
EIGENSCORE: OOD DETECTION USING POSTERIOR COVARIANCE IN DIFFUSION MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Out-of-distribution (OOD) detection is critical for the safe deployment of machine
012 learning systems in safety-sensitive domains. Diffusion models have recently
013 emerged as powerful generative models, capable of capturing complex data dis-
014 tributions through iterative denoising. Building on this progress, recent work has
015 explored their potential for OOD detection. We propose *EigenScore*, a new OOD
016 detection method that leverages the eigenvalue spectrum of the posterior covariance
017 induced by a diffusion model. We argue that posterior covariance provides a con-
018 sistent signal of distribution shift, leading to larger trace and leading eigenvalues
019 on OOD inputs, yielding a clear spectral signature. We further provide analysis
020 explicitly linking posterior covariance to distribution mismatch, establishing it as a
021 reliable signal for OOD detection. To ensure tractability, we adopt a Jacobian-free
022 subspace iteration method to estimate the leading eigenvalues using only forward
023 evaluations of the denoiser. Empirically, EigenScore achieves state-of-the-art per-
024 formance, with up to 5% AUROC improvement over the best baseline. Notably,
025 it remains robust in near-OOD settings such as CIFAR-10 vs CIFAR-100, where
026 existing diffusion-based methods often fail.

1 INTRODUCTION

030 Most machine learning systems assume that test data matches the training distribution, but distribution
031 shift or out-of-distribution (OOD) data can severely degrade performance in safety-critical domains
032 such as medical imaging and autonomous driving (Yang et al., 2024). OOD inputs may stem from
033 sensor noise, semantic differences, or acquisition changes, leading to unreliable predictions (Zhang
034 et al., 2023). To address this, many OOD detection methods have been proposed, ranging from
035 supervised approaches that require labeled OOD data to unsupervised approaches that rely only on
036 in-distribution (InD) training data (Graham et al., 2023).

037 Existing OOD detection methods can be broadly categorized into four families: (i) **uncertainty-
038 based** methods, which rely on signals such as softmax confidence (Hendrycks & Gimpel, 2017),
039 ensemble variance (Choi et al., 2018), or Bayesian inference (Wang & Aitchison, 2021; Charpentier
040 et al., 2020) to identify anomalous inputs; (ii) **distance-based** methods (Regmi et al., 2024), which
041 compare test embeddings to in-distribution features, commonly via Mahalanobis distance (Colombo
042 et al., 2022; Lee et al., 2018); (iii) **density-based** methods (Huang et al., 2022), including flow- and
043 energy-based models (Kumar et al., 2023; Liu et al., 2020), which attempt to estimate likelihoods but
044 have been shown to assign spuriously high likelihoods to OOD data (Nalisnick et al., 2019a); and
045 (iv) **representation-learning** methods (Wang et al., 2022), including self-supervised and contrastive
046 techniques (Seifi et al., 2024; Hendrycks et al., 2019; Tack et al., 2020), which improve robustness by
047 explicitly shaping feature spaces (Also see reviews in Koh & et. al (2021); Salehi et al. (2022)).

048 Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020) have emerged as state-of-the-art generative
049 models, achieving high-quality samples across diverse domains. Their success has spurred both
050 architectural advances (Vahdat et al., 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022; Karras
051 et al., 2022) and applications beyond generation, such as imaging inverse problems and medical
052 tasks (Chung et al., 2023; Adib et al., 2023) (see also recent reviews (Daras et al., 2024; Croitoru et al.,
053 2023; Li et al., 2023; Kazerouni et al., 2023)). Crucially, diffusion models are especially relevant
for OOD detection because their iterative denoising process does not simply produce samples, but
also provides access to score functions that explicitly characterize the data distribution. Early work

exploited this property through likelihood- or reconstruction-based scores (Graham et al., 2023; Gao et al., 2023; He et al., 2025). More recent studies have explored structural aspects of the diffusion trajectory, such as score geometry and intermediate representations (Heng et al., 2024; Graham et al., 2023; Liu et al., 2023; Choi et al., 2023). These developments highlight both the promise of diffusion-based OOD methods and the need for principled approaches that move beyond heuristic scoring rules.

Building on recent work in diffusion-based OOD detection, we introduce **EigenScore**, an unsupervised, feature-based framework for identifying distribution shift. Unlike reconstruction-based methods that measure input–output similarity (Graham et al., 2023) or trajectory-based methods that analyze diffusion-path geometry (Heng et al., 2024), EigenScore leverages the covariance structure of the denoising process to capture uncertainty signals. By linking posterior covariance, estimated from the denoiser’s Jacobian, to distribution shift, EigenScore provides a theoretically grounded and interpretable signal while remaining practical at scale through a Jacobian-free eigenvalue estimation algorithm. Our analysis, supported by both theory and experiments, shows that applying an in-distribution diffusion model to OOD samples leads to inflated posterior covariance. This effect provides a stable and discriminative signal for OOD detection. Our contributions are threefold:

- We introduce **EigenScore**, an unsupervised, feature-based framework for OOD detection in diffusion models. EigenScore leverages the posterior covariance of the denoising process to characterize distribution shift.
- We provide supporting analysis establishing a direct connection between denoising uncertainty from posterior covariance and distribution mismatch, thereby explaining why EigenScore reliably separates InD from OOD samples.
- We conduct extensive experiments on standard OOD benchmarks (CIFAR-10 (C10), CIFAR-100 (C100), SVHN, CelebA, TinyImageNet), showing that EigenScore achieves average state-of-the-art performance and remains notably robust in challenging near-OOD scenarios.

2 BACKGROUND

Diffusion Models. Diffusion models learn to generate samples by simulating a gradual denoising process. During training, a clean sample $\mathbf{x} \sim p(\mathbf{x})$ is perturbed by Gaussian noise across timesteps $t = 1, \dots, T$, producing noisy states \mathbf{x}_t through the forward Markov chain $p(\mathbf{x}_t | \mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma_t^2 \mathbf{I})$, which allows for direct sampling via $\mathbf{x}_t = \mathbf{x} + \mathbf{z}$, where $\mathbf{z} \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I})$.

The reverse process is approximated by a denoising network $D_\theta(\mathbf{x}_t, t)$, trained to predict either the clean signal or the injected noise. A standard training objective is mean squared error (MSE):

$$\mathcal{L}_{\text{MSE}}(D_\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{x}_t, t} \left[\left\| \mathbf{x} - D_\theta(\mathbf{x}_t, t) \right\|_2^2 \right]. \quad (1)$$

Once trained, the model generates new samples by iteratively denoising from Gaussian noise at $t = T$ back to $t = 0$. Importantly, Tweedie’s formula (Robbins, 1956; Miyasawa, 1961) connects Gaussian denoising with score estimation, linking the posterior mean to the gradient of the log-density as

$$D_p(\mathbf{x}_t) = \mathbb{E}_p[\mathbf{x} | \mathbf{x}_t] = \mathbf{x}_t + \sigma_t^2 \nabla \log p(\mathbf{x}_t), \quad (2)$$

where $D_p(\mathbf{x}_t)$ denotes an MMSE estimator trained on samples from distribution p . Here, the gradient is with respect to \mathbf{x}_t , and $p(\mathbf{x}_t)$ denotes the marginal distribution noisy image

$$p(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \int G_{\sigma_t}(\mathbf{x}_t - \mathbf{x}) p(\mathbf{x}) d\mathbf{x}, \quad (3)$$

where G_{σ_t} denotes the Gaussian density function with standard deviation $\sigma_t \geq 0$ (Vincent, 2011; Raphan & Simoncelli, 2011). This relationship implies that denoising does more than produce samples—it provides access to score functions and posterior statistics of the underlying distribution. In the context of OOD detection, this observation motivates our use of the denoiser’s covariance structure as a principled signal of distribution shift. Diffusion models admit several formulations (e.g., variance-preserving, variance-exploding, and SDE-based), but all share the key property of learning the score function $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ to guide denoising (Ho et al., 2020; Song et al., 2020; Song & Ermon, 2019; Yang et al., 2023).

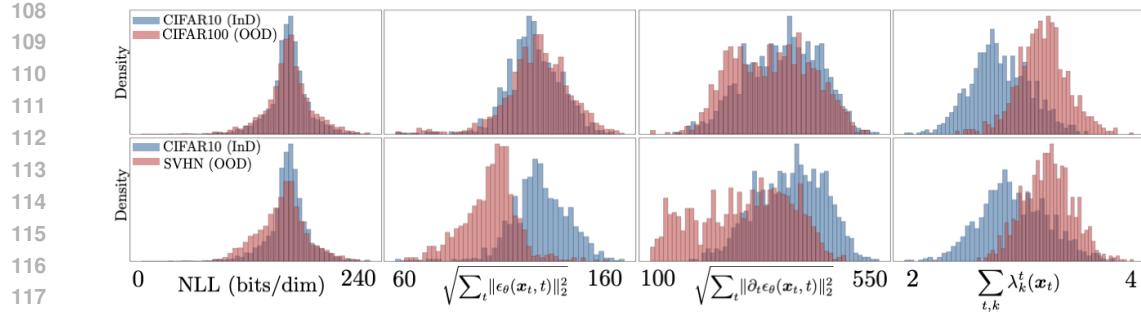


Figure 1: We compare negative log-likelihood (NLL), score norm $\sqrt{\sum_t \|\epsilon_\theta(\mathbf{x}_t, t)\|_2^2}$, score derivative norm $\sqrt{\sum_t \|\partial_t \epsilon_\theta(\mathbf{x}_t, t)\|_2^2}$, and the eigenvalue sum (ours) $\sum_{t,k} \lambda_k^t(\mathbf{x}_t)$ as OOD detection statistics. **Top row:** near OOD task for C10 (InD) vs. C100, NLL and score-based metrics fail to separate distributions, showing substantial overlap. **Bottom row:** for C10 (InD) vs. SVHN (OOD), the ordering of metrics inverts—score and derivative norms assign lower values to OOD than InD, making thresholds unreliable. In both settings, our eigenvalue-based metric achieves clear separation and consistently assigns higher scores to OOD samples.

Unsupervised OOD detection. Unsupervised OOD detection aims to determine whether a given sample \mathbf{x} originates from the same distribution as the training data, using only unlabeled InD samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim p(\mathbf{x})$. The goal is to learn a detector that assigns an OOD score to each input, where higher scores indicate a greater likelihood that \mathbf{x} was drawn from a different distribution, such as the OOD density $q(\mathbf{x})$ (Graham et al., 2023; Heng et al., 2024).

Likelihood-based methods. These methods use generative models including VAEs, flows, diffusion models to estimate sample likelihoods, under the assumption that OOD data should receive lower likelihoods (Salimans et al., 2017; Kingma & Dhariwal, 2018; Morningstar et al., 2021; Ding et al., 2025). However, it has been shown that generative models often assign high likelihoods to OOD inputs (Choi et al., 2018; Nalisnick et al., 2019a; Kirichenko et al., 2020). To mitigate this, refined scores have been proposed, including likelihood ratios (Ren et al., 2019), compression corrections (Serrà et al., 2019), WAIC ensembles (Choi et al., 2018), and typicality tests (Nalisnick et al., 2019b). Diffusion-based variants further extend this idea by analyzing statistics across the denoising trajectory (Heng et al., 2024; Livernoche et al., 2024).

