of triples
from a knowledge graph, as the outcome of some
upstream operation, e.g., search, query and data

mining. The output is a textual sequence that de-
scribes the fragment of triples.

Verbalizing triples from knowledge graphs is
crucial in a variety of tasks and applications, in-
cluding systems created for querying knowledge
graphs (Liang et al., 2021; Jayaram et al., 2016)
as well as systems backed by knowledge graphs
for question-answering (Zhou and Small, 2019; Ma
et al., 2018) and fact discovery (Xian et al., 2019;
Zhang et al., 2018). In these places, knowledge
graph fragments must be conveyed to users in var-
ious forms, such as query results and discovered
facts. Though a tiny part of a whole knowledge
graph, such graph fragments can still be complex
and thus challenging to comprehend. Instead, pre-
senting them in natural language can help end users
understand them better.

In graph-to-text generation, the preciseness and
naturalness of the textual narration of graph frag-
ments is important. Generating high-quality text
can be particularly challenging for large-scale
and open-domain knowledge graphs. Specifi-
cally, benchmark datasets in this line of research
either are hand-crafted and monotonous, e.g.,
WebNLG (Gardent et al., 2017a) or only include
simple, special formations in narrated input frag-
ments, e.g., EventNarrative (Colas et al., 2021) and
TEKGEN (Agarwal et al., 2021). Existing graph-
to-text models, being trained and evaluated on these
datasets, are largely not validated for more realis-
tic large-scale, open-domain settings. Section 2
presents this analysis in detail.

This paper introduces GraphNarrative, a new
dataset that fills the aforementioned gap be-
tween graph-to-text models and real-world needs.
GraphNarrative consists of around 8.7 million (input
graph, output text) pairs. The text in each pair is
a Wikipedia sentence, whereas the corresponding
graph comprises Freebase (Bollacker et al., 2008)
entities and relationships described in the sentence.
The large-scale of both Wikipedia and Freebase, the

https://github.com/idirlab/graphnarrator
https://github.com/idirlab/graphnarrator


linguistic variation in Wikipedia, and the complex-
ity of sentences and corresponding graph structures
make this dataset more aligned with real-world
scenarios. For instance, GraphNarrative’s 8.7 mil-
lion input graphs are in 7,920 distinct topological
shapes and 22% of the 8.7 million are star graphs,
in contrast to 94% and 96% in EventNarrative and
TEKGEN, respectively. Section 3 articulates the
details of GraphNarrative’s creation.

Given the demonstrated efficacy of fine-tuning
pre-trained language models (PLMs) in producing
state-of-the-art results on graph-to-text (more de-
tails in Section 4), we adopt the same approach. As
pointed out in (Agarwal et al., 2021; Dušek et al.,
2018), though, this approach may suffer from in-
formation hallucination, i.e., the output texts may
contain fabricated facts not present in input graphs.
For example, given a two-triple input graph {(Neff
Maiava, date of birth, 01 May 1924), (Neff Maiava, date

of death, 21 April 2018)}, (Agarwal et al., 2021) re-
ported their model generates “Neff Maiava (1 May
1924 - 21 April 2018) was an Albanian actor.” Not
only the input does not mention Maiava’s profes-
sion or citizenship, but also in the real-world he
was an American Samoan wrestler instead.

Very few have considered how to mitigate
hallucination in graph-to-text generation, except
for (Agarwal et al., 2021; Wang et al., 2021; Ma
et al., 2022). The first two studies attempted to ad-
dress hallucination by further fine-tuning PLMs on
WebNLG after fine-tuning on noisier automatically-
extracted datasets. (Ma et al., 2022) adopted a dif-
ferent approach, by filtering out training instances
when the ROUGE-1 (Lin, 2004) scores between
the input and the output fall below a certain thresh-
old. However, these studies did not quantify the
prevalence of hallucination in their models’ outputs.
Nor did they provide direct experiment results or
other evidence to verify the approach in reducing
hallucination. We are the first to quantitatively
measure the prevalence of hallucination in graph-
to-text. We also developed a novel approach to
mitigating hallucination by aiming at the problem’s
root—mismatch between graph and text in train-
ing data. Given a graph-text pair in GraphNarrative,
the approach trims the text, i.e., a Wikipedia sen-
tence, by eliminating portions not represented in
the graph. This process, named sentence trimming,
is accomplished by analyzing the shortest paths
between graph entities within the sentence’s depen-
dency parse tree (details in Section 5).

We conducted comprehensive automatic and hu-
man assessments of text descriptions generated by
fine-tuned PLMs, specifically BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020). The automatic
evaluation results consistently demonstrated that
models performed better with the use of sentence
trimming, across the datasets of GraphNarrative,
TEKGEN, WebNLG, and DART (Nan et al., 2021).
The approach led to the increment of 12 and 7
points in BLEU score (Papineni et al., 2002) for
GraphNarrative and TEKGEN, respectively. A T5-
large model fine-tuned on GraphNarrative with sen-
tence trimming achieved state-of-the-art results on
the WebNLG benchmark. Furthermore, human
evaluation results showed that sentence trimming
on average reduced 1.4 entity hallucinations and 1
relationship hallucination per text description.

The contributions of this paper are as follows.
• A new dataset, GraphNarrative, that fills the

gap between existing datasets and large-scale real-
world settings.

• The first to quantify hallucinations produced
by graph-to-text models.

• A novel approach, sentence trimming, to hal-
lucination mitigation.

• Comprehensive experiments and evaluations
that verify the quality and utility of GraphNarrative,
as well as the effectiveness of sentence trimming.

2 Limitations of Existing Datasets

First, most previous models were trained on small
hand-crafted datasets that contain limited entity
types and relations. For instance, WebNLG in-
cludes 2,730 distinct entities and 354 distinct rela-
tions. In contrast, real-world knowledge graphs can
be much larger. For example, according to (Heist
et al., 2020), Wikidata (Vrandečić and Krötzsch,
2014) has 52,252,549 entities, 2,356,259 classes,
6,236 relations, and 732,420,508 triples. The hand-
crafted approach cannot scale to these massive
knowledge graph, as it is impossible to manually
write training graph-text pairs for so many different
entity types, relations, and topic domains.

Second, the text descriptions in hand-crafted
datasets such as WebNLG tend to follow
monotonous templates, plausibly because the exam-
ples were written by a small number of human con-
tributors. This limits the capability of trained mod-
els to use diverse expressions in narrating graph
fragments. This lack of linguistic variation can
hamper the usability of a text generation system.



Third, the graph fragments in existing datasets
are largely limited to simple star graphs (each
graph consisting of a center entity and some of its
one-hop neighbors) or more general acyclic graphs
(i.e., one or more trees). The graphs in WebNLG
have 41 distinct topological shapes (Appendix D),
out of which 32 are acyclic graphs. The cycles
are all 2-edge loops or self-loops. In DART, 83%
of the graphs are star graphs. In automatically-
generated datasets EventNarrative and TEKGEN,
94% and 96% of the graphs are star graphs, respec-
tively. Another automatically-collected dataset,
AGENDA (Koncel-Kedziorski et al., 2019), has
only 2% star graphs. But it only contains 7 dis-
tinct relations in the special domain of scientific
research. On the contrary, in practical scenarios
the input fragments can be of complex, general
rather than simple, special formations. While di-
rect measurement is lacking, we used the graphs
described in Wikipedia sentences as a proxy for
gauging the shape diversity of graphs that need to
be narrated. We manually analyzed the formations
of graphs presented in 100 random Wikipedia sen-
tences, and we found only 39 of the 100 graphs are
star graphs. Similar but automatic analysis of the
complete Wikipedia corpus (more details in Sec-
tion 3, Figure 2) show that only 2 of the 10 most
frequent graph formations 1 are star graphs, and 3
are cyclic graphs.

