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ABSTRACT

Out-of-distribution (OOD) detection is critical for the safe deployment of machine
learning systems in safety-sensitive domains. Diffusion models have recently
emerged as powerful generative models, capable of capturing complex data dis-
tributions through iterative denoising. Building on this progress, recent work has
explored their potential for OOD detection. We propose EigenScore, a new OOD
detection method that leverages the eigenvalue spectrum of the posterior covariance
induced by a diffusion model. We argue that posterior covariance provides a con-
sistent signal of distribution shift, leading to larger trace and leading eigenvalues
on OOD inputs, yielding a clear spectral signature. We further provide analysis
explicitly linking posterior covariance to distribution mismatch, establishing it as a
reliable signal for OOD detection. To ensure tractability, we adopt a Jacobian-free
subspace iteration method to estimate the leading eigenvalues using only forward
evaluations of the denoiser. Empirically, EigenScore achieves state-of-the-art per-
formance, with up to 5% AUROC improvement over the best baseline. Notably,
it remains robust in near-OOD settings such as CIFAR-10 vs CIFAR-100, where
existing diffusion-based methods often fail.

1 INTRODUCTION

Most machine learning systems assume that test data matches the training distribution, but distribution
shift or out-of-distribution (OOD) data can severely degrade performance in safety-critical domains
such as medical imaging and autonomous driving (Yang et al., 2024). OOD inputs may stem from
sensor noise, semantic differences, or acquisition changes, leading to unreliable predictions (Zhang
et al., 2023). To address this, many OOD detection methods have been proposed, ranging from
supervised approaches that require labeled OOD data to unsupervised approaches that rely only on
in-distribution (InD) training data (Graham et al., 2023).

Existing OOD detection methods can be broadly categorized into four families: (i) uncertainty-
based methods, which rely on signals such as softmax confidence (Hendrycks & Gimpel, 2017),
ensemble variance (Choi et al., 2018), or Bayesian inference (Wang & Aitchison, 2021; Charpentier
et al., 2020) to identify anomalous inputs; (ii) distance-based methods (Regmi et al., 2024), which
compare test embeddings to in-distribution features, commonly via Mahalanobis distance (Colombo
et al., 2022; Lee et al., 2018); (iii) density-based methods (Huang et al., 2022), including flow- and
energy-based models (Kumar et al., 2023; Liu et al., 2020), which attempt to estimate likelihoods but
have been shown to assign spuriously high likelihoods to OOD data (Nalisnick et al., 2019a); and
(iv) representation-learning methods (Wang et al., 2022), including self-supervised and contrastive
techniques (Seifi et al., 2024; Hendrycks et al., 2019; Tack et al., 2020), which improve robustness by
explicitly shaping feature spaces (Also see reviews in Koh & et. al (2021); Salehi et al. (2022)).

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020) have emerged as state-of-the-art generative
models, achieving high-quality samples across diverse domains. Their success has spurred both
architectural advances (Vahdat et al., 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022; Karras
et al., 2022) and applications beyond generation, such as imaging inverse problems and medical
tasks (Chung et al., 2023; Adib et al., 2023) (see also recent reviews (Daras et al., 2024; Croitoru et al.,
2023; Li et al., 2023; Kazerouni et al., 2023)). Crucially, diffusion models are especially relevant
for OOD detection because their iterative denoising process does not simply produce samples, but
also provides access to score functions that explicitly characterize the data distribution. Early work
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exploited this property through likelihood- or reconstruction-based scores (Graham et al., 2023; Gao
et al., 2023; He et al., 2025). More recent studies have explored structural aspects of the diffusion
trajectory, such as score geometry and intermediate representations (Heng et al., 2024; Graham
et al., 2023; Liu et al., 2023; Choi et al., 2023). These developments highlight both the promise of
diffusion-based OOD methods and the need for principled approaches that move beyond heuristic
scoring rules.

Building on recent work in diffusion-based OOD detection, we introduce EigenScore, an unsu-
pervised, feature-based framework for identifying distribution shift. Unlike reconstruction-based
methods that measure input–output similarity (Graham et al., 2023) or trajectory-based methods that
analyze diffusion-path geometry (Heng et al., 2024), EigenScore leverages the covariance structure
of the denoising process to capture uncertainty signals. By linking posterior covariance, estimated
from the denoiser’s Jacobian, to distribution shift, EigenScore provides a theoretically grounded and
interpretable signal while remaining practical at scale through a Jacobian-free eigenvalue estima-
tion algorithm. Our analysis, supported by both theory and experiments, shows that applying an
in-distribution diffusion model to OOD samples leads to inflated posterior covariance. This effect
provides a stable and discriminative signal for OOD detection. Our contributions are threefold:

• We introduce EigenScore, an unsupervised, feature-based framework for OOD detection in
diffusion models. EigenScore leverages the posterior covariance of the denoising process to
characterize distribution shift.

• We provide supporting analysis establishing a direct connection between denoising uncertainty
from posterior covariance and distribution mismatch, thereby explaining why EigenScore reliably
separates InD from OOD samples.

• We conduct extensive experiments on standard OOD benchmarks (CIFAR-10 (C10), CIFAR-100
(C100), SVHN, CelebA, TinyImageNet), showing that EigenScore achieves average state-of-the-art
performance and remains notably robust in challenging near-OOD scenarios.

2 BACKGROUND

Diffusion Models. Diffusion models learn to generate samples by simulating a gradual denoising
process. During training, a clean sample x ∼ p(x) is perturbed by Gaussian noise across timesteps
t = 1, · · · , T , producing noisy states xt through the forward Markov chain p(xt|x) = N (x, σ2

t I),
which allows for direct sampling via xt = x+ z, where z ∼ N (0, σ2

t I).

The reverse process is approximated by a denoising network Dθ(xt, t), trained to predict either the
clean signal or the injected noise. A standard training objective is mean squared error (MSE):

LMSE(Dθ) = Ex,xt,t

[∥∥∥x− Dθ(xt, t)
∥∥∥2
2

]
. (1)

Once trained, the model generates new samples by iteratively denoising from Gaussian noise at t = T
back to t = 0. Importantly, Tweedie’s formula (Robbins, 1956; Miyasawa, 1961) connects Gaussian
denoising with score estimation, linking the posterior mean to the gradient of the log-density as

Dp(xt) = Ep[x|xt] = xt + σ2
t∇ log p(xt), (2)

where Dp(xt) denotes an MMSE estimator trained on samples from distribution p. Here, the gradient
is with respect to xt, and p(xt) denotes the marginal distribution noisy image

p(xt) =

∫
p(xt|x)p(x)dx =

∫
Gσt(xt − x)p(x)dx, (3)

where Gσt
denotes the Gaussian density function with standard deviation σt ≥ 0 (Vincent, 2011;

Raphan & Simoncelli, 2011). This relationship implies that denoising does more than produce
samples—it provides access to score functions and posterior statistics of the underlying distribution.
In the context of OOD detection, this observation motivates our use of the denoiser’s covariance
structure as a principled signal of distribution shift. Diffusion models admit several formulations
(e.g., variance-preserving, variance-exploding, and SDE-based), but all share the key property of
learning the score function∇xt

log p(xt) to guide denoising (Ho et al., 2020; Song et al., 2020; Song
& Ermon, 2019; Yang et al., 2023).
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Figure 1: We compare negative log-likelihood (NLL), score norm
√∑

t ∥ϵθ(xt, t)∥22, score derivative norm√∑
t ∥∂tϵθ(xt, t)∥22, and the eigenvalue sum (ours)

∑
t,k λ

t
k(xt) as OOD detection statistics. Top row:

near OOD task for C10 (InD) vs. C100, NLL and score-based metrics fail to separate distributions, showing
substantial overlap. Bottom row: for C10 (InD) vs. SVHN (OOD), the ordering of metrics inverts—score and
derivative norms assign lower values to OOD than InD, making thresholds unreliable. In both settings, our
eigenvalue-based metric achieves clear separation and consistently assigns higher scores to OOD samples.

