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ABSTRACT

Graph neural networks (GNNs) have exhibited prominent performance in learn-
ing graph-structured data. Considering node classification task, the individual
label distribution conditioned on node representation is used to predict its classes.
Based on the i.i.d assumption among node labels, the traditional supervised learn-
ing simply sums up cross-entropy losses of the independent training nodes and
applies the average loss to optimize GNNs’ weights. But different from other
data formats, the nodes are naturally connected and their classes are correlated
to neighbors at the same cluster. It is found that the independent distribution
modeling of node labels restricts GNNs’ capability to generalize over the entire
graph and defend adversarial attacks. In this work, we propose a new framework,
termed joint-cluster supervised learning, to model the joint distribution of each
node with its corresponding cluster. Rather than assuming the node labels are
independent, we learn the joint distribution of node and cluster labels conditioned
on their representations, and train GNNs with the obtained joint loss. In this way,
the data-label reference signals extracted from the local cluster explicitly strengthen
the discrimination ability on the target node. The extensive experiments on 12
benchmark datasets and 7 backbone models demonstrate that our joint-cluster
supervised learning can effectively bolster GNNs’ node classification accuracy.
Furthermore, being benefited from the reference signals which may be free from
spiteful interference, our learning paradigm significantly protects the node clas-
sification from being affected by the adversarial attack. The code is available at:
https://anonymous.4open.science/r/Joint-cluster-loss-01C7.

1 INTRODUCTION

Graph-structured data is ubiquitous in a broad spectrum of application domains, such as social
networks (Perozzi et al.l [2014; [Fan et al.| |2019), biological networks (Diao et al., 2022} [Yu et al.,
2023)), recommender system (He et al., |2020; [Wang et al., 2019), and knowledge graphs (Wang
et al., 2018} |Arora, [2020). Graph neural networks (GNNs) have been extensively explored to learn
the complex connectivity information and node features in an end-to-end manner. Particularly,
GNNs follow a message passing strategy and learn the representation vector of each node by
iteratively aggregating the representations of its neighbors and combining with itself. The learned
node representations facilitate various downstream tasks including node classification (Gasteiger
et al.} 2018 |Zhou et al.,2020) and link prediction (Grover & Leskovecl 2016;|Zhang & Chenl 2018)).

Despite the persistent efforts in feature learning, label dependencies among nodes receives inadequate
attentions. Considering the node classification task with GNNs, decision making is modeled by
independent conditional distribution P(y;|z;), where y; and z; are the label and learned feature of
a specific node and its cross-entropy loss is CE(y;, P(yi|z;)). However, it is notorious that such
independent decision making of node label exacerbates following issues. Overfitting: The overly
minimization of cross-entropy loss prefers the higher prediction probabilities (i.e., over-confident
decision) on the small set of training nodes (Guo et al.,|2017), resulting in poor generalization on
the rest of graph(Guo et al.,|2017)). Susceptibility to adversarial attacks: The over-confident GNNs
underestimate their uncertainties, which is often leveraged adversarial attacker to craft input examples
that lie in uncertain regions but have different labels (Szegedy et al.,|2013)). This presents a challenge
to calibrate GNNSs’ training and hence generate robust decision making.




Under review as a conference paper at ICLR 2024

On the other hand, the decision making based on i.i.d assumption of node label is not in line with the
graph-structured data, where nodes tend to connect with “similar” neighbors to form some clusters.
The i.i.d assumption factorizes the joint distribution into a product of multiple prediction densities:
P(y1, -+ yynlz1,- -+, 2n) = [ [ P(yi|2:). This straightforward factorization fails to comprehensively
account for the inherent node correlations. Although the message passing learns the neighborhood-
aware node features, the label dependencies are threw out during node inference. Just like human
experts making decisions with other data-label pairs as reference signals, GNN models could promote
their reasoning capabilities via the prompt data. We are aware of the previous arts in investigating the
label dependencies (Huang et al.,|2020; Ma et al., 2018)); but they either cannot unite with the feature
learning in GNNSs or have poor efficiency. In view of such, we ask:

How we efficiently learn the joint distribution together with GNNs to reason node label rationally?

In this paper, we propose a new framework named joint-cluster supervised learning to model the
joint distribution of each node and its corresponding cluster. For an individual node, we learn the
joint-cluster distribution of P(y;, Y|z, zc), where z. and y.. are the constructed cluster feature and
label, respectively. The motivation for adopting cluster is to provide the sufficient reference signals
for target sample, while reducing computational complexity required to integrate the remaining nodes
in the vanilla joint distribution. Particularly, we optimize GNNs by minimizing the joint-cluster
cross-entropy loss. The well-trained GNNs are then leveraged to infer the node label by marginalizing
the joint-cluster distribution as shown in Figure Compared to supervised learning, the main
difference of our work is to explicitly learn the joint density of the target sample and its reference
signals. The contributions are summarized below:

* We introduce a new paradigm of joint-cluster supervised learning for graph data. By breaking the
i.i.d assumption in node classes and loss computation, we propose to model the joint distribution
between the target node and its located cluster, and leverage it to train and infer GNNG.

* The joint distribution disperses prediction densities of a node over a larger label space, thereby
relieving the over-confident decision making. We comprehensively test on small, large, class-
imbalanced, and heterophilic graphs. The experiments on 12 datasets and 7 backbone models
consistently validate the substantial generalization capability of joint-cluster distribution learning.

* The joint-cluster distribution learning generates more robust classifications for the attacked nodes
compared with the independent decision making, owing to the reliable reference signal of cluster.

* The joint-cluster supervised learning surpasses the state-of-the-art (SOTA) models that encode the
label dependencies, in terms of the node classification accuracy, training and inference efficiencies.

2 PRELIMINARY OF GNNS AND SUPERVISED LEARNING

We focus on the node classification task to introduce the new concept of joint distribution learning.
Let (2;,y;) denote the node-label pair, where z; € R? and 3; € R¢ are input feature and label vector
of node v;, resepctively, d and ¢ are the dimension sizes. Given training set {(x;, yi)}le, where L is
the number of labeled nodes, the goal of node classification task is to train a predictor fy : R — R¢,
mapping each node over the entire graph to a desired label with trainable parameter 6.

