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Abstract

Few-shot learning and parameter-efficient fine-001
tuning (PEFT) are crucial to overcome the chal-002
lenges of data scarcity and ever growing lan-003
guage model sizes. This applies in particular to004
specialized domains such as argument mining,005
where complex and nuanced phrasing makes006
it difficult even for humans to distinguish not007
only between the stances but also whether a008
sentence contains a claim or an argument. We009
propose PETapter, a novel method that effec-010
tively combines PEFT methods with PET-style011
classification heads to boost few-shot learning012
capabilities without the significant computa-013
tional overhead typically associated with full014
model training. We validate our approach on015
three established NLP benchmark datasets and016
one real-world argument mining dataset. We017
show that PETapter not only achieves compara-018
ble performance to full few-shot fine-tuning us-019
ing pattern-exploiting training (PET), but also020
provides greater reliability and higher parame-021
ter efficiency while enabling higher modularity022
and easy sharing of the trained modules.023

1 Introduction024

Few-shot learning and parameter-efficient fine-025

tuning (PEFT) have emerged as pivotal disciplines026

in the realm of natural language processing (NLP),027

especially in applications where data scarcity poses028

significant challenges. Argument mining, an area029

focused on automatically detecting and analyzing030

arguments within text, is particularly affected by031

such challenges. Due to the nuanced and context-032

dependent nature of argumentative discourse, stan-033

dard fine-tuning methods for pretrained language034

models (PLM) with only a few labeled data points035

usually perform poorly in these tasks (e.g., Rieger036

et al., 2024). Few-shot learning, with its promise to037

generalize from a limited number of training sam-038

ples, offers an alternative pathway towards mitigat-039

ing the data scarcity problem. However, the deploy-040

ment of large-scale language models in a few-shot041
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Figure 1: Schematic representation of the PETapter
architecture compared to standard PEFT methods.

setting can be challenging, primarily due to the 042

substantial computational resources required for 043

training and fine-tuning, as they update all parame- 044

ters of the model by default. PEFT methods, such 045

as adapter modules, present a viable solution to this 046

issue by enabling the adaptation of pretrained mod- 047

els to specific tasks with minimal modifications to 048

the model architecture. Specifically, these methods 049

freeze a large part of the model’s parameters and 050

train only small parts of the existing or few newly 051

added layers (Poth et al., 2023). Further, PEFT 052

methods using a standard linear layer perform sig- 053

nificantly worse than few-shot methods when using 054

few observations (cf. Sections 5.3 and 6.3). 055

For this reason, this paper aims to delve into the 056

innovative intersection of few-shot learning and 057

parameter-efficient fine-tuning. By integrating few- 058

shot learning paradigms with PEFT techniques, this 059

paper explores how, e.g., the field of argument min- 060

ing can leverage the strengths of both approaches to 061

efficiently classify text sequences, even when little 062

data is available. Through a study on three typical 063
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NLP benchmark datasets and a study on a real-064