Reconstruction-based methods. Another line of work assumes that InD samples reconstruct well, whereas OOD samples do not. Early examples include autoencoders (Zhou & Paffenroth, 2017) and GANs (Schlegl et al., 2019). More recently, diffusion models have been exploited for their strong reconstruction fidelity, leading to perceptual quality scores (Graham et al., 2023), projection regret (Choi et al., 2023), and masked inpainting like LMD (Liu et al., 2023). **OOD sample detection can also be via subspace reconstruction of features or gradients, using PCA** (Guan et al., 2023), kernel PCA (Fang et al., 2024), or gradient projections such as GradOrth (Behpour et al., 2023).

Feature-based methods. These approaches distinguish InD from OOD by leveraging learned representations, such as Mahalanobis distance in latent space (Denoudun et al., 2018), unsupervised contrastive features (Hendrycks et al., 2019; Bergman & Hoshen, 2020; Tack et al., 2020), or encoder features from invertible models (Ahmadian & Lindsten, 2021). Pretrained feature extractors have also proven effective (Xiao et al., 2020).

Complementing these approaches, we introduce a new perspective based on posterior covariance in diffusion models, which provides a principled feature for quantifying distribution shift.

3 DIFFUSION MODEL FOR OUT-OF-DISTRIBUTION DETECTION

EigenScore is a novel OOD detection method that exploits covariance structure of the denoising diffusion process. Our key insight is that when a diffusion model trained on InD data is applied to OOD inputs, the variance of its denoising predictions inflates, leaving a characteristic signature in the eigenvalue spectrum of the score Jacobian.

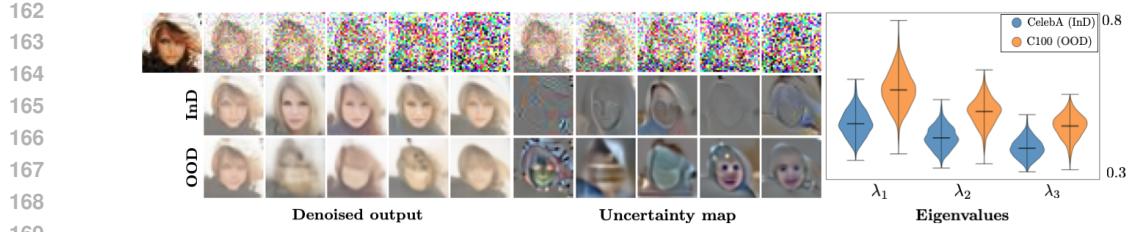


Figure 2: Denoised outputs (left), corresponding uncertainty maps (first principle component) (middle), and violin plots of the three largest eigenvalues for CelebA dataset (right). Top: clean CelebA image and its noisy variants for varying t . Middle: InD model (trained on CelebA) applied to CelebA inputs. Bottom: OOD model (trained on C100) applied to the same inputs. InD models yield sharp reconstructions and localized uncertainty with smaller leading eigenvalues, whereas OOD models produce blurrier outputs, diffuse uncertainty, and inflated eigenvalues—highlighting the eigenvalue spectrum as an indicator of distribution shift.

Algorithm 1 OOD Detection with EigenScore — Train/Validation (left) and Test (right)

Train/Validation: Select time-steps, aggregation, and compute Z-score stats

Require: Trained DM D_p , train set $\mathcal{X}_{\text{train}}$, K number of eigenvalues, I number of repetition, $L_{\text{train}} = []$

- 1: **for** $\mathbf{x} \in \mathcal{X}_{\text{train}}$ **do**
- 2: Compute $\mathbf{M}(\mathbf{x})$ via Eq. (10)
- 3: Append $\mathbf{M}(\mathbf{x})$ to L_{train}
- 4: **end for**
- 5: Compute μ_t, σ_t across L_{train}
- 6: Use validation set to tune T and aggregation method (mean/median/none)
- 7: **return** $(T^*, \text{agg}^*, \{\mu_t, \sigma_t\}_{t=1}^{T^*})$

Test: Compute EigenScore

Require: Trained DM D_p , test set $\mathcal{X}_{\text{test}}$, number of eigenvalues K , number of repetitions I , $(T^*, \text{agg}^*, \{\mu_t, \sigma_t\}_{t=1}^{T^*})$, $L_{\text{test}} = []$

- 1: **for** $\mathbf{x} \in \mathcal{X}_{\text{test}}$ **do**
- 2: Compute $\mathbf{M}(\mathbf{x})$ using T^* and agg^*
- 3: $z_t(\mathbf{x}) = \frac{\bar{m}_t(\mathbf{x}) - \mu_t}{\sigma_t}$ for $t = 1, \dots, T^*$
- 4: $S_\theta(\mathbf{x}) = \sum_{t=1}^{T^*} z_t(\mathbf{x})$
- 5: Append $S_\theta(\mathbf{x})$ to L_{test}
- 6: **end for**
- 7: **return** L_{test} \triangleright OOD scores for all test samples

To motivate EigenScore, we first revisit why commonly used diffusion-based OOD metrics—likelihood, score norm, and score derivatives—are unreliable (Sec. 3.1). We then show, both theoretically and empirically, that posterior covariance offers a consistent marker of distribution shift (Sec. 3.2), before formalizing EigenScore and its efficient computation (Sec. 3.3).

3.1 WHY LIKELIHOOD AND SCORE DYNAMICS ARE INSUFFICIENT

Since diffusion models are trained via a variational lower bound (ELBO), likelihood-based scores such as negative log-likelihood (NLL) are natural candidates for OOD detection. However, likelihood does not necessarily align with semantic structure: diffusion models often emphasize low-level statistics while ignoring higher-level semantics, making NLL unreliable (Nalisnick et al., 2019b; Serrà et al., 2019). Empirically, NLL can even assign higher likelihoods to OOD samples than to InD ones (Heng et al., 2024). As shown in Fig. 1, NLL is not a reliable metric for separating InD from OOD samples.

Beyond likelihood, diffusion-based OOD metrics have also used the score function $\epsilon_\theta(\mathbf{x}_t, t)$ and its temporal derivative $\partial_t \epsilon_\theta(\mathbf{x}_t, t)$ as statistics (Heng et al., 2024). Their norms provide some empirical separation, but they remain unstable. In near-OOD settings (C10 vs. C100), the distributions overlap substantially (Fig. 1, top row). In some settings (C10 vs. SVHN), the ordering can invert, with OOD samples receiving lower scores than InD (Fig. 1, bottom row). These limitations motivate shifting from scalarized scores toward a covariance-based perspective, where the structure of denoiser variability itself provides a more principled signal of distribution shift

3.2 UNCERTAINTY AS A SIGNAL OF DISTRIBUTION SHIFT

We formalize why denoising uncertainty yields a principled OOD signal. Let $p(\mathbf{x})$ denote InD and $q(\mathbf{x})$ an OOD distribution. Under Gaussian corruption with variance σ_t^2 , the KL divergence admits

216 the score-based representation (Song et al., 2021; Kadkhodaie et al., 2024; Shoushtari et al., 2025;
 217 Heng et al., 2024)

$$219 \quad D_{KL}(p \parallel q) = \int_0^T \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \nabla \log p(\mathbf{x}_t) - \nabla \log q(\mathbf{x}_t) \right\|_2^2 \right] \sigma_t \, dt. \quad (4)$$

221 where \mathbf{x}_t is generated by the forward diffusion applied to \mathbf{x} . Building on prior analyses of KL
 222 divergence in diffusion processes (Shoushtari et al., 2025; Heng et al., 2024), we restate the divergence
 223 in terms of denoising error (a derivation is given in App. A.1 for completeness).

225 **Proposition 1.** *Let p_t and q_t denote the noisy marginals of InD and OOD distributions generated
 226 by the forward diffusion process (Eq. (3)). For MMSE denoisers $D_p(\mathbf{x}_t) = \mathbb{E}_p[\mathbf{x} | \mathbf{x}_t]$ and $D_q(\mathbf{x}_t) =$
 227 $\mathbb{E}_q[\mathbf{x} | \mathbf{x}_t]$,*

$$228 \quad D_{KL}(p \parallel q) = \int_0^T [MSE(D_q, t) - MSE(D_p, t)] \sigma_t^{-3} dt$$

230 where $MSE(D_p, t) = \mathbb{E}[\|\mathbf{x} - D_p(\mathbf{x}_t)\|_2^2]$ at noise level t .

232 This proposition, adapted from earlier derivations, shows that KL divergence—and thus distribution
 233 shift—can be viewed as the accumulation of *excess denoising error* incurred when contrasting the
 234 optimal MMSE denoiser under q with that under p . Thus, we have $MSE(D_p; q, t) \geq MSE(D_q; q, t)$
 235 for each t and the denoising error of a single InD denoiser D_p is *larger in expectation* on OOD inputs,
 236 yielding a practical detection signal without access to q .

237 For the MMSE denoiser D_p , the mean-squared error admits a law-of-total-variance decomposition
 238 (proof in App. A.3):

$$239 \quad MSE(D_p, t) = \mathbb{E}[\|\mathbf{x} - D_p(\mathbf{x}_t)\|_2^2] = \mathbb{E}_{\mathbf{x}_t} [\text{tr}(\text{Cov}_p[\mathbf{x} | \mathbf{x}_t])]. \quad (5)$$

241 Thus, denoising error equals the *total posterior variance*—the trace of the conditional covariance—averaged over noisy observations at noise level t . Intuitively, $\text{Cov}_p[\mathbf{x} | \mathbf{x}_t]$ quantifies the
 242 spread of plausible clean signals consistent with \mathbf{x}_t . When \mathbf{x}_t is informative (e.g., InD or low noise),
 243 this spread is small and the MSE remains low; when \mathbf{x}_t lies off-manifold, the spread inflates and
 244 the MSE increases. In this sense, denoising error corresponds directly to the model’s predictive
 245 uncertainty, providing a principled basis for OOD detection and motivating our focus on the *spectral*
 246 structure of posterior covariance in Section 3.3.

248 While Eq.4 relates distribution shift to differences in score norms, such metrics do not preserve
 249 ordering: depending on the dataset and noise scale, OOD samples may appear either larger or smaller
 250 than InD ones. By contrast, the MSE-based formulation in Prop.1 guarantees that OOD denoising
 251 error is systematically larger in expectation than InD error. This ensures a consistent separation with
 252 preserved ordering, whereas score-norm methods such as DiffPath (Heng et al., 2024) capture only
 253 relative differences without indicating direction.

254 3.3 EIGENVALUE-BASED UNCERTAINTY ESTIMATION

256 Section 3.2 established that denoising error equals the total posterior variance and that this variance
 257 inflates under distribution shift. We now make this connection operational by expressing posterior
 258 covariance through the Jacobian of the MMSE denoiser and analyzing its eigen-spectrum. For the
 259 MMSE denoiser $D_p(\mathbf{x}_t) = \mathbb{E}[\mathbf{x} | \mathbf{x}_t]$, the posterior covariance admits the Miyasawa identity (Miya-
 260 sawa, 1961):

$$261 \quad \text{Cov}_p[\mathbf{x} | \mathbf{x}_t] = \sigma_t^2 (\mathbf{I} + \sigma_t^2 \nabla^2 \log p(\mathbf{x}_t)) = \sigma_t^2 \nabla D_p(\mathbf{x}_t), \quad (6)$$

262 so that

$$263 \quad MSE(D_p, t) = \mathbb{E}_{\mathbf{x}_t} [\text{tr}(\text{Cov}_p[\mathbf{x} | \mathbf{x}_t])] = \sigma_t^2 \mathbb{E}_{\mathbf{x}_t} [\text{tr}(\nabla D_p(\mathbf{x}_t))], \quad (7)$$

264 Thus, the Jacobian trace measures how much posterior uncertainty remains after observing \mathbf{x}_t : small
 265 traces indicate concentrated beliefs (InD), while large traces signal inflated uncertainty (OOD).
 266 Derivations are provided in Appendix (A.2).