2.1 GRAPH NEURAL NETWORKS

GNN s have emerged as one of the standard tools to learn both the node features and graph structure.
Mathematically, based on the recursive message passing mechanism, at the k-th layer of GNNs, the

embedding vector zi(k) of each node v; is obtained by (Xu et al.,|2018):

zi(k) = Aggregate({zékil) |Vj e N(i)Ui};0). (1)

Function Aggregate denotes combination operator (e.g., sum, mean, or max) on the neighborhood
embeddings, and N (2) denotes a set of neighbors connected to node v;. Suppose we have a number
of repeated message-passing layers. We simply use z; = fy(«;) to denote the final generated node
representation of node v; and utilize it to predict the corresponding node label ;.
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Figure 1: An illustration of our joint-cluster supervised learning framework: First, we obtain node
embeddings through the encoder. Then the cluster embedding and label are generated through the
divided graph structure. Then the node embedding and the cluster embedding are concatenated
and fed into the classifier to obtain a joint distribution prediction. Finally, the joint-cluster loss and

marginalization are used for training and inference.

2.2 INDEPENDENT CROSS-ENTROPY LOSS

Following the supervised learning paradigm and considering the training nodes, vanilla cross-entropy
loss is obtained by Logp = — ZiL:1 y; log 9;. This approach has been applied to multiple domains
such as CV and NLP. Particularly, the supervised learning makes use of the conditional density
p (y | z) for each pair (z;, y;) and train model weights via maximum likelihood estimator (MLE):

éCE ({zz,yz}fﬂ) =argmax p (y1,...,Yr | 21,---,21;0) (2a)
0
L L
= argmax [ [ p(vi | 2:0) = argmax ¥ logp(y; | z:;6).  (2b)
0 =1 i=1

Note that we use p (y; | 2;;0) and p (y; | 2;) interactively, where the former one is used in the context
of model optimization and the later one is adopted for simpleness. Eq.([2b) is deduced not according
to mathematical consequence but based on the i.i.d assumption between nodes’ labels. However,
such decomposition is not desired in graph data, since the node features and classes are inherently
correlated depending on the graph connectivity. Although GNNs aggregate the neighborhoods and
make decision on the target node conditioned on the set of neighbors’ features, the joint-distribution
modeling of node classes is still broken in Eq.(2b). The prior knowledge that the nodes at the same
cluster share similar labels is widely accepted in many real-world graphs, like social networks. These
intuitions inspire us to learn the joint distribution of node classes conditioned on their features.

3  JOINT-CLUSTER SUPERVISED LEARNING

As analyzed before, GNNGs utilize graph structure through the unique message passing, while still
treating the node labels are independent from each other during the loss optimization. Despite the
conceptual simpleness, it is not trivial to model the joint distribution. Given a number of training
nodes, the fully joint conditional distribution p (y1,...,yr | 21, - - -, 21; 0) has to be constructed over

label state space of R, The optimization on such high-dimensional state space is computationally
intractable and hard to generalize on the test nodes. To enable the computation on common hardware,
we propose to learn the joint distribution from cluster perspective. It is generally assumed nodes
within the same cluster are highly connected while the edge connections between clusters are sparse.
In other words, the node label distributions between clusters are close to be independent. We thereby
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divide the graph into M independent clusters {Cy, . ..,Cys} and factorize the joint distribution as:
M
pyis-eyr | 21,ee2050) = [ p({yi [vi € Cu}d [ {2 | v € Cn}30). )
m=1

Although the i.i.d assumption on clusters reduces the computation complexity to some extent, the
joint modeling on a subset of nodes is still impractical and is unfriendly to be adopted to infer the
classes of test nodes. In this work, for each node representation-label pair (z;, y;), we instead learn
a joint conditional distribution p (y;, Jm | 2i, Zm; 0), Where Z,, and ¥, denote the statistical cluster
feature and label, respectively. One of the simplest ways to construct the cluster feature and label is
to average the node representations and labels from the training samples within the corresponding
cluster, which is adopted in our method. The more advanced solution, like differentiable features
and label vectors, could be used to learn the cluster statistics. Given the set of training nodes, MLE
optimizes the joint-cluster conditional distribution as:

0 <{Zi7yi}f:1) = arg;naxp(yl, oy | 21,0, 2050) (4a)
M
=argmax [[ p({yi | vi € C} | {2 | v €Cri}:0) (4b)
o m=1
M |Coml
= argmex IT T1 7 wis9m | 2, Zm: 0) (4c)
m=1 i=1
M [Cm|
= arg max >N logp iy Gm | iy Zms 0)- (4d)
m=1 i=1

Through the transition from Eq.(#b)) to Eq.(f@c), we decouple the distributions of connected nodes to
facilitate computation but still keep the node-cluster relation to realize joint modeling. In this way,
we can easily train on a set of individual nodes and extend the well-trained model to estimate the joint
distribution of test samples. In this work, we use the graph clustering algorithm of METIS (Karypis
& Kumarl, [1998)), which aims to construct the vertex partitions such that within clusters links are
much more than between-cluster links to better capture the community structure of the graph. This
partitioning manner is in line with our i.i.d assumption on clusters, where the between-cluster
dependencies are negligible. Based on the above joint modeling, we introduce how to train models
and infer node classes, and put the pseudo-code in Appendix [A]for further detailed information.

Training with joint-cluster loss. We design the joint-cluster cross-entropy loss to learn the node-
cluster distribution. Let fp : (24, %) — (Yi, Jm) be a model to map the node and cluster features
into their corresponding joint label y;yT, € R°*¢. As shown in Figure |l the model consists of
an encoder (e.g., GNNSs) to generate node representations and a classifier to predict the joint label.
Recalling Section [2.1] the final representation of node v; is given by z;. We adopt average pooling to
define the cluster representation z,,, = 1/L,, 2521 z; and the cluster label §,,, = 1/L,, Zﬁ;‘l Yis
where L,, is the number of labeled nodes within cluster C,,. We then concatenate the node and
cluster representations as the joint feature, which is fed into the classifier to predict joint label y; 47, .
Mathematically, the joint-cluster cross-entropy loss is defined as:

L

Lo ==Y {w:d}) log gy (con (i, Zm)) + (Gmy]) - 1og gy (con (Zm, 2:))}- Q)
i=1

where con ( -, -) is a vector concatenation operation ordered by the node embedding and its cluster
embedding, g, is the classifier, and node v; belongs to cluster C,,,. The dot product and log function
operate element-wisely. Notably, for the purpose of symmetric joint distribution modeling, at the
second item of the above equation, we exchange the position of node and cluster embeddings to
predict their label g,,y] (i.e., the transpose of y;yT,).