world argument mining dataset, we demonstrate065

that the combination of few-shot and PEFT method-066

ologies can significantly reduce the reliance on ex-067

tensive annotated datasets while achieving competi-068

tive performance (to full few-shot fine-tuning) with069

reduced computational effort. It thus combines the070

advantages of the two fields, few-shot learning and071

parameter-efficient fine-tuning.072

As contribution, we propose a new method,073

PETapter, as a combination of PET-style classi-074

fication heads with PEFT methods. We show that075

in most scenarios PETapter is as performant as076

PET itself, i.e. noticeable better than PEFT with a077

standard classification head. PETapter additionally078

offers all PEFT advantages, i.e. it requires less com-079

putational resources and is easier to share in the080

research community due to its modularity. We also081

show that PETapter provides more robust predic-082

tions than PET, especially on real-world datasets.083

By doing so, this paper not only contributes to the084

theoretical advancement of NLP techniques but085

also offers practical insights for researchers and086

practitioners working on supervised text classifica-087

tion problems such as argument mining.088

In Section 2, we review relevant preliminary089

NLP work, in Section 3, we recapitulate the defi-090

nition of pattern-verbalizer pairs (PVP) for usage091

in our new method PETapter in Section 4. In Sec-092

tions 5 and 6, we conduct intensive NLP benchmark093

studies and a real-world study, which we finally dis-094

cuss in Section 7 and summarize in Section 8. The095

data and code used will be made available in a096

GitHub repository after acceptance.097

2 Related Work098

Pretrained language models (PLMs) serve as the ba-099

sis for most classification tasks in natural language100

processing (NLP). A frequently compared model is101

RoBERTa (Liu et al., 2019) due to its strong perfor-102

mance even with a comparatively small number of103

parameters (Base: 125 million, Large: 355 million).104

When using non-English texts, the multilingual al-105

ternative XLM-RoBERTa (Conneau et al., 2020)106

can be used, which was trained on 100 different lan-107

guages and provides a reliable basis for achieving108

good performance, at least for high resource lan-109

guages. As the next best model, (m)DeBERTa (He110

et al., 2023) forms a promising base PLM, but with111

1.5 billion parameters it already has significantly112

higher requirements in terms of GPU capacity and113

computation time. 114

2.1 Parameter-Efficient Fine-Tuning (PEFT) 115

The ever-increasing sizes of base PLMs pose a 116

great challenge for fully fine-tuning all parame- 117

ters. Rebuffi et al. (2017), as well as Houlsby 118

et al. (2019), were among the first to tackle this 119

problem by freezing the PLM and instead inserting 120

and training bottleneck feed-forward layers within 121

the pretrained architecture. Pfeiffer et al. (2020) 122

refined this idea into a slightly more parameter- 123

efficient and robust method, though still sequential 124

in its basic idea, which is named Pfeiffer adapters. 125

Techniques such as low-rank adaptation (LoRA, 126

Hu et al., 2021) and (IA)3 (Liu et al., 2022) in- 127

troduce minimal updates to the model weights, 128

while their parallel approach makes it possible to 129

combine the newly learned parameters with the 130

frozen ones in such a way that there is no over- 131

head during inference. Recent innovations such 132

as considering different ranks for each linear layer 133

in PRILoRA (Benedek and Wolf, 2024), sharing 134

the low-rank matrices across all layers with layer- 135

specific learned scaling vectors in VeRA (Kopiczko 136

et al., 2024) or LoRA-like decomposition of pre- 137

trained weights in DoRA (Liu et al., 2024) are 138

examples of further LoRA-like advancements in 139

the field of parameter-efficient fine-tuning. 140

In addition, ComPEFT (Yadav et al., 2023) and 141

QLoRA (Dettmers et al., 2023) offer the possibil- 142

ity of even more effective parameter usage with 143

condensation of information through quantization 144

and desparsification. RoSA (Nikdan et al., 2024) 145

combines low-rank adaptation with high sparsity 146

training following the idea of robust principal com- 147

ponent analysis. Several specialized approaches 148

exist, one of which is AdaSent (Huang et al., 2023) 149

focusing on PEFT for sentence representations. 150

While many implementations are often limited 151

to the PEFT character of the methods (Mangrulkar 152

et al., 2022; Hu et al., 2023a,b), the Python package 153

Adapters (Poth et al., 2023) facilitates the modular 154

use of PEFT methods, highlighting a trend towards 155

modular deep learning (Pfeiffer et al., 2023) and 156

holistic PEFT implementations (He et al., 2022; 157

Sabry and Belz, 2023). 158

2.2 Few-Shot Text Classification 159

Few-shot text classification aims to maximize 160

model performance with minimal labeled data. For 161

this, a lot of approaches are based on a combi- 162

nation of prompt-based learning and meta learn- 163
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ing. Schick and Schütze (2021) are the first to164

propose the utilization of so-called prompt-based165

cloze questions. In this pattern-exploiting training166

(PET), a masked token is predicted in a language167

model task style, similar to that used in pretrain-168

ing. The authors show that due to the model’s prior169

knowledge, it is able to predict these so-called ver-170

balizers better than plain numbered class labels.171

Furthermore, the authors show that meta-learning172

on soft labels generated by augmentations using173

iterative PET (iPET) also leads to an improvement,174

so that a combination of prompt-based learning175

and meta-learning (Zhang et al., 2022) is proposed.176

Chen and Shu (2023) use such an approach and177

propose the use of label-guided data augmentation178

methods for prompt-based few-shot tuning.179

Ling et al. (2023) demonstrate the possibility180

of an optimized automated search for verbalizers181

in prompt-based learning, while Karimi Mahabadi182

et al. (2022) suggest an approach without the need183

for prompts. Complementary to this, SetFit (Tun-184

stall et al., 2022) form triplets of positive and neg-185

ative examples and use contrastive learning to ef-186

fectively train on few training samples. The recipe187

T-Few (Liu et al., 2022) as an additional dedicated188

few-shot model is based on the zero-shot model189

T0 (Sanh et al., 2022) and enriches it with a com-190

bination of losses, the PEFT method (IA)3 and a191

pretraining of it using out-of-domain data, which192

can be quite expensive with regard to the train-193

ing time needed. PET, Setfit and T-Few represent194

key developments in the few-shot discipline and195

produce comparable performances on the RAFT196

benchmark dataset (Alex et al., 2021), each with197

strengths and weaknesses on different datasets198

2.3 Argument Mining199

In the field of argument mining, the following200

works are related to our idea of using PETapter201

to identify argumentative sentences from news me-202

dia: Hüning et al. (2022) classify whether user-203

generated chat messages contain an argument us-204

ing machine learning techniques utilizing sentence205

embeddings as features. For simplicity, they cate-206

gorize claims as no argument in their setting. Ju-207

rkschat et al. (2022) consider the possibility of few-208

shot methods for classifying aspects of argumen-209

tative sentences and show that PET performs best210

among the methods considered. Likewise, PET is211

used by Rieger et al. (2024) and compared with212

the use of PEFT methods for the identification213

of claims and arguments from news media arti-214

cles. The authors find that the task is challenging 215

even for humans, so that only moderate inter-coder 216

agreements are achieved. 217

In the following, we present the PETapter model, 218

which combines few-shot and PEFT methods to 219

achieve great performance, in particular in real- 220

world data scarce argument mining settings. 221

3 Pattern-Verbalizer-Pair (PVP) 222

We consider a pretrained language model (PLM) 223

M with an underlying vocabulary V , where 224

[MASK] ∈ V , i.e. we assume a mask token to 225

be contained in the vocabulary. In addition, let L 226

be a set of target labels for a classification task and 227

x ∈ V n an input (possibly consisting of several 228

segments) that contains a total of n tokens from the 229

vocabulary V . We define a pattern as a function 230

Pm : V n → V n+p, where m ≤ p is the number of 231

[MASK] tokens contained in the pattern and p is 232

the total number of vocabulary items added to the 233

input x by the pattern function. 234

Furthermore, let vm : L → V m be a verbalizer 235

function that assigns m tokens from the vocabulary 236

V to each label ℓ ∈ L. As the inventors of PET 237

(Schick and Schütze, 2021) suggest, we refer to the 238

combination (Pm, vm) as a pattern-verbalizer pair 239

(PVP). The pattern function Pm is used to trans- 240

form the input x into a kind of cloze question and 241

the verbalizer function vm provides for each label 242

the “speaking” and representative fill-in words for 243

the corresponding cloze question, which are to be 244

predicted by the model M . All PVPs used in this 245

paper can be found in the Appendices A and B. 246

4 PETapter 247

PETapter can be seen as a modular classification 248

head which can be added flexibly to a PEFT frame- 249

work as an alternative to a classical linear layer 250

classification head, cf. Figure 1. Here, the last 251

(purple) linear layer of the classification head does 252

not reduce the dimension directly to the number of 253

classes c, but to the size t of the sub-vocabulary T 254

of the verbalizer function used. Thus, each dimen- 255

sion of the output embedding represents a token 256

from the reduced verbalizer vocabulary, similar to 257

and motivated by the pattern-exploiting training 258

(PET) by Schick and Schütze (2021). Then, the 259

logits for the verbalizers (possibly composed of 260

several tokens) can be calculated as a sum of the 261

logits of the masked tokens in the pattern (cf. Equa- 262

tion 1). 263
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In general, PETapter can be combined with any264

PEFT method (cf. the blue segment in Figure 1),265

i.e. it also features all its advantages over full fine-266

tuning: faster training, less resource requirements,267

better sharability and reusability due to modularity268

as well as robustification (at least) with regard to269

the elimination of catastrophic forgetting. Specif-270

ically, PETapter implements all these advantages271

over PET, which uses full fine-tuning, while per-272

forming on par (cf. Sections 5.3 and 6.3).273

Let L be a set of target labels for a classification274

task with |L| = c, let Pm(x) be a pattern function275

inserting m [MASK] tokens to an input x, and let276

vm(ℓ) be an injective function that maps each of277

the labels ℓ ∈ L to m vocabulary tokens. Then, we278

obtain the subset of the vocabulary relevant for the279

verbalizers as T =
⋃

ℓ∈L
⋃m

i=1 v
m(ℓ)i with T ⊂ V280

and t = |T | the corresponding number of relevant281

tokens, i.e. we can refine vm : L → Tm.282

Moreover, let M(vm(ℓ) | Pm(x)) ∈ Rm denote283

the logits for the m [MASK] tokens, the output of284

the top linear layer (purple) in Figure 1 on the left.285

The final score for each of the label candidates ℓ286

for a given input text x is then given as287

s(ℓ | x) =
m∑
i=1

M(vm(ℓ) | Pm(x))i (1)288

and the corresponding pseudo-probability as289

q(ℓ | x) = exp(s(ℓ | x))∑
ℓ′∈L exp(s(ℓ′ | x))

