
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BLISS: A LIGHTWEIGHT BILEVEL INFLUENCE SCOR-
ING METHOD FOR DATA SELECTION IN LANGUAGE
MODEL PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective data selection is essential for pretraining large language models (LLMs),
enhancing efficiency and improving generalization to downstream tasks. However,
existing approaches often require leveraging external pretrained models, making
it difficult to disentangle the effects of data selection from those of the external
pretrained models. In addition, they often overlook the long-term impact of selected
data if the model is trained for a long period of time, primarily due to the prohibitive
cost of full-scale LLM pretraining. In this paper, we introduce BLISS (BileveL
Influence Scoring method for data Selection): a lightweight data selection method
that operates entirely from scratch, without relying on any external pretrained
oracle models, while explicitly accounting for the long-term impact of selected
data. BLISS leverages a small proxy model as a surrogate for the LLM and
employs a score model to estimate the long-term influence of training samples if
the proxy model is trained to convergence. We formulate data selection as a bilevel
optimization problem, where the upper-level objective optimizes the score model
to assign importance weights to training samples, ensuring that minimizing the
lower-level objective (i.e., training the proxy model over the weighted training
loss until convergence) leads to best validation performance. Once optimized, the
trained score model predicts influence scores for the dataset, enabling efficient
selection of high-quality samples for LLM pretraining. We validate BLISS by
pretraining 410M/1B/2.8B Pythia and LLaMA-0.5B models on selected subsets of
the C4 dataset. Notably, under the 1B model setting, BLISS achieves 1.7× speedup
in reaching the same performance as the state-of-the-art method, demonstrating
superior performance across multiple downstream tasks.

1 INTRODUCTION

The successful large-scale language model pretraining crucially relies on the careful choice of
pretraining data (Brown et al., 2020; Raffel et al., 2020; Du et al., 2022; Elazar et al., 2023). Recent
studies have shown that effective data selection (a.k.a., data curation) methods can enhance pretraining
efficiency (Xie et al., 2023a) and improve generalization (Engstrom et al., 2024; Wettig et al., 2024).
There are various types of data selection approaches for language model pretraining, including
language filtering (Laurençon et al., 2022; Wenzek et al., 2019), data deduplication (Lee et al., 2021;
Abbas et al., 2023), heuristic approaches (Rae et al., 2021; Penedo et al., 2023), data quality data
filtering (Brown et al., 2020; Gao et al., 2020; Chowdhery et al., 2023; Xie et al., 2023b; Wettig
et al., 2024), data mixing (Xie et al., 2023a; Albalak et al., 2023; Xia et al., 2023), and data influence
function based methods (Park et al., 2023; Engstrom et al., 2024; Yu et al., 2024). Despite the rich
literature of data selection methods in large language model (LLM) pretraining (e.g., a survey paper
in Albalak et al. (2024)), it is still unclear what properties are needed for the training data curation to
guarantee good performance: it remains an important real-world challenge (Li et al., 2024).

Existing approaches of data selection methods suffer from two major limitations. First, they often
require leveraging pretrained models (Brown et al., 2020; Xie et al., 2023b; Wettig et al., 2024) for
data-quality filtering, making it difficult to separate the effects of data selection from those of the
external pretrained models. For example, the QuRating method (Wettig et al., 2024) assigns quality
ratings to training samples based on responses from a pretrained LLM (e.g., GPT-3.5) before training
a QuRater model. This reliance raises uncertainty about the role of the external LLM in the training
process and whether its feedback is truly optimal. Moreover, the cost of invoking these external
pretrained models is prohibitively expensive during data selection process for large-scale pretraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The pipeline of data selection and pretraining procedure. There are four main steps in one
round training, 1) Warm up LLM using randomly selected training data (e.g. 10k step); 2) Bilevel
optimization for score and proxy model, 3) Predict the data influence, and select Top-20% training
data based on their score ranking; 4) Retrain the LLM using the selected data (e.g., 10k steps); 5)
Evaluate on the downstream task. Repeating the above steps can achieve multiple-round training.

Second, they typically do not consider the long-term impact of selected data if the model is trained for
a long time (i.e., multiple steps of gradient-based updates). For example, the data influence function
based approach (Yu et al., 2024) evaluates the impact of individual training samples based on a single
training step with the current model, which does not capture the cumulative effects of data selection
over the course of full model training.

In this paper, we introduce a new data selection method, to address the two major limitations of
existing approaches. Our method, namely BLISS (BileveL Influence Scoring method for data
Selection), is a lightweight data selection method that operates entirely from scratch, without relying
on any external pretrained models, while explicitly accounting for the long-term impact of selected
data. The core innovation of our approach lies in the integration of two lightweight models within
a novel bilevel optimization framework for data selection. Our method bypasses traditional data-
quality filtering and explicitly considers the long-term impact of selected data throughout training.
In particular, BLISS leverages a small proxy model as a surrogate for the LLM and employs a
score model to estimate the long-term influence of training samples if the proxy model is trained
to convergence. Our bilevel optimization problem has upper-level and lower-level objectives: the
upper-level objective optimizes the score model to assign importance weights to training samples,
ensuring that minimizing the lower-level objective (i.e., training the proxy model over the weighted
training loss until convergence) leads to best validation performance. Once the bilevel optimization is
solved, the trained score model predicts influence scores for the entire dataset, enabling the selection
of high-score samples for LLM pretraining. The pipeline of our proposed procedure is illustrated in
Figure 1. The main contributions of our paper are summarized as the following:

• We propose a principled approach to data selection for language model pretraining. Our
method, BLISS, leverages a novel bilevel optimization framework that employs a proxy
model and a score model to explicitly account for the long-term impact of selected data.
Unlike existing methods, BLISS operates from scratch without relying on any pretrained
oracle models for data-quality filtering, obviating any biases or risks that may arise from
such dependence1.