268 Writing $\Sigma_t(\mathbf{x}_t) := \text{Cov}_p[\mathbf{x} | \mathbf{x}_t] = \sigma_t^2 \nabla D_p(\mathbf{x}_t)$, the covariance is symmetric positive semi-definite
 269 and admits the eigen-decomposition $\Sigma_t(\mathbf{x}_t) = \mathbf{U}_t \text{diag}(\lambda_1^t, \dots, \lambda_n^t) \mathbf{U}_t^\top$, with nonnegative eigen-
 270 values λ_k^t . Since $\text{tr}(\Sigma_t) = \sum_k \lambda_k^t$, the MSE corresponds to the sum of eigenvalues—the total

270 uncertainty across all principal directions at noise level t :

$$272 \quad \text{MSE}(\mathbf{D}_p, t) = \mathbb{E}_{\mathbf{x}_t} [\text{tr} (\text{Cov}_p[\mathbf{x}|\mathbf{x}_t])] = \mathbb{E}_{\mathbf{x}_t} [\text{tr} (\boldsymbol{\Sigma}_t(\mathbf{x}_t))] = \mathbb{E}_{\mathbf{x}_t} \left[\sum_{k=1}^n \lambda_k^t(\mathbf{x}_t) \right]. \quad (8)$$

275 For InD samples, the spectrum is compact with smaller leading eigenvalues, reflecting structured
276 denoising aligned with the training data. For OOD samples, uncertainty spreads across multiple eigen-
277 directions, inflating both the spectrum and the trace. This spectral inflation provides a quantitative
278 signal of distribution shift. Figure 2 illustrates this effect: OOD samples exhibit consistently higher
279 uncertainty, confirming the link between spectral inflation and distribution mismatch.

281 3.4 EIGENSCORE AS AN OOD METRIC

283 While Prop.1 links distribution shift to excess denoising error, it requires two denoisers, whereas in
284 practice we have only a single InD model. Combining Prop.1 with Eq. 7 implies that OOD inputs
285 exhibit inflated posterior covariance, which we can read from its eigenvalues. For each input \mathbf{x} and
286 diffusion step t , we compute

$$287 \quad m_t(\mathbf{x}) = \sum_{k=1}^K \lambda_k^t(\mathbf{x}_t), \quad \mathbf{x}_t = \mathbf{x} + \sigma_t \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, \mathbf{I}), \quad (9)$$

290 the sum of the top- K eigenvalues across I noise realizations. These are aggregated (e.g., by mean,
291 median, or full set) into $\bar{m}_t(\mathbf{x})$, yielding the EigenScore feature vector

$$292 \quad \mathbf{M}(\mathbf{x}) = [\bar{m}_1(\mathbf{x}), \dots, \bar{m}_T(\mathbf{x})]^\top. \quad (10)$$

294 We normalize each coordinate using Z-scores with statistics (μ_t, σ_t) computed on training set
295 $z_t(\mathbf{x}) = (\bar{m}_t(\mathbf{x}) - \mu_t)/\sigma_t$. The final OOD score is the sum of normalized coordinates, with the
296 number of timesteps T tuned for efficiency on validation data.

297 Direct Jacobian evaluation is costly. Following (Manor & Michaeli, 2024), we estimate the top- K
298 eigenvalues using a Jacobian-free subspace iteration. The method approximates Jacobian–vector
299 products with finite differences of the denoiser $\mathbf{v}^+ \approx (\mathbf{D}(\mathbf{x}_t + c\mathbf{v}) - \mathbf{D}(\mathbf{x}_t - c\mathbf{v}))/2c$, where $c \ll 1$ is
300 the linear approximation constant, \mathbf{v} is the current principle component, and \mathbf{v}^+ in the next principle
301 component. We then orthogonalizes directions via QR. After a few iterations, eigenvalues are obtained
302 as

$$303 \quad \lambda_k^t(\mathbf{x}_t) \approx \frac{\sigma_t^2}{2c} \|\mathbf{D}(\mathbf{x}_t + c\mathbf{v}^k) - \mathbf{D}(\mathbf{x}_t - c\mathbf{v}^k)\|_2. \quad (11)$$

305 Full pseudo-code is given in App. B.1.

307 3.5 EIGENSCORE VS. MSE: CAPTURING STRUCTURE INSTEAD OF COLLAPSE

308 Eq. (4) and Prop. 1 show that distribution shift manifests as excess denoising error, measurable
309 through the posterior covariance. However, scalar metrics such as MSE or score norms collapse
310 this uncertainty into a single number, discarding how variance is distributed across directions. At
311 high noise levels, this collapse is particularly problematic: many small eigenvalues are dominated by
312 isotropic noise, obscuring class-specific structure. The following lemma formalizes this effect.

313 **Lemma 1.** *Let $p(\mathbf{x}_t) = p * \mathcal{N}(0, \sigma_t^2 \mathbf{I})$ denotes the noisy marginal in Eq. (3) and let $\boldsymbol{\Sigma}_t(\mathbf{x}_t) =$
314 $\sigma_t^2 (\mathbf{I} + \sigma_t^2 \nabla^2 \log p(\mathbf{x}_t))$ from Eq. (6). As $\sigma_t \rightarrow \infty$, $\|\nabla^2 \log p(\mathbf{x}_t)\| \rightarrow 0$ uniformly on compact sets.
315 Hence*

$$316 \quad \boldsymbol{\Sigma}_t(\mathbf{x}_t) = \sigma_t^2 \mathbf{I} + o(\sigma_t^2),$$

317 so all eigenvalues satisfy $\lambda_k^t(\mathbf{x}_t) = \sigma_t^2 + o(\sigma_t^2)$.

319 Lemma 1 implies that the spectrum flattens under heavy Gaussian smoothing: all directions approach
320 the same variance σ_t^2 , so low-variance components lose discriminative information. Consequently,
321 MSE and score norms aggregate mostly isotropic noise, rather than meaningful structure (proof in
322 App. A.4). To retain the informative structure, we focus on the dominant modes. Ky Fan’s theorem
323 guarantees that the top- K eigenvalues capture the maximal variance among all K -dimensional
324 projections:

324 Table 1: Main OOD detection results (AUROC). Comparison of EigenScore with likelihood-based,
 325 reconstruction-based, and diffusion-based baselines across multiple InD–OOD dataset pairings (CelebA, C10,
 326 C100, SVHN). **Best** and **second best** are highlighted. Note that EigenScore achieves the best average perfor-
 327 mance and is either best or second best in most settings.

InD OOD	CelebA vs.			C10 vs.			C100 vs.			SVHN vs.			Avg
	C10	C100	SVHN	C100	SVHN	CelebA	C10	CelebA	SVHN	C10	C100	CelebA	
DoS	0.630	0.615	0.808	0.504	0.752	0.456	0.491	0.520	0.777	0.911	0.904	0.956	0.693
TT	0.676	0.655	0.773	0.558	0.714	0.469	0.538	0.464	0.648	0.957	0.961	0.994	0.701
WAIC	0.589	0.569	0.793	0.476	0.760	0.469	0.502	0.530	0.782	0.978	0.974	0.955	0.698
<i>Diffusion-based</i>													
NLL	0.507	0.671	0.753	0.558	0.545	0.599	0.480	0.484	0.481	0.635	0.660	0.636	0.584
IC	0.510	0.673	0.755	0.552	0.540	0.583	0.460	0.466	0.469	0.625	0.653	0.625	0.576
DDPM-OOD	0.922	0.928	0.992	0.618	0.944	0.642	0.462	0.496	0.870	0.963	0.972	0.996	0.817
LMD	0.886	0.848	0.950	0.601	0.821	0.834	0.569	0.595	0.748	0.780	0.749	0.872	0.771
DiffPath (CelebA)	1.000	1.000	0.964	0.554	0.729	0.885	0.475	0.887	0.724	0.919	0.941	0.328	0.784
DiffPathV2 (CelebA)	1.000	0.995	0.969	0.535	0.812	0.862	0.483	0.513	0.724	0.969	0.975	0.883	0.810
EigenScore (Ours)	0.965	0.944	0.896	0.884	0.825	0.885	0.652	0.700	0.683	0.991	0.981	0.998	0.869

342 **Proposition 2 (Ky Fan’s theorem** (Fan, 1950)). Let $\Sigma_t(\mathbf{x}_t) \succeq 0$ have eigenvalues $\lambda_1^t \geq \dots \geq \lambda_n^t$
 343 with eigenvectors forming $\mathbf{U}_t = [\mathbf{u}_1^t, \dots, \mathbf{u}_K^t]$. For any $K \in \{1, \dots, n\}$,

$$\max_{\mathbf{V} \in \mathbb{R}^{n \times K}: \mathbf{V}^\top \mathbf{V} = \mathbf{I}_K} \text{tr}(\mathbf{V}^\top \Sigma_t(\mathbf{x}_t) \mathbf{V}) = \sum_{k=1}^K \lambda_k,$$

348 and a maximizer is $\mathbf{V}^* = [\mathbf{u}_1^t, \dots, \mathbf{u}_K^t]$.

350 By retaining only the top- K eigenvalues, EigenScore preserves the most informative uncertainty
 351 directions while discarding noise-dominated components. This explains its consistent advantage over
 352 MSE and score-based metrics. The choice of K is not dictated by theory, but reflects a practical
 353 trade-off between capturing discriminative information and computational efficiency (see App. A.5
 354 for proof).

4 EXPERIMENTS

359 We now evaluate the effectiveness of EigenScore for OOD detection. Specifically, we benchmark
 360 EigenScore across a suite of pairwise OOD detection tasks and compare its performance against
 361 state-of-the-art baselines.

362 **Datasets.** We evaluate OOD detection on standard image benchmarks commonly used with diffusion
 363 models: C10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), C100 (Krizhevsky, 2009), and
 364 CelebA (Liu et al., 2015a;b). For near-OOD tasks (Yang et al., 2022), we additionally include
 365 TinyImageNet (Le & Yang, 2015). Further details can be found in Appendix (B.4)

367 **Baselines.** We compare our
 368 method against several generative
 369 baselines for OOD detection, in-
 370 cluding Improved CD (Du et al.,
 371 2021), DoS (Morningstar et al.,
 372 2021), TT (Nalisnick et al., 2019b),
 373 WAIC (Choi et al., 2018), NLL,
 374 IC, DDPM-OOD (Graham et al.,
 375 2023), LMD (Liu et al., 2023),
 376 DiffPathV2 (Abdi et al., 2025), and
 377 DiffPath (Heng et al., 2024). Details
 regarding the baselines can be found
 in Appendix (B.3).

378 Table 2: Near-OOD detection results (AUROC). We evaluate on
 379 semantically related datasets, including C10 vs. C100 and TinyIm-
 380 ageNet, which are particularly challenging due to shared low-level
 381 statistics between InD and OOD samples. The **best** and **second**
 382 **best** methods are highlighted. EigenScore achieves the best average
 383 performance across both tasks, with a clear margin over prior
 384 diffusion-based approaches.