Node class inference in joint distribution. Based on the joint distribution p (y;, Gm | i, Zm; 6)
between the node and its cluster, we aim to infer every individual node classes as in the standard
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supervised learning framework. In other words, we have to recover the independent conditional
distribution p(y; | z;; ) and make a decision over the label state space R°. The direct solution is to
marginalize the joint label along the cluster label dimension:

p(yi | 2:;0) =/ > Wi Gm =k | 2,20)q(2)dz
S ©)

c
k=1

q (Z) denotes the continuous distribution of cluster representation. In practice, since the node is nearly
independent to the other clusters, the approximation deduction in Eq.(6) only uses the dwelling cluster
feature to obtain the marginalized distribution. As illustrated in Figure[I] given the two-dimensional
prediction p (i, Ym | 2i, Zm; 0) corresponding to truth y; 7T, we sum the prediction scores row wisely
to estimate p(y; | z;; 0). Unlike the standard supervised learning, during model inference, we make
use of the cluster reference signal to reason the node classes rationally and robustly. This merit is
functionally similar to the in-context learning explored recently (Min et al., [2021)), where a set of
data-label pairs are concatenated with input to guide the language model to make more accurate
decisions. As empirically studies in Appendix [G] in graph data, we observe the joint distribution
modeling provides better node classification accuracy compared with the simple concatenation.

4 RELATED WORK
A detailed discussion is provided in Appendix [C] Two families of label dependency modeling are:

Label propagation. In the realm of GNNs, label propagation works on the assumption that nodes
connected by an edge are likely to share the same label (Shi et al., [2020; Wang & Leskovecl [2020;
Shi et al.| [2020). It propagates and smooth node labels along with edge weights throughout the
graph (Wang & Leskovec, 2021} Xie et al.| 2022b), and then infer the unlabeled nodes effectively.
Difference compared to existing work: While the label propagation often infer nodes without consid-
ering the node features (e.g., at post-processing phase), our joint-cluster loss could work with any
GNN backbones to comprehensively learn the structure, feature, and label information end-to-end.

Conditional random fields. To leverage the label correlation in node classification, there has been
previous art in combining conditional random fields (CRF) with GNNs. CGNF (Ma et al., [2018)
learns the pairwise label correlation with pairwise energy function, a specific expression form of CRF,
which is optimized to train GNNs. CRF-GNNs inserts CRF layer between the graph convolutional
layers, which regularizes GNNs to preserve the label dependencies among nodes (Gao et al.,[2019).
Difference compared to existing work: @ While CRF-based methods focus on modeling the local
label correlation of every linked node pair, we learn the global joint distribution of node and its cluster.
@ Our proposals shows promising training scalability and inference efficiency. The CRF-based
methods take the whole graph as input to propagate all the pairwise label correlations along edges. In
contrast, we train and infer the joint distribution of target node only with one reference signal (i.e.,
cluster), which allows the batch training on large graphs (e.g., Amazon with millions of nodes).

5 EXPERIMENTS

In this section, we evaluate the proposed joint-cluster learning framework on 12 public datasets over
7 backbone models, to validate the effectiveness of generalization and robustness.

5.1 EVALUATION ON SMALL GRAPH DATASETS

Implementation. > Datasets. We use the benchmark datasets Cora, CiteSeer, PubMed (Sen et al.,
2008)), DBLP (Bojchevski & Giinnemann) 2017)), and Facebook (Rozemberczki et al.|[2021a) in the
class-balanced setting, which is widely adopted to evaluate GNNs. Furthermore, we consider two
more challenging node classification tasks. In particular, we conduct on LastFMAsia (Rozemberczki
& Sarkar, 2020) and ogbn-arxiv (Hu et al.| 2020) to evaluate the performance of our proposed
joint-cluster loss on class-imbalanced environment; and we consider Chameleon, Squirrel, and
Wisconsin to evaluate on heterophilic graphs (Rozemberczki et al.,2021b). > Backbone models.
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Table 1: Test Accuracy (%) for different models on class-balanced small datasets, where the best
results are in bold. CE denotes the cross-entropy loss, and JC denotes our joint-cluster loss function.

Model Loss Cora CiteSeer PubMed DBLP Facebook
GCN CE 81.70+0.65 71.43+0.47 79.06+0.32 74.3011.94 73.9141.40
IC 83.51.10.35 72971055 79.80410.19 75.1011 63 74.64411 75
SGC CE 81.68+0.52 71.85+0.39 78.70+0.38 74.30+2.12 74.13+2.13
JC 83.87+0.70 72.9240.16 79.97+10.25 74.87+1.81 74.7441 06
SAGE CE 79.96+0.44 69.9410.93 78.37+0.72 70.5941.46 70.9542.26
JC 80.81i()‘63 70~54i149 79.50i1402 71.87i2_07 71~59i1/78
GAT CE 83.2210.29 71.06+0.40 78.5440.63 75.3242.62 76.3442.26
JC 83.77i0.44 71.61i0495 79-35i0447 76.92i1.59 77.46i2_30
MLP CE 58.651+0.97 60.4110.56 73.2710.35 47.95413.97 55.3412.60
IC 67.1910.62 63.2310.87 75.9210.39 61.1613.63 56.6212 42
Table 2: Test F1(%) of different loss functions on the class-imbalanced datasets.
Model Loss LastFMAsia ogbn-arxiv

F1-micro F1-macro F1-weight F1-micro F1-macro F1-weight

GCN CE 84.9140.74 73.7941 .28 84.60+0.73 T1.7410.29 51.8040.44 70.93+0.33
JC 85921041 7T74.611102 85491043 72171024 52.060015 71.5710.18

SGC CE 84.82:{:0_82 70-85j:1.36 84.22i0,55 71.77i0,14 50.75i0,29 70,71i0,21
JC 85.84.1045 73.2511.17 85321040 72.08:1015 51.15.026 70.9210.15

MLP CE 68.9110.70 42.3741.45 67.0640.73 55.5040.23 33.9310.20 55.0040.19
JC 78811069 53.09+1.71 76.891069 61.2110.16 38.61lig23 60.4840.11

We take GCN (Kipf & Welling, [2017), SGC (Wu et al.| 2019), GraphSage (Hamilton et al.,|2017)),
GAT (Velickovic et al.,|2018) and MLP as base models to compare our proposals with the standard
cross-entropy loss in the class-balanced setting. Due to space limit, we use GCN, SGC, and MLP to
evaluate on the class-imbalanced and heterophilic environment. The details of datasets and backbone
models are presented in Appendix We run each experiment 10 times and report the mean values
with standard deviation.

Q: Whether our proposals outperform the standard supervised learning on the easy and small
datasets? Yes, one key advantage of joint distribution modeling is to infer nodes more correctly
with cluster references. We examine on class-balanced, class-imbalanced, and heterophilic datasets.

> Class-balanced graph datasets. The comparison results are collected in Tabldl] from which
we make following observations. @ The joint-cluster supervised learning exhibits significantly
superior performances on all the backbone models. Compared with the standard cross-entropy loss,
our approach delivers the average improvements of 1.47%, 1.47%, 1.21%, 1.22% on models GCN,
SGC, SAGE, and GAT, respectively. @ Interestingly, compared with the average improvement of
1.34% over GNN backbones, the more clear advantage of 10.5% is achieved in MLP architecture.
That is because GNN5s learn the single node class conditioned on aggregated features, while MLP
decides the node label only based on its input feature. Moving a step forward, our proposals learn
the comprehensive joint distribution of multiple node labels conditioned on their features aggregated
from GNNs, which fully activates the model’s generalization ability.

