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ABSTRACT

The advancement of autonomous driving is increasingly reliant on high-quality
annotated datasets, especially in the task of 3D occupancy prediction, where the
occupancy labels require dense 3D annotation with significant human effort. In
this paper, we propose SytheOcc, which denotes a diffusion model that Synthesize
photorealistic and geometric-controlled images by conditioning Occupancy labels
in driving scenarios. This yields an unlimited amount of diverse, annotated, and
controllable datasets for applications like training perception models and simula-
tion. SyntheOcc addresses the critical challenge of how to efficiently encode 3D
geometric information as conditional input to a 2D diffusion model. Our approach
innovatively incorporates 3D semantic multi-plane images (MPIs) to provide com-
prehensive and spatially aligned 3D scene descriptions for conditioning. As a
result, SyntheOcc can generate photorealistic multi-view images and videos that
faithfully align with the given geometric labels (semantics in 3D voxel space).
Extensive qualitative and quantitative evaluations of SyntheOcc on the nuScenes
dataset prove its effectiveness in generating controllable occupancy datasets that
serve as an effective data augmentation to perception models.

1 INTRODUCTION

With the rapid development of generative models, they have shown realistic image synthesis and
diverse controllability. This progress has opened up new avenues for dataset generation in autonomous
driving (Gao et al., 2024; Swerdlow et al., 2024; Wen et al., 2023; Li et al., 2023a). The task of dataset
generation is usually modeled as controllable image generation, where the ground truth (e.g. 3D Box)
is employed to control the generation of new datasets in downstream tasks (e.g. 3D detection). This
approach helps to mitigate the data collection and annotation effort as it can generate labeled data for
free. However, a novel task of vital importance, occupancy prediction (Wang et al., 2023b; Tian et al.,
2024), poses new challenges for dataset generation compared with 3D detection. It requires finer and
more nuanced geometry controllability, which refers to use the occupancy state and semantics of
voxels in the whole 3D space to control the image generation. We argue that solving this problem not
only allows us to synthesize occupancy datasets, but also empowers valuable applications such as
editing geometry to generate rare data for corner case evaluation, as shown in Fig. 1. In the following,
we first illustrate why prior work struggles to achieve the above objective, and then demonstrate how
we address these challenges.

In the area of diffusion models, several representative works have displayed high-quality image
synthesis; however, they are constrained by limited 3D controllability: they are incapable of editing
3D voxels for precise control. For example, BEVGen (Swerdlow et al., 2024) generates street
view images by conditioning BEV layouts using diffusion models. MagicDrive (Gao et al., 2024)
extend BEVGen and additionally converts the 3D box parameters into text embedding through
Fourier mapping that is similar to NeRF (Mildenhall et al., 2020), and uses cross-attention to learn
conditional generation. Although these methods achieve satisfactory results in image generation, their
3D controllability is inherently limited. These approaches are restricted to manipulating the scene in
types of 3D boxes and BEV layouts, and hardly adapt to finer geometry control such as editing the
shape of objects and scenes. Meanwhile, they usually convert conditional input into 1D embedding
that aligns with prompt embedding, which is less effective in 3D-aware generation due to lack of
spatial alignment with the generated images. This limitation hinders their utility in downstream
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Figure 1: A showcase of application of SytheOcc. We enable geometric-controlled generation that
conveys the user editing in 3D voxel space to generate realistic street view images. In this case, we
create a rare scene that traffic cones block the way. This advancement facilitates the evaluation of
autonomous systems, such as the end-to-end planner VAD (Jiang et al., 2023), in simulated corner
case scenes.

applications, such as occupancy prediction and editing scene geometry to create long-tailed scenes,
where granular volumetric control is paramount in both tasks.

ControlNet (Zhang et al., 2023) and GLIGEN (Li et al., 2023c) is another type of prominent method
in the field of controllable image generation. These approaches exhibit several desirable attributes
in terms of controllability. They leverage conditional images such as semantic masks for control,
thereby offering a unified framework to manipulate both foreground and background. However,
despite its precise spatial control, ControlNet does not align with our specific requirements. Their
conditions of pixel-level images differ fundamentally from what we require in 3D contexts. Our
experimental results also find that ControlNet struggles to handle overlapping objects with varying
depths (see Fig. 6 (a)), as it only utilizes an ambiguous 2D semantic map as conditional input. As a
result, it is non-trivial to extend the ControlNet framework and convey their desirable attributes for
3D conditioning.

To address the above challenges, we propose an innovative representation, 3D semantic multi-
plane images (MPIs), which contribute to image generation with finer geometric control. In detail,
we employ multi-plane images (Zhou et al., 2018) to represent the occupancy, where each plane
represents a slice of semantic label at a specific depth. Our 3D semantic MPIs not only preserve
accurate and authentic 3D information, but also keep pixel-wise alignment with the generated images.
We additionally introduce the MPI encoder to encode features, and the reweighing methods to
ease the training with long-tailed cases. As a collection, our framework enables 3D geometry and
semantic control for image generation and further facilitates corner case evaluation as depicted in
Fig. 1. Finally, experimental results demonstrate that our synthetic data achieve better recognizability,
and are effective in improving the perception model on occupancy prediction. In summary, our
contributions include:

• We present SytheOcc, a novel image generation framework to attain finer and precise 3D
geometric control, thereby unlocking a spectrum of applications such as 3D editing, dataset
generation, and long-tailed scene generation.

• Incorporating the proposed 3D semantic MPI, MPI encoder, and reweighing strategy, we
deliver a substantial advancement in image quality and recognizability over prior works.

• Our extensive experimental results demonstrate that our synthetic data yields an effective
data augmentation in the realm of 3D occupancy prediction.