Unsupervised OOD detection. Unsupervised OOD detection aims to determine whether a given
sample x originates from the same distribution as the training data, using only unlabeled InD samples
x1, · · · ,xn ∼ p(x). The goal is to learn a detector that assigns an OOD score to each input, where
higher scores indicate a greater likelihood that x was drawn from a different distribution, such as the
OOD density q(x) (Graham et al., 2023; Heng et al., 2024).

Likelihood-based methods. These methods use generative models including VAEs, flows, diffusion
models to estimate sample likelihoods, under the assumption that OOD data should receive lower
likelihoods (Salimans et al., 2017; Kingma & Dhariwal, 2018; Morningstar et al., 2021; Ding
et al., 2025). However, it has been shown that generative models often assign high likelihoods
to OOD inputs (Choi et al., 2018; Nalisnick et al., 2019a; Kirichenko et al., 2020). To mitigate
this, refined scores have been proposed, including likelihood ratios (Ren et al., 2019), compression
corrections (Serrà et al., 2019), WAIC ensembles (Choi et al., 2018), and typicality tests (Nalisnick
et al., 2019b). Diffusion-based variants further extend this idea by analyzing statistics across the
denoising trajectory (Heng et al., 2024; Livernoche et al., 2024).

Reconstruction-based methods. Another line of work assumes that InD samples reconstruct well,
whereas OOD samples do not. Early examples include autoencoders (Zhou & Paffenroth, 2017)
and GANs (Schlegl et al., 2019). More recently, diffusion models have been exploited for their
strong reconstruction fidelity, leading to perceptual quality scores (Graham et al., 2023), projection
regret (Choi et al., 2023), and masked inpainting like LMD (Liu et al., 2023). OOD sample detection
can alse be via subspace reconstruction of features or gradients, using PCA (Guan et al., 2023), kernel
PCA (Fang et al., 2024), or gradient projections such as GradOrth (Behpour et al., 2023).

Feature-based methods. These approaches distinguish InD from OOD by leveraging learned
representations, such as Mahalanobis distance in latent space (Denouden et al., 2018), unsupervised
contrastive features (Hendrycks et al., 2019; Bergman & Hoshen, 2020; Tack et al., 2020), or encoder
features from invertible models (Ahmadian & Lindsten, 2021). Pretrained feature extractors have
also proven effective (Xiao et al., 2020).

Complementing these approaches, we introduce a new perspective based on posterior covariance in
diffusion models, which provides a principled feature for quantifying distribution shift.

3 DIFFUSION MODEL FOR OUT-OF-DISTRIBUTION DETECTION

EigenScore is a novel OOD detection method that exploits covariance structure of the denoising
diffusion process. Our key insight is that when a diffusion model trained on InD data is applied to
OOD inputs, the variance of its denoising predictions inflates, leaving a characteristic signature in the
eigenvalue spectrum of the score Jacobian.

3
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Figure 2: Denoised outputs (left), corresponding uncertainty maps (first principle component) (middle), and
violin plots of the three largest eigenvalues for CelebA dataset (right). Top: clean CelebA image and its noisy
variants for varying t. Middle: InD model (trained on CelebA) applied to CelebA inputs. Bottom: OOD model
(trained on C100) applied to the same inputs. InD models yield sharp reconstructions and localized uncertainty
with smaller leading eigenvalues, whereas OOD models produce blurrier outputs, diffuse uncertainty, and
inflated eigenvalues—highlighting the eigenvalue spectrum as an indicator of distribution shift.

Algorithm 1 OOD Detection with EigenScore — Train/Validation (left) and Test (right)
Train/Validation: Select time-steps, aggrega-
tion, and compute Z-score stats
Require: Trained DM Dp, train set Xtrain, K

number of eigenvalues, I number of repeti-
tion, Ltrain = [ ]

1: for x ∈ Xtrain do
2: Compute M(x) via Eq. (10)
3: Append M(x) to Ltrain
4: end for
5: Compute µt, σt across Ltrain
6: Use validation set to tune T and aggregation

method (mean/median/none)
7: return (T ∗, agg∗, {µt, σt}T

∗

t=1)

Test: Compute EigenScore
Require: Trained DM Dp, test set Xtest, number

of eigenvalues K, number of repetitions I ,
(T ∗, agg∗, {µt, σt}T

∗

t=1), Ltest = [ ]
1: for x ∈ Xtest do
2: Compute M(x) using T ∗ and agg∗

3: zt(x) =
mt(x)−µt

σt
for t = 1, . . . , T ∗

4: Sθ(x) =
∑T∗

t=1 zt(x)
5: Append Sθ(x) to Ltest
6: end for
7: return Ltest ▷ OOD scores for all test

samples

To motivate EigenScore, we first revisit why commonly used diffusion-based OOD met-
rics—likelihood, score norm, and score derivatives—are unreliable (Sec. 3.1). We then show,
both theoretically and empirically, that posterior covariance offers a consistent marker of distribution
shift (Sec. 3.2), before formalizing EigenScore and its efficient computation (Sec. 3.3).

3.1 WHY LIKELIHOOD AND SCORE DYNAMICS ARE INSUFFICIENT

Since diffusion models are trained via a variational lower bound (ELBO), likelihood-based scores
such as negative log-likelihood (NLL) are natural candidates for OOD detection. However, likelihood
does not necessarily align with semantic structure: diffusion models often emphasize low-level
statistics while ignoring higher-level semantics, making NLL unreliable (Nalisnick et al., 2019b;
Serrà et al., 2019). Empirically, NLL can even assign higher likelihoods to OOD samples than to InD
ones (Heng et al., 2024). As shown in Fig. 1, NLL is not a reliable metric for separating InD from
OOD samples.

