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Abstract

Graph transformers (GTs) match or surpass GNN performance by applying global
self-attention, yet their quadratic memory requirement makes them impractical, and
their receptive field is often limited by neighborhood aggregation, as fine-grained
structural signals—especially in heterophilous graphs—are lost. We propose the
Cascade-Rewired Graph Transformer (CR-GRAPHORMER), which balances
computational efficiency with rich structural awareness. This is achieved by con-
structing an auxiliary network in which each node is assigned a token based on
a “mesoscopic edge rewiring” process generated through deterministic contagion
cascades initiated from its ego-network. Replacing long multi-hop paths with
direct edges in the auxiliary network yields a backbone that captures higher-order
structures while retaining sparsity. The rewiring amplifies homophilous ties and
preserves critical heterophilous connections present in the extended neighborhoods
of each node, providing every vertex with a compact, information-rich context
that reflects local motifs and global reach. Each node retains a fixed-length token
list drawn from its mesoscopic neighbors; because self-attention is confined to
these constant-size sequences, CR-GRAPHORMER achieves O(E) complexity
in graph tokenization, producing an expressive yet scalable model. We evaluate
our proposed approach on 14 benchmark datasets spanning both homophilic and
heterophilic settings and observe improvements in node classification accuracy
on 10 of them. These results demonstrate that tokenizing over the “mesoscopic
rewired graph” introduces a strong inductive bias that enhances graph learning.

1 Introduction

Graph-structured data arise in a wide range of domains, from physical systems to virtual platforms,
including applications in anomaly detection [Deng and Hooi, 2021], traffic forecasting [Kong et
al., 2024], and recommendation systems [Agrawal et al., 2024]. Graph Neural Networks (GNNs)
are widely adopted for these tasks owing to their ability to capture local structure through message
passing [Hamilton et al., 2017]. However, their reliance on neighborhood aggregation introduces
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well-known limitations, including over-smoothing [Chen et al., 2020] and over-squashing [Alon and
Yahav, 2020], which can hinder their ability to model long-range dependencies.

Graph transformers (GTs) have emerged as a powerful alternative for graph representation learning
because their global self-attention can directly capture long-range dependencies: treating each node
feature vector as a token, a GT allows every node to attend to every other node within a single layer.

Yet, unlike words in a sentence or pixels on a grid, graph nodes possess no canonical ordering;
without additional signals, the attention mechanism cannot distinguish whether two tokens are
adjacent, several hops apart, or connected by specific edge types. To remedy this, modern GTs
inject positional encodings that embed structural information into the input tokens before attention
is applied. These encodings range from global descriptors such as Laplacian eigenvectors to local
cues like node degrees, shortest-path distances, or edge attributes that convey pairwise relations. By
serving as inductive biases, positional encodings enable transformers to interpret a graph’s irregular
topology and have been key to their empirical performance [Kreuzer et al., 2021; Zhao et al., 2021;
Ying et al., 2021].

Despite their expressive capacity, dense self-attention in GTs scales poorly. Computing all token-wise
interactions incurs a prohibitive O(n2) cost in both memory and runtime [Dwivedi and Bresson,
2020; Mialon et al., 2021; Wu et al., 2021]. This inefficiency is compounded by the lack of structure
in the attention pattern, which can lead to noisy representations by weighting irrelevant or weakly
connected node pairs [Zhou et al., 2025]. In practice, the very mechanism that enables long-range
reasoning may hinder performance on large or sparse graphs.

To address these concerns, sparse attention has emerged as a scalable alternative. Rather than
allocating one token per node, sparse GTs construct compact, node-specific sequences that encode
only the most structurally relevant context, reducing attention complexity to nearly linear [Zhou
et al., 2025]. For instance, NAGphormer [Chen et al., 2023] leverages spectral features to define
token neighborhoods, while VCR-Graphormer [Fu et al., 2024] uses Personalized PageRank (PPR)
to guide token selection. However, these methods introduce their own trade-offs: spectral encodings
are often costly to compute, and PPR tends to concentrate attention around nearby high-degree nodes
[Andersen et al., 2006], which can narrow the model’s receptive field.

The localized tokenization employed not only by VCR but also by sparse attention in general,
while efficient, can obscure long-range structural dependencies. Multi-hop tokens often compress
information from distant nodes into coarse representations, diminishing resolution and limiting
expressiveness. This loss of granularity is particularly problematic in heterophilic graphs, where
nodes with similar features are typically far apart and sparsely connected [Zhou et al., 2025].

To overcome these limitations, we propose the Cascade-Rewired Graph Transformer (CR-
GRAPHORMER), a new architecture inspired by contagion dynamics in social systems [Granovetter,
1978; Centola and Macy, 2007; Centola, 2018]. Rather than relying on first-order random walks
or static neighborhood heuristics, CR-GRAPHORMER generates node-specific token sets using cas-
cades—interpretable as higher-order random walks—that adaptively propagate through the graph.
We prove that these cascades quantify connectivity between node pairs in a way that preserves
fine-grained local structure without introducing locality bias (Theorem 3.1). Crucially, they can be
computed in constant time per node [Chaitanya et al., 2025], making the method scalable to large
graphs while retaining sensitivity to both nearby and distant interactions.