InD OOD	C10 vs.		C100 vs.		Avg
	C100	TinyImageNet	C10	TinyImageNet	
DDPM-OOD	0.618	0.570	0.462	0.457	0.527
LMD	0.601	0.592	0.569	0.558	0.580
DiffPath	0.554	0.993	0.475	0.995	0.754
EigenScore	0.884	0.973	0.652	0.888	0.849

378 Table 3: *Ablation on timesteps T , repetitions I , and number of eigenvalues K . AUROC performance of*
 379 *EigenScore across InD–OOD dataset pairs.*

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397	380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397																		
	CelebA	vs.	C10	vs.	C100	vs.	CelebA	SVHN	C10	C100	CelebA	Avg							
5	0.964	0.943	0.893	0.869	0.778	0.866	0.635	0.448	0.648	0.990	0.977	0.995	0.834						
7	0.963	0.942	0.878	0.848	0.703	0.862	0.619	0.500	0.603	0.988	0.975	0.996	0.823						
10	0.952	0.931	0.850	0.819	0.627	0.867	0.578	0.589	0.521	0.987	0.975	0.998	0.808						
385 386 387 388 389 390 391 392 393 394 395 396 397	385 386 387 388 389 390 391 392 393 394 395 396 397																		
	Repetitions I		CelebA		vs.		C10		vs.		C100		vs.		SVHN		vs.		
5	0.959	0.940	0.885	0.863	0.773	0.857	0.635	0.455	0.649	0.990	0.977	0.995	0.832						
10	0.962	0.942	0.889	0.867	0.776	0.864	0.635	0.450	0.650	0.990	0.978	0.995	0.833						
15	0.962	0.942	0.891	0.869	0.778	0.866	0.635	0.447	0.649	0.990	0.977	0.994	0.833						
20	0.964	0.943	0.893	0.869	0.778	0.866	0.635	0.448	0.648	0.990	0.977	0.995	0.834						
391 392 393 394 395 396 397	391 392 393 394 395 396 397		Eigenvalues K		CelebA		vs.		C10		vs.		C100		vs.		SVHN		
	C10		C100		SVHN		C100		SVHN		CelebA		C10		CelebA		C100		
1	0.968	0.950	0.945	0.871	0.803	0.830	0.639	0.432	0.713	0.983	0.966	0.983	0.840						
2	0.967	0.946	0.919	0.872	0.793	0.852	0.636	0.439	0.679	0.987	0.972	0.991	0.838						
3	0.964	0.943	0.893	0.869	0.778	0.866	0.635	0.448	0.648	0.990	0.977	0.995	0.834						

4.1 MAIN RESULTS

Table 1 reports AUROC results across all dataset pairs. EigenScore achieves the highest *average* performance across all settings and is best or second best on nearly every dataset pair. Its advantage is most pronounced in the challenging near–OOD regime (CIFAR-10 vs. CIFAR-100), where likelihood-based scores and trajectory metrics often fail. For example, EigenScore improves AUROC by up to 5% over the best diffusion-based baseline, consistent with our theoretical claim that retaining leading eigenvalues preserves discriminative structure.

On the near–OOD task (Yang et al., 2022) (C10 vs. C100/TinyImageNet), EigenScore continues to deliver strong separation, achieving higher average AUROC than other diffusion-based metrics in Table 2. In particular, while baselines such as NLL, IC, and WAIC (C10 vs. C100) struggle to distinguish the closely related distributions, EigenScore consistently maintains reliable performance, highlighting its robustness even under challenging near–OOD settings.

4.2 ABLATIONS

Number of timesteps. The parameter T determines how many points along the diffusion trajectory contribute to the score. Larger T includes more noise levels but increases computation and eventually saturates, since high noise merely lifts all eigenvalues uniformly (Lemma 1) without adding discriminative power. As shown in Table 3, even a small budget (e.g., $T=5$) achieves nearly the same AUROC as larger T , with only marginal improvements from denser schedules. This confirms that a compact subset of timesteps captures most of the useful information, balancing accuracy and efficiency.

Number of repetitions. The parameter I sets how many noise draws are averaged per timestep. Larger I reduces variance in the estimated eigenvalues and stabilizes OOD scores, but also increases runtime. As shown in Table 3, small values (e.g., $I=5$) are already sufficient, with only marginal gains beyond $I=15$. The results are reported with timesteps $t \in \{100, 150, 200, 250, 300\}$, mean aggregation, and $K=3$ eigenvalues.

Number of eigenvalues. The parameter K determines how many leading eigenvalues are aggregated at each timestep. Table 3 shows that $K=1$ achieves the best average performance, though in some settings $K=3$ yields slightly higher AUROC. This indi-

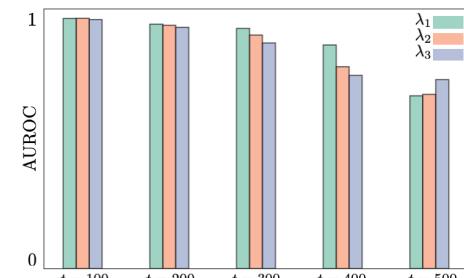


Figure 3: *Ablation on eigenvalue informativeness across t . Performance declines with increasing noise, consistent with Lem. 1, while λ_1 retains the strongest OOD signal compared to λ_2 and λ_3 , supporting Prop. 2.*

Table 4: Comparison of *MSE* vs. *EigenScore*. Average *AUROC* across all *InD*-*OOD* dataset pairs. *EigenScore* consistently outperforms *MSE* by leveraging spectral structure of the uncertainty.

Method	CelebA vs.				C10 vs.				C100 vs.				SVHN vs.				Avg
	C10	C100	SVHN	C100	SVHN	CelebA	C10	CelebA	SVHN	C10	C100	CelebA	C10	C100	CelebA	C10	
MSE	0.804	0.783	0.220	0.629	0.184	0.841	0.552	0.675	0.147	0.994	0.994	1.000	0.652	0.652	0.652	0.652	0.652
EigenScore	0.964	0.943	0.893	0.869	0.778	0.866	0.635	0.448	0.648	0.990	0.977	0.995	0.834	0.834	0.834	0.834	0.834

The results are reported with the same timestep schedule, mean aggregation, and $I=20$ repetitions.

Figure S1. MSE. Elbow curves obtained from MSE-based training of the model.

EigenScore vs. MSE. EigenScore consistently outperforms MSE by retaining the spectral structure of posterior covariance rather than collapsing uncertainty into a single scalar. As shown in Table 4, this leads to higher AUROC across diverse dataset pairs. All experiments here use 20 repetitions, timesteps $t \in \{100, 150, 200, 250, 300\}$, and mean aggregation.

To further examine Lemma 1 and Prop. 2, we analyze the informativeness of individual eigenvalues across noise levels. Lemma 1 predicts that at larger t , eigenvalues converge toward σ_t^2 , diminishing their discriminative value. Figure 3 confirms this: AUROC with λ_1 decreases gradually as t increases, while λ_2 and λ_3 deteriorate more sharply. Prop. 2 further implies that the leading eigenvalues capture the most informative variance. Consistently, λ_1 provides the strongest OOD signal, followed by λ_2 and then λ_3 . These results highlight why focusing on dominant modes, as done in EigenScore, yields more stable and informative detection than scalarized measures such as MSE.

5 CONCLUSION

We introduced EigenScore, a principled OOD detection method for diffusion models that leverages the spectral structure of denoising uncertainty. By linking KL divergence to excess denoising error and showing that posterior covariance inflation consistently signals distribution shift, EigenScore offers both theoretical justification and strong empirical performance. Across diverse benchmarks, EigenScore consistently outperformed likelihood-based and score-norm methods, with particularly robust gains in near-OOD settings where traditional approaches fail. Ablation studies further confirmed that most discriminative information lies in the leading eigenvalues at moderate noise levels, validating our spectral perspective.

LIMITATIONS

Despite its strengths, our approach has several limitations. First, EigenScore only leverages a subset of the information available in diffusion models: we use the eigenvalues of the posterior covariance but discard eigenvector structure, which may contain additional discriminative cues. Moreover, we compute features at a limited set of timesteps rather than across the full diffusion trajectory, potentially overlooking temporal dynamics of uncertainty. Second, our framework focuses on the magnitude of eigenvalues, but does not explicitly exploit their rate of change across eigenvalues, which itself may differ systematically between InD and OOD inputs and could serve as a detection signal.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in our experiments (CIFAR-10, CIFAR-100, SVHN, CelebA, TinyImageNet) are publicly available. We provide detailed descriptions of our training and evaluation protocols, including the diffusion model architecture, noise schedules, hyperparameters, and aggregation strategies. Experimental results are averaged across multiple random seeds, and we report the effect of varying key parameters (number of timesteps, repetitions, and eigenvalues) in Section 4.2. To further facilitate reproducibility, we have released the full anonymous source code and scripts for running experiments in supplement B.4.

486 **LLMs USAGE STATEMENT**
487

488 During the preparation of this manuscript, we made limited use of large language models (LLMs),
489 specifically OpenAI's ChatGPT, to assist with language refinement and organization of some sections.
490 All technical content, equations, derivations, and experimental design were developed entirely by the
491 authors. The LLM was not used for ideation of methods, data analysis, or generation of results.
492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 L. Abdi, A. Valiuddin, F. Caetano, C. Viviers, and F. Van Der Sommen. Zero-Shot Image Anomaly
543 Detection Using Generative Foundation Models. *Proc. ICCV*. 2025.

544 E. Adib, A. Fernandez, F. Afghah, and J. J. Prevost. Synthetic ECG Signal Generation using
545 Probabilistic Diffusion Models. *IEEE Access*. 2023.

546 A. Ahmadian and F. Lindsten. Likelihood-free Out-of-Distribution Detection with Invertible Genera-
547 tive Models. *Proc. IJCAI*. 2021.

548 D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko. Label-Efficient Semantic
549 Segmentation with Diffusion Models. *Proc. ICLR*. 2022.

550 S. Behpour, T. L. Doan, X. Li, W. He, L. Gou, and L. Ren. Gradorth: A simple Yet Efficient
551 Out-of-distribution Detection with Orthogonal Projection of Gradients. *Proc. NeurIPS*. 2023.

552 L. Bergman and Y. Hoshen. Classification-Based Anomaly Detection for General Data. *Proc. ICLR*.
553 2020.

554 B. Charpentier, D. Zügner, and S. Günnemann. Posterior network: Uncertainty Estimation without
555 OOD Samples via Density-based Pseudo-counts. *Proc. NeurIPS*. 2020.

556 Z. Chen, C. Pham, S. Wang, M. Doron, N. Moshkov, B. A. Plummer, and J. C. Caicedo. CHAMMI:
557 A Benchmark for Channel-adaptive Models in Microscopy Imaging. *Proc. NeurIPS*. 2023.

558 H. Choi, E. Jang, and A. A. Alemi. WAIC, but Why? Generative Ensembles for Robust Anomaly
559 Detection. *arXiv:1810.01392*. 2018.

560 S. Choi, H. Lee, H. Lee, and M. Lee. Projection Regret: Reducing Background Bias for Novelty
561 Detection via Diffusion Models. *Proc. NeurIPS*. 2023.

562 Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. StarGAN v2: Diverse Image Synthesis for Multiple Domains.
563 *Proc. CVPR*. 2020.

564 H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Diffusion Posterior Sampling for
565 General Noisy Inverse Problems. *Proc. ICLR*. 2023.

566 P. Colombo, E. Dadalto, G. Staerman, N. Noiry, and P. Piantanida. Beyond Mahalanobis Distance for
567 Textual OOD Detection. *Proc. NeurIPS*. 2022.