Beyond likelihood, diffusion-based OOD metrics have also used the score function ϵθ(xt, t) and its
temporal derivative ∂tϵθ(xt, t) as statistics (Heng et al., 2024). Their norms provide some empirical
separation, but they remain unstable. In near-OOD settings (C10 vs. C100), the distributions overlap
substantially (Fig.1, top row). In some settings (C10 vs. SVHN), the ordering can invert, with
OOD samples receiving lower scores than InD (Fig.1, bottom row). These limitations motivate
shifting from scalarized scores toward a covariance-based perspective, where the structure of denoiser
variability itself provides a more principled signal of distribution shift

3.2 UNCERTAINTY AS A SIGNAL OF DISTRIBUTION SHIFT

We formalize why denoising uncertainty yields a principled OOD signal. Let p(x) denote InD and
q(x) an OOD distribution. Under Gaussian corruption with variance σ2

t , the KL divergence admits

4
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the score-based representation (Song et al., 2021; Kadkhodaie et al., 2024; Shoushtari et al., 2025;
Heng et al., 2024)

DKL(p ∥ q) =
∫ T

0

Ex,xt

[∥∥∇ log p(xt)−∇ log q(xt)
∥∥2
2

]
σt dt. (4)

where xt is generated by the forward diffusion applied to x. Building on prior analyses of KL
divergence in diffusion processes (Shoushtari et al., 2025; Heng et al., 2024), we restate the divergence
in terms of denoising error (a derivation is given in App. A.1 for completeness).

Proposition 1. Let pt and qt denote the noisy marginals of InD and OOD distributions generated
by the forward diffusion process (Eq. (3)). For MMSE denoisers Dp(xt) = Ep[x|xt] and Dq(xt) =
Eq[x|xt],

DKL(p ∥ q) =
∫ T

0

[MSE(Dq, t)−MSE(Dp, t)]σ
−3
t dt

where MSE(Dp, t) = E
[
∥x− Dp(xt)∥22

]
at noise level t.

This proposition, adapted from earlier derivations, shows that KL divergence—and thus distribution
shift—can be viewed as the accumulation of excess denoising error incurred when contrasting the
optimal MMSE denoiser under q with that under p. Thus, we have MSE(Dp; q, t) ≥ MSE(Dq; q, t)
for each t and the denoising error of a single InD denoiser Dp is larger in expectation on OOD inputs,
yielding a practical detection signal without access to q.

For the MMSE denoiser Dp, the mean-squared error admits a law-of-total-variance decomposition
(proof in App. A.3):

MSE(Dp, t) = E
[
∥x− Dp(xt)∥22

]
= Ext

[
tr
(
Covp[x | xt]

)]
. (5)

Thus, denoising error equals the total posterior variance—the trace of the conditional covari-
ance—averaged over noisy observations at noise level t. Intuitively, Covp[x | xt] quantifies the
spread of plausible clean signals consistent with xt. When xt is informative (e.g., InD or low noise),
this spread is small and the MSE remains low; when xt lies off-manifold, the spread inflates and
the MSE increases. In this sense, denoising error corresponds directly to the model’s predictive
uncertainty, providing a principled basis for OOD detection and motivating our focus on the spectral
structure of posterior covariance in Section 3.3.

While Eq.4 relates distribution shift to differences in score norms, such metrics do not preserve
ordering: depending on the dataset and noise scale, OOD samples may appear either larger or smaller
than InD ones. By contrast, the MSE-based formulation in Prop.1 guarantees that OOD denoising
error is systematically larger in expectation than InD error. This ensures a consistent separation with
preserved ordering, whereas score-norm methods such as DiffPath (Heng et al., 2024) capture only
relative differences without indicating direction.

3.3 EIGENVALUE-BASED UNCERTAINTY ESTIMATION

Section 3.2 established that denoising error equals the total posterior variance and that this variance
inflates under distribution shift. We now make this connection operational by expressing posterior
covariance through the Jacobian of the MMSE denoiser and analyzing its eigen-spectrum. For the
MMSE denoiser Dp(xt) = E[x|xt], the posterior covariance admits the Miyasawa identity (Miya-
sawa, 1961):

Covp[x|xt] = σ2
t

(
I + σ2

t∇2 log p(xt)
)
= σ2

t∇Dp(xt), (6)

so that
MSE(Dp, t) = Ext

[tr (Covp[x|xt])] = σ2
tExt

[tr (∇Dp(xt))] , (7)

Thus, the Jacobian trace measures how much posterior uncertainty remains after observing xt: small
traces indicate concentrated beliefs (InD), while large traces signal inflated uncertainty (OOD).
Derivations are provided in Appendix (A.2).

Writing Σt(xt) := Covp[x|xt] = σ2
t∇Dp(xt), the covariance is symmetric positive semi-definite

and admits the eigen-decomposition Σt(xt) = Ut diag(λ
t
1, · · · , λt

n)U
T
t , with nonnegative eigen-

values λt
k. Since tr(Σt) =

∑
k λ

t
k, the MSE corresponds to the sum of eigenvalues—the total

5
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uncertainty across all principal directions at noise level t:

MSE(Dp, t) = Ext
[tr (Covp[x|xt])] = Ext

[tr (Σt(xt))] = Ext

[ n∑
k=1

λt
k(xt)

]
. (8)

For InD samples, the spectrum is compact with smaller leading eigenvalues, reflecting structured
denoising aligned with the training data. For OOD samples, uncertainty spreads across multiple eigen-
directions, inflating both the spectrum and the trace. This spectral inflation provides a quantitative
signal of distribution shift. Figure 2 illustrates this effect: OOD samples exhibit consistently higher
uncertainty, confirming the link between spectral inflation and distribution mismatch.

3.4 EIGENSCORE AS AN OOD METRIC

While Prop.1 links distribution shift to excess denoising error, it requires two denoisers, whereas in
practice we have only a single InD model. Combining Prop.1 with Eq. 7 implies that OOD inputs
exhibit inflated posterior covariance, which we can read from its eigenvalues. For each input x and
diffusion step t, we compute

mt(x) =

K∑
k=1

λt
k(xt), xt = x+ σtz, z ∼ N (0, I), (9)

the sum of the top–K eigenvalues across I noise realizations. These are aggregated (e.g., by mean,
median, or full set) into mt(x), yielding the EigenScore feature vector

M(x) =
[
m1(x), . . . ,mT (x)

]T
. (10)

We normalize each coordinate using Z-scores with statistics (µt, σt) computed on training set
zt(x) = (mt(x) − µt)/σt. The final OOD score is the sum of normalized coordinates, with the
number of timesteps T tuned for efficiency on validation data.

Direct Jacobian evaluation is costly. Following (Manor & Michaeli, 2024), we estimate the top–K
eigenvalues using a Jacobian-free subspace iteration. The method approximates Jacobian–vector
products with finite differences of the denoiser v+ ≈ (D(xt+cv)−D(xt−cv))/2c, where c≪ 1 is
the linear approximation constant, v is the current principle component, and v+ in the next principle
component. We then orthogonalizes directions via QR. After a few iterations, eigenvalues are obtained
as

λt
k(xt) ≈

σ2
t

2c

∥∥D(xt + cvk)− D(xt − cvk)
∥∥
2
. (11)

Full pseudo-code is given in App. B.1.

3.5 EIGENSCORE VS. MSE: CAPTURING STRUCTURE INSTEAD OF COLLAPSE

Eq. (4) and Prop. 1 show that distribution shift manifests as excess denoising error, measurable
through the posterior covariance. However, scalar metrics such as MSE or score norms collapse
this uncertainty into a single number, discarding how variance is distributed across directions. At
high noise levels, this collapse is particularly problematic: many small eigenvalues are dominated by
isotropic noise, obscuring class-specific structure. The following lemma formalizes this effect.
Lemma 1. Let p(xt) = p ∗ N (0, σ2

t I) denotes the noisy marginal in Eq. (3) and let Σt(xt) =
σ2
t

(
I + σ2

t∇2 log p(xt)
)

from Eq. (6). As σt →∞, ∥∇2 log p(xt)∥ → 0 uniformly on compact sets.
Hence

Σt(xt) = σ2
t I + o(σ2

t ),

so all eigenvalues satisfy λt
k(xt) = σ2

t + o(σ2
t ).