3 The GraphNarrative Dataset

This section explains how we generated our new
dataset GraphNarrative by aligning Wikipedia texts
with Freebase. Note that the methodology could be
applicable to text corpora beyond Wikipedia and
knowledge graphs beyond Freebase. This section
also contrasts GraphNarrative with existing bench-
mark datasets to demonstrate how it addresses cur-
rent datasets’ limitations.

3.1 Dataset Creation: Graph-Text Alignment

For each applicable Wikipedia sentence W , we cre-
ate the corresponding subgraph G in Freebase, to
form a graph-sentence pair (G,W ) as one example
instance in the dataset. See Figure 1 for an example.
This is achieved by an entity linking step followed
by an edge detection step.

Entity linking. It maps a span of tokens in the
Wikipedia sentence W to an entity e in Freebase.

1Or 3 out of the 10, depending on whether considering a
3-node path as a star or not.

Figure 1: A graph-sentence pair in GraphNarrative

Our customized entity linking solution consists
of coreference resolution (McCarthy and Lehnert,
1995), wikification (Csomai and Mihalcea, 2008),
and Wikipedia-to-Freebase entity mapping. The
entity mapping (more details in Section B.3) cre-
ated 4,408,115 one-to-one mappings between En-
glish Wikipedia entities (i.e., articles) and Freebase
entities, through a combination of three engineer-
ing methods—by using existing mapping in Free-
base, by using Wikidata as the midpoint connecting
Wikipedia and Freebase entities, and similarly by
using DBpedia (Auer et al., 2007) as the midpoint.
For wikification, our simple approach maps a span
of tokens in a Wikipedia article D to a Wikipedia
entity, if the tokens exactly match either the entity’s
full title or any of the entity’s wikilink anchor text
in the same article D. For coreference resolution,
we applied the implementation (Lee et al., 2017)
in AllenNLP (Gardner et al., 2017) on Wikipedia
articles to replace pronouns and aliases with corre-
sponding entities. The results of aforementioned
processes were put together—a Wikipedia entity
appearance in a Wikipedia sentence, either origi-
nally as a wikilink or detected through wikification
upon coreference resolution, leads to the detection
of the corresponding Freebase entity via the map-
ping results.

Edge detection. Given the Freebase entities de-
tected from a Wikipedia sentence W , it identifies
Freebase edges between the entities such that the
corresponding relations are described in W . Given
a pair of such entities, if Freebase contains only one
edge between them, our simple method assumes
the corresponding relationship is described in W .
If Freebase has multiple edges between them, we
include the edge whose label tokens overlap with
W . If there are still multiple such edges, we in-
clude the edge that is most frequent in Freebase.
All these detected edges form the graph G that
pairs with W as an instance (G, W ) in the dataset.
Note that the simple assumptions in this approach
may lead to both false positives and false negatives.
In practice, the resulting dataset has solid quality



Dataset Knowlege Graph Text Corpus Domain Instances Entities Triples Relation Star Graphs
WebNLG DBpedia Handcraft 15 DBpedia categories 25,298 2,730 3,221 354 57%
DART N/A Handcraft N/A 38,391 27,000 32,139 3,834 83%
AGENDA N/A Scientific abstract Scientific research 40,720 159,691 177,568 7 2%
EventNarrative Wikidata Wikipedia Events 224,428 305,685 649,337 672 94%
TEKGEN Wikidata Wikipedia Open domain 7,895,789 4,856,439 11,373,838 663 96%
GraphNarrative Freebase Wikipedia Open domain 8,769,634 1,853,752 15,472,249 1,724 22%

Table 1: Comparison of graph-to-text datasets

(detailed assessment in Section 6.2). Nevertheless,
our workflow of dataset creation allows for more
advanced and accurate methods in each component.

3.2 Characteristics of GraphNarrative
This section qualitatively and quantitatively ana-
lyzes how GraphNarrative bridges the gap between
graph-to-text models and real-world settings.

Scale and variety of entities and relations.
GraphNarrative contains 8,769,634 graph-sentence
pairs, 1,853,752 entities, 15,472,249 triples, and
1,724 relations from 84 Freebase domains (see Ap-
pendix B.1). As Table 1 shows, most other datasets
are significantly smaller in these aspects.

Linguistic variation. Using Wikipedia as the
corpus, the graph-text pairs in GraphNarrative allow
a model to learn from many Wikipedia authors’
diverse narrations. On the contrary, text in hand-
crafted datasets such as WebNLG and DART tend
to follow monotonous templates from a small num-
ber of human contributors.

Graph structure complexity. The graphs in
GraphNarrative contain 1–15 triples and 2–20 en-
tities, in 7,920 distinct topological shapes based
on graph isomorphism. (Detailed distributions of
graph instances and shapes are in Appendix B.2.)
Figure 2 displays the 10 most frequent shapes along
with their instance counts. Furthermore, only 22%
of the instance graphs are star graphs. On the con-
trary, EventNarrative and TEKGEN are dominated
by star graphs, as Table 1 shows.

Figure 2: 10 most frequent graph shapes in GraphNarrative,
with instance counts

4 Models

Existing graph-to-text models often use a decoder-
only (Brown et al., 2020) or encoder-decoder struc-
ture (Sutskever et al., 2014), where the encoder

learns representations of input graphs and the de-
coder subsequently translates the representations
into token sequences. In decoder-only models,
e.g., GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020) and ChatGPT (i.e., GPT-3.5) (Ope-
nAI, 2022) in the GPT family, the decoder uses
text sequence embedding as the representation of
input graphs. Encoder-decoder models fall into two
main categories based on graph representations—
1) sequence-to-sequence models that encode lin-
earized graphs’ token sequences with LSTMs
(Trisedya et al., 2018; Gardent et al., 2017b) or
Transformers (Castro Ferreira et al., 2019), and
2) models that use a dedicated graph encoder to
capture the structural information of knowledge
graphs (Schmitt et al., 2021; Ribeiro et al., 2020;
Marcheggiani and Perez-Beltrachini, 2018).

Many of the aforementioned models fine-tune
PLMs. Fine-tuning transformer-based, sequence-
to-sequence encoder-decoder PLMs (e.g., T5 and
BART) achieved state-of-the-art performance on
WebNLG (Ribeiro et al., 2021; Wang et al., 2021;
Clive et al., 2021) and DART (Aghajanyan et al.,
2021). (Yuan and Färber, 2023) reported that fine-
tuning T5 and BART on WebNLG and AGENDA
datasets yielded better results than zero-shot learn-
ing using GPT-3 and GPT-3.5. They also reported
factual hallucinations from GPT-3 and GPT-3.5.
While the reported results from fine-tuning GPT-
2 on WebNLG (Harkous et al., 2020) are worse
than current state-of-the-art, no results have been
reported based on fine-tuning GPT-3 or GPT-3.5.

Following the state-of-the-art approach, we also
fine-tuned T5 and BART on GraphNarrative and
other datasets in comparison. In training and ap-
plying a graph-to-text model, an instance graph is
linearized into a token sequence. Following the
method in (Ribeiro et al., 2021), the graph in
Figure 1 would be linearized as “<H> John Dou-
glas <R> place of birth <T> Morgantown, West Vir-
ginia <H> John Douglas <R> education institution <T>
Tates Creek High School <H> Tates Creek High School
<R> location <T> Lexington, Kentucky” where the
special tokens <H>, <R> and <T> denote subjects, re-
lations and objects, respectively.