2 Preliminaries

This section provides a high-level overview of contagion dynamics and describes the specific cascade
mechanisms we adopt for tokenization.

Let G = (V,E,W ) be an undirected, weighted graph with n = |V |, m = |E|, and a weight function
W : E → R assigning weights to the edges in E. For i ∈ V , denote N(i) = { j ∈ V : (i, j) ∈
E }, N [i] = N(i) ∪ {i}, d(i) = |N(i)|.

Contagion Model. A contagion on G is a process {xt}Tt=0, where xt ∈ {0, 1}n denotes the state
of the contagion at time t, and [xt]i = 1 indicates that node i is activated.
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The monotone active set for a vertex v at time T , denoted Sv
t , is defined as Sv

t =
{
i ∈ V |

[xt]i = 1, 0 ≤ t ≤ T
}

. For an inactive vertex u /∈ Sv
t , its instantaneous neighbor support is

σt(u) = |N(u) ∩ Sv
t |.

Mesoscopic Rewiring via Deterministic Cascades. For every vertex u and a subset R of its
ego-neighborhood, we launch fixed-length deterministic contagion cascades—memoryless higher-
order random walks—under the two activation rules of Chaitanya et al. [2025], each resulting in a
discrete-time tokenization scheme:

• Adaptive-Threshold Contagion (MAS): activating the inactive vertex with the maximum active-
neighbor support (i.e., the threshold is adaptive);

• Absolute-Threshold Contagion (TAS): activating a vertex once at least τ of its neighbors are
active (given an absolute threshold τ ).

Executing these cascades over multiple random R produces constant-length activation traces. For
each source node, we tally the most frequently co-activated vertices, keep the top k, and connect
them to the source node to build a mesoscopic rewired structural auxiliary graph G∗. The rewired
graph G∗ turns multi-hop yet structurally salient pairs into direct neighbors while pruning weak
links [Centola and Macy, 2007]. The constructed network increases effective homophily—even in
originally homophilic or heterophilic settings—thereby enabling accurate predictions across a diverse
range of network types. This leads to better node classification performance across both homophilic
and heterophilic benchmarks. Notably, the entire cascade-based rewiring process operates in O(|E|)
time, providing a significantly more efficient and structurally grounded alternative to traditional
sparse graph tokenization approaches.

Self-Attention. Following Vaswani et al. [2017], we use the standard self-attention layer:

H′ = Attention(Q,K,V) = softmax
(QK⊤

√
d′

)
V ∈ Rn×d′

, (1)

where the queries Q = HWQ, the keys K = HWK , and the values V = HWV , H ∈ Rn×d is
the input feature matrix, WQ,WK ,WV ∈ Rd×d′

are learnable projections, and the output feature
matrix is H′ ∈ Rn×d′

.

3 Cascade-Rewired Graphormer (CR-GRAPHORMER) Architecture

In this section, we extend the mini-batch training strategy proposed by Fu et al. [2024], adapting it to
our cascade-based framework for effective transformer training on both homophilic and heterophilic
networks. For a given undirected graph G = (V,E,W ), we construct two cascade-rewired auxiliary
graphs based on local activation dynamics, G∗ and G̃, capturing higher-order structural and feature-
aware signals. We then describe how fixed-length token lists are derived from these rewired graphs,
enabling efficient and expressive mini-batch processing.

3.1 Mesoscopic Edge Rewiring

To capture homophily, we perform adaptive and absolute threshold-activation simulations on G. For
each node v ∈ V , we generate cascades of a constant walk length ℓ ∈ N with ℓ activation steps under
two regimes:

• Adaptive-Threshold Contagion (MAS): For each node v ∈ V , draw a random subset R ⊆ N(v)
from its immediate neighbors. The cascade is initialized by activating Sv

0 = {v} ∪R. At each
step t ∈ [0, ℓ−1], compute τt = maxu/∈Sv

t
σt(u) and activate u⋆

t ∈ argmaxu/∈Sv
t
σt(u), the most

strongly reinforced inactive vertex, by adding it to the active set. The active set of v is updated as
Sv
t+1 = Sv

t ∪ {u⋆
t }. In our experiments, we refer to this procedure as CR-ADAPTIVE.

Since τt+1 ≤ τt for all t, the reinforcement required for activation decreases monotonically,
so vertices highly embedded in the seed’s neighborhood join the cascade early. In contrast,
vertices in sparser regions are activated only after the threshold has fallen sufficiently. Thus, MAS
exhaustively explores densely connected regions before crossing weak cuts, and the contagion
process propagates preferentially through cohesive clusters.
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• Absolute-Threshold Contagion (TAS): For each node v ∈ V , select a random subset R ⊆ N(v)
of its first-order neighbors. The contagion is initialized by activating Sv

0 = {v} ∪ R. At each
subsequent step t ∈ [0, ℓ− 1], find At =

{
u ∈ V \ Sv

t

∣∣ σt(u) ≥ τ
}

. If At ̸= ∅, select one
u⋆
t ∈ At (e.g., uniformly at random) to activate and set Sv

t+1 = Sv
t ∪ {u⋆

t }, regulating a node to
be activated once at least τ of its neighbors are in the active set. This procedure is repeated for
τ ∈ {1, . . . , N}, with N = 5 as the default value. In our experiments, we refer to this procedure
as CR-ABSOLUTE.
When τ = 1, the procedure collapses to breadth-first search, whereas larger τ values confine
propagation to vertices receiving strong multi-neighbor reinforcement [Granovetter, 1978; Cen-
tola, 2018]. These cascades can also be interpreted as a higher-order, memoryless random walk
whose state depends only on the currently activated frontier.