Lemma 1 implies that the spectrum flattens under heavy Gaussian smoothing: all directions approach
the same variance σ2

t , so low-variance components lose discriminative information. Consequently,
MSE and score norms aggregate mostly isotropic noise, rather than meaningful structure (proof in
App. A.4). To retain the informative structure, we focus on the dominant modes. Ky Fan’s theorem
guarantees that the top-K eigenvalues capture the maximal variance among all K-dimensional
projections:
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Table 1: Main OOD detection results (AUROC). Comparison of EigenScore with likelihood-based,
reconstruction-based, and diffusion-based baselines across multiple InD–OOD dataset pairings (CelebA, C10,
C100, SVHN). Best and second best are highlighted. Note that EigenScore achieves the best average perfor-
mance and is either best or second best in most settings.

InD CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
OOD C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

DoS 0.630 0.615 0.808 0.504 0.752 0.456 0.491 0.520 0.777 0.911 0.904 0.956 0.693
TT 0.676 0.655 0.773 0.558 0.714 0.469 0.538 0.464 0.648 0.957 0.961 0.994 0.701
WAIC 0.589 0.569 0.793 0.476 0.760 0.469 0.502 0.530 0.782 0.978 0.974 0.955 0.698

Diffusion-based

NLL 0.507 0.671 0.753 0.558 0.545 0.599 0.480 0.484 0.481 0.635 0.660 0.636 0.584
IC 0.510 0.673 0.755 0.552 0.540 0.583 0.460 0.466 0.469 0.625 0.653 0.625 0.576
DDPM-OOD 0.922 0.928 0.992 0.618 0.944 0.642 0.462 0.496 0.870 0.963 0.972 0.996 0.817
LMD 0.886 0.848 0.950 0.601 0.821 0.834 0.569 0.595 0.748 0.780 0.749 0.872 0.771
DiffPath (CelebA) 1.000 1.000 0.964 0.554 0.729 0.885 0.475 0.887 0.724 0.919 0.941 0.328 0.784
DiffPathV2 (CelebA) 1.000 0.995 0.969 0.535 0.812 0.862 0.483 0.513 0.724 0.969 0.975 0.883 0.810
EigenScore (Ours) 0.965 0.944 0.896 0.884 0.825 0.885 0.652 0.700 0.683 0.991 0.981 0.998 0.869

Proposition 2 (Ky Fan’s theorem (Fan, 1950)). Let Σt(xt) ⪰ 0 have eigenvalues λt
1 ≥ · · · ≥ λt

n
with eigenvectors forming Ut = [ut

1, . . . ,u
t
K ]. For any K∈{1, . . . , n},

max
V ∈Rn×K : V TV =IK

tr
(
V TΣt(xt)V

)
=

K∑
k=1

λk,

and a maximizer is V ⋆ = [ut
1, . . . ,u

t
K ].

By retaining only the top-K eigenvalues, EigenScore preserves the most informative uncertainty
directions while discarding noise-dominated components. This explains its consistent advantage over
MSE and score-based metrics. The choice of K is not dictated by theory, but reflects a practical
trade-off between capturing discriminative information and computational efficiency (see App. A.5
for proof).

4 EXPERIMENTS

We now evaluate the effectiveness of EigenScore for OOD detection. Specifically, we benchmark
EigenScore across a suite of pairwise OOD detection tasks and compare its performance against
state-of-the-art baselines.

Datasets. We evaluate OOD detection on standard image benchmarks commonly used with diffusion
models: C10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), C100 (Krizhevsky, 2009), and
CelebA (Liu et al., 2015a;b). For near-OOD tasks (Yang et al., 2022), we additionally include
TinyImageNet (Le & Yang, 2015). Further details can be found in Appendix (B.4)

Table 2: Near-OOD detection results (AUROC). We evaluate on
semantically related datasets, including C10 vs. C100 and TinyIm-
ageNet, which are particularly challenging due to shared low-level
statistics between InD and OOD samples. The best and second
best methods are highlighted. EigenScore achieves the best aver-
age performance across both tasks, with a clear margin over prior
diffusion-based approaches.

InD C10 vs. C100 vs. AvgOOD C100 TinyImageNet C10 TinyImageNet

DDPM-OOD 0.618 0.570 0.462 0.457 0.527
LMD 0.601 0.592 0.569 0.558 0.580
DiffPath 0.554 0.993 0.475 0.995 0.754
EigenScore 0.884 0.973 0.652 0.888 0.849

Baselines. We compare our
method against several generative
baselines for OOD detection, in-
cluding Improved CD (Du et al.,
2021), DoS (Morningstar et al.,
2021), TT (Nalisnick et al., 2019b),
WAIC (Choi et al., 2018), NLL,
IC, DDPM-OOD (Graham et al.,
2023), LMD (Liu et al., 2023),
DiffPathV2 (Abdi et al., 2025), and
DiffPath (Heng et al., 2024). Details
regarding the baselines can be found
in Appendix (B.3).
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Table 3: Ablation on timesteps T , repetitions I , and number of eigenvalues K. AUROC performance of
EigenScore across InD–OOD dataset pairs.

Timesteps CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

5 0.964 0.943 0.893 0.869 0.778 0.866 0.635 0.448 0.648 0.990 0.977 0.995 0.834
7 0.963 0.942 0.878 0.848 0.703 0.862 0.619 0.500 0.603 0.988 0.975 0.996 0.823
10 0.952 0.931 0.850 0.819 0.627 0.867 0.578 0.589 0.521 0.987 0.975 0.998 0.808

Repetitions I CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

5 0.959 0.940 0.885 0.863 0.773 0.857 0.635 0.455 0.649 0.990 0.977 0.995 0.832
10 0.962 0.942 0.889 0.867 0.776 0.864 0.635 0.450 0.650 0.990 0.978 0.995 0.833
15 0.962 0.942 0.891 0.869 0.778 0.866 0.635 0.447 0.649 0.990 0.977 0.994 0.833
20 0.964 0.943 0.893 0.869 0.778 0.866 0.635 0.448 0.648 0.990 0.977 0.995 0.834

Eigenvalues K CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

1 0.968 0.950 0.945 0.871 0.803 0.830 0.639 0.432 0.713 0.983 0.966 0.983 0.840
2 0.967 0.946 0.919 0.872 0.793 0.852 0.636 0.439 0.679 0.987 0.972 0.991 0.838
3 0.964 0.943 0.893 0.869 0.778 0.866 0.635 0.448 0.648 0.990 0.977 0.995 0.834

4.1 MAIN RESULTS

Table 1 reports AUROC results across all dataset pairs. EigenScore achieves the highest average
performance across all settings and is best or second best on nearly every dataset pair. Its advantage is
most pronounced in the challenging near–OOD regime (CIFAR-10 vs. CIFAR-100), where likelihood-
based scores and trajectory metrics often fail. For example, EigenScore improves AUROC by up to
5% over the best diffusion-based baseline, consistent with our theoretical claim that retaining leading
eigenvalues preserves discriminative structure.