5 Mitigation of Hallucination

The culprit of the hallucination problem discussed
in Section 1 is fabrication in training data—textual
descriptions containing information not found in
input graphs. This is evidenced by that, while
graph-to-text models frequently produce hallucina-
tion when trained on TEKGEN, it rarely happens
on WebNLG. Hallucinated facts are seldom found
in the clean, manually-crafted WebNLG but are
present in automatically extracted graph-text pairs
in TEKGEN due to extraction errors.

There could be two plausible directions in tack-
ling graph-to-text hallucination. One is to improve
our graph-text alignment method (Section 3.1). The
graph extracted from a piece of text during align-
ment may miss certain entities or relationships
due to either extraction errors or disparities be-
tween the text corpus and the knowledge graph.
The resulting graph-text pair may misguide the
trained model to hallucinate facts. A more accurate
alignment method can reduce such erroneous pairs
and thereby reduce hallucination. However, this
method has an inherent limitation—since a knowl-
edge graph in real-world is often far from complete,
there will be facts in text that cannot be mapped
to the knowledge graph. Nevertheless, in princi-
ple, a way to combine this approach with the other
approach discussed below is open for investigation.

This study explores a different direction in miti-
gating hallucination. Given a (Freebase subgraph
G, Wikipedia sentence W ) pair produced by align-
ment, we introduce a sentence trimming algorithm
(Algorithm 1 in Appendix A) to turn W into a
trimmed sentence Wtrim by eliminating portions
that are not present in G while preserving the sen-
tence’s main idea. Below we provide a sketch of
the algorithm, while keeping its pseudo code and
description in Appendix A.

First, the algorithm parses W and generates
its dependency parse tree (DPT) Wtree, using
spaCy (Honnibal et al., 2020). Then, for each
triple ti = (si, pi, oi) ∈ G, it identifies the short-
est dependency path (SDP) between si and oi, i.e.,
the shortest path between the two entities’ tokens
in Wtree. It then finds the leftmost position in-
dex min_pos in sentence W among all tokens on
all triples’ SDPs, and similarly the rightmost po-
sition index max_pos. This process results in the
trimmed sentence Wtrim, a sub-sequence of W
spanning from min_pos to max_pos.

An example is in Figure 3 which illustrates the

Figure 3: Dependency parse tree of sentence “FlyBack
is an open-source Backup Software for Linux based on
Git and modeled loosely after Apple’s Time Machine.”

DPT of the sentence W in its caption. The cor-
responding graph G from the graph-text align-
ment process is {(FlyBack, software_genre, Backup

Software), (FlyBack, operating_system, Linux), (FlyBack,
basis, Git)}. Note that entities Apple and Time

Machine in W are missing from G. The SDPs for the
three triples are (①, ②), (①, ②, ③, ④), and (①, ②,
⑤, ⑥, ⑦), respectively. Given the SDPs, min_pos
is attained by FlyBack and max_pos is attained by
Git. Hence, Wtrim is “FlyBack is an open-source
Backup Software for Linux based on Git”. The
sequence “and modeled loosely after Apple’s Time
Machine.”, related to the missing entities Apple and
Time Machine, is trimmed from W .

Note that, a regular DPT will break up entities
such as Backup Software into individual tokens, each
for a node in the DPT. To avoid that, we used a
modified concept of DPT—we preprocessed entity
names and tokenized each entity’s name into a sin-
gle token. Speficially, the two tokens Backup and
Software were combined into token BackupSoftware.

6 Results
6.1 Datasets
We performed experiments on four datasets:
GraphNarrative, TEKGEN (the large-scale, open-
domain graph-to-text dataset that resembles ours
the most), and WebNLG and DART (two human-
annotated datasets). Detailed statistics about these
and other datasets can be found in Table 1.

• GraphNarrative is partitioned into training, de-
velopment and test sets in accordance with the
process elaborated below. Each edge in Free-
base belongs to a topic domain. Every instance
in GraphNarrative, i.e., a (graph, sentence) pair, is
assigned a domain, using the most frequent do-
main among the graph’s edges. We then divided



GraphNarrative into seen and unseen partitions ac-
cording to the numbers of instance pairs in different
domains. Domains with very few (less than 2,000)
pairs were designated as unseen domains, while
the remaining domains are seen. A full list of the
seen and unseen domains is in Appendix B.1. All
instances in unseen domains go to test set. In the
seen partition, 90%, 5% and 5% of the instances are
allocated for training, development and test, respec-
tively. This resulted in 7,880,214 instances in the
training set, 437,514 in the development set, and
451,906 in the test set, including 13,453 instances
from unseen domains. Having unseen instances in
the test set helps us evaluate models’ generalization
ability. Choosing domains with limited discussion
ensures that the model has encountered only a few
such instances during pre-training of PLMs.

• In TEKGEN, each instance pair contains a
Wikipedia sentence and a Wikidata subgraph ex-
tracted from the sentence. We used the origi-
nal training, development and test set partitions
from (Agarwal et al., 2021). We could not use all
instances due to lack of mappings between entity
names and their surface texts. Without such infor-
mation sentence trimming cannot be applied. To
maximize the utility of available instances, we used
aliases sourced from TEKGEN and leveraged regu-
lar expressions to identify time and people’s names.
Consequently, we obtained 3,811,288 instances for
training, 476,439 for development, and 484,958 for
test, out of the original 6,310,061, 788,746, and
796,982 instances, respectively.

• In the standard WebNLG 2017 challenge
dataset, each instance is composed of a graph from
DBpedia and one or multiple sentences written by
human annotations to describe the graph’s content.
Its test set is divided into the seen partition, which
contains 10 DBpedia categories present in the train-
ing and development sets, and the unseen partition,
which covers 5 categories absent from the training
and development sets. We used the same partition-
ing as in the dataset.

• DART is a data-to-text dataset that comprises
pairs of (triple-set, sentence) gathered from a vari-
ety of sources, including WebNLG, E2E (Novikova
et al., 2017), and sentences collected through
crowdsourcing and paired with tables extracted
from WikiSQL (Zhong et al., 2017) and WikiTable-
Questions (Pasupat and Liang, 2015). We used the
original partitioning of training, development and
test sets in DART.

ST Hallucinated Missed Hallucinated Missed Grammar
Entities Entities Relations Relations

w/o 1.163 0.003 1.340 0.040 4.793
w/ 0.306 0.003 0.453 0.083 4.613

Table 2: Human evaluation of GraphNarrative quality

6.2 Human & Automatic Evaluation Metrics
Human evaluation metrics. We evaluated the qual-
ity of both the GraphNarrative dataset and the sen-
tences generated by models, focusing on whether
sentences in the dataset or produced by models
fabricate facts that are not in the corresponding
graphs narrated by the sentences. To the best of our
knowledge, no prior study has quantitatively eval-
uated the quality of graph-to-text datasets or mod-
els with regard to hallucination. Specifically, we
define the following four metrics: numbers of hal-
lucinated entities (entities not present in the graph
but mentioned in the sentence), missed entities (en-
tities present in the graph but not mentioned in
the sentence), hallucinated relations (relations not
present in the graph but mentioned in the sentence),
and missed relations (relations present in the graph
but not mentioned in the sentence).