Starting from the target node v, together with different (random) subsets of its immediate neigh-
borhood, we record every active set (cascade) as an ordered list of activated vertices until either no
further activations occur or the walk length limit ℓ, a constant, is reached using the CR-ADAPTIVE
and CR-ABSOLUTE procedures. These sequences reveal which vertices repeatedly influence one
another through multi-hop paths. Below, we describe the construction of the auxiliary graphs using
the CR-ADAPTIVE and CR-ABSOLUTE procedures.

Cascade-Rewired Auxiliary Graph Construction. Once a cascade procedure—either CR-
ADAPTIVE or CR-ABSOLUTE—is selected, each execution yields an activation sequence, that
is, an ordered active set denoted by Sv

ℓ = (v, u1, . . . , uℓ). Let Mv be the multiset of ver-
tices appearing in the union of all active sets rooted at v. Define the frequency map fv(u) =
multiplicity of u in Mv, u ∈ V. Retain the k most frequent vertices for each v ∈ V :

Fk(v) = arg top-k
u∈V

{fv(u)}, (2)

and construct an auxiliary activation graph with edges Ev
act = {(v, u) | u ∈ Fk(v), ∀v ∈ V }. This

process is performed for all v ∈ V . The cascade-rewired structural auxiliary graph is then given
by G∗ = (V ∗, E∗,W ∗), where E∗ =

⋃
v∈V Ev

act and V ∗ = V . Because vertices across weak cuts
appear rarely in the cascades, G∗ accentuates cohesive community structure. Early positions in the
activation order correspond to nodes tightly coupled to the source, while later positions may mark
peripheral or weakly connected vertices. Because both absolute and adaptive contagions privilege
multi-edge reinforcement, the sequences naturally reveal community boundaries and higher-order
motifs. A noteworthy by-product of the mesoscopic rewiring step, G∗, prior to any contextual-edge
augmentation, is a measurable rise in node-level homophily for heterophilic networks, as reported
in Table 2.

How to Choose the Walk Length ℓ? The walk length ℓ sets the spatial resolution of the rewiring
procedure. Restricting each contagion to at most ℓ propagation steps focuses the analysis on a
mesoscopic neighborhood of the seed—small enough to prevent global dilution, yet wide enough
to reveal multi-hop motifs such as triangles, cliques, and other short cycles. Intuitively, we seek to
minimize the effective resistance between the starting active set associated with v, Sv

0 , and any vertex
u that becomes activated within a walk of length at most ℓ. To formalize this intuition, we derive the
following upper bound:
Theorem 3.1. Let G = (V,E) be an undirected graph, and let θ : V → N be a threshold function
governing a deterministic contagion process with uniform thresholds. Let S0 := {v} ∪R for some
node v ∈ V and subset R ⊆ NG(v). Denote by Sv

t the set of nodes activated until time t when the
contagion starts from v together with a subset of its neighborhood R. Let G′ ⊆ G be the subgraph
activated by Sv

0 .

Suppose a node u ∈ V \ S0 satisfies:

(i) θ(u) = τ for some τ ≥ 1,

(ii) u ∈ Sv
ℓ , i.e., u becomes active in at most ℓ time steps.

Then the effective resistance between the active set Sv
0 and u in G′, denoted RG′

eff (S
v
0 , u), satisfies

RG′

eff (S
v
0 , u) ≤ ℓ

τ .
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Theorem 3.1, whose proof is provided in Appendix B, follows directly from the following two
lemmas:
Lemma 3.2. If u activates at threshold τ in at most ℓ time steps, then G′ contains τ edge-disjoint
Sv
0–u paths of length ≤ ℓ.

Lemma 3.3. If G′ contains τ edge-disjoint Sv
0–u paths P1, . . . , Pτ with |Pi| ≤ ℓ for all i, then

RG′

eff (S
v
0 , u) ≤ ℓ

τ .

Remark. If u activates within ℓ steps, Lemma 3.2 provides the τ disjoint paths, and Lemma 3.3
yields RG′

eff (S
v
0 , u) ≤ ℓ

τ . If G′ consists solely of τ length-ℓ chains in parallel between Sv
0 and u,

equality RG′

eff = ℓ/τ is attained, showing that the bound is tight. The proofs of Lemmas 3.2 and 3.3
are provided in Appendix B.

Theorem 3.1 implies that if a vertex becomes activated by S0 = {v} ∪R under a higher threshold τ ,
its activation must be supported by multiple short paths originating from v, reflecting strong local
reinforcement. In other words, a higher activation threshold signals that the vertex is more cohesively
connected to v. Furthermore, since the upper bound on effective resistance grows proportionally with
the walk length ℓ, we select a smaller value of ℓ in our experiments to promote tighter structural
connectivity.

This bound is also crucial for maintaining sparsity: a vertex, together with its chosen random subset
of neighbors, inspects no more than the ℓ-hop frontier before selecting its top-k targets, thereby
reducing the number of auxiliary edges added to the graph.