> Class-imbalanced graph datasets. As shown in Tabld2] we observe @ the similar trend of
performance enhancement in the imbalance setting. We use imbalance ratio, min; (|7;|) /maz; (|T:|),
to measure the extent of class imbalance, where |7;| represents the number of nodes belonging to the
i-th class. LastFMAsia and ogbn-arxiv are two extremely imbalanced datasets, whose imbalance rates
are 1.0% and 0.1%, respectively. It is observed our joint-cluster learning framework obtains average
improvements of 5.75% and 3.16% on LastFMAsia and ogbn-arxiv over the standard supervised
learning. We attribute this result to the referential ability of the joint-cluster distribution modeling,
which uses the cluster of neighbors when making decisions. The joint distribution weakens the
over-confident prediction on the majority classes by assigning prediction confidence on other related
minority classes, and thus ameliorates the generalization on them.

> Heterophilic graph datasets. On the heterophilic graphs, the connected nodes tend to
have the different classes and make the joint-distribution learning challenging via adding la-
bel noise. Following the data split of [Pe1 et al| (2020), we compare with vanilla cross-

6
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entropy loss on three benchmark datasets. Table 3: Test accuracy (%) on heterophilic graphs.

As shown in Table 3} @ we observe our \odel Loss Chameleon Squirrel ~ Wisconsin

Jjoint-cluster loss function consistently delivers
great advantage with clear performance mar-  GCN CE 592512081 48.931201 49.224377

gin. That is because the proposed joint-cluster JC 68.87:3.55 56.76-1.43 50.39:4 53
distribution learning infer node label with the g CE 63.884275 53.7913.13 51961423
reference signal of whole cluster, instead of JC 71.911203 61.9952.42 52.23,394
using the direct neighbors. This validates the  ppp CE 41901151 29.234209 80.984512
effectiveness of adopting global cluster struc- JC 50.0912.42 32.371220 81.9645.45

ture in joint distribution.

5.2 EVALUATION ON LARGE GRAPH DATASETS

Implementation. > Datasets. Two complex large datasets are adopted, i.e., Yelp and Ama-
zon (Zeng et al [2019), where each node contains multiple classes. > Backbone models. We
evaluate in two scalable sub-graph sampling models, i.e., GraphSAGE (Hamilton et al., 2017} and
Cluster-GCN (Chiang et al.,2019)), and in pre-computing-based model of SIGN (Frasca et al., 2020).
The details of datasets and backbone models are provided in Appendix [B|[D}

Q: Whether our proposals can scale on Table 4: Test micro-F1(%) on large graph datasets.
the large datasets and boost model per- Model Method Yelp Amazon

formance? Yes, as reported in Table (1)

the joint-cluster learning framework gener- GraphSAGE CE 63.674038 75.6540.16
ally obtains the best accuracy on the large- p JC 63.99.¢g.46 76.1419.29
scale multi-class datasets. Compared with Cluster-GCN CE 62444105 76124017
the standard cross-entropy, our method ob- JC 63.021g96s 76.6310 27
tains the average improvement of 0.75% CE 64.421097 80.224004
and 0.39% on Yelp and Amazon, respec- SIGN JC  64.951909 80.0940.05

tively. One exceptional cases is SIGN con-
ducting on Amazon dataset. We speculate that one of the main reasons is the batch size, which is not
large enough to obtain enough cluster statistics for the joint-cluster distribution modeling. The future
work can use the trainable cluster feature and label to overcome this problem.

5.3 ROBUSTNESS UNDER ADVERSARIAL ATTACK

Implementation. Following the previous work, we use datasets including Cora, CiteSeer and
PubMed to evaluate robustness under an untargeted adversarial graph attack. Specifically, we use the
metattack (Sun et al., [2020) implemented in DeepRobustﬂ a pytorch library, to generate attacked
graphs by deliberately modifying the graph structure. The details are summarized in Appendix [B]

Q: Compared with vanilla training, whether the joint-distribution learning can ameliorate
model’s robustness under adversarial attack? Yes, the comparison results are collected in
Table [5] where we make the following observations to support our answers. @ The joint-cluster
learning framework achieves significant gain under all perturbation rates. Compared with the
independent decision making, our joint-cluster modeling takes the whole cluster as reference signals,
which contains certain number of clean nodes to improve the robustness of class prediction. @& The
performance gain increases with the perturbation rates. Specifically, the absolute improvements
over the vanilla loss are 2.0%, 2.2%, 6.3%, 5.0% and 7.5% in the perturbation rates of 5%, 10%,
15%, 20%, and 25%. These results validate the effectiveness of cluster reference signal, which is
structrually stable even under the acute attacks.

5.4 COMPARISON WITH LABEL DEPENDENCY MODELING RELATED WORK

Q: Whether the joint-cluster supervised learning delivers the superior accuracy and efficiency
compared with existing label dependency learning frameworks? Yes, we examine it below.

> Comparison with CRF-based models. We consider two CRF-based models, i.e., CGNF
and CRF-GCN, and collect the comparison results in Table[6 @ Our proposals obtain the clear

"https://github.com/DSE-MSU/DeepRobust
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Table 5: Test accuracy (%) under metattack, where Ptb Rate means the perturbation percent.

Datasets Ptb Rate(%) GCN SGC GAT
CE IC CE IC CE IC
5% 76.80i0,87 78.84i0457 76.28i0,20 78.76i0.45 80.24i0,54 80.76i0,51
10% 70.1241.42 74.6510.44 69.294048 73.50+057 74.89+1.46 75.4940.83
Cora 15% 64.21i1,92 72.24i0,67 65.05i1,09 71.93i0,51 70.55i1,19 71.63i1,29

20% 53.56+1.98 59.T7+075 b5H7.141032 58.111083 58.74+1.60 59.4511.12
25% 48.98+158 53.8911.19 51.18+051 53.441+1.04 53.38+1.14 55.46+11.68
5% 69.9610.82 70.151079 71.871020 72.7T21062 72.031108 73.96.053
10% 67.394+0.74 68.51+1.06 68.1940.15 68.841050 70.214082 71.1040.24
CiteSeer 15% 64.32i0,93 67.23i1A24 65~01i1A68 67.59i0,79 67.99i1,43 70.39i()‘57
20% 55.1841.67 57.59+1.20 56.3840.23 56.67+0.88 60.404141 61.57+0.98
25% 56.22i2,27 61.54i2A01 55.94i0A14 61‘75i0.92 59.60i2,18 60.74i1A05

5% 83.0940.10 83.1710.10 78.1240.03 83.07+0.07 82.2710.19 82.9710.30
10% 81.08+0.18 81.27+0.10 71.16+0.00 81.35+0.06 79.93+0.16 81.8110.39
PubMed 15% 78311028 T8.Tlip.07 67.1640.03 78.851006 78.2410.13 80.0810.24

20% 76.5540.34 76.904+0.08 63.8840.02 77.03410.09 75.83+027 78.0240.34
25% 745141050 75.0510.07 61.1040.01 75.0510.11 73.0110.35 75.6110.32

Table 6: Accuracy (%), training time (s), and inference time (s) comparisons with CRF-based models.
Since CRF-GCN does not provide code, the accuracy is directly reported and the time is omitted.