In addition, we also evaluated the quality of sen-
tences using average grammar errors per sentence,
on a scale of 1-5: 5 (no errors), 4 (one error), 3
(two to three errors), 2 (four to five errors), and 1
(more than five errors).

Automatic evaluation metrics. For model-
generated sentences, we also report automatic
evaluation results using standard natural lan-
guage generation metrics BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
chrF++ (Popović, 2015).

6.3 Experiment and Evaluation Results

1) GraphNarrative dataset quality. Three hu-
man annotators evaluated the quality of the graph-
sentence pairs in GraphNarrative. We randomly
chose 100 pairs, where each sentence has the origi-
nal version and the trimmed version using the algo-
rithm in Section 5. The total 200 pairs were then
shuffled so that annotators cannot tell whether a
sentence is original or not. Each human annotator
scored all 200 pairs using the metrics in Section 6.2,
and their scores were averaged.

Table 2 presents the results. In this and subse-
quent tables, sentence trimming is denoted ST. The
average hallucinated entities and relations 2 per

2We used the metrics defined in Section 6.2 for evaluat-
ing both dataset quality and model output. This may cause
confusions in understanding the measures in the context of



Model ST BLEU METEOR chrF++

all seen unseen all seen unseen all seen unseen
BART-base w/o 33.18 33.33 27.52 17.18 17.26 14.63 36.56 36.74 30.75
BART-base w/ 46.49 46.77 36.67 24.43 24.53 21.30 49.92 50.12 43.29
BART-large w/o 32.35 32.48 27.56 17.45 17.53 15.07 37.12 37.29 31.58
BART-large w/ 46.04 46.18 40.98 24.35 24.41 22.17 49.69 49.85 44.72
T5-small w/o 19.48 19.53 17.34 15.78 15.85 13.79 33.92 34.08 28.90
T5-small w/ 43.72 43.87 38.11 23.40 23.48 21.10 48.15 48.31 42.65
T5-base w/o 16.89 16.95 14.63 16.23 16.30 14.10 35.37 35.54 29.84
T5-base w/ 42.18 42.29 37.85 24.20 24.27 21.94 49.63 49.80 44.18
T5-large w/o 22.22 22.26 20.41 17.16 17.23 15.02 36.78 36.95 31.40
T5-large w/ 45.12 45.16 43.40 24.77 24.84 22.54 50.44 50.60 45.21

Table 3: Model performance on GraphNarrative

Model WebNLG DART

BLEU METEOR chrF++ BLEU METEOR chrF++

T5-large 4.01 9.54 24.64 3.44 7.93 23.17

Filter-T5 19.81 30.36 54.01 16.15 27.53 48.69

GN-T5 21.38 31.82 56.83 19.35 27.35 50.41
GNST-T5 27.60 32.27 56.81 19.42 28.07 50.96

Table 4: Zero-shot performance of models on WebNLG
and DART test sets

graph-sentence pair are 1.163 and 1.340, respec-
tively. This reflects the challenges in graph-to-text
alignment and the source of hallucination, as ex-
plained in Section 5. Applying sentence trimming
reduced these numbers to 0.306 entities and 0.453
relations, clearly showing its effectiveness in en-
hancing graph-text alignment. On the other hand,
when graphs were extracted from corresponding
sentences to form GraphNarrative, information not
present in the sentences was seldom introduced into
the graphs, as reflected in the small missed entities
and relations, both less than 0.1. Sentence trim-
ming only slightly increased missed relations from
0.040 to 0.083, showing insignificant side effect
of removing from sentences information covered
in corresponding extracted graphs. With regard to
grammar, while sentence trimming led to a slight
decline in the grammar score, the difference (4.793
vs. 4.613) is not substantial.

2) Model performance on GraphNarrative.
We fine-tuned various T5 (small: 60M parame-
ters, base: 220M parameters, and large: 770M
parameters) and BART (base: 140M parameters,
large: 400M parameters) models on GraphNarrative

for 106 steps with a batch size of 8 using the Adam
optimizer (Kingma and Ba, 2014) and an initial
learning rate of 3× 10−5. We employed a linearly
decreasing learning rate schedule without warm-up
and set the maximum target text length to 384 to-
kens. Our implementation was based on (Ribeiro

dataset quality—a hallucinated entity refers to an entity from
the original sentence that is missed in the corresponding ex-
tracted graph! We decided to tolerate this potential confusion
for the sake of consistent metric definition.

et al., 2021), which adapted PLMs from Hugging
Face (Wolf et al., 2019) for graph-to-text. The au-
tomatic evaluation results of different models on
GraphNarrative are in Table 3. Fine-tuning the T5-
large model attained the best performance across
most metrics, consistent with findings on WebNLG
in (Ribeiro et al., 2021; Wang et al., 2021).

3) GraphNarrative in enhancing generalization
ability. To assess if GraphNarrative may enhance
PLMs’ generalization ability, we conducted both
zero-shot learning and fine-tuning experiments em-
ploying GN-T5 and GNST-T5 on WebNLG and
DART, where GNST-T5 denotes the fine-tuned T5-
large model on GraphNarrative with sentence trim-
ming, and GN-T5 denotes the counterpart without
sentence trimming. They are also compared with
the original T5-large model as a point of reference.

Zero-shot results. For zero-shot learning, we
directly applied the above-mentioned three models
on the test sets of WebNLG and DART. The results
are in Table 4. The results reveal that fine-tuning
PLM on GraphNarrative substantially improves its
generalization capabilities.

Fine-tuning results. We subjected the three mod-
els to further fine-tuning on WebNLG and DART
for 100 epochs with an early stopping patience of
20 epochs, while keeping other hyperparameters
consistent with those in Part 2, Section 6.3. No
trimming was performed on WebNLG and DART,
as their sentences were authored by human annota-
tors, with very few hallucinated or missed entities
and relations. Table 5 compares the performance of
different graph-to-text models on WebNLG test set,
including the reprint of the results from seven prior
studies. GNST-T5 fine-tuned on WebNLG outper-
formed others on most metrics, particularly in the
unseen category. This improvement suggests that
GraphNarrative enhances the generalization ability
of PLMs. Table 7 shows the fine-tuning results on
DART test set. The model performance improve-
ment by sentence trimming is not obvious. This is
further discussed in Part 4, Section 6.3.



Model BLEU METEOR chrF++

all seen unseen all seen unseen all seen unseen
(Gardent et al., 2017b) 33.24 52.39 6.13 23.00 37.00 7.00 - - -
(Marcheggiani and Perez-Beltrachini, 2018) 55.90 - - 39.00 - - - - -
(Ferreira et al., 2019) 51.68 56.35 38.92 32.00 41.00 21.00 - - -
(Ribeiro et al., 2020) - 63.69 - - 44.47 - - 76.66 -
(Ribeiro et al., 2021) 59.70 64.71 53.67 44.18 45.85 42.26 75.40 78.29 72.25
(Wang et al., 2021) 60.56 66.07 53.87 44.00 46.00 42.00 - - -
(Aghajanyan et al., 2021) 56.30 64.80 46.10 42.00 46.00 38.00 - - -
GNST-T5 (ours) 61.46 66.49 55.35 44.30 46.23 42.08 76.20 79.35 72.76

Table 5: Performance comparison of different graph-to-text models on WebNLG test set

Dataset ST BLEU METEOR chrF++
all seen unseen all seen unseen all seen unseen

TEK w/o 60.43 65.49 54.32 44.06 46.04 41.90 75.73 78.83 70.13
GEN w/ 60.82 65.42 55.12 44.25 46.13 42.18 76.16 79.11 72.35