Time Complexity. Our time-complexity analysis mirrors that of Chaitanya et al. [2025]. Through-
out the generation of contagion cascades, we maintain a dictionary that records each node’s activation
frequency count and sort these counts in descending order for each corresponding source node. Since
the active set at any vertex (source) is bounded by the fixed constants—the walk length ℓ, the number
of neighbors k, the number of permutations N , and, in the case of Absolute Threshold Contagions,
the threshold τ—this sorting step requires only constant time. Consequently, the overall time com-
plexities of Adaptive and Absolute Threshold Contagions are O(n+m), since {ℓ, k,N, τ} ∈ O(1),
and their linear dependence on the number of edges ensures computational efficiency.

3.2 Token-List Formation

The token list for a target node v is constructed using its original features, xv, and the neighbors
of v in the cascade-rewired auxiliary graph G∗. These lists are then self-attended by the standard
transformer [Vaswani et al., 2017] to produce the target node representation vector. The complete
fixed-length token list for node v is given by

Tv =
{
xv∥1︸ ︷︷ ︸

self

, (F∗X)(v, :)∥ω∗
v︸ ︷︷ ︸

Freq. agg. of v’s nbhd. in G∗

}
(3)

where "∥" denotes the concatenation operation, "nbhd" stands for the neighborhood of the vertex,
and F∗ denotes the frequency matrix for G∗. To calculate F∗, we first identify the number of times a
target node v with various (random) subsets of its neighborhood activates another node u, denoted
as a frequency fvu. Here, we can opt to further normalize fvu, either globally fvu = fvu

maxs,t fst

with s and t ranging over all nodes in G∗, or locally fvu = fvu

maxt∈N(v) fvt
with t ranging over v’s

neighbors—cross-validation can be employed to select the strategy that best suits the input data.
Next, we calculate the entries of F∗ as F∗

uv = F∗
vu = 1

2 (fvu + fuv) and, finally, set ω∗
v to F∗(:, v).

3.3 Transformer Encoder

With Z
(0)
v = Tv as the node-specific input sequence, each encoder layer follows the standard

formulation:
Z̃(t)

v = MHA
(
LN(Z(t−1)

v )
)
+ Z(t−1)

v ;

Z(t)
v = FFN

(
LN(Z̃(t)

v )
)
+ Z̃(t)

v ,
(4)
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MHA is multi-head self-attention, FFN is a position-wise feed-forward network, and LN is layer
normalization. After T layers, a read-out (e.g., mean pooling) over Z(T )

v yields the final embedding
of node v. We integrate feature-cluster information and mesoscopic rewiring (capturing long-range
influence) within the framework. Because all tokens are pre-selected, training remains mini-batchable
with sequence length 1 + k, independent of the original graph size, where k is the degree of the
mesoscopic auxiliary graph, G∗.

4 Experiments

Experimental Setup. We evaluate the node classification performance of our proposed models,
CR-ADAPTIVE and CR-ABSOLUTE, on 14 publicly available benchmark networks from the DGL
library, which serve as standard benchmarks for node classification across both homophilic and
heterophilic network settings1. For the CR-ADAPTIVE and CR-ABSOLUTE procedures, we fix the
parameters as follows: neighborhood subset size |R| = 5, cascade walk length ℓ = 10, and the
k in equation (2) is set to the average degree of the graph. For CR-ABSOLUTE, we additionally
sweep the threshold parameter τ over the range [1, 5]. The constructed mesoscopic rewired auxiliary
graph is split into training, validation, and test sets in a 50%–25%–25% ratio and passed through a
transformer model. Note that we use a different split percentage than the traditional one to thoroughly
evaluate the robustness of all methods. We run experiments using 20 random data splits per graph to
ensure thorough robustness of all the models. The results are provided in Table 1.

Method Actor Chameleon Community Computer Cornell Cycle Grid

PPRGO 31.36 ± 1.14 45.83 ± 2.62 39.43 ± 2.19 91.13 ± 0.58 46.91 ± 7.09 59.27 ± 2.73 58.19 ± 1.76
GRAND+ 30.20 ± 1.08 45.54 ± 2.73 39.37 ± 2.01 90.85 ± 0.69 45.11 ± 6.46 59.27 ± 2.73 58.19 ± 1.76

SAN 34.07 ± 1.59 42.56 ± 4.18 40.16 ± 2.09 84.49 ± 0.89 67.34 ± 10.29 59.27 ± 2.73 58.19 ± 1.76
GraphGPS 35.21 ± 0.90 60.89 ± 2.65 46.21 ± 2.66 89.32 ± 0.68 64.47 ± 6.41 59.00 ± 3.02 68.01 ± 3.12
NAGphormer 31.69 ± 1.10 43.00 ± 1.88 51.66 ± 2.23 88.47 ± 0.72 58.30 ± 6.34 97.28 ± 1.82 75.19 ± 4.57
Exphormer 28.70 ± 3.31 40.10 ± 7.73 40.19 ± 2.84 OOM 60.00 ± 10.77 52.24 ± 9.62 56.10 ± 5.87
VCR-Graphormer 33.18 ± 1.34 45.96 ± 2.60 42.27 ± 2.35 89.49 ± 1.24 58.40 ± 6.49 66.62 ± 10.90 66.07 ± 5.02