. (2)290

Using this, we can calculate the cross-entropy loss291

over all observations as292

LCE = −
∑
(x,ℓ∗)

∑
ℓ∈L

1{ℓ=ℓ∗}(x, ℓ
∗) log[q(ℓ | x)]293

= −
∑
(x,ℓ∗)

log[q(ℓ∗ | x)] (3)294

if we consider ℓ∗ ∈ L to be the true label of x.295

5 Benchmark Study296

To evaluate how well our model performs in com-297

parison to existing state-of-the-art methods, we298

consider three established NLP datasets in a first299

benchmark study. These have quite a laboratory300

character, as the distribution of the class labels is301

pretty much balanced. Furthermore, it is not finally302

clear to what extent (possibly implicit) informa-303

tion about the test data of such publicly available304

datasets is contained in PLMs (Li and Flanigan,305

2024). Nevertheless, such datasets with predefined 306

train-test splits offer the possibility of comparing 307

methods across studies without the need of rerun- 308

ning all the experiments. 309

5.1 Datasets: AG, Yahoo, Yelp 310

We follow the study by Schick and Schütze (2022) 311

and use the three established NLP datasets AG’s 312

News (AG), Yahoo Questions (Yahoo), and Yelp 313

Full (Yelp), which are presented by Zhang et al. 314

(2015). In Appendix A, further information on the 315

three datasets is given. 316

For the training, we create 5 stratified datasets 317

with n = 10 randomly drawn observations and 318

5 datasets with n = 100 observations each for 319

the problems AG, Yahoo, and Yelp. We evaluate 320

all experiments with the corresponding entire test 321

dataset from the predefined split. 322

5.2 Experimental Setup 323

As PLM, we make use of RoBERTa Base and Large. 324

For fine-tuning methods, we consider the few-shot 325

method PET, PEFT methods with a (standard) lin- 326

ear layer as classification head, and our method 327

PETapter, i.e. PEFT methods in combination with 328

a PET-style classification head. In both cases, we 329

consider the methods (IA)3, LoRA and a Pfeiffer 330

adapter as PEFT methods. For PET and PETapter, 331

we compare the use of prompt or Q&A pattern, fol- 332

lowing Schick and Schütze (2022). In each dataset, 333

we measure the change of using n = 10 or 100 ob- 334

servations. Moreover, we repeat each experiment 335

five times, i.e. in Table 1 each cell corresponds to 336

25 experiments (5 repetitions × 5 datasets). In Ap- 337

pendix A, further information on all parameters as 338

well as the used patterns is given. 339

5.3 Results 340

Table 1 shows the average accuracy of the settings 341

and the standard deviation across the 25 experi- 342

ments per cell. Overall, it can be seen that the best 343

performance is achieved by PET using the prompt 344

pattern, while PETapter achieves the best values 345

in two scenarios and the linear layer classification 346

head never performs best. As expected, RoBERTa 347

Large consistently yields better results than the 348

Base variant, although the PEFT methods gener- 349

ally benefit somewhat more from the use of the 350

larger model. The accuracy achieved by PETapter 351

is usually very close to that of PET. Merely in the 352

setting n = 10 for Yahoo the values are signifi- 353

cantly worse. On the other hand, for n = 100 on 354
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Prompt Pattern Q&A Pattern Linear Layer
PETapter PETapter

n Data (IA)3 LoRA Pfeif. PET (IA)3 LoRA Pfeif. PET (IA)3 LoRA Pfeif.
R

oB
E

R
Ta

B
as

e

10 AG 0.668
±.092

0.681
±.080

0.683
±.078

0.804
±.036

0.596
±.077

0.672
±.077

0.680
±.088

0.800
±.028

0.297
±.053

0.293
±.045

0.316
±.059

10 Yahoo 0.236
±.016

0.292
±.033

0.271
±.042

0.545
±.040

0.274
±.026

0.295
±.041

0.285
±.036

0.515
±.036

0.105
±.009

0.116
±.020

0.123
±.016

10 Yelp 0.403
±.037

0.434
±.035

0.423
±.038

0.441
±.017

0.359
±.037

0.412
±.042

0.390
±.047

0.442
±.025

0.215
±.017

0.219
±.023

0.224
±.027

100 AG 0.856
±.012

0.861
±.012

0.860
±.012

0.875
±.007

0.863
±.006

0.861
±.010

0.862
±.011

0.871
±.008

0.837
±.007

0.862
±.008

0.864
±.008

100 Yahoo 0.622
±.018

0.642
±.009

0.642
±.011

0.666
±.007

0.622
±.005

0.637
±.007

0.633
±.008

0.659
±.007

0.418
±.034

0.636
±.013

0.633
±.012

100 Yelp 0.541
±.010

0.553
±.018

0.551
±.016

0.552
±.014

0.536
±.014

0.553
±.015

0.548
±.014

0.554
±.015

0.354
±.022

0.538
±.018

0.535
±.020

R
oB

E
R

Ta
L

ar
ge

10 AG 0.641
±.100

0.714
±.070

0.702
±.081

0.842
±.025

0.611
±.073

0.746
±.054

0.738
±.060

0.836
±.032

0.305
±.030

0.373
±.049

0.443
±.104

10 Yahoo 0.242
±.027

0.331
±.040

0.290
±.056

0.574
±.030

0.323
±.049

0.365
±.049

0.346
±.054

0.550
±.040

0.124
±.012

0.150
±.027

0.169
±.041

10 Yelp 0.442
±.040

0.470
±.041

0.479
±.035

0.475
±.026

0.440
±.049

0.472
±.049

0.490
±.046

0.486
±.041

0.211
±.010

0.221
±.012

0.216
±.014

100 AG 0.868
±.011

0.873
±.010

0.875
±.010

0.877
±.009

0.876
±.009

0.870
±.010

0.873
±.010

0.874
±.009

0.833
±.011

0.875
±.008

0.875
±.008

100 Yahoo 0.654
±.020

0.662
±.014

0.661
±.017

0.680
±.013

0.655
±.010

0.654
±.008

0.656
±.012

0.675
±.013

0.364
±.043

0.648
±.016

0.647
±.015

100 Yelp 0.611
±.011

0.613
±.014

0.614
±.010

0.593
±.014

0.626
±.008

0.622
±.013

0.620
±.013

0.595
±.016

0.347
±.019

0.551
±.019

0.512
±.043

Table 1: Mean accuracies (± standard deviation) of the experiments in the benchmark study.