2 RELATED WORK

2.1 3D OCCUPANCY PREDICTION

The task of 3D occupancy prediction aims to predict the occupancy status of each voxel in 3D
space, as well as its semantic label if occupied. Compared with previous perception methods like
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3D object detection, occupancy prediction offers a more detailed and nuanced understanding of the
environment, as it provides finer geometric details, is capable of handling general, out-of-vocabulary
objects, and finally, enriches the planning stack with comprehensive 3D information. Early methods
exploited LiDAR as inputs to complete the 3D occupancy of the entire 3D scene (Yan et al., 2021;
Mei et al., 2023). Recent methods began to explore the more challenging vision-based 3D occupancy
prediction (Wang et al., 2023b; Tian et al., 2024; Tong et al., 2023; Wei et al., 2023). By predicting
the geometric and semantic properties of both dynamic and static elements, 3D occupancy prediction
offers a more comprehensive understanding of the surrounding environment.

2.2 DIFFUSION-BASED IMAGE GENERATION

Recent advancements in diffusion models (DMs) have achieved remarkable progress in image
generation. In particular, Stable Diffusion (SD) (Rombach et al., 2022) employs DMs within the
latent space of autoencoders, striking a balance between computational efficiency and high image
quality. Beyond text control, there is also the introduction of additional control signals. A noteworthy
work is ControlNet (Zhang et al., 2023), which incorporates a trainable copy of the SD encoder to
extract the feature of conditional images and adds it to the UNet feature. It significantly enhances
the controllability and unlocking pathways for advanced applications. We refer readers to recent
survey (Yang et al., 2023b) for more details.

2.3 IMAGE GENERATION IN AUTONOMOUS DRIVING

As training neural networks relies heavily on labeled data, numerous studies are delving into dataset
generation to boost training. Lift3D (Li et al., 2023a) designs generative NeRF to synthesize labeled
datasets for 3D detection for the first time. Several other works employ BEV layouts to synthesize
image data, proving beneficial for perception models. For example, BEVGen (Swerdlow et al., 2024)
conditions BEV layouts to generate multi-view street images, while BEVControl (Yang et al., 2023a)
separately generates foregrounds and backgrounds from BEV layouts. MagicDrive (Gao et al., 2024)
generates images with 3D geometry controls by independently encoding objects and maps through a
text encoder or map encoder. Compared with MagicDrive, our geometry control is characterized by a
more detailed and lossless representation of 3D scenes for control, which poses significant challenges
than projected layout or box embedding.

Recently, DriveDreamer (Wang et al., 2023a), DrivingDiffusion (Li et al., 2023b), Drive-WM (Wang
et al., 2023c) and Panacea (Wen et al., 2023) use a ControlNet framework, which involves projecting
bounding boxes and road maps onto 2D FoV images as a conditioning input. This approach has
proven to be effective for geometric control. However, it is limited in that it only achieves alignment
at the 2D-pixel level. Consequently, this method falls short in capturing the depth hierarchy and
fails to account for the occlusion relationships present in the 3D real world. Besides, adding a depth
channel like Panacea (Wen et al., 2023) may address the limitations of depth order, but it discards
the occluded part and only contains partial observation. UrbanGiraffe (Yang et al., 2023d) train a
generative NeRF to perform image generation. WoVoGen (Lu et al., 2023) creates a 4D world volume
feature using occupancy to guide the generation, but seems to rely on object mask guidance.

As described above, most of the prior work is restricted by only modeling a projected primitive of 3D
boxes and road maps as conditions. They suffer from ill-posed un-projection ambiguity. In contrast,
we model 3D occupancy labels as conditions, as they provide finer geometric details and semantic
information. However, designing an input representation of 3D occupancy labels into a 2D diffusion
model is challenging. In this paper, we propose a novel representation: 3D semantic Multi-Plane
Images (MPIs) as conditional inputs, which not only provide spatial alignment that improves visual
consistency, but also encode comprehensive 3D geometric information including occluded parts.

3 METHOD

Overview The overview of our method is depicted in Fig. 2. Built upon the SD pipeline, we
aim to perform geometry-controlled image generation by conditioning on 3D geometry labels with
semantics (occupancy labels). One requirement is that the images should faithfully align with the
given label. This task is more challenging than conditioned on 3D box due to the sparse and irregular
nature of occupancy. We first discuss how to efficiently represent occupancy in Sec. 3.2, followed
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Figure 2: The overall architecture of SytheOcc. We achieve 3D geometric control in image generation
by utilizing our proposed 3D semantic multiplane images to encode scene occupancy. In our
framework, we can edit the occupied state and semantics of every voxel in 3D space to control the
image generation, thereby opening up a wide spectrum of applications as shown in the top right.

by our designed MPI encoder to enhance generation quality in Sec. 3.3, and reweighing strategy to
handle the long-tailed depth and category in Sec. 3.5.

3.1 REPRESENTATION OF CONDITION: LOCAL CONTROL ALIGNS BETTER THAN GLOBAL
CONTROL

One of the key challenges is how to represent our conditional occupancy input. A straightforward
method (Gao et al., 2024; Chen et al., 2023) is to convert the 3D occupancy voxel to 1D global
embedding that is similar to text embedding, and then use cross-attention to learn controllable
generation. However, these global methods can be less effective when dealing with dense or irregular
data due to the following reasons: (i) They perform controllable generation through hard encoding the
spatial relationship between 1D global embedding and 2D UNet features. (ii) Ignore the underlying
geometry alignment between the conditional input and the generated image. In contrast, local methods
like ControlNet, directly add spatial features to the UNet features, providing 2D local control with
pixel-level spatial alignment. They are better than the global method (see Tab. 1), but suffer from 3D
ambiguity (see Fig. 6 (a)). Consequently, this comparison motivates us to seek a more compact and
efficient manner to encode and condition our 3D occupancy labels.