CR-Adaptive 31.86 ± 1.50 62.69 ± 2.24 48.39 ± 2.30 89.50 ± 0.99 57.23 ± 5.16 58.38 ± 2.76 69.92 ± 2.18
CR-Absolute 34.17 ± 1.04 64.77 ± 2.12 63.57 ± 3.62 89.70 ± 0.71 65.00 ± 6.75 62.76 ± 3.04 65.45 ± 2.96

Method Photo Pubmed Shape Squirrel Texas Wiki Wisconsin

PPRGO 95.09 ± 0.63 86.72 ± 0.39 43.11 ± 2.97 30.22 ± 1.56 58.51 ± 5.46 84.16 ± 0.98 55.63 ± 4.90
GRAND+ 94.82 ± 0.59 85.95 ± 0.43 43.11 ± 2.97 30.23 ± 1.54 56.49 ± 6.34 83.38 ± 0.89 53.20 ± 5.33

SAN 91.12 ± 0.61 85.81 ± 0.96 43.11 ± 2.97 28.23 ± 2.48 72.23 ± 7.42 79.84 ± 1.55 77.19 ± 5.30
GraphGPS 94.59 ± 0.61 87.17 ± 0.55 66.83 ± 6.53 41.05 ± 1.11 74.57 ± 6.27 82.94 ± 0.81 72.66 ± 4.23
NAGphormer 94.25 ± 0.70 87.48 ± 0.54 59.74 ± 6.09 31.50 ± 1.36 62.34 ± 7.81 82.81 ± 1.06 66.17 ± 3.94
Exphormer 81.75 ± 6.97 OOM 40.03 ± 8.10 27.13 ± 6.13 70.11 ± 11.25 OOM 72.66 ± 5.90
VCR-Graphormer 94.24 ± 1.17 86.28 ± 0.73 48.31 ± 10.16 35.49 ± 1.69 65.96 ± 5.39 83.52 ± 1.03 71.02 ± 6.01

CR-Adaptive 94.17 ± 0.78 87.66 ± 0.61 55.26 ± 5.63 45.89 ± 2.14 65.21 ± 5.79 83.05 ± 0.88 70.63 ± 4.98
CR-Absolute 94.15 ± 0.55 87.79 ± 0.52 76.26 ± 8.01 47.85 ± 2.26 72.66 ± 6.07 83.20 ± 0.82 75.39 ± 4.81

Table 1: Node classification accuracies (mean ± std, in %) across datasets. OOM indicates that results
could not be obtained due to an out-of-memory error. The best overall performance is highlighted in
bold, while the second-best-performing method is shaded in gray.

Key Results. Compared with seven other competitive baselines, our proposed methods achieve
either the best or second-best performance on 10 out of the 14 benchmark networks, even without
any fine-tuning. The improvements are especially pronounced compared to the state-of-the-art
Tokenized Graph Transformers (VCR-Graphormer and NAGphormer) on the challenging benchmarks:
Chameleon (+18.8%), Community (+11.9%), Cornell (+6.6%), Shape (+16.5%), Squirrel (+12.4%),
Texas (+6.7%), and Wisconsin (+4.4%). The increase in performance can be attributed to an important
byproduct of our rewired auxiliary graph, G∗—its ability to improve label homophily scores even
before the incorporation of virtual edges. This enhancement is particularly notable in heterophilic
graphs rather than in homophilic graphs, as shown in Table 2.

1All datasets are accessible through the Deep Graph Library (DGL) at https://www.dgl.ai/dgl_docs/api/
python/dgl.data.html. The code for our proposed methods is provided at https://anonymous.4open.science/r/
CR-graphormer-4DC0/
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Actor Chameleon Community Computer Cornell Cycle Grid

Original Graph 0.222 0.248 0.540 0.785 0.118 0.925 0.921
Adaptive Contagion Rewired Graph 0.213 0.346 0.386 0.780 0.306 0.635 0.735
Absolute Contagion Rewired Graph 0.216 0.313 0.444 0.770 0.242 0.908 0.911

Photo Pubmed Shape Squirrel Texas Wiki Wisconsin

Original Graph 0.836 0.792 0.591 0.218 0.087 0.659 0.171
Adaptive Contagion Rewired Graph 0.829 0.759 0.364 0.260 0.347 0.635 0.356
Absolute Contagion Rewired Graph 0.822 0.770 0.453 0.260 0.301 0.602 0.302

Table 2: Homophily scores across datasets. An increase in homophily scores is observed in several
auxiliary networks compared to their original counterparts.

Ablation Study on CR-Adaptive (MAS) Models. We analyze the performance sensitivity of the
proposed CR-ADAPTIVE mechanism as the key hyperparameters vary in relation to node classification
accuracy. Specifically, we vary the maximum degree k in (2) used in constructing the cascade-rewired
auxiliary graph, by setting k ∈ {5, 10, 15, 20}. Additionally, we test multiple configurations of the
cascade walk length ℓ ∈ {10, 20, 30, 40}, with the neighborhood subset size fixed at |R| = ℓ/2. For
most graphs, we observe from Figure 1 that the accuracy gradually decreases with increased walk
length, as supported by Theorem 3.1.