On the near-OOD task (Yang et al., 2022) (C10 vs. C100/TinyImageNet), EigenScore continues
to deliver strong separation, achieving higher average AUROC than other diffusion-based metrics
in Table 2. In particular, while baselines such as NLL, IC, and WAIC (C10 vs. C100) struggle to
distinguish the closely related distributions, EigenScore consistently maintains reliable performance,
highlighting its robustness even under challenging near-OOD settings.

4.2 ABLATIONS

Number of timesteps. The parameter T determines how many points along the diffusion trajectory
contribute to the score. Larger T includes more noise levels but increases computation and even-
tually saturates, since high noise merely lifts all eigenvalues uniformly (Lemma 1) without adding
discriminative power. As shown in Table 3, even a small budget (e.g., T=5) achieves nearly the
same AUROC as larger T , with only marginal improvements from denser schedules. This confirms
that a compact subset of timesteps captures most of the useful information, balancing accuracy and
efficiency.

Figure 3: Ablation on eigenvalue informativeness
across t. Performance declines with increasing
noise, consistent with Lem. 1, while λ1 retains
the strongest OOD signal compared to λ2 and λ3,
supporting Prop. 2.

Number of repetitions. The parameter I sets how
many noise draws are averaged per timestep. Larger
I reduces variance in the estimated eigenvalues
and stabilizes OOD scores, but also increases run-
time. As shown in Table 3, small values (e.g., I=5)
are already sufficient, with only marginal gains be-
yond I=15. The results are reported with timesteps
t ∈ {100, 150, 200, 250, 300}, mean aggregation,
and K=3 eigenvalues.

Number of eigenvalues. The parameter K deter-
mines how many leading eigenvalues are aggregated
at each timestep. Table 3 shows that K=1 achieves
the best average performance, though in some set-
tings K=3 yields slightly higher AUROC. This indi-
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Table 4: Comparison of MSE vs. EigenScore. Average AUROC across all InD–OOD dataset pairs. EigenScore
consistently outperforms MSE by leveraging spectral structure of the uncertainty.

Method CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

MSE 0.804 0.783 0.220 0.629 0.184 0.841 0.552 0.675 0.147 0.994 0.994 1.000 0.652
EigenScore 0.964 0.943 0.893 0.869 0.778 0.866 0.635 0.448 0.648 0.990 0.977 0.995 0.834

cates that the bulk of discriminative information re-
sides in the first few modes, consistent with Lemma 1.
The results are reported with the same timestep schedule, mean aggregation, and I=20 repetitions.

EigenScore vs. MSE. EigenScore consistently outperforms MSE by retaining the spectral structure
of posterior covariance rather than collapsing uncertainty into a single scalar. As shown in Table 4,
this leads to higher AUROC across diverse dataset pairs. All experiments here use 20 repetitions,
timesteps t ∈ {100, 150, 200, 250, 300}, and mean aggregation.

To further examine Lemma 1 and Prop. 2, we analyze the informativeness of individual eigenvalues
across noise levels. Lemma 1 predicts that at larger t, eigenvalues converge toward σ2

t , diminishing
their discriminative value. Figure 3 confirms this: AUROC with λ1 decreases gradually as t increases,
while λ2 and λ3 deteriorate more sharply. Prop. 2 further implies that the leading eigenvalues capture
the most informative variance. Consistently, λ1 provides the strongest OOD signal, followed by λ2

and then λ3. These results highlight why focusing on dominant modes, as done in EigenScore, yields
more stable and informative detection than scalarized measures such as MSE.

5 CONCLUSION

We introduced EigenScore, a principled OOD detection method for diffusion models that leverages
the spectral structure of denoising uncertainty. By linking KL divergence to excess denoising error
and showing that posterior covariance inflation consistently signals distribution shift, EigenScore
offers both theoretical justification and strong empirical performance. Across diverse benchmarks,
EigenScore consistently outperformed likelihood-based and score-norm methods, with particularly
robust gains in near-OOD settings where traditional approaches fail. Ablation studies further con-
firmed that most discriminative information lies in the leading eigenvalues at moderate noise levels,
validating our spectral perspective.

LIMITATIONS

Despite its strengths, our approach has several limitations. First, EigenScore only leverages a subset
of the information available in diffusion models: we use the eigenvalues of the posterior covariance
but discard eigenvector structure, which may contain additional discriminative cues. Moreover, we
compute features at a limited set of timesteps rather than across the full diffusion trajectory, potentially
overlooking temporal dynamics of uncertainty. Second, our framework focuses on the magnitude of
eigenvalues, but does not explicitly exploit their rate of change across eigenvalues, which itself may
differ systematically between InD and OOD inputs and could serve as a detection signal.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in our
experiments (CIFAR-10, CIFAR-100, SVHN, CelebA, TinyImageNet) are publicly available. We
provide detailed descriptions of our training and evaluation protocols, including the diffusion model
architecture, noise schedules, hyperparameters, and aggregation strategies. Experimental results are
averaged across multiple random seeds, and we report the effect of varying key parameters (number
of timesteps, repetitions, and eigenvalues) in Section 4.2. To further facilitate reproducibility, we
have released the full anonymous source code and scripts for running experiments in supplement B.4.
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LLMS USAGE STATEMENT

During the preparation of this manuscript, we made limited use of large language models (LLMs),
specifically OpenAI’s ChatGPT, to assist with language refinement and organization of some sections.
All technical content, equations, derivations, and experimental design were developed entirely by the
authors. The LLM was not used for ideation of methods, data analysis, or generation of results.
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A PROOFS

A.1 CONNECTING KL DIVERGENCE WITH DENOISING ERROR

Eq. (4) is inspired from the work of Song et al. (2021) [Theorem 1] and Shoushtari et al. (2025)
[Theorem 1], where KL divergence between two distribution is stated in terms of fisher divergence:

DKL(p ∥ q) =
∫ ∞

0

Ex,xt

[∥∥∇ log p(xt)−∇ log q(xt)
∥∥2
2

]
σt dt. (12)

By using the Tweedie’s formula from Eq. (2)

Dp(xt) = Ep[x|xt] = xt + σ2
t∇ log p(xt),

and replacing the score functions for distributions p and q with their corresponding MMSE estimators,
we have:

DKL(p ∥ q) =
∫ ∞

0

Ex,xt

[
∥Ep[x|xt]− Eq[x|xt]

∥∥2
2

]
σ−3
t dt

=

∫ ∞

0

{
Ex,xt

[
∥x− Eq[x|xt]

∥∥2
2

]
− Ex,xt

[
∥x− Ep[x|xt]

∥∥2
2

]}
σ−3
t dt, (13)

where in the second line, we used the following decomposition:

Ex,xt

[
∥x− Eq[x|xt]

∥∥2
2

]
= Ex,xt

[
∥x− Ep[x|xt] + Ep[x|xt]− Eq[x|xt]

∥∥2
2

]
= Ex,xt

[
∥x− Ep[x|xt]∥22

]
+ Ex,xt

[
∥Ep[x|xt]− Eq[x|xt]

∥∥2
2

]
+ 2Ex,xt

[(
x− Ep[x|xt]

)T(Ep[x|xt]− Eq[x|xt]
)]

= Ex,xt

[
∥x− Ep[x|xt]∥22

]
+ Ex,xt

[
∥Ep[x|xt]− Eq[x|xt]

∥∥2
2

]
,

where in the last equality, we used the fact that

Ex,xt

[(
x− Ep[x|xt]

)]
= 0, where x ∼ p(x) and xt ∼ p(xt).