3.2 REPRESENT OCCUPANCY AS 3D SEMANTIC MULTIPLANE IMAGES

It is non-trivial to design a 3D representation for conditioning. To efficiently store both the semantic
and geometric information of the irregular occupancy input, we propose to use multiplane images
(MPIs) (Zhou et al., 2018) as representation. An MPI is composed of a series of fronto-parallel
RGBA layers within the frustum of the source camera with a specific viewpoint. These planes are
arranged at varying depths, from dmin to dmax, starting from the nearest to the farthest. Each layer
of these images contains both an RGB image and an alpha map, which collectively capture the visual
and geometric details of the scene at the respective depth. In our work, instead of storing RGB value
and alpha map in the original MPI, we store our 3D semantic labels. Each layer of MPI represents the
semantic index at the corresponding depth. We display the colored MPI in the top row of Fig. 2 for
visual clarity, but we actually use the integer index for learning. We obtain our 3D semantic MPI by:

Pl = (u× dl, v × dl, dl)
T , dl = dmin + (dmax − dmin)× l/D, (1)

MPIn,l = Interpolate(Occupancy, Tn ·K−1
n · Pl), (2)

MPI = Concatenate(MPIi,j), i ∈ (0, N), j ∈ (0, D), (3)

where (u, v) is a pixel coordinate in image space, dl is depth value of the lth layer, n denotes the nth

camera view. This equation implies we first back project points P in camera frustum space (u, v, d)
to Euclid space (x, y, z) by multiplying inverse intrinsic K−1. Then we use transformation matrix T
to map points from camera coordinates to occupancy coordinates. We then use the point coordinates
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(c) Editing: Foreground removal(b) Editing: Object manipulation (copy object)(a) Raw generation

Figure 3: Visualizations of geometric controlled generation. Top row: Fusion of 3D semantic MPI.
Bottom row: our generation concatenated from neighboring views.

to interpolate the nearest semantic index from the dense occupancy voxel to form a slice of MPI.
Finally, we concatenate all slices to form MPI ∈ RN×D×H×W , where D is the number of layers that
is set at 256, N is the number of camera views in the case of batch size = 1.

By representing occupancy as 3D semantic MPI, every pixel in MPI contains geometry and semantic
information with implicit depth, seamlessly integrating occluded elements, and ensuring a precise
spatial alignment with the generated images.

3.3 3D SEMANTIC MPI ENCODER

To enable local control with spatially aligned conditions, we develop a simple but effective MPI
encoder that aligns the 3D multi-plane feature to the latent space of the diffusion model. The
purpose of the MPI encoder is to obtain features from multi-plane images to perform 3D-aware
image synthesis. Unlike the original ControlNet which downsampling conditional input through 3×3
convolutions with padding, we design a 1×1 convolutional encoder without downsampling to encode
features. In detail, the 3D multiplane features which have the sample resolution with latent features,
are transformed by a 1×1 convolution layer and ReLU activation (Agarap, 2018) in the MPI encoder.

After obtaining the multi-scale feature after the MPI encoder, we add the feature to the decoder of
diffusion UNet to provide spatial features. Experimental results in Tab. 2 will show that our 1×1 conv
in MPI encoder is more effective than 3×3 conv, as the 1×1 conv with receptive field = 1 provides a
spatial align feature to the latent feature in the diffusion UNet. In contrast, 3×3 conv is conducted
in a camera frustum space rather than Euclid space, making an imprecise correspondence between
3D multiplane features and 2D image features. Moreover, using 3×3 conv to process 3D semantic
MPI will introduce a large computational burden as the channel number increases from 3 channels of
RGB to 256 planes. We display our 3D geometry and semantic control property in Fig. 3.

In summary, we chose MPIs as the representation because they (i) Incorporate lossless 3D information,
including scene geometry rather than 2.5D depth. (ii) Provide spatially aligned conditional features
that naturally extend the ControlNet framework from image level to 3D level. (iii) Capable of
representing geometry and semantics including occluded elements.

3.4 CROSS-VIEW AND CROSS-FRAME ATTENTION

The sensor arrangement in a self-driving car usually requires a full surround view of cameras to
capture the entire 360-degree environment. To effectively simulate the multi-view and subsequent
multi-frame generation, zero-initialized (Zhang et al., 2023) cross-view and cross-frame attention are
integrated into the diffusion model to maintain consistency between views and frames. Following
prior work (Wu et al., 2023; Gao et al., 2024; Wen et al., 2023; Wang et al., 2023c), each cross-view
attention allows the target view to access information from its neighboring left and right views, thus
training cross-view attention using multi-view consistent images will enforce it to generate the same
instance in the overlapping region of multi-view cameras.

Attention(Q,K, V ) = softmax(QKT

√
d
) · V , (4)

hout = hin +
∑

i∈{l,r}Attention(Qin,Ki, Vi), (5)

where l, and r is the camera view of left and right. Qin and hin denotes the query and the hidden
state of input view. Similarly, we add cross-frame attention that attend previous frame and future
frame to enable video generation. In this case, we use the same formulation while i ∈ {f, h}, where
f and h is the camera view of future and history frames.
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3.5 IMPORTANCE REWEIGHING
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Figure 4: Visualizations of the reweighing
function in Eq. 6.

To deal with the extreme imbalance problem between
foreground, background, and object categories, and
also to ease the training, we propose three types of
reweighting methods to improve the generation quality
of foreground objects.

Progressive Foreground Enhancement To miti-
gate the complexity of the learning task, we propose a
progressive reweighting method that incrementally en-
hances the loss associated with the foreground regions
(based on semantic class) as the training progresses.
The detailed formulation is:

w(x,m, n) =
(m− 1)

2
·(1+cos(

x

n
·π+π))+1, (6)

where x is the current training step, m is the maximum
value of weights that set at 2, and n is the total training steps. This approach is engineered to
facilitate a learning trajectory that progresses from simplicity to complexity, thereby aiding in the
convergence of the model. This curve can be interpreted as a cosine annealing but inverted to amplify
the importance of the foreground region.

Depth-aware Foreground Reweighing In the meantime, we acknowledge the learning difficulty
in different depth places in 3D scenes. Following GeoDiffusion (Chen et al., 2023), we perform depth
reweighing to foreground objects by adaptively assigning higher weights to farther foreground areas.
This enables the model to focus more thoroughly on hard examples with depth-aware importance
reweighting. Instead of using their exponential function to increase weights, we use our designed
cosine function Eq. 6 for stability. Here x is the input depth value, and n is the maximum depth that
set at 50.