568 F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. Diffusion Models in Vision: A survey. *IEEE
569 Trans. PAMI*. 2023.

570 G. Daras, H. Chung, C.-H. Lai, Y. Mitsufuji, J. C. Ye, P. Milanfar, A. G. Dimakis, and M. Delbracio.
571 A Survey on Diffusion Models for Inverse Problems. *arXiv:2410.00083*. 2024.

572 T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and S. Vernekar. Improving Reconstruc-
573 tion Autoencoder Out-of-distribution Detection with Mahalanobis Distance. *arXiv:1812.02765*.
574 2018.

575 P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. *Proc. NeurIPS*. 2021.

576 Y. Ding, A. Aleksandrauskas, A. Ahmadian, J. Unger, F. Lindsten, and G. Eilertsen. Revisiting
577 Likelihood-Based Out-of-Distribution Detection by Modeling Representations. *arXiv:2504.07793*.
578 2025.

579 Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Improved Contrastive Divergence Training of Energy-
580 Based Models. *Proc. ICML*. 2021.

581 K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. *Proceedings
582 of the National Academy of Sciences*. 1950.

583 K. Fang, Q. Tao, K. Lv, M. He, X. Huang, and J. Yang. Kernel PCA for out-of-distribution detection.
584 *Proc. NeurIPS*. 2024.

594 R. Gao, C. Zhao, L. Hong, and Q. Xu. DIFFGUARD: Semantic Mismatch-Guided Out-of-Distribution
595 Detection Using Pre-Trained Diffusion Models. *Proc. ICCV*. 2023.
596

597 M. S. Graham, W. H. Pinaya, P.-D. Tudosiu, P. Nachev, S. Ourselin, and J. Cardoso. Denoising
598 Diffusion Models for Out-of-Distribution Detection. *Proc. CVPR Workshops*. 2023.

599 X. Guan, Z. Liu, W.-S. Zheng, Y. Zhou, and R. Wang. Revisit PCA-based Technique for Out-of-
600 distribution Detection. *Proc. ICCV*. 2023.
601

602 Z. He, C. Zhao, M. Shao, Y. Lin, D. Li, and Q. Tian. GDDA: Semantic OOD Detection on Graphs
603 under Covariate Shift via Score-based Diffusion Models. *Proc. ICASSP*. 2025.

604 D. Hendrycks and K. Gimpel. A Baseline for Detecting Misclassified and Out-of-Distribution
605 Examples in Neural Networks. *Proc. ICLR*. 2017.
606

607 D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song. Using Self-supervised Learning Can Improve
608 Model Robustness and Uncertainty. *Proc. NeurIPS*. 2019.

609 A. Heng, H. Soh, et al. Out-of-distribution Detection with a Single Unconditional Diffusion Model.
610 *Proc. NeurIPS*. 2024.
611

612 J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. *Proc. NeurIPS*. 2020.

613 W. Huang, H. Wang, J. Xia, C. Wang, and J. Zhang. Density-driven Regularization for Out-of-
614 Distribution Detection. *Proc. NeurIPS*. 2022.
615

616 Z. Kadkhodaie, F. Guth, E. P. Simoncelli, and S. Mallat. Generalization in Diffusion Models Arises
617 from Geometry-adaptive Harmonic Representations. *Proc. ICLR*. 2024.

618 T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the Design Space of Diffusion-Based
619 Generative Models. *Proc. NeurIPS*. 2022.
620

621 A. Kazerouni, E. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof.
622 Diffusion Models in Medical Imaging: A Comprehensive Survey. *Med. Image Anal.* 2023.

623 D. P. Kingma and P. Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. *Proc.*
624 *NeurIPS*. 2018.
625

626 P. Kirichenko, P. Izmailov, and A. G. Wilson. Why Normalizing Flows Fail to Detect Out-of-
627 distribution Data. *Proc. NeurIPS*. 2020.

628 P. W. Koh and et. al. WILDS: A Benchmark of in-the-Wild Distribution Shifts. *Proc. ICML*. 2021.
629

630 A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report,
631 University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>. Technical report.
632

633 N. Kumar, S. Šegvić, A. Eslami, and S. Gumhold. Normalizing Flow Based Feature Synthesis for
634 Outlier-aware Object Detection. *Proc. CVPR*. 2023.
635

636 Y. Le and X. Yang. Tiny ImageNet Visual Recognition Challenge, 2015. Accessed: YYYY-MM-DD.
637

638 K. Lee, K. Lee, H. Lee, and J. Shin. A Simple Unified Framework for Detecting Out-of-Distribution
639 Samples and Adversarial Attacks. *Proc. NeurIPS*. 2018.

640 X. Li, Y. Ren, X. Jin, C. Lan, X. Wang, W. Zeng, X. Wang, and Z. Chen. Diffusion Models for Image
641 Restoration and Enhancement—A Comprehensive Survey. *arXiv e-prints*. 2023.

642 W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based Out-of-Distribution Detection. *Proc. NeurIPS*.
643 2020.
644

645 Z. Liu, J. P. Zhou, Y. Wang, and K. Q. Weinberger. Unsupervised Out-of-distribution Detection with
646 Diffusion Inpainting. *Proc. ICML*. 2023.

647 Z. Liu, P. Luo, X. Wang, and X. Tang. CelebFaces Attributes (CelebA) Dataset, 2015a.

648 Z. Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild. *Proc. ICCV*. 2015.
649

650 V. Livernoche, V. Jain, Y. Hezaveh, and S. Ravanbakhsh. On Diffusion Modeling for Anomaly
651 Detection. *Proc. ICLR*. 2024.

652 H. Manor and T. Michaeli. On the Posterior Distribution in Denoising: Application to Uncertainty
653 Quantification. *Proc. ICLR*. 2024.

654

655 K. Miyasawa. An Empirical Bayes Estimator of the Mean of a Normal Population. *Bull. Inst. Internat.*
656 *Statist.* 1961.

657

658 W. Morningstar, C. Ham, A. Gallagher, B. Lakshminarayanan, A. Alemi, and J. Dillon. Density of
659 States Estimation for Out of Distribution Detection. *Proc. AISTATS*. 2021.

660 E. Nalisnick, A. Matsukawa, Y. Teh, D. Gorur, and B. Lakshminarayanan. Do Deep Generative
661 Models Know What They Don't Know? *Proc. ICLR*. 2019.

662

663 E. Nalisnick, A. Matsukawa, Y. W. Teh, and B. Lakshminarayanan. Detecting Out-of-Distribution
664 Inputs to Deep Generative Models Using Typicality. *arXiv:1906.02994*. 2019.

665 Y. Netzer, T. Wang, A. Coates, B. Bissacco, B. Wu, and A. Y. Ng. Reading Digits in Natural Images
666 with Unsupervised Feature Learning. *Neurips Workshop on Deep Learning and Unsupervised*
667 *Feature Learning*. 2011.

668

669 M. Raphan and E. P. Simoncelli. "Least Squares Estimation without Priors or Supervision". *Neural*
670 *Computation*. 2011.

671

672 S. Regmi, B. Panthi, Y. Ming, P. K. Gyawali, D. Stoyanov, and B. Bhattacharai. Reweightedood: Loss
673 Reweighting for Distance-based OOD Detection. *Proc. CVPR*. 2024.

674

675 J. Ren, P. J. Liu, E. A. Fertig, J. R. Snoek, R. Poplin, M. DePristo, J. Dillon, and B. Lakshminarayanan.
676 Likelihood Ratios for Out-of-Distribution Detection. *Proc. NeurIPS*. 2019.

677

678 H. Robbins. An Empirical Bayes Approach to Statistics. *Proc Third Berkeley Symposium on*
679 *Mathematical Statistics and Probability*. 1956.

680

681 R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution Image Synthesis
682 with Latent Diffusion Models. *Proc. CVPR*. 2022.

683

684 M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. Rohban, M. Sabokrou, et al. A Unified Survey on
685 Anomaly, Novelty, Open-Set, and Out of-Distribution Detection: Solutions and Future Challenges.
686 *TMLR*. 2022.

687

688 T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. PixelCNN++: Improving the PixelCNN with
689 Discretized Logistic Mixture Likelihood and Other Modifications. *Proc. ICLR*. 2017.

690

691 T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth. f-AnoGAN: Fast
692 Unsupervised Anomaly Detection with Generative Adversarial Networks. *Med. Image Anal.* 2019.

693

694 S. Seifi, D. O. Reino, N. Chumerin, and R. Aljundi. OOD Aware Supervised Contrastive Learning.
695 *Proc. WACV*. 2024.

696

697 J. Serrà, D. Álvarez, V. Gómez, O. Slizovskaia, J. F. Núñez, and J. Luque. Input Complexity and
698 Out-of-distribution Detection with Likelihood-based Generative Models. *Proc. ICLR*. 2019.

699

700 S. Shouhtari, E. P. Chandler, Y. Wang, M. S. Asif, and U. S. Kamilov. Unsupervised Detection of
701 Distribution Shift in Inverse Problems using Diffusion Models. *arXiv:2505.11482*. 2025.

702

703 Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. *Proc.*
704 *NeurIPS*. 2019.

705

706 Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based Generative
707 Modeling through Stochastic Differential Equations. *Proc. ICLR*. 2020.

702 Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum Likelihood Training of Score-based
703 Diffusion Models. *Proc. NeurIPS*. 2021.
704

705 J. Tack, S. Mo, J. Jeong, and J. Shin. Csi: Novelty Detection via Contrastive Learning on Distribu-
706 tionally Shifted Instances. *Proc. NeurIPS*. 2020.
707

708 A. Vahdat, K. Kreis, and J. Kautz. Score-based Generative Modeling in Latent Space. *Proc. NeurIPS*.
709 2021.
710

711 P. Vincent. A Connection Between Score Matching and Denoising Autoencoders. *Neural Computa-
712 tion*. 2011.
713

714 W. Wang, X. Lin, F. Feng, X. He, M. Lin, and T.-S. Chua. Causal Representation Learning for
715 Out-of-Distribution Recommendation. *Proc. ACM Web Conf.* 2022.
716

717 X. Wang and L. Aitchison. Bayesian OOD Detection with Aleatoric Uncertainty and Outlier Exposure.
718 *Proc. Adv. Approx. Bayes. Infer.* 2021.
719

720 Z. Xiao, Q. Yan, and Y. Amit. Likelihood Regret: An Out-of-distribution Detection Score for
721 Variational Auto-encoder. *Proc. NeurIPS*. 2020.
722

723 J. Yang, P. Wang, D. Zou, Z. Zhou, K. Ding, W. Peng, H. Wang, G. Chen, B. Li, Y. Sun, et al.
724 OpenOOD: Benchmarking generalized out-of-distribution detection. *Proc. NeurIPS*. 2022.
725

726 J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized Out-of-Distribution Detection: A Survey. *Int. J.
727 Computer Vision*. 2024.
728

729 L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M. H. Yang. Diffusion
730 Models: A Comprehensive Survey of Methods and Applications. *ACM Comput. Surv.* 2023.
731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A PROOFS**

758 **A.1 CONNECTING KL DIVERGENCE WITH DENOISING ERROR**

760 Eq. (4) is inspired from the work of [Song et al. \(2021\)](#) [Theorem 1] and [Shoushtari et al. \(2025\)](#) [Theorem 1], where KL divergence between two distribution is stated in terms of fisher divergence:

$$763 \quad D_{KL}(p \parallel q) = \int_0^\infty \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \nabla \log p(\mathbf{x}_t) - \nabla \log q(\mathbf{x}_t) \right\|_2^2 \right] \sigma_t \, dt. \quad (12)$$