By replacing the result of this equation into Eq. (13)

Ex,xt

[
∥Ep[x|xt]− Eq[x|xt]

∥∥2
2

]
= Ex,xt

[
∥x− Eq[x|xt]

∥∥2
2

]
− Ex,xt

[
∥x− Ep[x|xt]

∥∥2
2

]
= MSE(Dq, t)−MSE(Dp, t).

A.2 CONNECTING MSE OF DENOISING TO COVARIANCE

We assume that MMSE estimator Dp is an optimal denoiser trained on images sampled from data
distribution p(x). Consequently, the MSE for this operator is defined as

MSE(Dp, t) = Ex,xt

[
∥x− Ep[x|xt]∥22

]
= Ex

[
Ext

[
tr(x− Ep[x|xt])(x− Ep[x|xt])

T
∣∣xt

]]

= Ex

[
tr Covp[x|xt]

]
,

where the first equality follows from the definition of MSE using the MMSE estimator Dp(xt) =
Ep[x|xt], and the second equality applies the law of total expectation along with the identity ∥v∥22 =
tr
(
vvT

)
. In the last equality, we used the fact that the inner expectation corresponds to the conditional

covariance matrix Cov[x|xt], whose trace gives the expected squared error. From Theorem 1
of Manor & Michaeli (2024), we have

Covp[x|xt] = σ2
t∇Dp(xt) ≈

K∑
k=1

λt
k(xt)uku

T
k , (14)
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where∇Dp is the Jacobian, assumed to be positive semi-definite and symmetric. We approximate
the Jacobian matrix using the top K eigenvalues λ1, · · · , λK , nd their corresponding eigenvectors
u1, · · · ,uK which is a low-rank approximation of the full covariance matrix based on its spectral
decomposition of symmetric positive semi-definite matrices. By retaining only the top K < n terms
in this expansion, we obtain a rank-K approximation of the covariance, capturing most of its variance
while reducing dimensionality and computation. The trace of this approximate covariance is then
given by

tr(Covp[x|xt]) ≈
K∑

k=1

λt
k(xt), (15)

since each term uku
T
k is a rank-one projection matrix with unit trace. This expression allows us to

estimate the total variance (or the MSE) using only the top eigenvalues, under the assumption that the
remaining eigenvalues contribute negligibly. Consequently, we have:

MSE(Dp, t) = Ex

[
tr Covp[x|xt]

]
= σ2

t

K∑
k=1

λt
k(xt). (16)

A.3 MIYASAWA RELATIONSHIP

The connection between MMSE estimation under Gaussian noise and the score function was first es-
tablished in Miyasawa (1961) and later generalized in Raphan & Simoncelli (2011). For completeness,
we provide a derivation here.

Let xt = x+ z, denote a noisy observation of x ∼ p(x), where z ∼ N (0, σ2
t I), and define p(xt|x)

as the Gaussian likelihood. The marginal distribution of y is given by:

p(xt) =

∫
p(x) p(xt|x) dx.

To derive the score function ∇xt
log p(xt) , we differentiate the log-marginal using the identity

∇h(xt) = h(xt)∇ log h(xt):

∇xt log p(xt) =

∫
p(x)p(xt|x)∇xt log p(xt|x)dx

/
p(xt)

=

∫
p(x|xt)∇xt log p(xt|x)dx

= E [∇xt
log p(xt|x) | xt] ,

which can be interpreted as a chain rule applied to score functions rather than densities.

Next, we compute the Hessian∇2 log p(xt). Differentiating again:

∇2 log p(xt) =

∫
p(x|xt)

(
∇xt

log p(x|xt)∇xt
log p(xt|x)T +∇2

xt
log p(xt|x)

)
dx.

Using Bayes’ rule:
log p(x|xt) = log p(xt|x) + log p(x)− log p(xt),

and differentiating with respect to y, we obtain:

∇xt
log p(x|xt) = ∇xt

log p(xt|x)−∇ log p(xt).

Substituting this into the previous expression yields:

∇2 log p(xt) =

∫
p(x|xt)

(
(∇xt

log p(xt|x)−∇ log p(xt))∇xt
log p(xt|x)T +∇2

xt
log p(xt|x)

)
dx

= E
[
(∇xt log p(xt|x)−∇ log p(xt))∇xt log p(xt|x)T | xt

]
+ E

[
∇2

xt
log p(xt|x) | xt

]
= Cov [∇xt

log p(xt|x) | xt] + E
[
∇2

xt
log p(xt|x) | xt

]
.
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Now, since p(xt|x) is Gaussian with variance σ2
t I , we have:

log p(xt|x) = −
1

2σ2
t

∥xt − x∥2 + const,

∇xt log p(xt|x) = −
1

σ2
t

(xt − x),

∇xt log p(xt|x) = −
1

σ2
t

I.

Plugging into the previous results gives the Miyasawa identities:

∇ log p(xt) =
1

σ2
t

(E[x | xt]− xt) , (17)

∇2 log p(xt) =
1

σ4
t

Cov[x | xt]−
1

σ2
t

I. (18)

Rearranging, we recover both the posterior mean and posterior covariance in terms of the score and
its Hessian:

E[x | xt] = xt + σ2
t∇ log p(xt), (19)

Cov[x | xt] = σ2
t

(
I + σ2

t∇2 log p(xt)
)
. (20)

Finally, the optimal denoising error is given by the expected trace of the posterior covariance:

E
[
∥x− E[x | xt]∥2

]
= E [tr Cov[x | xt]] .

A.4 PROOF OF LEMMA 1.

Lemma 1 Let p(xt) = p ∗ N (0, σ2
t I) denotes the noisy marginal distribution in Eq. (3) and

Σt(xt) = σ2
t

(
I + σ2

t∇2 log p(xt)
)

from Miyasawa (Eq. (6)). As σt → ∞, ∥∇2 log p(xt)∥ → 0
uniformly on compact sets. Hence

Σt(xt) = σ2
t I + o(σ2

t ),

so all eigenvalues satisfy λt
k(xt) = σ2

t + o(σ2
t ).