CBGS Sampling To deal with the class imbalance problem in driving scenarios, where cer-
tain object categories appear infrequently, we employ the Class-Balanced Grouping and Sampling
(CBGS) (Zhu et al., 2019) to better handle the long-tailed classes. CBGS addresses the challenge
of class imbalance by grouping and re-sampling training data to ensure each group has a balanced
distribution of sample frequency across different object categories. This method reduces the bias
towards more frequent classes and enables better generalization to rare scenarios.

3.6 MODEL TRAINING

To ease the training of the MPI encoder and added attention module, we use a two stage training
pipeline. We first train MPI encoder and cross-view attention in a multi-view image generation setting.
Then we train cross-frame attention and freeze other components in a video generation setting.

Objective Function Our final objective function can be formulated as a standard denoising
objective with reweighing:

L = EE(x),ϵ,t∥ϵ− ϵθ(zt, t, τθ(y))∥2 ⊙ w, (7)

where w is the multiplication of progressive reweighing and depth-aware reweighing.

4 EXPERIMENTS

4.1 DATASET AND SETUPS

We conduct our experiments on the nuScenes dataset (Caesar et al., 2020), which is collected using 6
surrounded-view cameras that cover the full 360° field of view around the ego-vehicle. It contains
700 scenes for training and 150 scenes for validation. We resize the original image from 1600 ×
900 to 800 × 448 for training. In our work, we use the occupancy label with a resolution of 0.2m
from OpenOccupancy (Wang et al., 2023b) as condition input, while the benchmark of occupancy
prediction uses a resolution of 0.4m from Occ3D (Tian et al., 2024) dataset for its popularity.
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(a) Top: Fusion of 3D semantic MPI. Bottom: GT

(b) Generation1: Ordinary scenes. Red rectangle denotes geometry alignment of trees

(c) Generation2, Weather variation: Snow (top) and Sandstorm (bottom) 

(d) Generation3, Style control: Minecraft style (top) and Diablo style (bottom) 

CAM_FRONT_LEFT CAM_FRONT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK CAM_BACK_LEFT

Figure 5: Visualizations of generated multi-view images. The generation conditions (occupancy
labels) are from nuScenes validation set. We highlight that (i) Geometry alignment of trees in red
rectangle in (b). (ii) Use text prompt to control high-level appearance in (c,d).

Networks We use Stable Diffusion (Rombach et al., 2022) v2.1 checkpoint as initialization and
only train occupancy encoder, cross-view attention. We additionally add cross-frame attention if in
video experiments. We adopt FB-Occ (Li et al., 2023d) as the target model for occupancy prediction
for its SOTA performance in this task. The pretrained checkpoint of the network is obtained from
their official repository. Since FB-Occ predicts occupancy using only single frame images, we thus
train SyntheOcc without cross-frame attention in related experiments. For video generation, we
provide experimental results in appendix.

Metrics We use Frechet Inception Distance (FID) (Heusel et al., 2017) to measure the perceptual
quality of generated images, and use mIoU to measure the precision of occupancy prediction.

Hyperparameters We set D = 256, dmin = 0 and dmax = 50. The depth resolution of MPI is
thus higher than occupancy voxel. We train our model in 6 epochs with batch size = 8. The learning
rate is set at 2e−5. The training phase takes around 1 day using 8 NVIDIA A100 80G GPUs. We use
UniPC scheduler (Zhao et al., 2023) with the classifier-free guidance (CFG) (Ho & Salimans, 2022)
that is set as 7.0. During inference, we use 20 denoising steps for dataset generation.

Baselines We compare our method with prior methods in Tab. 1. ControlNet denotes we train
a ControlNet using an RGB semantic mask as the condition. ControlNet+depth denotes we add a
depth channel after the semantic mask to provide 2.5D depth information. The depth map rendered
by occupancy is normalized to [0-255] to accommodate the RGB value. The ControlNet+depth can
be regarded as a degradation of SytheOcc which is reduced to a single plane. Then we evaluate
MagicDrive since it is the only open-sourced method in this area. MagicDrive separately encodes
foreground and background using prompt and BEV layout. Furthermore, we evaluate the image

7
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(a0) Fusion of MPI (a1) Occupancy in 3D space (a4) Ground truth(a3) Ours generation(a2) ControlNet generation

(b) A scene with human

(d) A scene with hinged-articulated trucks

(c) A scene of seasonal changes use prompt control

(e) A scene with excavator use geometry control

Figure 6: Top row: Comparison with ControlNet. We achieve a precise alignment between condi-
tional labels and synthesized images, while ControlNet generates objects with incorrect pose due
to ambiguous 2D condition. Mid and Bottom row: Visualizations of geometry-controlled image
generation. We can faithfully generate objects with the desired topology in a specific 3D position.

quality (FID (Heusel et al., 2017)) of our method in Tab. 3. Compared with prior methods, we use a
unified 3D representation that seamlessly handles foreground and background, surpassing them by a
large margin.

4.2 QUALITATIVE RESULTS

High-level Control using Prompt In Fig. 5 (c,d) and Fig. 6 (c), we demonstrate the capability
to employ user-defined prompts to generate images with specific weather conditions and high-level
style. Although the nuScenes dataset doesn’t contain rare weather images like snow and sandstorms,
our method successfully conveys prior knowledge pretrained from stable diffusion to our scenes.
Compared with visualization results in prior work like Fig. 8 of MagicDrive, our method shows better
alignment with the text prompt, demonstrating the cross-domain generalization ability of our method.

3D Geometric Control Our flexible framework enables us to create novel scenes by manipulating
voxels as displayed in Fig. 1 and Fig. 3. Basically, we can edit the occupied state and semantics of
every voxel in our scenes for generation. We highlight that we can create a hinged-articulated truck
and an excavator as shown in Fig. 6 (d,e). The generated excavator image exhibits a remarkable
alignment with the input occupancy that is delineated by a black outline.

Long-tailed Scene Generation The flexibility of 3D semantic MPI has conferred significant
advantages upon our approach. In the following, we create long-tail scenes that rarely occur in our
real world for evaluation. In Fig. 1, we show that we manually add parallel traffic cones in front of the
ego vehicle. This scene has never happened in the training dataset, but our geometric controllability
provides us the capability to create such data. We then use the created scene to test autonomous
driving systems such as end-to-end planner VAD (Jiang et al., 2023) to validate its effectiveness.
In this case, VAD successfully predicts correct waypoints with the high-level command ‘turn left’.
Moreover, in appendix Sec. B, we generate long-tailed scenes with extreme weather such as snow
and sandstorms, and evaluate perception model on it to examine its generalizability of rare weather.