Figure 1: Ablation study on the cascade-rewired (CR) auxiliary graph with adaptive threshold.

An ablation study on CR-Absolute (TAS) models, along with dataset statistics and further experimen-
tal details, is provided in Appendix D.

5 Conclusion and Limitations

We introduced CR-GRAPHORMER, a scalable graph transformer that uses contagion-based rewiring
to enrich graph structure via deterministic cascades. This process captures higher-order connectivity
and reinforces homophilic and heterophilic ties through feature-aware augmentation. Our model
attends to fixed-length token lists from local cascades and global context, enabling efficient mini-batch
training. CR-GRAPHORMER achieves either the best or second-best performance on 10 out of the 14
benchmark networks, demonstrating the utility of cascade-based mesoscopic rewiring for structural
encoding in Tokenized Graph Transformers.

One of the limitations of our proposed approaches is that, for sparse and highly regular networks such
as cycles and grids, the proposed architecture may be less effective at rewiring, as the contagion-based
procedures struggle to capture meaningful structural variations in such graphs. Future work could
explore addressing this limitation by linking the effectiveness of the rewiring strategy to structural
properties such as average degree or average path length, potentially enabling adaptive mechanisms
for different graph topologies.
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Appendix

A Related Works

The existing research on graph transformers can be broadly classified into three categories:

Graph Transformer Architectures. Graph transformer (GT) models adapt the self-attention
mechanism of the original transformer [Vaswani et al., 2017] to graph-structured data. The Graph
Transformer Network [Dwivedi and Bresson, 2020] applies dense self-attention across all O(n2)
node pairs, achieving considerable performance on several benchmarks. Later architectures inject
graph-specific biases into the attention mechanism: Graphormer [Ying et al., 2021] encodes node
centrality and pairwise shortest-path distances; GraphiT [Mialon et al., 2021] uses kernelized relative
encodings and explicit sub-path features; SAN [Kreuzer et al., 2021] and Gophormer [Zhao et al.,
2021] incorporate edge and node attributes; and GraphGPS [Rampášek et al., 2022] interleaves
message passing with global attention. Although these models achieve strong performance across
domains such as recommendation, question answering, and bioinformatics, their fully connected
attention still entails quadratic computational cost.

Positional Encodings for Graphs. Because graphs lack an intrinsic notion of order, GTs must rely
on positional encodings (PEs) to inject structural information. Laplacian-based encodings (LapPE)
[Dwivedi and Bresson, 2020], full spectra [Kreuzer et al., 2021], and sign-invariant variants such as
SignNet [Lim et al., 2022] give each node absolute coordinates in a spectral space but can be sensitive
to eigenvector permutations. Random-walk or diffusion encodings (RWSE, RWDiffusion, RRWP)
[Grötschla et al., 2024; Dwivedi et al., 2023] capture multi-scale proximity, while shortest-path or
distance encodings power Graphormer’s attention biases [Ying et al., 2021]. Weisfeiler–Lehman
subtree encodings (WL-PE) [Morris et al., 2019] and edge-aware learnable schemes such as PureGT’s
relative PEs [Kim et al., 2022] further enrich the positional signal. Systematic studies [Rampášek et
al., 2022] show that combining complementary PEs (e.g., Laplacian + shortest-path) yields robust
gains across heterogeneous benchmarks. Overall, well-designed PEs are now recognized as a primary
driver of GT performance, enabling the model to discriminate roles, distances, and higher-order
structural motifs.

Lightweight and Tokenized Graph Transformer Models. Quadratic attention limits the scalability
of classical GTs, prompting a surge of efficient variants. GraphGPS replaces softmax attention with
Performer’s linear mechanism [Choromanski et al., 2021], whereas Exphormer [Shirzad et al., 2023]
imposes expander-graph sparsity, and GOAT [Kong et al., 2023] projects features to lower dimensions.
NodeFormer [Wu et al., 2022] introduces topology-aware relational biases, achieving provably linear
complexity in the number of nodes. A parallel line of work tokenizes the graph to confine attention
to compact, information-rich subsets. TokenGT [Kim et al., 2022] treats every node and edge as an
independent token and relies on node/edge IDs plus structural PEs, matching or exceeding GNNs
on large molecular datasets. Tokenphormer [Zhou et al., 2025] augments each node token with
orthogonal random features and Laplacian frequencies to recover edge existence via token similarities.
NAGphormer [Chen et al., 2023] constructs a fixed-length list of hop-aggregate tokens for each
node; self-attention is performed locally within each list, enabling mini-batch training and fine-
grained neighborhood encoding. VCR-Graphormer [Fu et al., 2024] further scales to larger graphs
by sampling personalized PageRank neighborhoods and adding feature-cluster tokens, so that each
node attends only to a small set of local and global context tokens. Because attention is restricted to
these lists, the per-layer cost becomes linear in the number of edges while preserving expressivity for
long-range and heterophilous signals. However, while VCR-Graphormer relies on virtual connections
to capture dependencies, our proposed method overcomes this limitation by capturing both structure-
and heterophily-driven relationships without the explicit use of virtual connections.