765 By using the Tweedie's formula from Eq. (2)

$$767 \quad D_p(\mathbf{x}_t) = \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] = \mathbf{x}_t + \sigma_t^2 \nabla \log p(\mathbf{x}_t),$$

768 and replacing the score functions for distributions p and q with their corresponding MMSE estimators,
769 we have:

$$770 \quad \begin{aligned} D_{KL}(p \parallel q) &= \int_0^\infty \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] \sigma_t^{-3} \, dt \\ 772 &= \int_0^\infty \left\{ \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] - \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] \right\} \sigma_t^{-3} \, dt, \end{aligned} \quad (13)$$

775 where in the second line, we used the following decomposition:

$$777 \quad \begin{aligned} \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] &= \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] + \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] \\ 779 &= \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] + \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] \\ 781 &\quad + 2\mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[(\mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t])^\top (\mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t]) \right] \\ 783 &= \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] + \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right], \end{aligned}$$

784 where in the last equality, we used the fact that

$$786 \quad \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[(\mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t]) \right] = 0, \quad \text{where } \mathbf{x} \sim p(\mathbf{x}) \text{ and } \mathbf{x}_t \sim p(\mathbf{x}_t).$$

787 By replacing the result of this equation into Eq. (13)

$$789 \quad \begin{aligned} \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] &= \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_q[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] - \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] \\ 791 &= \text{MSE}(\mathbf{D}_q, t) - \text{MSE}(\mathbf{D}_p, t). \end{aligned}$$

792 **A.2 CONNECTING MSE OF DENOISING TO COVARIANCE**

794 We assume that MMSE estimator \mathbf{D}_p is an optimal denoiser trained on images sampled from data
795 distribution $p(\mathbf{x})$. Consequently, the MSE for this operator is defined as

$$797 \quad \begin{aligned} \text{MSE}(\mathbf{D}_p, t) &= \mathbb{E}_{\mathbf{x}, \mathbf{x}_t} \left[\left\| \mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t] \right\|_2^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathbf{x}_t} \left[\text{tr}(\mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t])(\mathbf{x} - \mathbb{E}_p[\mathbf{x}|\mathbf{x}_t])^\top | \mathbf{x}_t \right] \right] \\ 801 &= \mathbb{E}_{\mathbf{x}} \left[\text{tr} \text{Cov}_p[\mathbf{x}|\mathbf{x}_t] \right], \end{aligned}$$

803 where the first equality follows from the definition of MSE using the MMSE estimator $\mathbf{D}_p(\mathbf{x}_t) =$
804 $\mathbb{E}_p[\mathbf{x}|\mathbf{x}_t]$, and the second equality applies the law of total expectation along with the identity $\|\mathbf{v}\|_2^2 =$
805 $\text{tr}(\mathbf{v}\mathbf{v}^\top)$. In the last equality, we used the fact that the inner expectation corresponds to the conditional
806 covariance matrix $\text{Cov}[\mathbf{x}|\mathbf{x}_t]$, whose trace gives the expected squared error. From Theorem 1
807 of [Manor & Michaeli \(2024\)](#), we have

$$808 \quad \text{Cov}_p[\mathbf{x}|\mathbf{x}_t] = \sigma_t^2 \nabla \mathbf{D}_p(\mathbf{x}_t) \approx \sum_{k=1}^K \lambda_k^t(\mathbf{x}_t) \mathbf{u}_k \mathbf{u}_k^\top, \quad (14)$$

810 where ∇D_p is the Jacobian, assumed to be positive semi-definite and symmetric. We approximate
 811 the Jacobian matrix using the top K eigenvalues $\lambda_1, \dots, \lambda_K$, and their corresponding eigenvectors
 812 $\mathbf{u}_1, \dots, \mathbf{u}_K$ which is a low-rank approximation of the full covariance matrix based on its spectral
 813 decomposition of symmetric positive semi-definite matrices. By retaining only the top $K < n$ terms
 814 in this expansion, we obtain a rank- K approximation of the covariance, capturing most of its variance
 815 while reducing dimensionality and computation. The trace of this approximate covariance is then
 816 given by

817
$$\text{tr}(\text{Cov}_p[\mathbf{x}|\mathbf{x}_t]) \approx \sum_{k=1}^K \lambda_k^t(\mathbf{x}_t), \quad (15)$$

 818
 819

820 since each term $\mathbf{u}_k \mathbf{u}_k^\top$ is a rank-one projection matrix with unit trace. This expression allows us to
 821 estimate the total variance (or the MSE) using only the top eigenvalues, under the assumption that the
 822 remaining eigenvalues contribute negligibly. Consequently, we have:

823
$$\text{MSE}(D_p, t) = \mathbb{E}_{\mathbf{x}} \left[\text{tr} \text{Cov}_p[\mathbf{x}|\mathbf{x}_t] \right] = \sigma_t^2 \sum_{k=1}^K \lambda_k^t(\mathbf{x}_t). \quad (16)$$

 824
 825
 826

827 A.3 MIYASAWA RELATIONSHIP

828 The connection between MMSE estimation under Gaussian noise and the score function was first es-
 829 tablished in Miyasawa (1961) and later generalized in Raphan & Simoncelli (2011). For completeness,
 830 we provide a derivation here.

831 Let $\mathbf{x}_t = \mathbf{x} + \mathbf{z}$, denote a noisy observation of $\mathbf{x} \sim p(\mathbf{x})$, where $\mathbf{z} \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I})$, and define $p(\mathbf{x}_t|\mathbf{x})$
 832 as the Gaussian likelihood. The marginal distribution of \mathbf{y} is given by:

833
$$p(\mathbf{x}_t) = \int p(\mathbf{x}) p(\mathbf{x}_t|\mathbf{x}) d\mathbf{x}.$$

 834

835 To derive the score function $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$, we differentiate the log-marginal using the identity
 836 $\nabla h(\mathbf{x}_t) = h(\mathbf{x}_t) \nabla \log h(\mathbf{x}_t)$:

837
$$\begin{aligned} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) &= \int p(\mathbf{x}) p(\mathbf{x}_t|\mathbf{x}) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) d\mathbf{x} / p(\mathbf{x}_t) \\ 838 &= \int p(\mathbf{x}|\mathbf{x}_t) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) d\mathbf{x} \\ 839 &= \mathbb{E} [\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) \mid \mathbf{x}_t], \end{aligned}$$

840 which can be interpreted as a chain rule applied to score functions rather than densities.

841 Next, we compute the Hessian $\nabla^2 \log p(\mathbf{x}_t)$. Differentiating again:

842
$$\nabla^2 \log p(\mathbf{x}_t) = \int p(\mathbf{x}|\mathbf{x}_t) (\nabla_{\mathbf{x}_t} \log p(\mathbf{x}|\mathbf{x}_t) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x})^\top + \nabla_{\mathbf{x}_t}^2 \log p(\mathbf{x}_t|\mathbf{x})) d\mathbf{x}.$$

 843

844 Using Bayes' rule:

845
$$\log p(\mathbf{x}|\mathbf{x}_t) = \log p(\mathbf{x}_t|\mathbf{x}) + \log p(\mathbf{x}) - \log p(\mathbf{x}_t),$$

 846

847 and differentiating with respect to \mathbf{y} , we obtain:

848
$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}|\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) - \nabla \log p(\mathbf{x}_t).$$

 849

850 Substituting this into the previous expression yields:

851
$$\begin{aligned} \nabla^2 \log p(\mathbf{x}_t) &= \int p(\mathbf{x}|\mathbf{x}_t) ((\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) - \nabla \log p(\mathbf{x}_t)) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x})^\top + \nabla_{\mathbf{x}_t}^2 \log p(\mathbf{x}_t|\mathbf{x})) d\mathbf{x} \\ 852 &= \mathbb{E} [(\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) - \nabla \log p(\mathbf{x}_t)) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x})^\top \mid \mathbf{x}_t] + \mathbb{E} [\nabla_{\mathbf{x}_t}^2 \log p(\mathbf{x}_t|\mathbf{x}) \mid \mathbf{x}_t] \\ 853 &= \text{Cov} [\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{x}) \mid \mathbf{x}_t] + \mathbb{E} [\nabla_{\mathbf{x}_t}^2 \log p(\mathbf{x}_t|\mathbf{x}) \mid \mathbf{x}_t]. \end{aligned}$$

864 Now, since $p(\mathbf{x}_t | \mathbf{x})$ is Gaussian with variance $\sigma_t^2 \mathbf{I}$, we have:
865

$$\begin{aligned} 866 \quad \log p(\mathbf{x}_t | \mathbf{x}) &= -\frac{1}{2\sigma_t^2} \|\mathbf{x}_t - \mathbf{x}\|^2 + \text{const}, \\ 867 \quad \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}) &= -\frac{1}{\sigma_t^2} (\mathbf{x}_t - \mathbf{x}), \\ 868 \quad \nabla_{\mathbf{x}_t}^2 \log p(\mathbf{x}_t | \mathbf{x}) &= -\frac{1}{\sigma_t^2} \mathbf{I}. \end{aligned}$$

873 Plugging into the previous results gives the Miyasawa identities:
874

$$\nabla \log p(\mathbf{x}_t) = \frac{1}{\sigma_t^2} (\mathbb{E}[\mathbf{x} | \mathbf{x}_t] - \mathbf{x}_t), \quad (17)$$

$$\nabla^2 \log p(\mathbf{x}_t) = \frac{1}{\sigma_t^4} \text{Cov}[\mathbf{x} | \mathbf{x}_t] - \frac{1}{\sigma_t^2} \mathbf{I}. \quad (18)$$

879 Rearranging, we recover both the posterior mean and posterior covariance in terms of the score and
880 its Hessian:
881

$$\mathbb{E}[\mathbf{x} | \mathbf{x}_t] = \mathbf{x}_t + \sigma_t^2 \nabla \log p(\mathbf{x}_t), \quad (19)$$

$$\text{Cov}[\mathbf{x} | \mathbf{x}_t] = \sigma_t^2 (\mathbf{I} + \sigma_t^2 \nabla^2 \log p(\mathbf{x}_t)). \quad (20)$$

885 Finally, the optimal denoising error is given by the expected trace of the posterior covariance:
886

$$\mathbb{E} [\|\mathbf{x} - \mathbb{E}[\mathbf{x} | \mathbf{x}_t]\|^2] = \mathbb{E} [\text{tr} \text{Cov}[\mathbf{x} | \mathbf{x}_t]].$$

889 A.4 PROOF OF LEMMA 1.

890 **Lemma 1** Let $p(\mathbf{x}_t) = p * \mathcal{N}(0, \sigma_t^2 \mathbf{I})$ denotes the noisy marginal distribution in Eq. (3) and
891 $\Sigma_t(\mathbf{x}_t) = \sigma_t^2 (\mathbf{I} + \sigma_t^2 \nabla^2 \log p(\mathbf{x}_t))$ from Miyasawa (Eq. (6)). As $\sigma_t \rightarrow \infty$, $\|\nabla^2 \log p(\mathbf{x}_t)\| \rightarrow 0$
892 uniformly on compact sets. Hence
893

$$\Sigma_t(\mathbf{x}_t) = \sigma_t^2 \mathbf{I} + o(\sigma_t^2),$$

894 so all eigenvalues satisfy $\lambda_k^t(\mathbf{x}_t) = \sigma_t^2 + o(\sigma_t^2)$.
895