Cora CiteSeer PubMed

Methods

Accuracy Training Inference Accuracy Training Inference Accuracy Training Inference

GCN 81.70  0.002  0.001 71.43  0.002  0.001 79.06  0.008  0.001

CGNF 83.2 0.389  0.181 72.2 0.240  0.093 79.4 7.523  2.959
CRF-GCN  82.8 — — 72.1 — — 79.2 — —
GCN+JC 83.51 0.004 0.001 72.97 0.0056  0.001 79.80 0.018  0.001

performance gains even compared with SOTA models encoding label dependency. Particularly,
the absolute improvements are 0.4%, 1.1% and 0.5% on Cora, Citeseer, and Pubmed, respectively.
These baselines predict the target node by accounting the label dependencies from all the connected
neighbors. In contrast, we only take the cluster as reference signal to learn the joint distribution,
which is simple but shows great generalization. @ Our proposals consume much less training and
inference times, which are comparable to vanilla GCN. While we only consider the cluster in joint
distribution, the CRF-based models learn the target node together with all its neighbors burdensomely.

> Concatenating with label propagation. C&S (Huang et al.,[2020) is proposed to smooth node
labels at the post-processing phase of MLP model. Prior to such post-processing, our joint distribution
labeling can be plugged in to better prepare MLP by learning the label correlations of nodes. We
examine our thoughts in Tabl7] @ It is observed that over all the larger datasets (i.e., except Cora
and Citeseer), MLP can evidently benefit from the joint-cluster loss. On the small datasets, the
stacking of C&S and joint loss will make the node labels overly similar over the whole graph and
degrade model performance.

Table 7: Performance of C&S with the MLP trained by cross-entropy loss and joint-cluster loss.
Methods Cora CiteSeer PubMed DBLP Facebook LastFMAsia  Arxiv

MLP+CE 58.65+0.97 60.4140.56 73.27+0.35 47.95+3.097 55.341260 68.9110.70 55.50+0.23
MLP+JC 67.194+062 63.23+087 75.9240.39 61.16+3.63 56.6242.42 78.8140.69 63.13+0.10
MLP+CE+C&S 80-0510.46 70.36:&0‘44 77.08:‘:()‘26 71.19:&2‘59 67.48:[:460 85.73;{:051 68.58:‘:()‘05
MLP+JC+C&S 77.37+0.65 69.014+0.03 77.91410.43 73.2310.86 69.391+3.53 87.261+0.54 70.06+0.09

5.5 IN-DEPTH DISCUSSION OF JOINT-CLUSTER SUPERVISED LEARNING

Q: How the joint-cluster distribution modeling learns to concentrate node embeddings of the
same class (cluster) within compact space? We visualize the node representations learned by
cross-entropy loss and joint-cluster loss in Figure 2] Different from the vanilla loss, our joint-cluster
loss exhibits 2D projections with more coherent shapes of clusters. One of the possible reasons is the
node representations are learned to embrace their corresponding clusters in the joint modeling.
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Figure 2: Left, Middle: Node representation visualization by t-SNE (Van der Maaten & Hinton, |2008)
for 8-layer GCN trained by cross-entropy loss (left) and joint-cluster loss (middle) on Cora. Right:
Normalized comparison of the gap between train and test losses on ogbn-arxiv.

Q: Whether the joint learning avoids the overfitting on training set. The model’s generalization
ability is commonly measured by the gap between training loss and test loss. The smaller the gap is,
the better the model can be free from the overfitting but generalizes on the testing set. We plot such a
loss gap in the right part of Figure 2] where joint-cluster loss generally has a smaller gap.
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Figure 3: Hyperparameter effect of the cluster number in the joint-cluster supervised learning. Note
that a/b in Yelp, a denotes cluster number in Cluster_GCN and GraphSAGE, and b represents cluster
number in SIGN, which uses a larger batch size.

Q: How is the sensitivity of the joint-cluster learning framework to the cluster number? Fig[3|
shows the hyperparameter effect of the cluster number on both small and large datasets. We observe
the joint-cluster loss benefits from a suitable number in a smaller dataset Cora. Yet, we notice the
performances are stable as the cluster number changes in larger datasets, such as Arxiv and Yelp.

Q: Does our joint-cluster learning framework require Table 8: Occupied memory (ratio) of JC

expensive memory cost compared to standard super-

vised learning framework? We examine this question
in Table[§] It is found that our framework requires little
cost on most models except GAT, which brings the non-
negligible improvements in node classification accuracy
and robustness over adversarial attack. Although GAT
requires a higher cost due to its complex attention mech-
anism, this is still acceptable compared with the benefits.

6 CONCLUSION

loss compared with vanilla loss.

Model Cora CiteSeer PubMed
GCN 1.01x 1.04x 1.00x
SGC 1.06x 1.05x 1.00x
MLP 1.01x 1.05x 1.02x
SAGE 1.03x 1.08x 1.07x
GAT 1.70x 1.39x 1.56x

In this paper, we hypothesize that the independent conditional distribution of node labels is not in
line with the graph-structured data, where nodes tend to connect with “similar’” neighbors and linked
nodes have complicated relationships. Based on the i.i.d assumption, the supervised learning with
standard cross-entropy loss fails to fully activate the model’s ability in generalizing over a test set as
well as defending adversarial attacks. Motivated by the label dependencies between nodes and their
corresponding clusters, we have presented the joint-cluster supervised learning framework for the
training and inference in graph data. This new paradigm learns the joint distribution of nodes and
their cluster labels conditioned on their features, and introduces the joint-cluster cross-entropy loss.
The extensive experiments demonstrate that our model can boost the node classification performance
of GNN models and simple MLP architecture compared to the standard supervised learning on a wide
range of real-world datasets. The limitations and interesting future work are discussed in Appendix [H]



Under review as a conference paper at ICLR 2024

REFERENCES

Siddhant Arora. A survey on graph neural networks for knowledge graph completion. arXiv preprint
arXiv:2007.12374, 2020.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of the web conference 2020, pp. 1400-1410, 2020.

Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Liang Chen, Jintang Li, Jiaying Peng, Tao Xie, Zengxu Cao, Kun Xu, Xiangnan He, Zibin Zheng,
and Bingzhe Wu. A survey of adversarial learning on graphs. arXiv preprint arXiv:2003.05730,
2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257-266,
2019.

Cameron Diao, Kaixiong Zhou, Xiao Huang, and Xia Hu. Molcpt: Molecule continuous prompt
tuning to generalize molecular representation learning. arXiv preprint arXiv:2212.10614, 2022.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and
rethinking. arXiv preprint arXiv:2210.07494, 2022.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417-426, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Hongchang Gao, Jian Pei, and Heng Huang. Conditional random field enhanced graph convolutional
neural networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 276284, 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 855-864, New York, NY, USA, 2016. Association for Computing Machinery.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321-1330. PMLR, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,

pp. 639648, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label propa-
gation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993,
2020.

10



Under review as a conference paper at ICLR 2024

Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on graphs:
A review and empirical study. arXiv preprint arXiv:2003.00653, 10(3447556.3447566), 2020a.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 6674, 2020b.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359-392, 1998.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations, 2017.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pp. 3734-3743. PMLR, 2019.

Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, and Junzhou Huang. Adversarial attack
on community detection by hiding individuals. In Proceedings of The Web Conference 2020, pp.
917-927, 2020.

Ganlin Liu, Xiaowei Huang, and Xinping Yi. Adversarial label poisoning attack on graph neural
networks via label propagation. In Computer Vision—-ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part V, pp. 227-243. Springer, 2022a.

Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li,
Jingcan Duan, and Cancan Chen. Hard sample aware network for contrastive deep graph clustering.
arXiv preprint arXiv:2212.08665, 2022b.

Jiagi Ma, Junwei Deng, and Qiaozhu Mei. Adversarial attack on graph neural networks as an
influence maximization problem. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, pp. 675-685, 2022.

Tengfei Ma, Cao Xiao, Junyuan Shang, and Jimeng Sun. Cgnf: Conditional graph neural fields. 2018.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943,2021.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701-710, 2014.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In Proceedings of the 29th ACM international
conference on information & knowledge management, pp. 1325-1334, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021a.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Adversarial attacks
on graph neural networks via node injections: A hierarchical reinforcement learning approach. In
Proceedings of the Web Conference 2020, pp. 673-683, 2020.

11



Under review as a conference paper at ICLR 2024

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.

Binghui Wang and Neil Zhengiang Gong. Attacking graph-based classification via manipulating
the graph structure. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2023-2040, 2019.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propaga-
tion. arXiv preprint arXiv:2002.06755, 2020.

Hongwei Wang and Jure Leskovec. Combining graph convolutional neural networks and label
propagation. ACM Transactions on Information Systems (TOIS), 40(4):1-27, 2021.

Ruijie Wang, Yuchen Yan, Jialu Wang, Yuting Jia, Ye Zhang, Weinan Zhang, and Xinbing Wang.
Acekg: A large-scale knowledge graph for academic data mining. In Proceedings of the 27th ACM
international conference on information and knowledge management, pp. 1487-1490, 2018.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 950-958, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

Beini Xie, Heng Chang, Xin Wang, Tian Bian, Shiji Zhou, Daixin Wang, Zhiqiang Zhang, and
Wenwu Zhu. Revisiting adversarial attacks on graph neural networks for graph classification. arXiv
preprint arXiv:2208.06651, 2022a.

Tian Xie, Bin Wang, and C-C Jay Kuo. Graphhop: An enhanced label propagation method for node
classification. IEEE Transactions on Neural Networks and Learning Systems, 2022b.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Haotian Xue, Kaixiong Zhou, Tianlong Chen, Kai Guo, Xia Hu, Yi Chang, and Xin Wang. Cap:
Co-adversarial perturbation on weights and features for improving generalization of graph neural
networks. arXiv preprint arXiv:2110.14855, 2021.

Zhuohan Yu, Yanchi Su, Yifu Lu, Yuning Yang, Fuzhou Wang, Shixiong Zhang, Yi Chang, Ka-Chun
Wong, and Xiangtao Li. Topological identification and interpretation for single-cell gene regulation
elucidation across multiple platforms using scmgca. Nature Communications, 14(1):400, 2023.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, and Jun Zhou. Robust
heterogeneous graph neural networks against adversarial attacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 4363-4370, 2022.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

12



Under review as a conference paper at ICLR 2024

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in neural information
processing systems, 33:4917-4928, 2020.

Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. Multi-channel
graph neural networks. In Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence, pp. 1352-1358, 2021.

A ALGORITHM

Algorithm 1: Joint-Cluster Learning Framework

Input: Adjacent matrix A, features matrix X, the set of labeled nodes V1, and their labels Y,
encoder f, classifier g
Output: Predicted labels of unlabeled nodes

1 Partition graph nodes into M clusters C1, Cs, ..., Cjs by METIS;

a M A W N

]

10
11
12
13

for each cluster do
‘ Y,,=1/L,, Zf;ll Y); / « Calculate cluster_label according to Y. * /
end
for i = 1;7 < max iteration epoch;i++ do
Z = fo (A,X); /* Update node embedding.*/
Zy =1/L,, Zﬁ;‘l Zy; / = Update cluster_embeddings. * /
Update joint_embeddings Z;. according to Zz, and Z,,

Y. =g (Zj.); /= Obtain joint distribution prediction of Node and Cluster. * /

Y. =Y,Y,; /xJoint label of node and cluster. * /
Calculate joint-cluster loss. L.

Vo6 [Liel

end

B THE STATISTICS OF DATASETS

Table 9] contains the statistics for the nine datasets used in our experiments for node classification.
Experiments are under the single-class and multi-class setting. For single-class classification task,
we conduct the experiments on an online social network (LastFMAsia (Rozemberczki & Sarkar,
2020)), a webpage dataset(Wisconsilﬂ), three page-page networks (Facebook (Rozemberczki et al.,
2021a), Chameleon and Squirrel (Rozemberczki et al., [2021b)) and citation networks, including
Cora, CiteSeer, PubMed (Kipf & Welling, [2017), DBLP (Bojchevski & Giinnemann, 2017)) and
ogbn-arxiv (Hu et al.| 2020). For multi-class classification task, we use businesses types network
based on customer reviewers and friendship (Yelp (Zeng et al.| 2019)), and product network based
on buyer reviewers and interactions (Amazon (Zeng et al.,[2019)). Furthermore, the statistics of the
datasets used in adversarial attack in Table