Comparison with Baselines In Fig. 6 (a), we visualize a comparison with ControlNet. We find
that ControlNet struggles to distinguish the overlapping instances in 2D-pixel space. This leads to the
two parked cars being merged into a single car with incorrect pose. In contrast, our 3D semantic MPIs
contain more than 2D semantic mask, but also account for complete scene geometry with occluded
parts. Together with our proposed MPI encoder and reweighing strategy, our framework yields a
realistic image generation with high-quality label alignment. More comparison is provided in Sec. D.

8
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Oracle (FB-Occ) Real Real 39.3 45.4 28.2 44.1 49.4 25.9 28.8 28.0 27.7 32.4 37.3 80.4 42.2 49.9 55.2 42.0 37.7
SytheOcc-Aug Real+Gen Real 40.3 45.4 27.2 46.6 49.5 26.4 27.8 28.4 29.4 34.0 37.2 81.3 46.0 52.4 56.5 43.3 38.9

MagicDrive Real Gen 13.4 0.7 0.0 11.8 32.4 0.0 6.6 2.8 0.3 2.6 19.6 60.1 12.1 26.2 23.4 15.5 12.8
ControlNet Real Gen 17.3 17.7 0.2 13.6 21.0 0.6 0.8 8.6 10.4 6.9 11.9 67.4 18.8 36.4 36.9 20.8 22.4
ControlNet+depth Real Gen 17.5 19.3 0.3 14.0 23.7 1.0 0.6 9.2 9.2 5.7 12.1 68.8 19.2 36.0 35.3 19.8 22.8
SytheOcc-Gen Real Gen 25.5 32.6 13.8 27.7 33.4 7.5 6.5 15.7 16.5 16.5 25.6 74.3 24.5 39.4 40.5 28.6 28.8

Table 1: Downstream evaluation on the nuScenes-Occupancy validation set. Based on the used train
and val data, two types of settings are reported. The first is to use generated training set to augment
the real training set, and evaluate on the real validation set, denoted as Aug. The second is to use
pretrained models trained on the real training datasets to test on the generated validation set, denoted
as Gen.

4.3 QUANTITATIVE RESULTS

Recognizability, Realism and Controllability Evaluation To evaluate whether our generated
images aligned with given annotations, we provide Gen experiment in Tab. 1. Using the annotation
of val set, we synthesize a copy of val set’s images, then use perception model trained on real
training set to perform evaluation. The performance will be more effective as it is close to the
oracle performance. We find that local method (ControlNet) perform better than global method
(MagicDrive). Furthermore, SytheOcc generalizes the locality for 3D conditioning to yield better
performance.

Data Augmentation for 3D Occupancy Prediction Notably, we conduct experiments using our
synthesized dataset to enhance the real training set in Tab. 1. We first use the occupancy labels from
training set to create a synthetic training set. Then we modify the loading pipeline in perception
model to randomly sample images from real dataset or synthetic dataset and train network from
scratch. Therefore, our approach preserves the inherent training dynamics of the neural network
by solely modifying the training images, without any alteration to the number of training iterations
or epochs. As MagicDrive-Aug exhibits numerical overflow when training FB-Occ, which may
attributed to unsatisfactory recognizability, we have to omit it and only provide MagicDrive-Gen
experiments. The experiment of ControlNet(+depth)-aug is provided in appendix Sec. E.

As shown in Tab. 1, where SytheOcc-Aug denotes the augmentation experiments using our generated
dataset, shows a satisfactory improvement over the prior state of the art. We emphasize that surpassing
the performance of the original dataset is not the primary objective of our work; rather, it is an ancillary
benefit that emerges from our framework for geometry-controlled generation.

Ablations In Tab. 2, we present ablation studies across several design spaces of our model, anal-
ogous to the Gen experiment in Tab. 1. We find that our designed MPI encoder of 1×1 conv has
significant improvement compared to the conventional 3×3 conv approach. Besides, our proposed
three types of reweighing methods demonstrate a consistent improvement over the baseline. As a
result, the improved image quality and label alignment enable higher precision in downstream tasks.

MPI Encoder Reweighing Method Metric
Design Progressive Depth CBGS mIoU

3×3 - - - 21.96
1×1 - - - 23.05
1×1 ✓ - - 23.63
1×1 ✓ ✓ - 24.40
1×1 ✓ ✓ ✓ 25.50

Table 2: Ablation of different designs of the MPI encoder and reweighing methods.
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Method Condition Type FID
BEVGen (Swerdlow et al., 2024) BEV map 25.54
BEVControl (Yang et al., 2023a) BEV map 24.85
DriveDreamer (Wang et al., 2023a) Box + FoV map 52.60
MagicDrive (Gao et al., 2024) Box + BEV map 16.20
Panacea (Wen et al., 2023) Box + FoV map 16.96
SyntheOcc 3D Semantic MPI 14.75

Table 3: Comparison of FID with previous methods on the nuScenes dataset.

5 LIMITATION AND BROADER IMPACTS

Layout Genereation Our method is restricted in a conditional generation framework that should
have a conditional input at first. Our condition signal is from the original dataset annotation. Thus
most of the augmented data is generated using the same occupancy layout, or with minimal human
editing. Future research can incorporate the recent research (Lee et al., 2024; Zhang et al., 2024; Lu
et al., 2023; Liu et al., 2024; Wu et al., 2024) that generates occupancy and traffic descriptions of the
scenes to synthesize images with novel occupancy or traffic layouts.