Proof. Let Gσt denotes the Gaussian density function with standard deviation σt ≥ 0. Then, we have

p(xt) =

∫
p(xt|x)p(x)dx =

∫
Gσt

(xt − x)p(x)dx, (21)

Differentiation under the integral yields

∇Gσ(z) = −
z

σ2
Gσ(z), ∇2Gσ(z) =

(zzT

σ4
− I

σ2

)
Gσ(z). (22)

Hence

∇xtp(xt) =

∫
∇Gσt(xt − x) p(x) dx, ∇2

xt
p(xt) =

∫
∇2Gσt(xt − x) p(x) dx. (23)

Fix a compact set K ⊂ Rd. Using Cauchy–Schwarz and that p has finite second moment, one obtains
bounds of the form

∥∇p(xt)∥
p(xt)

≤ C1

σt
,

∥∇2p(xt)∥
p(xt)

≤ C2

σ2
t

, ∀x ∈ K, (24)

for constants C1, C2 independent of σt. Consequently,

∇2 log p(xt) =
∇2p(xt)

p(xt)
− ∇p(xt)∇p(xt)

T

p(xt)2
(25)
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satisfies

∥∇2 log p(xt)∥ ≤
C2

σ2
t

+
C2

1

σ2
t

= O
( 1

σ2

)
, (26)

uniformly on K. Thus σ2
t∇2 log p(xt)→ 0 as σt →∞.

Plugging into
Σt(xt) = σ2

t (I + σ2
t∇2 log p(xt)) (27)

gives
Σt(xt) = σ2

t I + o(σ2
t ), (28)

and hence λt
k(xt) = σ2

t + o(σ2
t ) for all k.

This implies that at large noise, the posterior covariance becomes asymptotically isotropic; the
spectrum flattens and “small” eigenvalues are lifted to ≈ σ2

t . Their contribution is therefore indistin-
guishable from isotropic noise, which explains why including late timesteps or many tail eigenvalues
does not improve OOD discrimination.

A.5 PROOF OF KY FAN’S THEOREM

Prop. 2. Let Σt(xt) ⪰ 0 have eigenvalues λt
1 ≥ · · · ≥ λt

n with eigenvectors forming Ut =
[ut

1, . . . ,u
t
n]. For any K∈{1, . . . , n},

max
V ∈Rn×K : V TV =IK

tr
(
V TΣt(xt)V

)
=

K∑
k=1

λk,

and a maximizer is V ⋆ = [ut
1, . . . ,u

t
K ].

Proof. Let V ∈ Rn×K with V TV = IK . Write Σt(xt) = UtΛtU
T
t with U t orthogonal. Set

Q := UT
t V ∈ Rn×K . Since Ut is orthogonal, QTQ = V TUtU

T
t V = IK , so the columns of Q

are orthonormal.

We have

tr(V TΣt(xt)V ) = tr
(
V TUtΛtU

T
t V

)
= tr

(
QTΛtQ

)
=

n∑
i=1

λt
i ∥qi∥22,

where qTi denotes the i-th row of Q (so ∥qi∥22 ≥ 0). Because QTQ = IK ,
n∑

i=1

∥qi∥22 = tr(QTQ) = K, and ∥qi∥22 ≤ 1 for all i (each row is a subvector of a unit vector).

Thus the objective is a linear functional of the nonnegative weights wi := ∥qi∥22 subject to
∑

i wi = K
and 0 ≤ wi ≤ 1. Since the eigenvalues are ordered λt

1 ≥ · · · ≥ λt
n, the sum

∑
i λiwi is maximized

by assigning wi = 1 for i = 1, . . . ,K and wi = 0 otherwise (rearrangement/greedy argument),
which yields

max
V TV =IK

tr(V TΣV ) =

K∑
i=1

λt
i.

This maximum is attained by taking Q = [ e1, . . . , eK ], i.e., V = UQ = [ut
1, . . . ,u

t
K ], the matrix

of the top-K eigenvectors.

B ADDITIONAL DETAILS

B.1 COMPUTATIONS OF EIGENVALUES

To compute the leading eigenvalues of the posterior covariance efficiently, we follow the Jacobian-free
subspace iteration method introduced by Manor & Michaeli (2024). The algorithm approximates
Jacobian–vector products using finite differences of the denoiser output, followed by QR orthogo-
nalization to stabilize directions. Iteratively refining these directions yields approximate posterior
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Algorithm 2 Efficient computation of posterior principal components (Manor & Michaeli, 2024)

Require: N (Number of PCs), K (number of iterations), D(·) (MSE-optimal denoiser) , y (noisy
input), σ2

t (noise variance), c≪ 1 (linear approx. constant)
1: Initialize {v(i)

0 }Ni=1 ∼ N (0, σ2
t I)

2: for k ← 1 to K do
3: for i← 1 to N do
4: v

(i)
k ←

1

2c

(
D
(
y + cv

(i)
k−1

)
− D(y − cv

(i)
k−1)

)
5: end for
6: Q,R← QR DECOMPOSITION

(
[v

(1)
k · · · v(N)

k ]
)

7: [v
(1)
k · · · v(N)

k ]← Q
8: end for
9: v(i) ← v

(i)
K

10: λ(i) ← σ2
t

2c

∥∥D(y + cv
(i)
K−1

)
− D

(
y − cv

(i)
K−1)

∥∥
Table 5: Optimized hyperparameters for EigenScore.

InD CelebA vs. C10 vs. C100 vs. SVHN vs.
OOD C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

Aggregation All All All Median Median All All Median All All All All

T [100,150,200,
250,300]

[100,150,200,
250] [150,200,250] [100,150,200] [150] [100] [100,150] [450,500] [150,200]

[100,150,200,
250,300,350,

400,450]

[100,150,200,
250,300,350,400,

450,500,550]

[100,150,200,
250,300,350,400,

450,500]
I 20 20 20 20 20 20 20 20 20 20 20 20
K 3 3 3 3 3 3 3 3 3 3 3 3

principal components and their corresponding eigenvalues. This approach avoids the costly explicit
Jacobian calculation while still capturing the dominant spectral structure of the denoising uncertainty.
Algorithm 2 reports the calculations of eigenvalues.

B.2 OPTIMIZED PARAMETERS

We report the hyperparameters selected for EigenScore after validation. The aggregation method
determines how repetitions are combined (mean, median, or none), while T specifies the set of
diffusion timesteps, I the number of repetitions, and K the number of leading eigenvalues retained.
These parameters were tuned on validation sets to balance accuracy and efficiency, and the final
values are used consistently across experiments reported in the main paper in Table 1.

B.3 BASELINES

We compare our method against several generative baselines for OOD detection, including Improved
CD (Du et al., 2021), DoS (Morningstar et al., 2021), TT (Nalisnick et al., 2019b), WAIC (Choi
et al., 2018), NLL, IC, DDPM-OOD (Graham et al., 2023), LMD (Liu et al., 2023), DiffPath (Heng
et al., 2024). We use the official repositories for each method, along with diffusion models trained
under the EDM framework (Karras et al., 2022) and the Glow model (Kingma & Dhariwal, 2018).
For the Glow-based baselines (DoS, TT, WAIC), we follow (Morningstar et al., 2021). In DoS, we
extract three statistics—the log-likelihood, latent log-probability, and Jacobian log-determinant—and
fit Kernel Density Estimators (KDE) on the training data for each, summing across statistics to obtain
the final score. For TT and WAIC, we adopt the sample-wise versions from (Morningstar et al.,
2021): TT measures the deviation of an individual sample’s likelihood from the training-set average,
while WAIC is computed from five independently trained models using the mean and variance of their
log-likelihoods. For diffusion-based baselines, we compute NLL using the official implementation
from OpenAI’s improved diffusion Github repository1 and derive IC by combining this NLL with
PNG compression. Other methods (DDPM-OOD2, LMD3, DiffPath4) are implemented using their
official repositories.