Next, we will introduce in detail the data split. We follow the standard split proposed by (Kipf &
‘Welling, [2017) on three citation networks, including Cora, CiteSeer, and PubMed. For DBLP and
Facebook, we use 20 labeled nodes per class as the training set, 30 nodes per class for validation, and
the rest for testing. In addition, we conduct the experiments on LastFMAsia and ogbn-arxiv to further
evaluate the performance of our proposed joint-cluster loss on imbalanced datasets. For LastFMAsia,
we randomly split 25%/25%/50% of nodes for training, validation, and testing. For ogbn-arxiv, we
follow the standard split proposed by |Hu et al.|(2020). For heterophilic graph datasets(Chameleon,
Squirrel and Wisconsin), we fellow the data split of [Pei1 et al.| (2020). For two large multi-class
datasets proposed by Zeng et al.[(2019)), including Yelp and Amazon, whose node numbers are 716K
and 1598K. Following Zeng et al.|(2019), we use the same data split to stay our focus on the design
of the objective function and conduct a fair comparison with independent cross-entropy loss. For
robustness experiments, following previous works (Jin et al., 2020b)), we only consider the largest

Zhttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 9: Statistics of datasets used in experiments (“m” stands for multi-class classification, and
for single-class).

Datasets Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7(s)
CiteSeer 3,327 4,732 3,703 6(s)
PubMed 19,717 44,338 500 3(s)
DBLP 17,716 105,734 1,639 4(s)
Facebook 22,470 342,004 128 4(s)
LastFMAsia 7,624 55,612 128 18(s)
ogbn-arxiv 169,343 1,166,243 128 40(s)
Chameleon 2,277 36,101 2,325 5(s)
Squirrel 5,201 217,073 2,089 5(s)
Wisconsin 251 499 1,703 5(s)

Yelp 716,847 6,977,410 300  100(m)

Amazon 1,598,960 132,169,734 200  107(m)

Table 10: Following Jin et al.|(2020b), we only consider the largest connected component (LCC).

Datasets Nodes  Edges Features Classes

Cora 2,485 5,069 1,433 7
CiteSeer 2,110 3,668 3,703 6
3

2

PubMed 19,717 44,338 500
Polblogs 1,222 16,714 /

connected component (LCC) in the adversarial graphs, and randomly split 10%/10%/80% of nodes
for training, validation, and testing.

C OTHER RELATED WORK

Graph neural networks. Existing GNNs follow the neighborhood aggregation strategy, which
iteratively updates the node representation by aggregating the representations of its neighboring nodes
and combining them with its representations (Xu et al., 2018)). Numerous variants of GNNs have
been proposed to achieve outstanding performances in a wide variety of graph-based tasks, such as
graph clustering (Bo et al.| 2020; |Liu et al., 2022b)), node classification (Bruna et al.| 2013} |[Kipf &
‘Welling|, [2017) and graph classification (Zhou et al., 2021} |Lee et al., [2019). In order to deal with
large-scale graph datasets, researchers have proposed some scalable graph learning methods (Chiang
et al.l [2019; |Duan et al.| 2022).

Graph adversarial attack. Graph adversarial attack refers to the process of manipulating or
perturbing the nodes, edges, or features in a graph to deceive or mislead graph-based learning
models(Chen et al.,|2020; Jin et al., 2020a). These attacks can be categorized into different types,
such as structural attacks that modify the graph topology (Xu et al., [2019; [Wang & Gong, [2019;
L1 et al.l [2020), feature-based attacks that manipulate node features (Xue et al., 2021; Liu et al.,
2022al), and hybrid attacks that combine both (Zhang et al.| |2022; Xie et al.| [2022a; |[Ma et al.| 2022).
Compared with cross-entropy loss, our joint-cluster loss can refer to similar nodes in the process of
loss optimization and inference, which can effectively alleviate the impact of graph attacks.

D DESCRIPTION OF BACKBONE MODELS

We evaluate our joint-cluster supervised learning framework on differnet GNN models and scalable
graph learning backbones:

* GCN (Kipf & Welling}, 2017): GCN is a convolutional neural network which utilizes the structural
information of graphs by message passing mechanism.
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* SGC (Wu et al., 2019): SGC eliminates the nonlinearities of GCN and collapses the weight matrix
into a weight matrix.

* MLP: MLP is a simple neural network that maps a set of input vectors to a set of output vectors.

* GAT (Velickovic et al.,2018): GAT learns edge weights in graph domain through the attention
mechanism and achieves significant performance.

* GraphSAGE (Hamilton et al., 2017): Graphsage obtains neighbor nodes through sampling
strategies and expresses node representation through neighbor aggregation operations.

* Cluster_GCN (Chiang et al.,2019): Cluster_GCN is a fast and efficient mini-batch training
algorithm that preserve structural information within a batch by exploiting the graph clustering
structure.

* SIGN (Frasca et al., [2020): SIGN is amenable to efficient precomputation by using graph
convolutional filters of different size, achieving fast training and inference.

E IMPLEMENTATION

Following the experimental settings of original papers, for GA’Iﬂ, we choose the model parameters
by utilizing an early stopping strategy with a patience of 100 epochs on classification loss. For
other GNN modelqd | we utilize the model parameters which perform best on the validation set for
testing. The remaining hyper-parameters including learning rate, dropout and weight decay are tuned
for different models. Scalable graph learning methods are executed based on the official examples
of PyTorch Geometri(ﬁﬂ We further implement joint-cluster loss over each backbone framework.
Because Graphsage and SIGN divide the batch, it is impossible to guarantee that the nodes in the same
batch are adjacent. Therefore, in order to ensure fairness, for the joint-cluster loss of the large-scale
graph learning methods, we use the manner of randomly assigning clusters to the nodes.

F  MULTI-CLASS TASK DESIGN

We introduced the framework design of single-class classification task in the paper. In short, for
the single-class setting, joint-cluster learning framework expands a c-class classification task into
a c?-class classification task. The multi-class setting is slightly different from single-class. The
number of clsses c in the multi-classification task represents ¢ binary classification tasks. We extend
each two-class classification task to a four-class classification task for nodes and clusters, and use
cross-entropy loss to optimize each four-class classification. So the output dimension of the classifier
is 4e.

G ADDITIONAL EXPERIMENTS

In-context learning. We conduct experiments to demonstrate the effect of joint distribution mod-
eling in joint-cluster supervised learning framework. For each experiment, we compare the model
trained by standard supervised learning, in-context strategy and joint-cluster learning framework.
For in-context learning, we use the same input as the joint-cluster framework, the output is a c-
dimensional vector, and the node label is used as the ground truth. As shown in Table[TT} we observe
that in-context strategy does not get a stable accuracy improvement. We guess that in-context strategy
requires the cluster label should be sharp and the node label should be consistent with the cluster label,
which will cause the model to be limited by the division of clusters. Our joint-cluster framework
learns the joint distribution of nodes and clusters, which will learn potentially complex relationships
between nodes, not just similarities.