RoBERTa Architecture AG Yahoo Yelp

Base PETapter 0.33 0.33 0.32
Base PET 0.38 0.39 0.39
Large PETapter 0.65 0.64 0.65
Large PET 1.00 1.00 1.00

Large PET 6.1s 6.2s 6.2s

Table 2: Comparison of training times per iteration of
n = 100 observations in the benchmark study. The last
row shows the time for PET using RoBERTa Large. The
other rows indicate the time relative to it. The times for
using PETapter or a linear layer are identical, as are for
the three architectures (IA)3, LoRA, and Pfeiffer.

Yelp, all three PEFT architectures combined with355

our PETapter method are noticeably better than356

PET itself. (IA)3 with Q&A pattern even leads to357

the best global performance in this case, while it358

produces rather low scores in most scenarios. Our359

explanation for this is that IA3 is just one compo-360

nent of the generally in benchmarks competitively361

performing T-Few. Overall, prompt and Q&A pat-362

tern perform similarly. Thus, we can confirm these363

findings from Schick and Schütze (2022) regarding364

PET and show that they generally hold for PETapter365

as well. Basically, it can be seen that the linear layer366

rarely comes close to the performance of PETapter;367

using linear layer classification heads in combina-368

tion with (IA)3 leads to the worst results overall. 369

As a result, it is evident that PETapter is to be 370

preferred over the use of a classical linear layer as 371

a classification head in use cases where the benefits 372

of PEFT methods are desired. At the same time, 373

PETapter achieves comparable performance to PET 374

in most cases. 375

In addition, as a PEFT method (cf. Section 2.1), 376

PETapter can be trained more effectively than stan- 377

dard PET. In Table 2 the training times of the mod- 378

els are displayed. According to this, PETapter (no 379

matter the architecture) requires ≈ 65% of the time 380

of regular PET per iteration. Compared to a regular 381

PEFT approach using a linear layer, PETapter does 382

not produce any overhead in training time. 383

6 Real-World Study 384

As indicated in Section 5, the evaluation based on 385

AG, Yahoo, and Yelp represents a lab situation, 386

e.g., because of their balancedness and (implicit) 387

inclusion in the pretraining of language models. 388

Complementary to this, in a second study, we com- 389

pare the performance of the methods on a (so far 390

unpublished) dataset with real-world challenges. It 391

is a dataset in the context of argument mining with 392

argumentative sentences on the topic of arms deliv- 393

eries to Ukraine with a total of 7301 thematically 394

relevant articles in 2022 from 22 German media 395
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outlets. The composition is explained in detail in396

the study of Rieger et al. (2024). Here, we consider397

a version of the dataset consisting of 1766 labeled398

data with the four possible labels claim/argument399

for/against, with non-relevant sentences already re-400

moved.401

6.1 Dataset: Ukraine Arms Deliveries402

The German language Ukraine dataset consists of403

766 train (294 articles) and 1000 test (369 articles)404

observations. Using a two-stage sampling (first arti-405

cle, then sentence) we intend to tackle the problem406

that including very related sentences from the same407

text in both splits could lead to an overoptimistic408

estimation of the error. Here, a single observa-409

tion consists of a target sentence to be classified as410

well as two contextual sentences before and after it.411

Based on the 766 observations, we draw training412

sets of sizes n = 10, 100, 250 according to three413

different sampling strategies.414

We draw the same number of observations from415

the subsets of the four labels in equal sampling, i.e.416

25 observations each in the scenario of n = 100.417

Using random sampling, we make a simple ran-418

dom selection from the total number of all pos-419

sible training examples and with stratified sam-420

pling we ensure that the label distribution of the421

entire training set is replicated as accurately as422

possible even in smaller samples. We create 5423

datasets for each combination of sampling strat-424

egy (Equal, Random, Stratified) and number of425

shots (n = 10, 100, 250), where we do not con-426

sider to random sample only 10 observations in427

order to ensure a minimum of one observation per428

label in all training sets. Table 3 provides the label429

distributions of the training and test dataset and430

the corresponding expected numbers under random431

sampling with n = 100, 250.432

6.2 Experimental Setup433

For the comparison of our PETapter model to PET434

and PEFT with a linear layer as classification head,435

we use the XLM-RoBERTa Large model due to the436

German dataset. In addition to the different archi-437

tectures (cf. Section 5.2), we compare the effect438

of different sampling strategies and the number of439

training observations n = 10, 100, 250. We again440

repeat each experiment five times. Thus, a single441

cell in Table 4 corresponds to 25 experiments (5442

repetitions × 5 datasets). In Appendix B, further443

information on all parameters as well as the used444

patterns is given.445

Label Train Test
10∗ 100∗ 250∗ All

argumentagainst 1.2 11.8 29.4 92 118
argumentfor 1.9 19.4 48.6 152 162
claimagainst 2.4 23.5 58.8 184 248

claimfor 4.6 45.2 113.2 354 456

Table 3: Label distribution in the train and test data
split of the Ukraine dataset. ∗Expected distribution for
random selection.

6.3 Results 446

Table 4 shows the macro-F1 scores from the real- 447

world study. According to this, there is no signif- 448

icant difference between the performance of PET 449

and PETapter. The scores using the linear layer, 450

on the other hand, are significantly worse in all 451

scenarios and combinations. The classification task 452

appears to be so hard that for n = 10 neither any 453

scenario nor any model could achieve meaningful 454

performance. For n = 100, 250, it can be seen that 455

PET benefits greatly from the use of a balanced 456

training set (equal sampling); this can be seen in 457

a strong reduction of uncertainty measured by the 458

standard deviation. In principle, however, PETapter 459

produces consistently more reliable performances 460

in the sense that the standard deviation of the scores 461

is consistently lower for all settings. It can be seen 462

that even for n = 100 random and stratified sam- 463

pling lead to similar results. 464

In Table 5, we also present label-specific perfor- 465

mance scores (precision, recall, macro-F1) for each 466

of the four classes in the dataset. Here, we focus 467

on the presentation of the results for n = 250 and 468

the Pfeiffer adapters as PEFT method. The results 469

of the random sampling are shown in Table 8 in the 470

Appendix. It is of little surprise that the rarest class 471

argumentagainst generates the worst precision, re- 472

call, and macro-F1 scores in the stratified sampling. 473

In the case of equal sampling, this remains true 474

only for the precision; the recall can be increased 475

through the oversampling for PET from previously 476

51% to the then highest value of the four classes of 477

81%. The fact that an equal sampling in the train- 478

ing set leads to higher overall macro-F1 scores and 479

lower uncertainty than a stratified sampling can be 480

explained by the fact that the corresponding recall 481

values of otherwise rarely occurring classes can be 482

increased in this way. 483

In general, PETapter provides the best overall 484

performance in this real-world study. While it 485

yields a similar level of performance, it produces 486
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PETapter Linear Layer
n Sampling (IA)3 LoRA Pfeiffer PET (IA)3 LoRA Pfeiffer
10 Equal 0.28 ±.046 0.31 ±.043 0.33 ±.057 0.33 ±.080 0.14 ±.039 0.13 ±.042 0.15 ±.041
10 Stratified 0.19 ±.023 0.27 ±.039 0.33 ±.027 0.40 ±.055 0.16 ±.000 0.16 ±.001 0.17 ±.021