B Proofs of Theoretical Results

Proof of Lemma 3.2 We prove the lemma by performing induction on step/round t. In the base
case, if t⋆ = 1, then u is adjacent to at least τ seeds in S0; these τ edges form the required paths.
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Assume every vertex activated by step t < t⋆ has τ edge-disjoint paths of length ≤ t from S0. Let
x be activated at step t + 1. Then x has τ distinct active neighbors w1, . . . , wk ∈ Sv

t . For each i,
choose one of the τ paths from S0 to wi (given by the induction hypothesis) and append the edge
wix. The resulting τ paths are edge-disjoint, start in S0, end in x, and have length ≤ t+ 1. Applying
this construction until t⋆ ≤ ℓ gives the desired τ paths from S0 to u.

Proof of Lemma 3.3 Delete from G′ every edge not on
⋃

i Pi; call the pruned network H . Rayleigh
monotonicity implies RG′

eff (S0, v) ≤ RH
eff(S0, v). As the graph has unit edge weights, i.e., the weight

of every edge is one, in H , each path Pi is a series of ℓi ≤ ℓ unit resistors; thus, the resistance is ℓi.
The τ paths lie in parallel, so 1

RH
eff (S0,v)

=
∑τ

i=1
1
ℓi

≥ τ
ℓ , hence RG

eff(S0, v) ≤ ℓ/τ .

Proof of Theorem 3.1 If v activates by round ℓ, Lemma 3.2 gives the τ edge-disjoint paths, and
Lemma 3.3 yields RG′

eff (S0, v) ≤ ℓ/τ .

C Pseudocodes for Obtaining the Multiset Mv Using CR-ADAPTIVE and
CR-ABSOLUTE Models

In this section, we provide the pseudocode for CR-ADAPTIVE and CR-ABSOLUTE procedures
described in Section 3. As mentioned in this work, we reinterpret the two adjacency-search rules of
Chaitanya et al. [2025] as discrete-time contagion dynamics.

Adaptive Threshold Contagions rely on the following parameters:

• Walk Length (ℓ): This parameter refers to the sequence length that is generated for every
vertex in the graph. Default = 10.

• Number of Neighbors (k′): k′ = |R| where R ∈ N(v). Default = 5.
• Number of Permutations (N ): This parameter assists in capturing diversified immediate

neighborhoods of a vertex v. Default = 5.

Algorithm 1 Adaptive Threshold Contagions (MAS)

1: Input: Graph G, walk length ℓ, #neighbors k′, #permutations N .
2: Output: Dictionary D that stores the activation frequencies of all nodes. For each starting node, the

dictionary is ordered by activation frequency in descending order.
3: for v in G.nodes() do
4: neighbors← v.neighbors()
5: counter ← {u : 0 | u ∈ G.nodes()}
6: if len(neighbors) > 0 then
7: for n = 1, . . . , N do
8: neighbors← permute(neighbors)
9: for i = 0 to len(neighbors) with step k′ do

10: s← min(i,max(0, len(neighbors)− k′))
11: S ← [v] + neighbors[s : s+ k′]
12: while len(S) < ℓ do
13: find the maximally adjacent node u to S
14: S.insert(u)
15: end while
16: for u in S do
17: increment counter[u]
18: end for
19: end for
20: end for
21: end if
22: sort counter by its values in descending order
23: D[v]← counter
24: end for
25: return D
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Absolute Threshold Contagions rely on the following parameters:

• Threshold (τ ): Default = 5.

• Walk Length (ℓ): Default = 10.

• Number of Neighbors (k′): Default = 5.

• Number of Permutations (N ): Default = 5.

Algorithm 2 Absolute Threshold Contagions (TAS)

1: Input: Graph G, threshold τ , walk length ℓ, #neighbors k′, #permutations N .
2: Output: Dictionary D that stores the activation frequencies of all nodes for each starting node, ordered by

activation frequency in descending order.
3: for v in G.nodes() do
4: neighbors← v.neighbors()
5: counter ← {u : 0 | u ∈ G.nodes()}
6: if len(neighbors) > 0 then
7: for τ ′ = 1, . . . , τ do
8: for n = 1, . . . , N do
9: neighbors← permute(neighbors)

10: for i = 0 to len(neighbors) with step k′ do
11: s← min(i,max(0, len(neighbors)− k′))
12: S ← [v] + neighbors[s : s+ k′]
13: S ← Delayed-BFS(G,S, τ ′, ℓ)
14: for u in S do
15: increment counter[u]
16: end for
17: end for
18: end for
19: end for
20: end if
21: sort counter by its values in descending order
22: D[v]← counter
23: end for
24: return D

Algorithm 3 Delayed-BFS
1: Input: Graph G, node set S, threshold τ , walk length ℓ.
2: Output: Set of nodes visited by delayed BFS.
3: for u in G.nodes() do
4: if u ∈ S then
5: T [u]← 0
6: else
7: T [u]← min(G.degree(u), τ)
8: end if
9: end for

10: initialize queue I
11: enqueue(I, S)
12: while len(I) > 0 and len(S) < ℓ do
13: i← dequeue(I)
14: S.insert(i)
15: for u in i.neighbors() do
16: if u /∈ I then
17: decrement T [u]
18: if T [u] = 0 then
19: enqueue(I, u)
20: end if
21: end if
22: end for
23: end while
24: return S
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D Experimental Details