Extend to Native Video Diffusion Model As our work primarily focus on precise 3D controllabil-
ity for image generation, we do not specifically tailor for video generation. We have a preliminary
attempt to implement a plug-and-play module of cross-view and cross-frame attention to learn
view-consistent or frame-consistent generation. This experiment serves as a proof of concept, demon-
strating the adaptability of our framework. It shows a promising result of temporal consistency across
frames, as compared with prior work in Sec. F. However, we argue that this methodology can be
inevitably less significant than native 3D convolution and 3D attention in the video diffusion model.
In the future, we plan to extend our controllability into native video diffusion using CogVideoX (Yang
et al., 2024) or Open-Sora (Zheng et al., 2024), to further provide controllable video generation.

Long-tailed Scene Generation In this paper, we investigate a series of long-tailed scene generation
and corner case evaluations such as rare layout in Fig. 1 and extreme weather in Sec. B. Future work
can extend our framework to (i) Synthesize more samples for tail classes to boost performance. (ii)
Generate or replicate large-scale databases of corner cases (Li et al., 2022) for robust perception.

Closed-loop Simulation Given the underlying diverse and controllable image generation of our
method, it would be advantageous and valuable to extend our work to a broader domain such as closed-
loop simulation (Ljungbergh et al., 2024; Yang et al., 2023e), to enable high-fidelity autonomous
systems testing. This line of work can be conducted by utilizing motion conditions to generate
future frames as in world model (Yang et al., 2023c; Wang et al., 2023c; Lu et al., 2023), or by
explicitly modeling scene graph as in the case of UniSim (Yang et al., 2023e; Ost et al., 2021) and
NeuroNCAP (Ljungbergh et al., 2024).

6 CONCLUSION

In this paper, we propose SytheOcc, an innovative image generation framework that is empowered
with geometry-controlled capabilities using occupancy. We introduce a novel 3D representation,
3D semantic MPIs, to address the critical challenge of how to efficiently encode occupancy. This
representation not only preserves the authentic and complete 3D geometry details with semantics, but
also provides a spatial-align feature representation for 2D diffusion models. With this property, our
method enjoys photorealistic appearances and fine-grained 3D controllability, serves as a generative
data engine to enable a broad range of applications. Extensive experiments demonstrate that our
synthetic data facilitate the training for perception models on occupancy prediction, and provide
valuable corner case evaluation in a simulated world.
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Gelly. Fvd: A new metric for video generation. 2019.

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, and Jiwen Lu. Drivedreamer: Towards real-world-driven
world models for autonomous driving. arXiv preprint arXiv:2309.09777, 2023a.

Xiaofeng Wang, Zheng Zhu, Wenbo Xu, Yunpeng Zhang, Yi Wei, Xu Chi, Yun Ye, Dalong Du, Jiwen Lu, and
Xingang Wang. Openoccupancy: A large scale benchmark for surrounding semantic occupancy perception.
In ICCV, 2023b.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into the fu-
ture: Multiview visual forecasting and planning with world model for autonomous driving. arXiv preprint
arXiv:2311.17918, 2023c.

Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, and Jiwen Lu. Surroundocc: Multi-camera 3d
occupancy prediction for autonomous driving. In ICCV, 2023.

Yuqing Wen, Yucheng Zhao, Yingfei Liu, Fan Jia, Yanhui Wang, Chong Luo, Chi Zhang, Tiancai Wang, Xiaoyan
Sun, and Xiangyu Zhang. Panacea: Panoramic and controllable video generation for autonomous driving.
arXiv preprint arXiv:2311.16813, 2023.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for
text-to-video generation. In ICCV, 2023.

Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang, Ruikai Cui, Weizhe Liu, Hiroyuki
Sato, Hongdong Li, et al. Blockfusion: Expandable 3d scene generation using latent tri-plane extrapolation.
arXiv preprint arXiv:2401.17053, 2024.

Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui Huang, and Shuguang Cui. Sparse single sweep lidar
point cloud segmentation via learning contextual shape priors from scene completion. In AAAI, 2021.

Kairui Yang, Enhui Ma, Jibin Peng, Qing Guo, Di Lin, and Kaicheng Yu. Bevcontrol: Accurately con-
trolling street-view elements with multi-perspective consistency via bev sketch layout. arXiv preprint
arXiv:2308.01661, 2023a.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 2023b.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter Abbeel.
Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 2023c.

Yuanbo Yang, Yifei Yang, Hanlei Guo, Rong Xiong, Yue Wang, and Yiyi Liao. Urbangiraffe: Representing
urban scenes as compositional generative neural feature fields. In ICCV, 2023d.

Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel
Urtasun. Unisim: A neural closed-loop sensor simulator. In CVPR, 2023e.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong,
Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer.
arXiv preprint arXiv:2408.06072, 2024.

Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T Freeman, Forrester
Cole, Deqing Sun, Noah Snavely, Jiajun Wu, et al. Wonderjourney: Going from anywhere to everywhere.
arXiv preprint arXiv:2312.03884, 2023.

Junge Zhang, Qihang Zhang, Li Zhang, Ramana Rao Kompella, Gaowen Liu, and Bolei Zhou. Urban scene
diffusion through semantic occupancy map. arXiv preprint arXiv:2403.11697, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
In ICCV, 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-corrector
framework for fast sampling of diffusion models. NeurIPS, 2023.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi
Li, and Yang You. Open-sora: Democratizing efficient video production for all, March 2024. URL https:
//github.com/hpcaitech/Open-Sora.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced grouping and sampling
for point cloud 3d object detection. arXiv preprint arXiv:1908.09492, 2019.

13

https://github.com/hpcaitech/Open-Sora
https://github.com/hpcaitech/Open-Sora


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

In the appendix, we provide the following content:

Sec. A: Potential Discussion. Sec. F: Results of Video Generation.
Sec. B: Long-Tailed Scene Evaluation. Sec. G: Generalize to New Cameras.
Sec. C: Ablation of plane number in MPIs. Sec. H: Impact of Amount of Augment Data.
Sec. D: Additional Qualitative Comparison. Sec. I: Visualization of Failure Cases.
Sec. E: Additional Experiments.

A POTENTIAL DISCUSSION

To help a comprehensive understanding of our paper, we discuss intuitive questions that might be
raised.