100 Equal 0.49 ±.023 0.57 ±.020 0.57 ±.028 0.59 ±.027 0.23 ±.041 0.26 ±.029 0.29 ±.030
100 Random 0.41 ±.036 0.56 ±.036 0.55 ±.036 0.56 ±.053 0.16 ±.000 0.20 ±.041 0.26 ±.037
100 Stratified 0.40 ±.029 0.58 ±.042 0.57 ±.035 0.59 ±.054 0.16 ±.000 0.20 ±.030 0.26 ±.035
250 Equal 0.57 ±.015 0.67 ±.014 0.68 ±.018 0.70 ±.025 0.28 ±.027 0.46 ±.050 0.49 ±.075
250 Random 0.50 ±.031 0.67 ±.021 0.67 ±.024 0.67 ±.109 0.16 ±.000 0.38 ±.031 0.45 ±.086
250 Stratified 0.48 ±.036 0.67 ±.019 0.67 ±.018 0.67 ±.109 0.16 ±.003 0.37 ±.040 0.46 ±.082

Table 4: Mean macro-F1 scores (± standard deviation) of the experiments in the real-world study (Ukraine).

Equal Sampling Stratified Sampling
Label PETapter PET Lin. Layer PETapter PET Lin. Layer

Pr
ec

is
io

n argumentagainst 0.50 ±.031 0.51 ±.040 0.34 ±.068 0.54 ±.037 0.54 ±.122 0.39 ±.092
argumentfor 0.58 ±.045 0.63 ±.064 0.45 ±.075 0.64 ±.032 0.66 ±.145 0.47 ±.135
claimagainst 0.70 ±.033 0.71 ±.045 0.50 ±.078 0.68 ±.036 0.66 ±.143 0.49 ±.065

claimfor 0.87 ±.022 0.90 ±.023 0.69 ±.076 0.84 ±.022 0.83 ±.080 0.65 ±.064

R
ec

al
l argumentagainst 0.75 ±.043 0.81 ±.061 0.46 ±.113 0.53 ±.064 0.57 ±.140 0.16 ±.098

argumentfor 0.66 ±.048 0.70 ±.047 0.65 ±.060 0.63 ±.053 0.61 ±.138 0.42 ±.147
claimagainst 0.75 ±.026 0.76 ±.051 0.51 ±.090 0.78 ±.028 0.75 ±.161 0.54 ±.121

claimfor 0.67 ±.034 0.67 ±.047 0.48 ±.121 0.78 ±.022 0.80 ±.051 0.74 ±.051

M
ac

ro
-F

1 argumentagainst 0.60 ±.029 0.62 ±.031 0.38 ±.082 0.53 ±.045 0.55 ±.123 0.22 ±.100
argumentfor 0.62 ±.026 0.66 ±.040 0.53 ±.061 0.63 ±.024 0.63 ±.134 0.44 ±.138
claimagainst 0.72 ±.019 0.73 ±.025 0.50 ±.072 0.72 ±.028 0.70 ±.148 0.51 ±.084

claimfor 0.76 ±.018 0.77 ±.031 0.56 ±.105 0.81 ±.012 0.81 ±.040 0.69 ±.049

Table 5: Mean precision, recall, and macro-F1 scores per label (each ± standard deviation) of the experiments in the
real-world study (Ukraine). We consider the Pfeiffer adapter as the PEFT method of PETapter and n = 250. We
omit the results using random sampling as they are quite similar to those of the stratified datasets, cf. Table 8.