*https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gat.py
*https://github.com/tkipf/pygen

>https://github.com/Tiiiger/SGC
Shttps://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gen_ppi.py
"https://github.com/pyg-team/pytorch_geometric/blob/master/examples/sign.py
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Table 11: Test Accuracy (%) for different models on five datasets. In addition, we show the best
results in bold. We run 10 times and report the mean + standard deviation. CE denotes the standard
cross-entropy loss, IC denotes in-context learning strategy, and JC denotes our joint-cluster learning
framework.

Model Loss Cora CiteSeer PubMed DBLP Facebook
CE 81.7010.65 71.4310.47 79.06+0.32 74.30+1.94 73.9141.40
GCN 1C 81.5640.25 70.0810.56 79.37+0.46 72.53 1255 70.35+1.86

JC 83.5140.35 72.97+0.55 79.80+0.19 75.10+1.63 74.64+1 75
CE 81.68+0.52 71.8540.39 78.70+0.38 74.3042.12 74.1342.13

SGC 1C 81.8710.51 69.4110.79 79.2040.43 71.40+1.07 68.15+3.30
JC 83.87i079 72.92i()‘16 79.97i0‘25 74.87i1A81 74~74i1A96
SAGE CE 79.9610.44 69.9440.93 78.37+0.72 70.59+1 .46 70.9542.06
IC 78.70i1,13 67-52i0496 78-50i0.58 70.1713.29 69.75i1‘75
IC 80.81.10.63 70.5441 49 79.50+1.02 71.8712.07 71.5941 78
GAT CE 83.2210.29 71.06£0.40 78.5410.63 75.3219.62 76.3412.96
1C 83.2110.32 71.434+0.47 78.38+0.22 74.1041 .59 72.4945.34

IC 83.77+0.44 70.18410.86 79.35+10.a7 76.9211 50 7'7.4642 30
CE 58.65+0.97 60.41+0.56 73.27+0.35 47.9543.97 55.34+9.60
IC 64.2710.43 62.2711.69 75.7440.46 58.83+12.31 56.53+3.20
JC 67.19+0.62 63.2310.87 75.9210.39 61.161363 56.6212 42

MLP

Table 12: Node classification accuracy (%) under metattack.
GCN SGC GAT

CE IC CE IC CE JC
5% 72-70i0.60 74.15i0,39 74.44i0.33 76.64i0.51 76.56i0.74 78~65i0.88
10% 71.901069 78371357 70461029 T8.701381 72.421069 T76.79+71 11
POlblOgS 15% 67.92i0,78 70.53i0,53 55~99i1.85 72.64i1.24 61-13i5.36 69.04i2,97
20% 57.76+0.37 62.84410.93 51.9410.11 65.60+1.77 51.96+0.17 52.0410.16
25% 56.1742.11 64.87+0.96 52.0240.46 61.671412 49.464941 52.04171.15

Datasets Ptb Rate(%)

Robustness under adversarial attack. To verify the robustness of our framework, we use one blog
graph (Polblogs (Jin et al., 2020b)) commonly used in previous studies, whose node features are not
available. we set the attribute matrix to N x N identity matrix. The statistics of Polblogs is shown in
Table@} We randomly split 10%/10%/80% of nodes for training, validation, and testing. As shown
in Table|I2] our joint-cluster loss usually outperforms cross-entropy loss under different perturbation
rates. For instance, our method improves SGC over 29% at 15% perturbation rate. Complementary
experiments further demonstrate the advantages of our proposed framework in terms of robustness.

Over-smoothing. Our framework can alleviate over-smoothing. As shown in Figure 2 of
manuscript, in a 8-layer GCN, our framework can exhibit 2D projection of node embeddings with
more coherent shapes of clusters. In addition, we leverage GCN as the backbone networks, and
compare joint-cluster loss with cross-entropy loss by considering the layer numbers of 2, 4, 8, 16, and
32. As shown in the Figure ] our approach almost delivers the better node classification accuracies.
That is because our framework separates the node distribution modeling of different clusters, which
could relieve the over-smoothing issue to some extent.

Efficiency analysis. We use METIS to efficiently perform cluster division at pre-processing stage
for small graphs with thousands of nodes, which takes less than five seconds. For the batch training
on large graphs, we use random clustering on sampled training nodes and do not require clustering
time cost. Next we show the training time and training memory per epoch for vanilla cross-entropy
(CE) loss and our joint-cluster (JC) loss in Table[I3] It is found that computational time overhead
and memory cost are extremely marginal, which brings the non-negligible improvements in node
classification accuracy and robustness over adversarial attack.
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Figure 4: Over-smoothing analysis about the model depth for node classification.
Table 13: The efficiency analysis of the training time and training memory.

Datasets  Methods Cora CiteSeer PubMed
Time(s) Memory(MB) Time(s) Memory(MB) Time(s) Memory(MB)
GCN CE 0.002 88.29 0.002 184.90 0.016 3061.18
JC 0.004 89.16 0.005 191.53 0.018 3065.76
SGC CE 0.002 60.55 0.002 142.67 0.002 1577.18
JC 0.003 64.39 0.005 149.24 0.007 1581.75
MLP CE 0.001 60.55 0.002 142.67 0.002 1577.18
JC 0.004 61.15 0.004 149.24 0.006 1603.10
SAGE CE 0.005 49.54 0.005 148.00 0.006 147.51
JC 0.008 51.16 0.008 159.22 0.008 157.84
GAT CE 0.005 61.60 0.005 157.43 0.006 246.93
JC 0.007 104.99 0.008 218.44 0.011 385.76

H LIMITATIONS AND FUTURE WORK

Although our framework achieves promising experimental justifications, it suffers from the computa-
tion inefficiency issue. Compared with the standard supervised learning, the joint-cluster distribution
modeling expands a c-classes node classification task into a c2-classes prediction problem. Con-
sequently, we require the larger memory and more expensive time cost especially for the graph
data with a large number of node classes. However, this computation challenge can be relieved
by reformulating the c?-classes prediction problem to a 2c-classes setting, where the ground-truth
probability values are described by the corresponding node or cluster labels.

In the future work, we will explore the joint-cluster supervised learning on a broad range of potential
applications, such as graph classification or link prediction. In addition, the correlation between
samples is the biggest challenge in modeling real problems using probability theory, especially in
graph data. We expect more studies and exploration on more intermediate factorizations between i.i.d
and fully joint learning about the graph domain. We believe that the joint distribution learning will
continue to be a promising research area.
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