Graph w/o (GN-T5) 60.26 65.44 54.06 44.08 45.90 41.98 75.83 79.02 72.35
Narrative w/ (GNST-T5) 61.46 66.49 55.35 44.30 46.23 42.08 76.20 79.35 72.76

Table 6: Models’ performance on WebNLG test set, when fine-tuned with TEKGEN or GraphNarrative and further
fine-tuned with WebNLG

Model BLEU METEOR chrF++

T5-large 50.38 39.98 68.06
GN-T5 50.53 39.99 68.15
GNST-T5 50.51 40.07 68.23

Table 7: Fine-tuning results on DART test set

Model ST BLEU METEOR chrF++
BART-large w/o 41.51 23.62 47.13
BART-large w/ 48.32 29.90 57.50
T5-large w/o 43.03 24.21 48.05
T5-large w/ 49.83 30.52 58.25

Table 8: Performance of fine-tuning BART-large and
T5-large on the TEKGEN dataset

4) Ablation study of sentence trimming. We
demonstrate the effectiveness of sentence trimming
in improving model performance on GraphNarrative,
TEKGEN, WebNLG, and DART by fine-tuning
PLMs with and without sentence trimming, respec-
tively. (1) For GraphNarrative, we fine-tuned T5 and
BART models using the setup described in Part 2,
Section 6.3. (2) For TEKGEN, we fine-tuned the
T5-large and BART-large models using the serial-
ized triples from (Agarwal et al., 2021), with the
same hyperparameters as in Part 2, Section 6.3. (3)
For WebNLG and DART, we conducted zero-shot
learning and fine-tuning experiments as described
in Part 3, Section 6.3. (4) Additionally, on the
WebNLG dataset, we carried out further fine-tuning
of the T5-large model fine-tuned on TEKGEN in
(2), applying the same hyperparameters as in Part
3, Section 6.3.

The results of (1) and (2) are in Tables 3 and 8.
The metrics (BLEU, METEOR, chrF++) consis-
tently improve with sentence trimming, further
verifying the efficacy of sentence trimming. The
results of (3) are in Tables 4, 6 and 7, and Ta-

ble 6 also shows the results of (4). In these re-
sults, the fine-tuned PLMs on GraphNarrative and
TEKGEN with sentence trimming consistently out-
performed their non-trimming counterparts. These
findings underscore the effectiveness of sentence
trimming in enhancing PLM performance. It is
worth noting that, as Tables 6 and 7 show, on
human-annotated WebNLG and DART the models
did not gain much from sentence trimming after
they are fine-tuned on these datasets. The main
reason is that human-annotated datasets generally
have well-aligned graph-text pairs and thus cannot
be substantially improved by trimming.

5) Sentence trimming in mitigating halluci-
nation. We randomly sampled 100 graphs from
GraphNarrative test set, along with the correspond-
ing sentences generated by GNST-T5 and GN-T5.
We shuffled the 200 pairs and used three human
evaluators to score the pairs, in the same fashion
as in Part 1, Section 6.3. The results are in Table 9,
which shows a reduction of 1.4 hallucinated enti-
ties and 1.0 hallucinated relations per instance from
GN-T5 to GNST-T5, suggesting that sentence trim-
ming effectively mitigates hallucinations. Further-
more, sentences generated by both models exhibit
on average less than 0.07 missed entities and 0.38
missed relations per instance. Regarding gram-
mar, sentences generated by GNST-T5 received

ST Hallucinated Missed Hallucinated Missed Grammar
Entities Entities Relations Relations

w/o 1.643 0.063 1.363 0.240 4.613
w/ 0.260 0.056 0.300 0.370 4.356

Table 9: Human evaluation of sentences generated by
T5-large with and without sentence trimming



Input Graph Sentence Generated by GN-T5 Sentence Generated by GNST-T5

(Arthur Morry, place of death, Brisbane) Arthur Morry died in Brisbane, Queensland, aged 79. Arthur Morry died in Brisbane.
(Annapolis Maryland, location contains, US Naval
Academy)

During World War II, the US Naval Academy in Annapolis,
Maryland was renamed the US Naval Academy in Annapolis,
Maryland, and the US Naval Academy in Annapolis, Maryland
was renamed the US Naval Academy in Annapolis, Maryland.

US Naval Academy in Annapolis,
Maryland.

(Goldie Gets Along, film directed by, Malcolm St.
Clair filmmaker) (Goldie Gets Along, film perfor-
mance actor, Lili Damita) (Goldie Gets Along, film
performance actor, Charles Morton actor)

Goldie Gets Along is a 1951 American comedy film directed
by Malcolm St. Clair (filmmaker) and starring Lili Damita and
Charles Morton (actor).

Goldie Gets Along was directed
by Malcolm St. Clair (filmmaker)
and starred Lili Damita and Charles
Morton (actor).

Table 10: Comparison of generated sentences with and without sentence trimming for sample input graphs

slightly lower scores than GN-T5. Nevertheless,
these scores remain acceptable, with on average
less than one grammar error per instance.

Table 10 illustrates the sentences generated by
GNST-T5 and GN-T5 for a few input graphs. GN-
T5 tends to fabricate facts that are incorrect or non-
existent in the real world (e.g., Arthur Morry’s age
of death, the renaming of the US Naval Academy, and
Goldie Gets Along’s year of release) or not present
in input graphs (e.g., Goldie Gets Along’s genre).
In contrast, GNST-T5 generated fluent sentences
without fabricating facts, barring a phrase instead
of a complete sentence for the second example.

6) Limitations of star graph datasets. As ex-
plained in Section 1, existing large-scale datasets
such as TEKGEN contain predominantly star
graphs. We used GraphNarrative to investigate the
limitations of star graph datasets.

More specifically, we separated the graph-
sentence pairs in GraphNarrative into star instances
(with star graphs) and non-star instances (without
star graphs). We excluded instances with two or
three entities, as they could be considered as both
paths and stars. Table 11 provides the distributions
of these two types of instances. The number of non-
star instances in all three sets is approximately 3.5
times as many as the star instances. To help ensure
a fair comparison, we randomly selected an equal
number of non-star instances as the star instances
for each of the three sets, e.g., there are 290,047
star graphs and the same number of non-star graphs
in the training set of our prepared dataset.

Using the dataset prepared this way, we fine-
tuned T5-large model with and without sentence
trimming for 10 epochs under early stopping pa-
tience 5, using the same other hyperparameters
as in Part 2, Section 6.3. The results are in Ta-
ble 12. Across the board, models trained using
star instances exhibited the highest performance
when tested using star instances too, and similarly
regarding non-star instances. Furthermore, models
trained on non-star instances and tested on star in-
stances tended to outperform models trained on star

instances and tested on non-star instances. These
results indicate that a PLM fine-tuned on a dataset
consisting solely of star graphs performs poorly
when applied to general graph shapes, which are
commonly encountered in real-world applications.
Fine-tuning PLMs on diverse graph shapes en-
hances their generalization capability.