more reliable performance values overall. Thus,487

PETapter makes the idea of PET easily accessi-488

ble in PEFT settings without loss of performance.489

While PET on our system1 processes 7 observa-490

tions per second (obs/s) during training and 8 obs/s491

during testing, PETapter processes 25 obs/s during492

training and 51 obs/s ((IA)3/LoRA) or 42 obs/s493

(Pfeiffer) during testing. This shows a meaning-494

ful speed-up of PETapter compared to PET for the495

training as well as the inference phase.496

6.4 PVP-Experiments497

A major criticism of PET-like models is the need498

for manual generation of patterns and verbalizers.499

To address this, we tested the use of automated500

PVPs (No Pattern, Alpha verbalizer) and badly501

chosen verbalizers (Shuffle). For reasons of com-502

plexity, we limit the experiment to the combination503

of LoRA and PETapter. As a result from Table 6,504

it can be concluded that the pattern should at best505

be chosen manually, as there are notable differ-506

ences between the performances in all scenarios.507

However, the choice of verbalizer in our task has508

148 GB NVIDIA RTX 6000 Ada, Intel Xeon W7-3445
20×2.6 GHz, 256 GB ECC DDR5-4800 RAM

hardly any influence on the performance already for 509

n = 100. In fact, for No Pattern, Alpha mostly per- 510

forms better than the manually selected verbalizers, 511

which may be because Alpha consists of only one 512

token each, while the other two scenarios require 513

two tokens per verbalizer. Moreover, Shuffle does 514

not result in any noteworthy differences in label- 515

specific performance values compared to Normal 516

(table not included due to space constraints). 517

As an extension, Table 7 indicates that a combi- 518

nation of the five repetitions using a majority vote 519

leads to superior and more stable results. In particu- 520

lar in the scenario of limited human resources, this 521

offers the possibility of boosting the performance 522

of automatically selected PVPs by simply stacking 523

independent repetitions. 524

7 Discussion 525

The results show that PET benefits greatly from 526

equal sampling with unbalanced data. We were not 527

able to achieve this gain to the same extent using 528

PETapter. Therefore, even though equal sampling 529

is not a realistic scenario in (few-shot) real-world 530

settings, it could be promising to develop PEFT 531

methods in such a way that they benefit from bal- 532
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No Pattern Pattern
n Sampling Alpha Normal Shuffle Alpha Normal Shuffle
10 Equal 0.22 ±.039 0.25 ±.040 0.22 ±.039 0.23 ±.039 0.31 ±.043 0.28 ±.043
10 Stratified 0.20 ±.025 0.22 ±.031 0.22 ±.033 0.23 ±.067 0.27 ±.039 0.27 ±.043
100 Equal 0.47 ±.026 0.43 ±.041 0.41 ±.037 0.57 ±.041 0.57 ±.020 0.56 ±.033
100 Random 0.43 ±.046 0.39 ±.040 0.39 ±.043 0.53 ±.035 0.56 ±.036 0.54 ±.044
100 Stratified 0.40 ±.027 0.38 ±.035 0.37 ±.027 0.52 ±.051 0.58 ±.042 0.54 ±.048
250 Equal 0.62 ±.022 0.61 ±.024 0.60 ±.022 0.67 ±.021 0.67 ±.014 0.68 ±.019
250 Random 0.58 ±.035 0.57 ±.054 0.56 ±.054 0.65 ±.029 0.67 ±.021 0.66 ±.020
250 Stratified 0.60 ±.025 0.59 ±.030 0.58 ±.032 0.65 ±.019 0.67 ±.019 0.66 ±.017

Table 6: Mean macro-F1 scores (± standard deviation) of the PVP-experiments in the real-world study (Ukraine)
using LoRA as PEFT method and PETapter as classification head.

Data n PVP Mean Majority
AG 10 Manual 0.71 ±.080 0.71 ±.071
AG 100 Manual 0.87 ±.010 0.87 ±.009

Yahoo 10 Manual 0.30 ±.044 0.32 ±.034
Yahoo 100 Manual 0.66 ±.013 0.66 ±.012
Yelp 10 Manual 0.45 ±.055 0.45 ±.053
Yelp 100 Manual 0.61 ±.013 0.62 ±.009

Ukraine 10 Manual 0.27 ±.039 0.27 ±.029
Ukraine 100 Manual 0.58 ±.042 0.59 ±.025
Ukraine 250 Manual 0.67 ±.019 0.69 ±.018
Ukraine 10 Autom. 0.20 ±.025 0.20 ±.021
Ukraine 100 Autom. 0.40 ±.027 0.41 ±.018
Ukraine 250 Autom. 0.60 ±.025 0.62 ±.025

Table 7: Mean (majority) macro-F1 scores (± standard
deviation) using LoRA and PETapter. For Ukraine, we
present the results using the Stratified sampling. Manual
PVP means Prompt pattern for AG, Yahoo, and Yelp;
for Ukraine, it represents the combination of Pattern
using the Normal verbalizers, Autom. represents the
combination of No Pattern and Alpha.

anced data as much as PET. Moreover, as a follow-533

up study, we want to investigate to what extent or534

at what level of unbalancedness it is worth simply535

omitting observations from a stratified sampling in536

order to obtain a more balanced training set.537

Following the mathematical definition of538

PETapter (cf. Equation 1), it is recommended to539

always use the same number of verbalizer tokens540

for each class. We also recommend using as sim-541

ple patterns as possible. Initial experiments have542

shown that PET in particular leads to poor results543

with small n if the pattern is too complex. PETapter544

was slightly more robust against the choice of pat-545

tern in these experiments. In addition, although546

grammatical correctness of the pattern is desirable,547

it is not essential to achieve satisfactory results.548

For the activation function, we decided to use549

GELU in combination with LayerNorm (cf. Fig-550

ure 1). We will further investigate this decision in551

future studies by examining the influence of using552

alternative activation functions.553

8 Conclusion 554

We show that our novel method PETapter combines 555

the advantages of few-shot learning and parameter- 556

efficient fine-tuning (PEFT). PETapter combines 557

PEFT methods with PET-style classification heads. 558

In this way, it makes the idea of PET easily acces- 559

sible in PEFT settings. As a result, it achieves PET 560

performance and increased reliability of the results 561

while offering all the advantages of PEFT. It can 562

be trained faster with higher parameter efficiency 563

and without catastrophic forgetting. Furthermore, 564

it offers a modularity that makes it easier to share 565

models because the newly learned parameters re- 566

quire, e.g., only 16 MB compared to 2.1 GB of disk 567

space. Due to the implementation in the Adapters 568

(Poth et al., 2023) framework, it allows easy exe- 569

cution and combination with existing/new PEFT 570

methods like QLoRA (Dettmers et al., 2023), mix- 571

ture of experts models (Zadouri et al., 2024), or 572

others (cf. Section 2.1). 573

Better performance can probably also be 574

achieved by using DeBERTa (He et al., 2023) or 575

dedicated pretrained models, e.g. DeBERTa pre- 576

trained on the PoliStance Affect dataset2. In addi- 577

tion, the use of a dataset-independent pretraining of 578

the first linear layer after the PEFT module (lower 579

purple segment in Figure 1) as in T-Few (Liu et al., 580

2022) might lead to better results as well, or at 581

least to requiring fewer iterations to get to the same 582

performance. Furthermore, examining the imple- 583

mentation of other elements of T-Few, e.g. the use 584

of the unlikelihood or length-normalization loss, in 585

combination with PETapter or implementing auto- 586

mated verbalizer search or including meta learning 587

via proxy tasks/soft labels similarly to iPET may 588

also be beneficial. 589

2https://huggingface.co/mlburnham/
deberta-v3-large-polistance-affect-v1.0
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Limitations590

As mentioned in Sections 7 and 8, not all promising591

models and combinations of model ingredients can592

be evaluated. Therefore, it is expected that better593

performance scores can be achieved by optimiz-594

ing the combination of all mentioned ingredients,595

cf. Section 2. Instead, we show that the PETapter596

idea is a promising method overall, if the underly-597

ing task is possible to formulate as classification598

tasks. In addition, our analyses are limited to four599

data sets (also for reasons of sustainable NLP),600

which are restricted to the languages English and601

German. In return, we pay a lot of attention to a602

reliable evaluation through 5 repetitions × 5 sam-603

pled datasets for each of the considered scenarios604

in Sections 5 and 6.605
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A Details of Benchmark Study842