The transformer architecture in our CR-Graphormers comprises a single attention layer with 8 heads,
one hidden layer of size 512, and a dropout rate of 10%. To assess the performance of our models, we
compare them against several recent state-of-the-art methods, including VCR-Graphormer [Fu et al.,
2024] and NAGphormer [Chen et al., 2023], both of which have demonstrated strong performance
over existing graph transformer architectures. We also evaluate against PPRGO [Bojchevski et
al., 2020], an information diffusion-based GNN method, and GRAND+ [Feng et al., 2022], which
precomputes a diffusion matrix using a variant of personalized PageRank. Additional baselines
include SAN [Kreuzer et al., 2021], GraphGPS [Rampášek et al., 2022], and Exphormer [Shirzad
et al., 2023]. Every baseline is trained and evaluated on the identical train/validation/test splits as
our models, operating on the original input graphs with parameter settings matched to those used by
our models. All training is performed using the Adam optimizer with a peak learning rate of 0.01
and a weight decay of 1× 10−5, minimizing the negative log-likelihood loss. We employ a linear
decay learning rate scheduler with 500 warm-up steps and decay from 0.01 to 0.0001 over 1000 total
training steps. Early stopping is applied with a patience of 50 epochs. Each model is trained for up to
2000 epochs with a batch size of 2000.

All the experiments were conducted on a workstation equipped with a single AMD Ryzen Thread-
ripper PRO 5955WX processor (16 cores, 4.00–4.50 GHz, 64 MB cache, PCIe 4.0), one NVIDIA
GeForce RTX 4090 GPU, and 128 GB of DDR4-3200.

Metric Actor Chameleon Community Computer Cornell Cycle Grid

#Nodes 7600 2277 1400 13752 183 871 1231
#Edges 29707 31421 3871 245861 280 970 1705
Avg. Degree (Undirected) 7.818 27.599 5.530 35.756 3.060 2.227 2.770
#Features 932 2325 10 767 1703 1 1
#Classes 5 5 8 10 5 2 2

Metric Photo Pubmed Shape Squirrel Texas Wiki Wisconsin

#Nodes 7650 19717 700 5201 183 11701 251
#Edges 119082 44327 1760 198493 295 216123 466
Avg. Degree (Undirected) 31.133 4.496 5.029 76.329 3.224 36.941 3.713
#Features 745 500 1 2089 1703 300 1703
#Classes 8 3 4 5 5 10 5

Table 3: Dataset Statistics

Ablation Study on CR-Absolute (TAS) Models. We analyze the sensitivity of CR-ABSOLUTE
models through three experiments: one with varying maximum auxiliary graph degree, one with
varying walk lengths, and one with varying absolute thresholds. In the experiment varying the
maximum auxiliary graph degree, we fix the walk length ℓ at 10 and the threshold τ at 5. For the
experiment with varying walk lengths, we set the maximum auxiliary graph degree k to the average
degree and fix the threshold τ at 5. In the experiment with varying thresholds τ , we fix the maximum
auxiliary graph degree k to the average degree and the walk length ℓ to 10. Across all trials, the
number of starting neighbors |R| is set to ℓ/2. Using the same model configurations and training
procedure detailed in Section 4, we evaluate test accuracy over 20 different data splits and report
the mean in Figure 2. For the CR-ABSOLUTE method, tuning the model parameters to increase the
neighbor counts |R| and k consistently boosted accuracy on both Cycle and Shape by up to 15%.

Stability of Cascade-Rewired Auxiliary Graphs Against Supernode Perturbations. Using the
same model configurations and training setup described in Section 4, with the neighborhood subset
size |R| set to the average degree, walk length ℓ = 2|R|, and the maximum auxiliary graph degree k
set to the average degree, we partition the cascade-rewired auxiliary graph and incorporate supernodes
and structure-based virtual connections (as done in VCR-Graphormer [Fu et al., 2024]) into our CR-
Adaptive and CR-Absolute models. As shown in Figure 3, unlike VCR, our auxiliary graph structure
enhances model stability against perturbations related to supernodes. These results demonstrate that
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the auxiliary graph preserves the local topology of the original network more effectively than other
models, without necessitating explicit graph partitioning to reveal the network’s structural backbone.

Figure 2: Ablation study on the cascade-rewired (CR) auxiliary graph with absolute threshold.

Figure 3: Performance comparison of VCR with our CR-Adaptive and CR-Absolute models across
different numbers of supernodes.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sections 3 and 4 provide details of the claims made in abstract and introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned in the Section 4 of the paper that our work in particular,
attains considerable performance gains on heterophilic networks compared with homophilic
networks. This can be considered as a limitation of our model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: All the assumptions are provided at the beginning of Theorem Statement
(Theorem 3.1). The proof is provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the details are provided in Section 4 and in Appendix for reproducibility of
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the source code in an anonymized Github repository. The URL is
mentioned in the paper. We use the publicly available datasets whose URL is also mentioned
in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: Please refer to Section 4 and Appendix for the training and test details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
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Answer: [Yes]
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided towards the end of Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is a classical Graph Machine Learning paper where we are showing the
improvement in the accuracy pertinent to node classification task. Many societal applications
could be indirectly benefited by them.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations are provided in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We released the code for review in an anonymous github repository: https:
//anonymous.4open.science/r/CR-graphormer-4DC0/
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for performing grammar correction.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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