Star Non-star All

train 290,047 1,022,303 1,312,350
dev 16,192 56,612 72,804
test 16,425 58,517 74,942
all 322,664 1,137,432 1,460,096

Table 11: Number of star and non-star instances in
GraphNarrative

ST Train Test BLUE METEOR chrF++

star 36.57 22.75 46.70
star non-star 30.64 21.89 45.48

both 33.54 22.32 46.09
star 34.02 21.67 44.54

w/o non-star non-star 37.18 23.99 50.02
both 35.71 22.99 47.57
star 36.23 22.94 47.06

both non-star 36.86 24.32 50.61
both 36.56 23.63 48.83

star 47.70 26.62 52.08
star non-star 37.75 25.17 50.20

both 42.48 25.88 51.14
star 45.83 25.72 50.33

w/ non-star non-star 47.30 27.73 55.21
both 46.61 26.73 52.77
star 47.60 26.87 52.52

both non-star 46.83 27.89 55.45
both 47.20 27.38 53.99

Table 12: Model performance, star vs. non-star graphs

7 Conclusion

In this paper, we proposed a novel approach to
mitigating hallucination in natural language gen-
eration from large-scale, open-domain knowledge
graphs. We released a large graph-to-text dataset
with diverse graph shapes that fills the gap between
existing datasets and real-world settings. The ex-
periment results show the effectiveness of our hal-
lucination mitigation approach as well as the use-
fulness of the dataset.



Limitations

1) The creation of GraphNarrative and the sentence
trimming method leverage an existing mapping be-
tween the knowledge graph entities and Wikipedia
entities. Given other text corpora and knowledge
graphs, creating such a mapping is a non-trivial
undertaking that often requires named entity recog-
nition and disambiguation techniques. 2) The sen-
tence trimming approach may introduce grammati-
cal errors into generated sentences. 3) The method
focuses on describing the content of an input graph
only, without considering context information such
as neighboring entities in the knowledge graph.
Such extra information may be preferred by a user
given certain application contexts or may make
the input graph’s narration more natural. 4) The
creation of GraphNarrative does not consider mul-
tiary relationships in knowledge graphs. More
specifically, the Freebase used in our work is a
version in which multiary relationships were con-
verted into binary relationships (Shirvani-Mahdavi
et al., 2023). In general, there is a lack of inquiry
into multiary relationships in graph-to-text models.
To the best of our knowledge, the only work in
this area that discusses such multiary relationships
is (Agarwal et al., 2021) and they also converted
multiary relationships into binary ones. 5) A cou-
ple of studies (Agarwal et al., 2021; Wang et al.,
2021) attempted to address hallucination by further
fine-tuning PLMs on WebNLG after fine-tuning on
noisier automatically-extracted datasets. It will be
informative to conduct a human evaluation com-
parison between their approaches and the sentence
trimming method proposed in our work. Similarly,
our future work includes a human evaluation com-
parison with the filtering-based method (Ma et al.,
2022) which we empirically compared with in Ap-
pendix C.1. 6) The sentence trimming algorithm
only removes irrelevant portions from the begin-
ning and the end of a sentence, leaving the token
sequence in the middle intact. It is possible the
middle portion also contains tokens irrelevant to
the input graph.

Ethics Statement

In the course of conducting our research, we have
striven to remain aware and attentive to potential
ethical implications and challenges. Our work was
informed by the following ethical considerations.

Ethical use of generated content. Given that our
research focuses on producing natural language de-

scriptions of knowledge graphs, we are particularly
aware of the potential misuse of our method for the
generation of false, deceptive, biased or unfair con-
tents. Particularly, our sentence trimming method
aims to minimize such potential misuse by aiding
in reducing hallucinations.

We also recognize that natural language descrip-
tions generated using our dataset and algorithm
can be repurposed in various ways. We firmly
urge users and developers to use this content re-
sponsibly, particularly with respect to intellectual
property rights. Furthermore, we recommend users
clearly label AI-generated content, promoting trans-
parency and trust.

Data privacy and bias. Our GraphNarrative

dataset uses publicly available data, particularly
Freebase and Wikipedia, which do not contain in-
formation that violates anyone’s privacy to the best
of our knowledge.

Our reliance on Wikipedia may inadvertently
introduce bias, as Wikipedia content can reflect
the views of its contributors. We are also aware
this potential bias could be more intense in less
commonly spoken languages, where the number of
contributors might be limited.

Acknowledgments

This work is supported by the National Science
Foundation under Grants 1719054, 1937143, and
2333834. We extend our gratitude to Dr. Won Hwa
Kim and Xin Ma for provisioning of computational
resources in supporting this work. Special thanks
to Nasim Shirvani-Mahdavi and Haiqi Zhang for
their vital contributions to the human evaluation
process, to Yogesh Gurjar for resolving a bug in
our experiment scripts, and to Mohammed Samiul
Saeef for his guidance and expertise on using Free-
base data graph.

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami

Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565.

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis,
Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke
Zettlemoyer. 2021. HTLM: Hyper-text pre-training
and prompting of language models. arXiv preprint
arXiv:2107.06955.



Giuseppe Attardi. 2019. Wikiextractor. https://
github.com/attardi/wikiextractor. Accessed:
Sep 20th, 2019.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A nucleus for a web of open data. In
Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference,
pages 722–735.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, pages 1247–1250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
552–562.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Con-
trol prefixes for text generation. arXiv preprint
arXiv:2110.08329.

Anthony Colas, Ali Sadeghian, Yue Wang, and
Daisy Zhe Wang. 2021. EventNarrative: A large-
scale event-centric dataset for knowledge graph-to-
text generation. In Proceedings of the 35th Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Andras Csomai and Rada Mihalcea. 2008. Linking doc-
uments to encyclopedic knowledge. IEEE Intelligent
Systems, 23(5):34–41.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In Pro-
ceedings of the 11th International Conference on
Natural Language Generation, pages 322–328.

Thiago Castro Ferreira, Chris van der Lee, Emiel
Van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 552–562.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planning. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, pages 179–188.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A deep semantic natural lan-
guage processing platform. In arXiv preprint
arXiv:1803.07640.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 2410–2424.

Nicolas Heist, Sven Hertling, Daniel Ringler, and Heiko
Paulheim. 2020. Knowledge graphs on the web–an
overview. Knowledge Graphs for Explainable Ar-
tificial Intelligence: Foundations, Applications and
Challenges, pages 3–22.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength natural language processing in Python.

Nandish Jayaram, Rohit Bhoopalam, Chengkai Li, and
Vassilis Athitsos. 2016. Orion: Enabling sugges-
tions in a visual query builder for ultra-heterogeneous
graphs. arXiv preprint arXiv:1605.06856.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jan-Christoph Klie. 2022. wikimapper. https://
github.com/jcklie/wikimapper.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
generation from knowledge graphs with graph trans-
formers. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2284–2293.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197.

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/jcklie/wikimapper
https://github.com/jcklie/wikimapper


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Shiqi Liang, Kurt Stockinger, Tarcisio Mendes de Farias,
Maria Anisimova, and Manuel Gil. 2021. Querying
knowledge graphs in natural language. Journal of
Big Data, 8(1):1–23.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81. Association for Compu-
tational Linguistics.

Chao Ma, Chunhua Shen, Anthony Dick, Qi Wu, Peng
Wang, Anton van den Hengel, and Ian Reid. 2018.
Visual question answering with memory-augmented
networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6975–6984.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2022. Open domain question
answering with a unified knowledge interface. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1605–1620.

Diego Marcheggiani and Laura Perez-Beltrachini. 2018.
Deep graph convolutional encoders for structured
data to text generation. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration, pages 1–9.