For the benchmark study, we compare843

the use of “roberta-base” and “roberta-844

large” from HuggingFace’s Transformers845

(Wolf et al., 2020). For PET (https:846

//github.com/timoschick/pet), we use847

the two parameters pet_num_train_epochs=10848

and pet_per_gpu_train_batch_size=1 that849

differ from the default. For all experiments using850

the package Adapter (Poth et al., 2023), we use the851

parameters852

• c_rate=16 (Pfeiffer),853

• r=8 (LoRA),854

• alpha=16 (LoRA),855

• learning_rate=5.0e-5,856

• max_epochs=30,857

• per_device_train_batch_size=2858

and alternate arch with ia3, lora, and pfeiffer.859

The patterns in the following subsections are mo-860

tivated by the results of the study of Schick and861

Schütze (2022). Due to the limited input length of862

PLMs, potential truncations of the input elements863

in the pattern are indicated with *, potentially as 864

group within {} brackets. 865

A.1 AG’s News 866

This English language dataset is available at https: 867

//huggingface.co/datasets/ag_news (Zhang 868

et al., 2015) and consists of 120 thousand train- 869

ing and 7.6 thousand test observations. 870

Prompt Pattern [MASK] News: [text]* 871

Q&A Pattern [text]* [SEP] Question: What is 872

the topic of this article? Answer: [MASK]. 873

Verbalizers 874

World World 875

Sports Sports 876

Business Business 877

Sci/Tech Tech 878

A.2 Yahoo Questions 879

This English language dataset is available 880

at https://huggingface.co/datasets/yahoo_ 881

answers_topics (Zhang et al., 2015) and consists 882

of 1.4 million training and 60 thousand test obser- 883

vations. 884

Prompt Pattern [MASK] Question: {[question- 885

_title] [question_content] [best_answer]}* 886

Q&A Pattern {[question_title] [question_con- 887

tent] [best_answer]}* [SEP] Question: 888

What is the topic of this question? Answer: 889

[MASK]. 890

Verbalizers 891

Society & Culture Society 892

Science & Mathematics Science 893

Health Health 894

Education & Reference Education 895

Computers & Internet Computer 896

Sports Sports 897

Business & Finance Business 898

Entertainment & Music Entertainment 899

Family & Relationships Relationship 900

Politics & Government Politics 901

11

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2311.13171
http://arxiv.org/abs/2311.13171
http://arxiv.org/abs/2311.13171
http://arxiv.org/abs/2311.13171
http://arxiv.org/abs/2311.13171
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://github.com/timoschick/pet
https://github.com/timoschick/pet
https://github.com/timoschick/pet
https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/yahoo_answers_topics
https://huggingface.co/datasets/yahoo_answers_topics
https://huggingface.co/datasets/yahoo_answers_topics


Random Sampling Stratified Sampling
Label PETapter PET Lin. Layer PETapter PET Lin. Layer

Pr
ec

is
io

n argumentagainst 0.57 ±.042 0.57 ±.126 0.37 ±.228 0.54 ±.037 0.54 ±.122 0.39 ±.092
argumentfor 0.64 ±.050 0.66 ±.141 0.45 ±.117 0.64 ±.032 0.66 ±.145 0.47 ±.135
claimagainst 0.68 ±.030 0.66 ±.141 0.52 ±.063 0.68 ±.036 0.66 ±.143 0.49 ±.065

claimfor 0.81 ±.027 0.81 ±.077 0.65 ±.065 0.84 ±.022 0.83 ±.080 0.65 ±.064

R
ec

al
l argumentagainst 0.51 ±.059 0.53 ±.147 0.12 ±.093 0.53 ±.064 0.57 ±.140 0.16 ±.098

argumentfor 0.61 ±.056 0.61 ±.140 0.42 ±.169 0.63 ±.053 0.61 ±.138 0.42 ±.147
claimagainst 0.75 ±.039 0.74 ±.157 0.54 ±.175 0.78 ±.028 0.75 ±.161 0.54 ±.121

claimfor 0.80 ±.029 0.82 ±.047 0.76 ±.054 0.78 ±.022 0.80 ±.051 0.74 ±.051

M
ac

ro
-F

1 argumentagainst 0.53 ±.037 0.55 ±.128 0.16 ±.109 0.53 ±.045 0.55 ±.123 0.22 ±.100
argumentfor 0.62 ±.046 0.63 ±.134 0.43 ±.142 0.63 ±.024 0.63 ±.134 0.44 ±.138
claimagainst 0.71 ±.025 0.70 ±.146 0.52 ±.124 0.72 ±.028 0.70 ±.148 0.51 ±.084

claimfor 0.81 ±.016 0.81 ±.039 0.70 ±.036 0.81 ±.012 0.81 ±.040 0.69 ±.049

Table 8: Mean precision, recall, and macro-F1 scores per label (each ± standard deviation) of the experiments in the
real-world study (Ukraine). We consider the Pfeiffer adapter as the PEFT method of PETapter and n = 250. In
addition to the results from Table 5, we present the results of random sampling in comparison to stratified sampling.

A.3 Yelp Full902

This English language dataset is available903

at https://huggingface.co/datasets/yelp_904

review_full (Zhang et al., 2015) and consists of905

650 thousand training and 50 thousand test obser-906

vations.907

Prompt Pattern [text]* [SEP] All in all, it was908

[MASK].909

Q&A Pattern [text]* [SEP] Question: What does910

the customer think of this restaurant? Answer:911

[MASK].912

Verbalizers913

1 star terrible914

2 stars bad915

3 stars okay916

4 stars good917

5 stars great918

B Details of the Real-World Study919

The dataset will be made available to researchers920

after acceptance of the paper. Since this921

dataset is in German language, we use “xlm-922

roberta-large” from HuggingFace’s Transform-923

ers (Wolf et al., 2020). For PET (https:924

//github.com/timoschick/pet), we use the925

two parameters pet_num_train_epochs=10 and926

pet_per_gpu_train_batch_size=1 (for a fair927

training time comparison in Table 2, we use928

pet_per_gpu_train_batch_size=2) that differ929

from the default. For all experiments using the930

package Adapter (Poth et al., 2023), we use the931

parameters932

• c_rate=16 (Pfeiffer), 933

• r=8 (LoRA), 934

• alpha=16 (LoRA), 935

• learning_rate=5.0e-5, 936

• max_epochs=30, 937

• per_device_train_batch_size=2 938

and alternate arch with ia3, lora, and pfeiffer. 939

Due to the limited input length of PLMs, poten- 940

tial truncations of the input elements in the pattern 941

are indicated with *, potentially as group within 942

{} brackets. We place the target sentence at the 943

beginning to ensure that it is never truncated due to 944

restrictions regarding the model’s input length of 945

512 tokens. Experiments with target_sentence in 946

the middle returned slightly worse results. In the 947

same way, experiments with an equivalent German 948

pattern yield slightly worse results. 949

Pattern This sentence contains [MASK] 950

[MASK] arms deliveries to Ukraine: {[tar- 951

get_sentence] [SEP] [context_before] [SEP] 952

[context_after]}* 953

No Pattern [MASK] [MASK]: {[target_sentence] 954

[SEP] [context_before] [SEP] [con- 955

text_after]}* 956

Alpha Verbalizers 957

The alphanumeric verbalizers only consist of 958

one token each, so that in this case the used 959

pattern is reduced to one [MASK] token only. 960

argumentagainst a 961

argumentfor b 962

claimagainst c 963

claimfor d 964

nostance e 965
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Normal Verbalizers966