How to define geometric control? In our paper, we refer the geometric controllable generation as
using a voxel grid in 3D space to control the image generation. Although the voxel is a quantized
representation of the 3D world, when the resolution goes larger, it can already faithfully represent
the geometry detail of scenes. Currently, we are limited by the precision of ground truth labels. The
0.2m occupancy grid is a tensor of 500×500×40 that cover a space in x-axis spanning [−50m, 50m],
y-axis spanning [−50m, 50m], z-axis spanning [−5m, 3m]. In the future, we plan to explore a higher
resolution of geometric control to refine our generation.

Can 3D semantic MPI extend to other representations beyond occupancy? Except for occu-
pancy, several other 3D representations can be expressed by 3D semantic MPI, such as mesh, dense
point clouds, and even 3D boxes or HD maps. The underlying mechanism is to cast several slices of
multi-plane images at different depths to retrieve geometric information. Our application scope is
wide, and we left them for future work. As a result, our 3D semantic MPI can be regarded as a general
3D conditioning representation to benefit a wide spectrum of practical systems. These encompass
but are not limited to 3D generation such as text2room (Höllein et al., 2023), RoomDreamer (Song
et al., 2023), WonderJourney (Yu et al., 2023), and LucidDreamer (Chung et al., 2023), each of which
stands to benefit from the rich geometric context provided by our approach.

Occupancy is complex. How to edit occupancy for controllable generation? We agree that
occupancy is more complex than the 3D box, but it provides a more nuanced scene description. To
ease the editing, we provide a strategy that disentangles the foreground control and background
control in occupancy data. If we want to edit a car’s trajectory, we can keep the background occupancy
unchanged and select the car’s first frame occupancy using the 3D box. During the following frames,
we remove foreground occupancy and simply place our foreground target’s occupancy in a certain
location using trajectory. By doing so, we only add minor steps by using occupancy but provide more
precise 3D control, which makes it a favorable choice for conditioning.

B LONG-TAILED SCENE EVALUATION

In this section, we explore to use SytheOcc to create long-tailed scenes for downstream evaluation.
This also stands for evaluating our model using several corner cases. Similar to the SytheOcc-Gen
experiment in Tab. 1, we generate a synthetic validation set but use prompts control to manipulate
weather patterns or the intensity of illumination.

As depicted in Fig. 10. We create a variety of weather conditions including sandstorms, snow, foggy,
rainy, day night, and day time. The motivation behind the creation of these scenes lies in their extreme
rarity compared to the ordinary scenes we have captured. The generation of such data is of significant
value, as it aids in addressing the long-tailed distribution of scenes, thereby enriching the diversity of
our dataset. More visualization is provided in Fig. 12.

In Tab. 4, we observe that all kinds of extreme weather lead to a degradation in performance. This
observation underscores the limitations of the perception model in terms of its generalizability to
infrequent weather scenarios. Among them, we find that foggy, rainy, and day night exert the most
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Testing
End-to-end

Planner

VAD

Corner
Case
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Predicted waypoints (Static)

Predicted waypointsGenerated image

Raw image

Prompt-level
Control: 
Add fog
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User Editing 
To Create

Corner Case

Scene geometry

Figure 7: Use SytheOcc to create long-tailed scenes for testing. Top: In the ordinary scene of a bus
placed in front of the ego vehicle, the end-to-end planner VAD (Jiang et al., 2023) predicts future
waypoints without movement, thus not plotted in the image. Bottom: By harnessing the prompt-level
control in our framework, we simulate a scene with the same layout but filled with fog. VAD predicts
wrong waypoints that will collide with the bus.

severe impact, as they contribute to a large reduction in visibility as shown in Fig. 10. To improve the
generalizability to handle various weather conditions, future work can leverage our generated data to
cover the long-tailed scenes, or use adversarial search to find severe scenes based on our framework.

Scenes Sandstorm Snow Foggy Rainy Day night Day time (raw data)

FB-Occ mIOU 22.88 18.25 10.29 9.71 9.95 25.50

Table 4: Experiments of downstream evaluation on long-tailed scenes with extreme weather.

Furthermore, we perform long-tailed scene evaluation in Fig. 7. We display the failure of the
downstream model VAD (Jiang et al., 2023) in our synthetic long-tailed scene. In this case, we
simulate a foggy environment that the dense fog obscures the majority of the ego view. Our
experiment reveals that due to the lack of training images of foggy scenes, VAD erroneously predicts
waypoints that would result in a collision with the bus. This experiment elucidates the boundaries
and failure cases of the VAD model (Jiang et al., 2023). It exposes the limitations of the system under
certain conditions, thereby providing insights into scenarios where the model’s performance may be
compromised.

Fusion of MPIs MagicDrive ControlNet ControlNet+depth SyntheOcc GT

Figure 8: Comparison with baselines.
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C ABLATION OF PLANE NUMBER OF MPIS

In our proposed 3D semantic MPIs, the number of planes is a hyperparameter that affects the precision
of 3D representation. The plane number can be regarded as the 3D resolution in depth axis. The
larger the plane number, the MPI will contain more details. We find that an increase in the number of
planes is associated with improved accuracy in downstream tasks. This finding denotes that more
condition information leads to better downstream task performance.

Number of Planes 96 128 256
FB-Occ mIOU 23.36 24.28 25.50

Table 5: Ablation of the number of multi-plane images.

D QUALITATIVE COMPARISON WITH BASELINES AND SOTA

In Fig. 8, we conduct a qualitative comparison of our method against MagicDrive, ControlNet, and
ControlNet+depth. We find that all the methods display a satisfactory image quality, as they build
upon the foundation of the stable diffusion model. The generation of MagicDrive fails to synthesize
barriers as shown in the bottom row. ControlNet struggles to generate objects with the correct pose
solely from only 2D conditions as shown in the second row. ControlNet+depth, a degradation of our
method, an enhancement over ControlNet in terms of alignment, nevertheless suffers from a loss of
finer detail in scenes with heavy occlusion, as shown in the human of the third row. Our method, in
contrast, aims to address these challenges and provide a more nuanced and accurate generation of
complex scenes.