Joseph F McCarthy and Wendy G Lehnert. 1995. Us-
ing decision trees for coreference resolution. arXiv
preprint cmp-lg/9505043.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xian-
gru Tang, Aadit Vyas, Neha Verma, Pranav Krishna,
et al. 2021. DART: Open-domain structured data
record to text generation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 432–447.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

OpenAI. 2022. ChatGPT [large language model].
https://openai.com/chatgpt.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480. Association for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schütze,
and Iryna Gurevych. 2021. Investigating pretrained
language models for graph-to-text generation. In Pro-
ceedings of the 3rd Workshop on Natural Language
Processing for Conversational AI, pages 211–227.

Leonardo FR Ribeiro, Yue Zhang, Claire Gardent, and
Iryna Gurevych. 2020. Modeling global and local
node contexts for text generation from knowledge
graphs. Transactions of the Association for Compu-
tational Linguistics, 8:589–604.

Martin Schmitt, Leonardo FR Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schütze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing, pages 10–21.

Nasim Shirvani-Mahdavi, Farahnaz Akrami, Mo-
hammed Samiul Saeef, Xiao Shi, and Chengkai
Li. 2023. Comprehensive analysis of freebase and
dataset creation for robust evaluation of knowledge
graph link prediction models. In International Se-
mantic Web Conference. Springer.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
27.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang, and
Wei Wang. 2018. GTR-LSTM: A triple encoder for
sentence generation from RDF data. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 1627–1637.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledge base. Communi-
cations of the ACM, 57(10):78–85.

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openai.com/chatgpt


Qingyun Wang, Semih Yavuz, Xi Victoria Lin, Heng
Ji, and Nazneen Rajani. 2021. Stage-wise fine-
tuning for graph-to-text generation. In Proceedings
of the ACL-IJCNLP 2021 Student Research Work-
shop, pages 16–22.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard
De Melo, and Yongfeng Zhang. 2019. Reinforcement
knowledge graph reasoning for explainable recom-
mendation. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 285–294.

Shuzhou Yuan and Michael Färber. 2023. Evaluating
generative models for graph-to-text generation. arXiv
preprint arXiv:2307.14712.

Gensheng Zhang, Damian Jimenez, and Chengkai Li.
2018. Maverick: Discovering exceptional facts from
knowledge graphs. In Proceedings of the 2018 ACM
SIGMOD International Conference on Management
of Data, pages 1317–1332.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Li Zhou and Kevin Small. 2019. Multi-domain dia-
logue state tracking as dynamic knowledge graph
enhanced question answering. arXiv preprint
arXiv:1911.06192.

Algorithm 1: Sentence Trimming
Input: W : A co-reference resolved Wikipedia

sentence; G: The graph for W based on
graph-text alignment

Output: Wtrim: The trimmed text sequence
1 M ← {}
2 foreach (s, p, o) ∈ G do
3 s′ ← s.remove(special_tokens)
4 o′ ← o.remove(special_tokens)
5 W ←W.replace((s, o), (s′, o′))
6 M [s′],M [o′]← s, o

7 Wtree ←W.dependency_parsing()
8 min_pos,max_pos←W.length, 0
9 foreach (s, p, o) ∈ G do

10 sdp← shortest_path(Wtree, s
′, o′)

11 foreach node ∈ sdp do
12 min_pos← min(min_pos, node.start)
13 max_pos← max(max_pos, node.end)

14 Wtrim ←W [min_pos : max_pos]
15 foreach k ∈M.keys() do
16 Wtrim ←Wtrim.replace(k,M [k])

17 return Wtrim

A The Sentence Trimming Algorithm

In Algorithm 1, Lines 1–6 are to ensure that an en-
tity consisting of multiple tokens is tokenized into
one single token, and the mapping M is for recover-
ing the entity’s tokens from W in producing Wtrim

(Lines 15–16). Lines 9–14 find the leftmost posi-
tion min_pos and the rightmost position max_pos
from W by scanning each triple (s, p, o) in G and
finding the tokens on the corresponding SDPs, as
explained in Section 5. The variable node denotes
a token on the SDP in Wtree between entities s
and o. node.start and node.end denote node’s
starting position index and ending position index in
W , respectively. node.start, node.end, min_pos,
and max_pos are on character level. If node ap-
pears multiple times in W , node.start will be the
start index of the first one and node.end will be
the end index of the last one.

B More Details about GraphNarrative

B.1 List of Domains
Seen domains. location, people, sports, music,
government, organization, education, film, tv, book,
award, military, soccer, time, geography, business,
olympics, transportation, broadcast, baseball, fic-
tional_universe, biology, influence, language, com-
puter, cvg, aviation, architecture, protected_sites,
religion, symbols, travel, visual_art, basketball,
royalty, astronomy, american_football, metropoli-
tan_transit, comic_books, law, media_common,
spaceflight, tennis, boats, medicine, meteorology,
automotive, theater, internet, amusement_parks,
event, comic_strips, measurement_unit, finance,
radio, physics

Unseen domains. martial_arts, games, ice_hockey,
cricket, rail, food, opera, projects, dining, skiing,
conferences, library, exhibitions, zoos, boxing, en-
gineering, digicams, venture_capital, chemistry,
celebrities, chess, interests, distilled_spirits, com-
edy, fashion, geology, wine, bicycles

B.2 GraphNarrative Characteristics
Graph distribution. The distributions of graphs
in GraphNarrative by numbers of triples and entities
are shown in base-10 logarithmic scale in Figure 4
and Figure 5, respectively. Furthermore, the dis-
tribution of distinct GraphNarrative graph shapes by
number of entities is in Table 13.

Text distribution. The dataset exhibits an average
sentence length of 34.68 tokens for original sen-



Figure 4: Distribution of GraphNarrative instances by num-
ber of triples in graphs

Figure 5: Distribution of GraphNarrative instances by num-
ber of entities in graphs

tences and 20.66 tokens for trimmed sentences. Ta-
ble 14 provides detailed distribution of sentence
lengths. Table 15 presents the average sentence
token counts by number of triples in the graphs. It
underscores that our model was trained using a di-
verse set of examples, including those with lengthy
sentences and a substantial number of triples.

B.3 Dataset Creation

B.3.1 Pre-processing of text corpus and
knowledge graph

Our text corpus is derived from the Wikipedia
dump 3 released on Sep. 1st, 2019. In preprocess-
ing the corpus, we used WikiExtractor (Attardi,
2019) to transform the raw Wikipedia dump in
compressed XML file into numerous plain text files
containing bodies of Wikipedia articles without ta-
bles, infoboxes, table of contents, categories, and
so on. 4

Our Freebase knowledge graph is from (Shirvani-
Mahdavi et al., 2023) which used the most recent
Freebase dump 5 as the data source. Most rela-
tions in the graph form semantically-redundant re-

3https://dumps.wikimedia.org
4https://en.wikipedia.org/wiki/Wikipedia:

Manual_of_Style/Layout
5https://developers.google.com/freebase

#entities 2 3 4 5 6 7 8 9 10 11
#shapes 1 2 7 23 122 705 1690 1705 1267 830

#entities 12 13 14 15 16 17 18 19 20 all
#shapes 542 378 222 176 106 58 52 22 12 7920

Table 13: Distribution of distinct GraphNarrative graph
shapes by number of entities

#Tokens Original Sentence Trimmed Sentence

0-10 64,861 (0.74%) 1,734,759 (19.78%)
10-20 1,442,582 (16.45%) 3,369,747 (38.43%)
20-30 2,592,651 (29.56%) 1,944,225 (22.17%)
30-40 2,048,174 (23.36%) 919,554 (10.49%)
40-50 1,215,928 (13.87%) 416,187 (4.75%)
50-60 649,403 (7.41%) 190,363 (2.17%)
60-70 339,671 (3.87%) 91,289 (1.04%)
70-80 181,699 (2.07%) 45,38 (0.52%)
80-90 97,618 (1.11%) 23,823 (0.27%)
90-100 53,981 (0.62%) 13,299 (0.15%)
100-110 83,066 (0.95%) 21,008 (0.24%)