1https://github.com/openai/improved-diffusion
2https://github.com/marksgraham/ddpm-ood
3https://github.com/zhenzhel/lift_map_detect
4https://github.com/clear-nus/diffpath
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B.4 DATASET AND MODELS

We follow the official train/test splits when training diffusion models. For validation, we randomly
sample 500 in-distribution (InD) and 500 OOD images; for testing, we sample a disjoint set of 500
InD and 500 OOD images. All images are resized to 32× 32. All diffusion models are trained using
the EDM framework of Karras et al. (2022). The code can be found here 5.

B.5 ADDITIONAL EXPERIMENTS

B.5.1 COMPARISON WITH IMAGENET-1K

We have compared our method using ImageNet dataset as InD and SVHN and Texture dataset as
OOD. Table 6 report the results.

Table 6: ImageNet-1K dataset detection results (AUROC). We evaluate on related datasets, including SVHN
and Texture as OOD samples. Note the competitive performance of EigenScore over prior diffusion-based
approaches.

InD ImageNet-1K vs. Avg
OOD SVHN Texture

DDPM-OOD 0.208 0.570 0.389
LMD 0.901 0.486 0.693
DiffPath 0.753 0.699 0.726
DiffPathV2 (Abdi et al., 2025) 0.547 0.860 0.703
EigenScore 0.755 0.709 0.732

B.5.2 COMPARISON OF C10 AND C100 WITH LSUN, ISUN, AND TEXTURES

We compare our method using CIFAR-10 and CIFAR-100 as InD datasets and LSUN, iSUN, and
Textures as OOD datasets. Table 7 reports the results.

Table 7: C10 and C200 datasets detection results vs. LSUN, iSUN, and Textures. Note the competitive
performance of EigenScore over DiffPath.

InD C10 vs. C100 vs. Avg
OOD LSUN iSUN Textures LSUN iSUN Textures

DiffPath 0.618 0.911 0.780 0.609 0.869 0.761 0.758
EigenScore 0.977 0.974 0.756 0.877 0.879 0.627 0.848

B.5.3 COMPARISON OUR RESULTS WITHOUT FINETUNING THE HYPERPARAMETER

To evaluate the robustness of our method, we also report performance using the default hyperparameter
settings, without any dataset-specific finetuning. This setting reflects a more realistic deployment
scenario, where the practitioner may not have access to OOD validation data for tuning. As shown
in Table 8, our method maintains strong and stable performance even without hyperparameter
adjustments, demonstrating that EigenScore is not sensitive to the choice of T , I , J , or K and
generalizes well across datasets. The fixed setup uses k = 3, T = {100, 150, 200, 250}, I = 20, and
all aggregation.

5https://drive.google.com/drive/folders/1-iYwjFhu3am9y3_
ZrOirg8CILcsafbhc?usp=drive_link
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Table 8: Main OOD detection results (AUROC). Comparison of EigenScore with and without hyperparameter
fine-tuning. Note that EigenScore outperforms the best basline in average by 2%.

InD CelebA vs. C10 vs. C100 vs. SVHN vs. Avg
OOD C10 C100 SVHN C100 SVHN CelebA C10 CelebA SVHN C10 C100 CelebA

EigenScore (w/ tuning) 0.965 0.944 0.896 0.884 0.825 0.885 0.652 0.700 0.683 0.991 0.981 0.998 0.869
EigenScore (w/o tuning) 0.965 0.944 0.888 0.880 0.810 0.873 0.642 0.427 0.661 0.992 0.982 0.994 0.838

B.5.4 ABLATION STUDIES ON PARAMETER C OF THE POWER ITERATION

We perform ablation study on the parameter c used in the power-iteration step when computing the
top-1 eigenvalue. We evaluate multiple values of c while keeping all other settings fixed: we use the
z-score detection method, mean aggregation across steps, and timesteps {100, 150, 200, 250, 300}.
The experiment is conducted on CIFAR-10 (InD) versus CIFAR-100 (OOD). As reported in Table 9,
the results show that EigenScore is stable across a wide range of c values, indicating that the method
is not sensitive to this parameter and that our default choice provides strong and reliable performance.

Table 9: Ablating Parameter c

c 0.005 0.01 0.05 0.1 0.5 1
AUROC 0.846 0.844 0.850 0.847 0.866 0.875

B.5.5 SENSITIVITY OF EIGENSCORE TO DIFFUSION TIMESTEP

Figure 6 shows the OOD detection performance for the CIFAR-100 vs. CelebA pair across all
diffusion timesteps. The results reveal that this pair exhibits peak separability at later timesteps
(approximately 400–500), where the posterior covariance inflation between the two datasets becomes
most pronounced. Earlier timesteps (100–300), used in the ablation table, do not reach this peak
region, explaining the lower performance observed there. This behavior reflects dataset-specific
sensitivity to the diffusion trajectory rather than instability, and EigenScore consistently improves
once the anisotropic covariance modes dominate.

Figure 4: Sensitivity of EigenScore to diffusion timestep for CIFAR-100 vs. CelebA. We plot
OOD detection performance across all diffusion timesteps. This pair exhibits peak separability at
later timesteps (approximately 400–500), where posterior covariance inflation between ID and OOD
samples is most pronounced. Earlier timesteps (100–300), used in the ablation study, do not reach
this peak region, explaining the lower performance observed there.
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Figure 5: DiffPath feature distributions for SVHN (ID) vs. CelebA (OOD). Each of the six DiffPath
dimensions shows substantial overlap between ID and OOD histograms, indicating that the metric
provides weak separability for this pair.

Figure 6: AUROC as a function of diffusion timestep t (100–700) for the largest three eigenvalues
(K = 1, 2, 3) across 6 ID/OOD pairs. The plots illustrate how OOD separability evolves along
the diffusion trajectory and highlight the timestep regions where additional eigenvalues improve or
saturate performance.

B.5.6 TIME/NFE COMPARISON

To contextualize computational cost, Table 10 reports the number of function evaluations (NFE) and
wall-clock time for key baselines and our method per image.

Table 10: Time/NFE comparisons

Method DiffPath LMD DDPM-OOD EigenScore
NFE 10 10000 350 300
Time (s) 0.1s 1.8s 0.53s 1.9s
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B.5.7 HIGH-RESOLUTION OOD DETECTION EXPERIMENTS (256×256)

We evaluate EigenScore on high-resolution and large-scale image datasets. We conduct additional
OOD detection experiments using a 256×256 DDPM 6 (Baranchuk et al., 2022). We evaluate OOD
performance on AFHQ (Choi et al., 2020) and Microscopy (CHAMMI) (Chen et al., 2023).Results
are reported in Table 11.

Table 11: OOD detection results on high-resolution 256×256 models. In-distribution dataset is
FFHQ-256. OOD datasets are AFHQ and Microscopy (CHAMMI).

Method AFHQ Microscopy Avg
LMD 0.485 0.552 0.5185
DiffPath 0.593 0.998 0.7955
EigenScore 0.532 0.899 0.7155

6https://github.com/yandex-research/ddpm-segmentation
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