E ADDTIONAL EXPERIMENTS

Data Augmentation using ControlNet We provide experiments that use ControlNet and Control-
Net+depth to enable data augmentation. This experiment is analogous to the Aug experiment in Tab. 1.
In the experiment of ControlNet and ControlNet+depth, due to the potential for input-generation
ambiguity, the augmented data could lead to the propagation of inaccurate gradients, thereby affecting
the training process. These experiments demonstrate that our approach outperforms the ControlNet
baseline in terms of effectiveness.

Methods No aug ControlNet ControlNet+depth SyntheOcc

FB-Occ mIOU 39.3 39.0 39.1 40.3

Table 6: Experiments of evaluating the data augmentation effects using different generative model.

Evaluate on 3D Detection We assess the accuracy of 3D detection using the BEVFusion (Liu
et al., 2023). This experiment corresponds to the Generation experiment presented in Tab. 1, with
the distinction that BEVFusion is employed for evaluating 3D detection precision. Owing to the
effective pixel-aligned alignment offered by our method, SyntheOcc yields superior detection accuracy
compared to previous studies.

Methods MagicDrive-mAP MagicDrive-NDS SyntheOcc-mAP SyntheOcc-NDS

Results 20.8 30.2 22.3 31.3

Table 7: Experiments of evaluating the generation quality using 3D detection accuracy.

F EXTEND TO VIDEO GENERATION

As described in the main paper Sec. 3.4, we further extend the cross-view attention to cross-frame
attention to perform video generation. Our generation results can be find in Fig. 11 and supplementary
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video. Our implementation is adopted from MagicDrive (Gao et al., 2024) which is similar to Tune-a-
video (Wu et al., 2023). The formulation of cross-frame attention is:

Attention(Q,K, V ) = softmax(QKT

√
d
) · V , (8)

hout = hin +
∑

i∈{f,h}Attention(Qin,Ki, Vi), (9)

where f , and h are the camera view of future and history frames. Qin and hin denotes the query and
the hidden state of input view. We train our model in a two-stage pipeline. We first train the MPI
encoder and cross-view attention in a multi-view image generation setting. Then we train cross-frame
attention and freeze other components in a video generation setting.

In practice, we use the keyframe annotation of the nuScenes dataset to train our video model. We start
with our pretrained MPI encoder and cross-view attention and only train our cross-frame attention
while keeping others frozen. We employ a sequence of 7 frames as a batch, resulting in a batch size
of 42 images for the training process.

We further evaluate the Fréchet Video Distance (FVD) score (Unterthiner et al., 2019) to evaluate the
video generation quality in Tab. 8. Attributed to our commendable controllable image generation
quality, SyntheOcc achieves competitive performance that is on par with other models.

Methods DriveGAN DriveDreamer DrivingDiffusion Ours
FVD 502 340 332 251

Table 8: Experiments of evaluating the quality of video generation.

Given that our primary contribution does not lie in video generation, this experiment serves as a proof
of concept, demonstrating the potential adaptability of our framework. Future research may extend
our methodology to facilitate the generation of longer video sequences, thereby expanding the scope
and applicability of our framework.

G GENERALIZE TO NEW CAMERAS

In this section, we investigate the adaptability of our method to a new set of cameras with different
intrinsic. Given that our training set has a fixed camera intrinsic and extrinsic, generalizing to novel
cameras indicates that our approach possesses robust generalization capabilities. As shown in Fig. 9,
benefiting from our local type of condition, SytheOcc generates images that faithfully align with
the new intrinsic, proving that SytheOcc do not over-fit certain parameters. Regarding extrinsic
parameters, we can cast our MPI at the desirable locations to retrieve geometric information, thus
inherently ensuring generalizability without doubt.

H THE INFLUENCE OF THE AMOUNT OF AUGMENTED DATA

As SytheOcc is capable of generating an infinite number of synthetic data, we investigate the influence
of the amount of augmented data on downstream tasks in Tab. 9. We find that when our augmented
data is expanded from one-fold to two-fold of the training dataset, the performance of perception
model slightly decreases. This may indicate the generated data has an optimal ratio for downstream
tasks. Due to limited computational resources, we only experiment with a limited amount of ratio.
Future work can conduct more thorough experiments to find a universal theorem.

Amount of Augmented Data 0 (no augmentation) 1 2
FB-Occ mIOU 39.3 40.3 40.1

Table 9: Ablation of the amount of augmented data.
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(a) Generation with original intrinsic

(b) Generation with intrinsic modification (focal length * 0.8)

(c) Generation with intrinsic modification (focal length * 1.2)

Figure 9: We demonstrate the generalizability of SytheOcc to new camera intrinsic. We multiply
factors to the focal length while keeping the resolution the same. In (b,c), focal length ×0.8 denotes
a camera with a larger field of view similar to zoom out, focal length ×1.2 denotes a camera with a
smaller field of view similar to zoom in.
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Figure 10: From top to bottom, we display images of fusion of 3D semantic MPI, synthesized images
of sandstorm, snow, foggy, rainy, day night, day time, and ground truth.

Figure 11: Video generation results of large dynamics scenes. The white car comes across different
views and frames depicting consistent shapes with only a slight appearance change.
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Figure 12: From top to bottom, we display images of fusion of 3D semantic MPI, synthesized images
of sandstorm, snow, foggy, rainy, day night, day time, and ground truth.
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Figure 13: Out of distribution generation. We use prompts to control the high-level appearance of
images with specific styles. From top to bottom, we display (1) fusion of 3D semantic MPI. (2) Sunny
day. (3) Science fiction style. (4) 8-bit pixel art style. (5) Snowfall. (6) Minecraft style. (7) Pokémon
style. (8) Diablo style. (9) Ghibli style. (10) Metropolis style. (11) Gotham style. (12) Ground truth.
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I FAILURE CASES

We display several failure cases of our method. In Fig. 14, we show a crowd scenes. In this scenario,
the excessive number of pedestrians presents a challenge to the cross-view attention and cross-frame
attention modules. We find our method incapable of discerning individual entities with clarity. Future
research can improve the model capacity or enrich high-quality data to mitigate this problem.

Figure 14: Failure case of video generation results. Our cross-frame attention module is challenging
to distinguish a crowd of people across different views and frames.
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