896 *Proof.* Let G_{σ_t} denotes the Gaussian density function with standard deviation $\sigma_t \geq 0$. Then, we have
897

$$p(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \int G_{\sigma_t}(\mathbf{x}_t - \mathbf{x}) p(\mathbf{x}) d\mathbf{x}, \quad (21)$$

901 Differentiation under the integral yields
902

$$\nabla G_{\sigma}(\mathbf{z}) = -\frac{\mathbf{z}}{\sigma^2} G_{\sigma}(\mathbf{z}), \quad \nabla^2 G_{\sigma}(\mathbf{z}) = \left(\frac{\mathbf{z}\mathbf{z}^T}{\sigma^4} - \frac{\mathbf{I}}{\sigma^2} \right) G_{\sigma}(\mathbf{z}). \quad (22)$$

903 Hence
904

$$\nabla_{\mathbf{x}_t} p(\mathbf{x}_t) = \int \nabla G_{\sigma_t}(\mathbf{x}_t - \mathbf{x}) p(\mathbf{x}) d\mathbf{x}, \quad \nabla_{\mathbf{x}_t}^2 p(\mathbf{x}_t) = \int \nabla^2 G_{\sigma_t}(\mathbf{x}_t - \mathbf{x}) p(\mathbf{x}) d\mathbf{x}. \quad (23)$$

905 Fix a compact set $K \subset \mathbb{R}^d$. Using Cauchy–Schwarz and that p has finite second moment, one obtains
906 bounds of the form
907

$$\frac{\|\nabla p(\mathbf{x}_t)\|}{p(\mathbf{x}_t)} \leq \frac{C_1}{\sigma_t}, \quad \frac{\|\nabla^2 p(\mathbf{x}_t)\|}{p(\mathbf{x}_t)} \leq \frac{C_2}{\sigma_t^2}, \quad \forall \mathbf{x} \in K, \quad (24)$$

915 for constants C_1, C_2 independent of σ_t . Consequently,
916

$$\nabla^2 \log p(\mathbf{x}_t) = \frac{\nabla^2 p(\mathbf{x}_t)}{p(\mathbf{x}_t)} - \frac{\nabla p(\mathbf{x}_t) \nabla p(\mathbf{x}_t)^T}{p(\mathbf{x}_t)^2} \quad (25)$$

918 satisfies

$$919 \quad 920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971$$

$$\|\nabla^2 \log p(\mathbf{x}_t)\| \leq \frac{C_2}{\sigma_t^2} + \frac{C_1^2}{\sigma_t^2} = O\left(\frac{1}{\sigma_t^2}\right),$$

uniformly on K . Thus $\sigma_t^2 \nabla^2 \log p(\mathbf{x}_t) \rightarrow 0$ as $\sigma_t \rightarrow \infty$.

Plugging into

$$\Sigma_t(\mathbf{x}_t) = \sigma_t^2(\mathbf{I} + \sigma_t^2 \nabla^2 \log p(\mathbf{x}_t)) \quad (27)$$

gives

$$\Sigma_t(\mathbf{x}_t) = \sigma_t^2 \mathbf{I} + o(\sigma_t^2), \quad (28)$$

and hence $\lambda_k^t(\mathbf{x}_t) = \sigma_t^2 + o(\sigma_t^2)$ for all k . \square

This implies that at large noise, the posterior covariance becomes asymptotically isotropic; the spectrum *flattens* and “small” eigenvalues are lifted to $\approx \sigma_t^2$. Their contribution is therefore indistinguishable from isotropic noise, which explains why including late timesteps or many tail eigenvalues does not improve OOD discrimination.

A.5 PROOF OF KY FAN’S THEOREM

Prop. 2. *Let $\Sigma_t(\mathbf{x}_t) \succeq 0$ have eigenvalues $\lambda_1^t \geq \dots \geq \lambda_n^t$ with eigenvectors forming $\mathbf{U}_t = [\mathbf{u}_1^t, \dots, \mathbf{u}_n^t]$. For any $K \in \{1, \dots, n\}$,*

$$\max_{\mathbf{V} \in \mathbb{R}^{n \times K}: \mathbf{V}^\top \mathbf{V} = \mathbf{I}_K} \text{tr}(\mathbf{V}^\top \Sigma_t(\mathbf{x}_t) \mathbf{V}) = \sum_{k=1}^K \lambda_k,$$

and a maximizer is $\mathbf{V}^* = [\mathbf{u}_1^t, \dots, \mathbf{u}_K^t]$.

Proof. Let $\mathbf{V} \in \mathbb{R}^{n \times K}$ with $\mathbf{V}^\top \mathbf{V} = \mathbf{I}_K$. Write $\Sigma_t(\mathbf{x}_t) = \mathbf{U}_t \Lambda_t \mathbf{U}_t^\top$ with \mathbf{U}^t orthogonal. Set $\mathbf{Q} := \mathbf{U}_t^\top \mathbf{V} \in \mathbb{R}^{n \times K}$. Since \mathbf{U}_t is orthogonal, $\mathbf{Q}^\top \mathbf{Q} = \mathbf{V}^\top \mathbf{U}_t \mathbf{U}_t^\top \mathbf{V} = \mathbf{I}_K$, so the columns of \mathbf{Q} are orthonormal.

We have

$$\text{tr}(\mathbf{V}^\top \Sigma_t(\mathbf{x}_t) \mathbf{V}) = \text{tr}(\mathbf{V}^\top \mathbf{U}_t \Lambda_t \mathbf{U}_t^\top \mathbf{V}) = \text{tr}(\mathbf{Q}^\top \Lambda_t \mathbf{Q}) = \sum_{i=1}^n \lambda_i^t \|q_i\|_2^2,$$

where q_i^\top denotes the i -th row of \mathbf{Q} (so $\|q_i\|_2^2 \geq 0$). Because $\mathbf{Q}^\top \mathbf{Q} = \mathbf{I}_K$,

$$\sum_{i=1}^n \|q_i\|_2^2 = \text{tr}(\mathbf{Q}^\top \mathbf{Q}) = K, \quad \text{and} \quad \|q_i\|_2^2 \leq 1 \text{ for all } i \text{ (each row is a subvector of a unit vector).}$$

Thus the objective is a linear functional of the nonnegative weights $w_i := \|q_i\|_2^2$ subject to $\sum_i w_i = K$ and $0 \leq w_i \leq 1$. Since the eigenvalues are ordered $\lambda_1^t \geq \dots \geq \lambda_n^t$, the sum $\sum_i \lambda_i w_i$ is maximized by assigning $w_i = 1$ for $i = 1, \dots, K$ and $w_i = 0$ otherwise (rearrangement/greedy argument), which yields

$$\max_{\mathbf{V}^\top \mathbf{V} = \mathbf{I}_K} \text{tr}(\mathbf{V}^\top \Sigma_t(\mathbf{x}_t) \mathbf{V}) = \sum_{i=1}^K \lambda_i^t.$$

This maximum is attained by taking $\mathbf{Q} = [\mathbf{e}_1, \dots, \mathbf{e}_K]$, i.e., $\mathbf{V} = \mathbf{U} \mathbf{Q} = [\mathbf{u}_1^t, \dots, \mathbf{u}_K^t]$, the matrix of the top- K eigenvectors. \square

B ADDITIONAL DETAILS

B.1 COMPUTATIONS OF EIGENVALUES

To compute the leading eigenvalues of the posterior covariance efficiently, we follow the Jacobian-free subspace iteration method introduced by [Manor & Michaeli \(2024\)](#). The algorithm approximates Jacobian–vector products using finite differences of the denoiser output, followed by QR orthogonalization to stabilize directions. Iteratively refining these directions yields approximate posterior

972 **Algorithm 2** Efficient computation of posterior principal components (Manor & Michaeli, 2024)

973

974 **Require:** N (Number of PCs), K (number of iterations), $D(\cdot)$ (MSE-optimal denoiser), \mathbf{y} (noisy input), σ_t^2 (noise variance), $c \ll 1$ (linear approx. constant)

975

976 1: Initialize $\{\mathbf{v}_0^{(i)}\}_{i=1}^N \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I})$

977 2: **for** $k \leftarrow 1$ **to** K **do**

978 3: **for** $i \leftarrow 1$ **to** N **do**

979 4: $\mathbf{v}_k^{(i)} \leftarrow \frac{1}{2c} \left(D(\mathbf{y} + c \mathbf{v}_{k-1}^{(i)}) - D(\mathbf{y} - c \mathbf{v}_{k-1}^{(i)}) \right)$

980 5: **end for**

981 6: $\mathbf{Q}, \mathbf{R} \leftarrow \text{QR DECOMPOSITION} \left([\mathbf{v}_k^{(1)} \dots \mathbf{v}_k^{(N)}] \right)$

982 7: $[\mathbf{v}_k^{(1)} \dots \mathbf{v}_k^{(N)}] \leftarrow \mathbf{Q}$

983 8: **end for**

984 9: $\mathbf{v}^{(i)} \leftarrow \mathbf{v}_K^{(i)}$

985

986 10: $\lambda^{(i)} \leftarrow \frac{\sigma_t^2}{2c} \|D(\mathbf{y} + c \mathbf{v}_{K-1}^{(i)}) - D(\mathbf{y} - c \mathbf{v}_{K-1}^{(i)})\|$

987

988 Table 5: Optimized hyperparameters for EigenScore.

990 InD	991 CelebA vs.			992 C10 vs.			993 C100 vs.			994 SVHN vs.		
	995 OOD	996 C10	997 C100	998 SVHN	999 C100	999 SVHN	999 CelebA	999 C10	999 CelebA	999 SVHN	999 C100	999 CelebA
999 Aggregation	All	All	All	Median	Median	All	All	Median	All	All	All	All
999 T	[100,150,200, 250,300]	[100,150,200, 250]	[150,200,250]	[100,150,200]	[150]	[100]	[100,150]	[450,500]	[150,200]	[100,150,200, 250,300,350,400, 400,450]	[100,150,200, 250,300,350,400, 450,500]	[100,150,200, 250,300,350,400, 450,500]
999 I	20	20	20	20	20	20	20	20	20	20	20	20
999 K	3	3	3	3	3	3	3	3	3	3	3	3

995 principal components and their corresponding eigenvalues. This approach avoids the costly explicit
996 Jacobian calculation while still capturing the dominant spectral structure of the denoising uncertainty.
997 Algorithm 2 reports the calculations of eigenvalues.

1000 B.2 OPTIMIZED PARAMETERS

1001 We report the hyperparameters selected for EigenScore after validation. The aggregation method
1002 determines how repetitions are combined (mean, median, or none), while T specifies the set of
1003 diffusion timesteps, I the number of repetitions, and K the number of leading eigenvalues retained.
1004 These parameters were tuned on validation sets to balance accuracy and efficiency, and the final
1005 values are used consistently across experiments reported in the main paper in Table 1.