argumentagainst argument against967

argumentfor argument for968

claimagainst claim against969

claimfor claim for970

nostance nothing regarding971

Shuffle Verbalizers972

argumentagainst claim for973

argumentfor claim against974

claimagainst nothing regarding975

claimfor argument against976

nostance argument for977

C RAFT Benchmark978

The RAFT Leaderboard (Alex et al., 2021, https:979

//raft.elicit.org/) has been under mainte-980

nance for some time now. We made a submission981

a while ago, but unfortunately still got no score. If982

the scores are published during the review process,983

we will include a table with comparative values984

for T-Few (Liu et al., 2022), Setfit (Tunstall et al.,985

2022), PET (Schick and Schütze, 2021) and the986

human baseline at this point.987

The 11 datasets of RAFT are in English lan-988

guage and available at https://huggingface.989

co/datasets/ought/raft. We use the model990

“microsoft/deberta-v2-xxlarge” from Hugging-991

Face’s Transformers (Wolf et al., 2020) and for992

all 11 datasets the parameters993

• arch=lora,994

• r=8,995

• alpha=16,996

• learning_rate=5.0e-5,997

• max_epochs=30,998

• per_device_train_batch_size=2,999

• number_of_runs=5,1000

where we select the majority vote out of the five1001

runs as the final submission.1002

The patterns in the following subsections are1003

motivated by the results of the study of Schick and1004

Schütze (2022). Due to the limited input length of1005

PLMs, potential truncations of the input elements1006

in the patterns are indicated with *, potentially as1007

group within {} brackets.1008

C.1 ade_corpus_v21009

Pattern [Sentence]* [SEP] Question: Is this sen-1010

tence related to an adverse drug effect (ADE)?1011

Answer: [MASK].1012

Verbalizers 1013

not ADE-related No 1014

ADE-related Yes 1015

C.2 banking_77 1016

For the processing of the banking_77 dataset, some 1017

preprocessing is necessary. As there are only 50 ob- 1018

servations in each of the training sets of the RAFT 1019

setting, but at the same time there are 77 different 1020

classes in this specific dataset, the model misses 1021

27 of the classes in the training set. To overcome 1022

this, we augment the training data such that each of 1023

the 50 observations is combined with all 77 classes 1024

using the yes/no pattern below. As a result, the 1025

27 classes that were previously not included in the 1026

training data now become part it each 50 times in 1027

combination with the label no. 1028

Pattern The following is a banking customer ser- 1029

vice query. [SEP] {[Query] [SEP] Is [Label]}* 1030

the correct category for this query? Answer: 1031

[MASK]. 1032

Verbalizers 1033

No No 1034

Yes Yes 1035

C.3 neurips_impact_statement_risks 1036

Pattern {Title: [Paper title] [SEP] Statement: [Im- 1037

pact statement]}* [SEP] Question: Does this 1038

impact statement mention a harmful applica- 1039

tion? Answer: [MASK]. 1040

Verbalizers 1041

doesn’t mention a harmful application 1042

No 1043

mentions a harmful application Yes 1044

C.4 one_stop_english 1045

Pattern [Article]* [SEP] Question: Is the level 1046

of this article ’elementary’, ’intermediate’ or 1047

’advanced’? Answer: [MASK]. 1048

Verbalizers 1049

elementary elementary 1050

intermediate intermediate 1051

advanced advanced 1052
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C.5 overruling1053

Pattern In law, an overruling sentence is a state-1054

ment that nullifies a previous case decision as1055

a precedent. [SEP] [Sentence]* [SEP] Ques-1056

tion: Is this sentence overruling? Answer:1057

[MASK].1058

Verbalizers1059

not overruling No1060

overruling Yes1061

C.6 semiconductor_org_types1062

Pattern {Title: [Paper title] [SEP] Organization1063

name: [Organization name]}* [SEP] Ques-1064

tion: What is the category of this institution?1065

Answer: [MASK].1066

Verbalizers1067

company Company1068

research institute Institute1069

university University1070

C.7 systematic_review_inclusion1071

Pattern {Journal: [Journal] [SEP] Title: [Title]1072

[SEP] Abstract: [Abstract]}* [SEP] Ques-1073

tion: Should this paper be included in a meta-1074

review which includes the findings of sys-1075

tematic reviews on interventions designed1076

to promote charitable donations? Answer:1077

[MASK].1078

Verbalizers1079

not included No1080

included Yes1081

C.8 tai_safety_research1082

Pattern Transformative AI (TAI) is defined as AI1083

that precipitates a transition comparable to1084

(or more significant than) the agricultural or1085

industrial revolution [SEP] {Journal: [Publi-1086

cation Title] [SEP] Title: [Title] [SEP] Ab-1087

stract: [Abstract Note]}* [SEP] Question: Is1088

this paper a TAI safety research paper? An-1089

swer: [MASK].1090

Verbalizers1091

not TAI safety research No1092

TAI safety research Yes1093

C.9 terms_of_service 1094

Pattern The following sentence is from a Terms of 1095

Service. [SEP] [Sentence]* [SEP] Question: 1096

Is this sentence potentially unfair? Answer: 1097

[MASK]. 1098

Verbalizers 1099

not potentially unfair No 1100

potentially unfair Yes 1101

C.10 tweet_eval_hate 1102

Pattern [Tweet]* [SEP] Question: Does this tweet 1103

contain hate speech against either immigrants 1104

or women? Answer: [MASK]. 1105

Verbalizers 1106

not hate speech No 1107

hate speech Yes 1108

C.11 twitter_complaints 1109

Pattern [Tweet text]* [SEP] Question: Does this 1110

tweet contain a complaint? Answer: [MASK]. 1111

Verbalizers 1112

no complaint No 1113

complaint Yes 1114

D GPT Comparison 1115

A different version of the Ukraine dataset, in which 1116

not only the four classes outlined in this paper are 1117

considered, but also irrelevant sentences are con- 1118

tained, is studied by Rieger et al. (2023) in a com- 1119

parison between full fine-tuning methods, PET and 1120

PEFT methods. The authors show that PETapter 1121

already with only 272 observations outperforms 1122

zero-shot GPT-4. The authors further observe that 1123

GPT-4 performs better on this real-world and un- 1124

published dataset in a zero-shot manner than using 1125

an in-context learning prompt with few (up to 10) 1126

examples. Moreover, they found out that GPT-3.5 1127

performs significantly worse than GPT-4 on this 1128

task. 1129
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