Table 14: Distribution of GraphNarrative instances by
sentence length

#Triples #Tokens #Triples #Tokens #Triples #Tokens

1 14.15 2 20.32 3 23.12
4 26.29 5 28.21 6 29.74
7 31.12 8 33.41 9 30.39
10 35.90 11 39.53 12 42.49
13 43.60 14 49.71 15 50.21

Table 15: Average GraphNarrative sentence length by
number of triples in graphs

verse pairs. If the input graph triples to a graph-
to-text model containing such reverse edges, we
only need to simply retain one edge out of each
redundant pair. Hence, we did exactly that in pre-
processing the whole Freebase dump so that our in-
put graphs have no reverse edges. Furthermore, our
pre-processing also removed the mediator (CVT)
nodes (Bollacker et al., 2008) by concatenating
edges connected through mediator nodes.

B.3.2 Graph-text alignment
Wikipedia-to-Freebase entity mapping. We col-
lected a Wikipedia-to-Freebase entity mapping
between 4,408,115 English Wikipedia titles and
their corresponding Freebase entities. The map-
ping was created by employing three meth-
ods, as follows. 1) Parsing the Freebase data
dump to obtain a Wikipedia-to-Freebase entity
mapping using https://github.com/saleiro/
Freebase-to-Wikipedia. 2) Inferring from
a Wikipedia-to-Wikidata mapping in wikimap-
per (Klie, 2022) and a Wikidata-to-Freebase
mapping at https://developers.google.com/
freebase. 3) Inferring from the Wikipedia-to-
DBpedia and the DBpedia-to-Freebase mappings
at http://downloads.dbpedia.org/2016-10/

https://dumps.wikimedia.org
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout
https://developers.google.com/freebase
https://github.com/saleiro/Freebase-to-Wikipedia
https://github.com/saleiro/Freebase-to-Wikipedia
https://developers.google.com/freebase
https://developers.google.com/freebase
http://downloads.dbpedia.org/2016-10/core-i18n/en/


Threshold Dev (w/o ST) Dev (w/ ST) Test (w/o ST) Test (w/ ST) Train (w/o ST) Train (w/ ST) Total (w/o ST) Total (w/ ST)

0.8 74 (0.0169%) 791 (0.1806%) 65 (0.0144%) 931 (0.206%) 1328 (0.0168%) 14787 (0.1877%) 1467 (0.017%) 16509 (0.1883%)
0.5 14952 (3.416%) 71565 (15.357%) 15843 (3.507%) 75445 (16.689%) 269541 (3.418%) 1293864 (16.405%) 300336 (3.43%) 1382074 (15.76%)
0.3 142974 (32.678%) 256357 (58.593%) 148666 (32.892%) 266094 (58.886%) 2579921 (32.740%) 4621448 (58.659%) 4970561 (56.68%) 7445899 (84.88%)

Table 16: Number of remaining instances after filtering using different thresholds of ROUGE-1 similarity scores

Dataset Entities Triples Relations Star Graphs Shapes

Filtered 307,590 437,519 974 47% 597
GraphNarrative 1,853,752 15,472,249 1,724 22% 7,920

Table 17: Statistics of GraphNarrative and its filtered
dataset

core-i18n/en/. The overall Wikipedia-to-
Freebase entity mapping is obtained by com-
bining all three methods and eliminating con-
flicting entity mappings. The mapping file link
can be found at https://github.com/idirlab/
graphnarrator.

Coreference resolution. To produce more graph-
text pairs for GraphNarrative, we used AllenNLP’s
coreference resolution (Gardner et al., 2017; Lee
et al., 2017) in default settings to replace Wikipedia
token spans with the entities they refer to. We con-
ducted human evaluation to assess the quality of the
coreference resolution results on 20 randomly se-
lected Wikipedia articles. The assessment yielded a
precision of 91.4% (630 of the 689 resolved entity
coreferences were correct) and a recall of 98.3%
(11 entity coreferences were missed).

#Triples BLEU (GN-T5) BLEU (GNST-T5)

1 13.60 25.97
2 19.90 27.53
3 24.07 29.73
4 30.51 32.62
5 32.95 35.22
6 38.81 39.73
7 42.74 41.55
8 42.23 42.10
9 55.73 51.83
10 45.84 48.08
11 41.72 42.71
12 38.09 39.33
13 41.77 43.27
14 33.47 36.95
15 34.04 38.44

Table 18: Distribution of GNST-T5 and GN-T5 model
performance in BLEU scores on GraphNarrative test set

C Additional Experiments

C.1 Comparing sentence trimming with
filtering

We compared sentence trimming with a similar
but different filtering method proposed in (Ma et al.,
2022). Their method also aimed to reduce dispari-
ties in datasets as a way of mitigating hallucination.
However, different from our approach which aligns

sentences better with input graphs by trimming
away portions of sentences, the filtering method
removes graph-text pairs from the DART dataset
where the ROUGE-1 similarity score between the
graph and the text is below 0.8.

We applied the same filtering method on
GraphNarrative. Table 16 provides a breakdown of
the remaining instances after filtering using differ-
ent thresholds. A relatively low threshold of 0.3
removed 43.32% of the instances in GraphNarrative.
When we raised the threshold to 0.8, almost all in-
stances were eliminated. In comparison, the thresh-
old of 0.8 applied on DART allowed for retaining
88% of its instances. This is because the human-
annotated DART has well-aligned graph-text pairs.

We compared sentence trimming with filtering
using the 269,541 instances left in the training set
and 71,565 in the development set, under thresh-
old 0.5. We fine-tuned the T5-large model for 10
epochs with early stopping patience 5, using the
same other hyperparameters as on the full dataset.
The number of training steps is different from the
full dataset because this subset is about 30 times
smaller. We used early stopping to avoid overfit-
ting. Then we used the resulting model, which we
call Filter-T5, for zero-shot prediction on WebNLG
and DART test sets. The results are shown in Ta-
ble 4. GNST-T5 slightly outperformed Filter-T5.
To understand this, we compared the statistics of
the filtered dataset and the full dataset (and thus
the dataset after sentence trimming since trimming
does not alter the graphs in the dataset), as in Ta-
ble 17. The filtered dataset exhibits a significant
reduction in size and diversity in terms of number
of distinct entities, relations, triples and shapes. We
conjecture that this contributes to its performance
degeneration in comparison with GNST-T5.

C.2 Performance of GNST-T5 and GN-T5 by
input size

Table 18 shows the performance of GNST-T5 and
GN-T5 in BLEU scores on graphs of varying sizes,
i.e., number of triples. The results help gauge
whether the models generalize well for long in-
puts. Notably, the performance of both models on
extended inputs is better than or on par with their
performance on shorter inputs.

http://downloads.dbpedia.org/2016-10/core-i18n/en/
http://downloads.dbpedia.org/2016-10/core-i18n/en/
https://github.com/idirlab/graphnarrator
https://github.com/idirlab/graphnarrator


D The 41 Shapes in WebNLG

Figure 6 displays the distinct graph shapes in the
WebNLG dataset, in descending order by number
of instances.

Figure 6: WebNLG shapes