1006 B.3 BASELINES

1008 We compare our method against several generative baselines for OOD detection, including Improved
1009 CD (Du et al., 2021), DoS (Morningstar et al., 2021), TT (Nalisnick et al., 2019b), WAIC (Choi
1010 et al., 2018), NLL, IC, DDPM-OOD (Graham et al., 2023), LMD (Liu et al., 2023), DiffPath (Heng
1011 et al., 2024). We use the official repositories for each method, along with diffusion models trained
1012 under the EDM framework (Karras et al., 2022) and the Glow model (Kingma & Dhariwal, 2018).
1013 For the Glow-based baselines (DoS, TT, WAIC), we follow (Morningstar et al., 2021). In DoS, we
1014 extract three statistics—the log-likelihood, latent log-probability, and Jacobian log-determinant—and
1015 fit Kernel Density Estimators (KDE) on the training data for each, summing across statistics to obtain
1016 the final score. For TT and WAIC, we adopt the sample-wise versions from (Morningstar et al.,
1017 2021): TT measures the deviation of an individual sample’s likelihood from the training-set average,
1018 while WAIC is computed from five independently trained models using the mean and variance of their
1019 log-likelihoods. For diffusion-based baselines, we compute NLL using the official implementation
1020 from OpenAI’s improved diffusion Github repository¹ and derive IC by combining this NLL with
1021 PNG compression. Other methods (DDPM-OOD², LMD³, DiffPath⁴) are implemented using their
1022 official repositories.

1023 ¹<https://github.com/openai/improved-diffusion>

1024 ²<https://github.com/marksgraham/ddpm-ood>

1025 ³https://github.com/zhenzhel/lift_map_detect

1025 ⁴<https://github.com/clear-nus/diffpath>

1026
1027

B.4 DATASET AND MODELS

1028 We follow the official train/test splits when training diffusion models. For validation, we randomly
 1029 sample 500 in-distribution (InD) and 500 OOD images; for testing, we sample a disjoint set of 500
 1030 InD and 500 OOD images. All images are resized to 32×32 . All diffusion models are trained using
 1031 the EDM framework of Karras et al. (2022). The code can be found here⁵.

1032

1033 B.5 ADDITIONAL EXPERIMENTS

1034

1035

1036

1037

B.5.1 COMPARISON WITH IMAGENET-1K

1038 We have compared our method using ImageNet dataset as InD and SVHN and Texture dataset as
 1039 OOD. Table 6 report the results.

1040

1041

1042

1043

Table 6: *ImageNet-1K* dataset detection results (AUROC). We evaluate on related datasets, including *SVHN* and *Texture* as OOD samples. Note the competitive performance of *EigenScore* over prior diffusion-based approaches.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

B.5.2 COMPARISON OF C10 AND C100 WITH LSUN, iSUN, AND TEXTURES

1057

1058

We compare our method using CIFAR-10 and CIFAR-100 as InD datasets and LSUN, iSUN, and Textures as OOD datasets. Table 7 reports the results.

1059

1060

1061

Table 7: *C10* and *C200* datasets detection results vs. *LSUN*, *iSUN*, and *Textures*. Note the competitive performance of *EigenScore* over *DiffPath*.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

B.5.3 COMPARISON OUR RESULTS WITHOUT FINE TUNING THE HYPERPARAMETER

1072

1073

1074

1075

1076

1077

1078

To evaluate the robustness of our method, we also report performance using the default hyperparameter settings, without any dataset-specific finetuning. This setting reflects a more realistic deployment scenario, where the practitioner may not have access to OOD validation data for tuning. As shown in Table 8, our method maintains strong and stable performance even without hyperparameter adjustments, demonstrating that *EigenScore* is not sensitive to the choice of T , I , J , or K and generalizes well across datasets. The fixed setup uses $k = 3$, $T = \{100, 150, 200, 250\}$, $I = 20$, and all aggregation.

1079

⁵https://drive.google.com/drive/folders/1-iYwjFhu3am9y3_ZrOirg8CILcsafbhc?usp=drive_link

1080
1081 **Table 8: Main OOD detection results (AUROC). Comparison of EigenScore with and without hyperparameter**
1082 **fine-tuning. Note that EigenScore outperforms the best baseline in average by 2%.**

InD OOD	CelebA vs.			C10 vs.			C100 vs.			SVHN vs.			Avg
	C10	C100	SVHN	C100	SVHN	CelebA	C10	CelebA	SVHN	C10	C100	CelebA	
EigenScore (w/ tuning)	0.965	0.944	0.896	0.884	0.825	0.885	0.652	0.700	0.683	0.991	0.981	0.998	0.869
EigenScore (w/o tuning)	0.965	0.944	0.888	0.880	0.810	0.873	0.642	0.427	0.661	0.992	0.982	0.994	0.838

1087 1088 1089 B.5.4 ABLATION STUDIES ON PARAMETER C OF THE POWER ITERATION

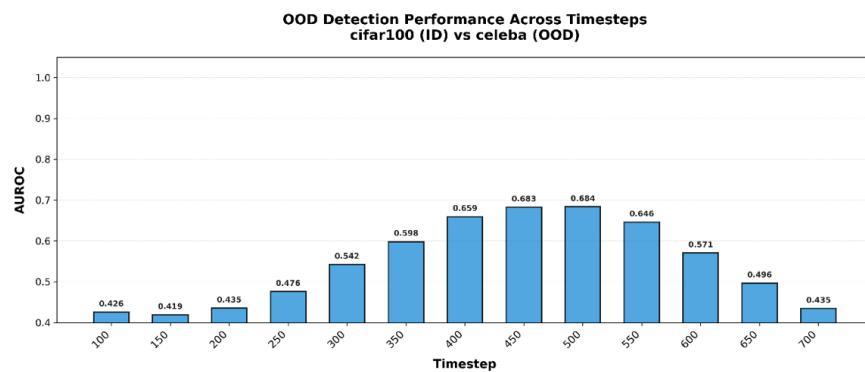
1090
1091 We perform ablation study on the parameter c used in the power-iteration step when computing the
1092 top-1 eigenvalue. We evaluate multiple values of c while keeping all other settings fixed: we use the
1093 z-score detection method, mean aggregation across steps, and timesteps $\{100, 150, 200, 250, 300\}$.
1094 The experiment is conducted on CIFAR-10 (InD) versus CIFAR-100 (OOD). As reported in Table 9,
1095 the results show that EigenScore is stable across a wide range of c values, indicating that the method
1096 is not sensitive to this parameter and that our default choice provides strong and reliable performance.
1097

1098
1099 **Table 9: Ablating Parameter c**

c	0.005	0.01	0.05	0.1	0.5	1
AUROC	0.846	0.844	0.850	0.847	0.866	0.875

1100 1101 1102 1103 1104 1105 1106 B.5.5 SENSITIVITY OF EIGENSCORE TO DIFFUSION Timestep

1107
1108 Figure 6 shows the OOD detection performance for the CIFAR-100 vs. CelebA pair across all
1109 diffusion timesteps. The results reveal that this pair exhibits peak separability at later timesteps
1110 (approximately 400–500), where the posterior covariance inflation between the two datasets becomes
1111 most pronounced. Earlier timesteps (100–300), used in the ablation table, do not reach this peak
1112 region, explaining the lower performance observed there. This behavior reflects dataset-specific
1113 sensitivity to the diffusion trajectory rather than instability, and EigenScore consistently improves
1114 once the anisotropic covariance modes dominate.



1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129 **Figure 4: Sensitivity of EigenScore to diffusion timestep for CIFAR-100 vs. CelebA.** We plot
1130 OOD detection performance across all diffusion timesteps. This pair exhibits peak separability at
1131 later timesteps (approximately 400–500), where posterior covariance inflation between ID and OOD
1132 samples is most pronounced. Earlier timesteps (100–300), used in the ablation study, do not reach
1133 this peak region, explaining the lower performance observed there.

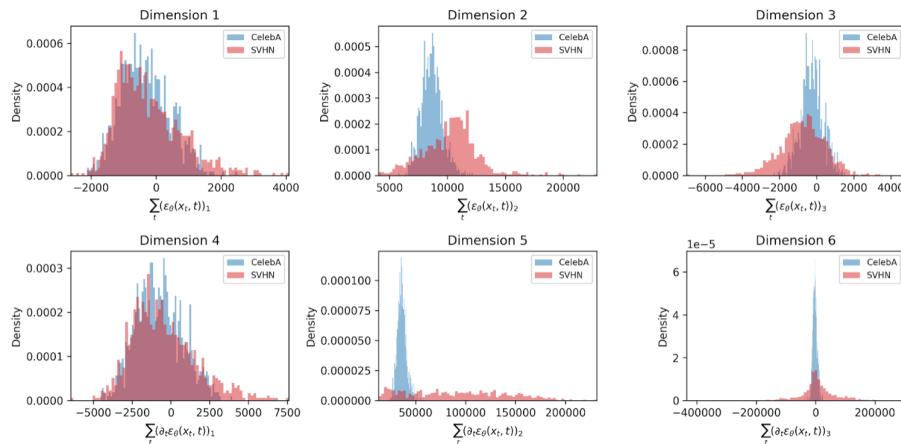


Figure 5: DiffPath feature distributions for SVHN (ID) vs. CelebA (OOD). Each of the six DiffPath dimensions shows substantial overlap between ID and OOD histograms, indicating that the metric provides weak separability for this pair.

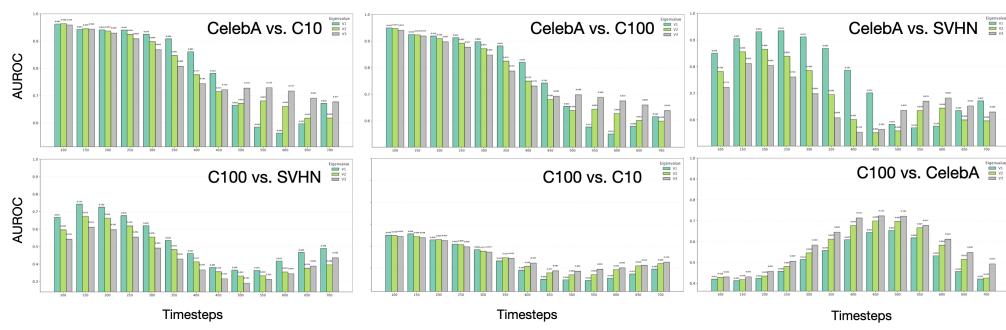


Figure 6: AUROC as a function of diffusion timestep t (100–700) for the largest three eigenvalues ($K = 1, 2, 3$) across 6 ID/OOD pairs. The plots illustrate how OOD separability evolves along the diffusion trajectory and highlight the timestep regions where additional eigenvalues improve or saturate performance.

B.5.6 TIME/NFE COMPARISON

To contextualize computational cost, Table 10 reports the number of function evaluations (NFE) and wall-clock time for key baselines and our method per image.

Table 10: *Time/NFE comparisons*

Method	DiffPath	LMD	DDPM-OOD	EigenScore
NFE	10	10000	350	300
Time (s)	0.1s	1.8s	0.53s	1.9s

1188
1189

B.5.7 HIGH-RESOLUTION OOD DETECTION EXPERIMENTS (256×256)

1190
1191
1192
1193

We evaluate EigenScore on high-resolution and large-scale image datasets. We conduct additional OOD detection experiments using a 256×256 DDPM⁶ (Baranchuk et al., 2022). We evaluate OOD performance on AFHQ (Choi et al., 2020) and Microscopy (CHAMMI) (Chen et al., 2023). Results are reported in Table 11.

1194
1195
1196

Table 11: OOD detection results on high-resolution 256×256 models. In-distribution dataset is FFHQ-256. OOD datasets are AFHQ and Microscopy (CHAMMI).

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Method	AFHQ	Microscopy	Avg
LMD	0.485	0.552	0.5185
DiffPath	0.593	0.998	0.7955
EigenScore	0.532	0.899	0.7155

⁶<https://github.com/yandex-research/ddpm-segmentation>