• We validate our method by pretraining 410M/1B Pythia and LLaMA-0.5B models on se-
lected subsets of C4 dataset. Experimental results on 1B setting demonstrate a 1.7× speedup
in reaching the same performance as the state-of-the-art method such as MATES (Yu et al.,
2024). Furthermore, we scale up our experiments to a 2.8B model pretraining used by the
data selected in the 1B experiment, and we demonstrate that our method consistently outper-
forms MATES at every round of data selection, achieving 1.4% performance improvement
over MATES (Yu et al., 2024).

• Through extensive ablation studies, we demonstrate the effectiveness of each component in
our bilevel optimization framework, further substantiating the robustness and efficiency of
our approach.

1Many commercial large-scale pretrained models strictly prohibit users from generating data or using them to
facilitate the training of other models, as doing so may result in severe legal consequences (OpenAI, 2024; Google,
2024). Our approach is entirely free from such legal concerns. We rely solely on algorithmic advancements
applied to a model trained from scratch, without any dependence on third-party pretrained large-scale models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Data Selection for Language Model Training. Early approaches to data selection primarily relied
on rule-based methods as language filters for training data, employing utility functions tailored to
specific datasets (Conneau & Lample, 2019; Raffel et al., 2020; Rae et al., 2021; Penedo et al.,
2023). Another key category is data deduplication (Lee et al., 2021; Sorscher et al., 2022; Penedo
et al., 2023; Abbas et al., 2023; Tirumala et al., 2023), which eliminates redundant samples to
optimize training efficiency and enhance performance on downstream tasks. A class of methods
exist for performing data-quality filtering, which can select data similar to high-quality corpus of
data points (Brown et al., 2020; Du et al., 2022; Gao et al., 2020; Xie et al., 2023b; Li et al., 2024),
with small perplexity (Chowdhery et al., 2023; Wenzek et al., 2019). More recent methods leverage
external pretrained LLMs to evaluate the pretraining data quality (Wettig et al., 2024; Maini et al.,
2024; Zhuang et al., 2025). In addition, a similar variant of data selection is domain reweighting for
data mixtures (Oren et al., 2019; Sagawa et al., 2019; Xie et al., 2023a; Fan et al., 2023; Albalak et al.,
2023; Chen et al., 2024), which re-scale the contribution of each domain to enhance generalization.
Another recently emerged line of research leverages the tool of influence functions (Hampel, 1974;
Cook, 1977; Ling, 1984; Koh & Liang, 2017) to evaluate the impact of individual training samples
on a fixed LLM (Park et al., 2023; Engstrom et al., 2024; Yu et al., 2024; Pan et al., 2025; Lin et al.,
2024). QUAD (Zhang et al., 2024) proposes an efficient framework incorporating the attention layers
to estimate the influence scores.

In contrast to these works, our work explicitly considers the long-term impact of selected data if the
model is not simply fixed but trained for a long time. In addition, our method can train the model
from scratch and does not need any extra information from any external pretrained models, making it
a scalable and effective solution.
Bilevel Optimization and Data Selection. Bilevel optimization provides a powerful framework
for modeling optimization problems with a nested structure (Bracken & McGill, 1973; Dempe,
2002). Recent research has focused on developing efficient bilevel optimization algorithms with
strong theoretical guarantees (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon
et al., 2023; Dagréou et al., 2022; Chen et al., 2023; Grazzi et al., 2022; Hao et al., 2024; Gong
et al., 2024). This approach has been widely applied in various machine learning tasks, including
meta-learning (Finn et al., 2017), hyperparameter optimization (Franceschi et al., 2018), and natural
language processing (Somayajula et al., 2023; Grangier et al., 2023). For the application of data
selection, bilevel optimization has been utilized for continual learning (Borsos et al., 2020; Zhou et al.,
2022; Hao et al., 2023) and data reweighting in LLM fine-tuning (Pan et al., 2024; Shen et al., 2024).
Our work is most closely related to SEAL (Shen et al., 2024), which focuses on selecting high-quality
and safe data to fine-tune a pretrained LLM, with the goal of aligning the model with safety and
ethical guidelines. However, our approach differs from SEAL in two key aspects: (1) Problem setting.
While SEAL operates in a fine-tuning context, our objective is to select data for pretraining an
LLM from scratch, aiming to improve downstream performance without relying on any external
pretrained models. (2) Model update mechanism. SEAL utilizes the LoRA technique (Hu et al.,
2021) to update both the data selector and the LLM during fine-tuning. However, this approach is
not directly applicable to our setting due to the following reasons. First, LoRA is only suitable for
fine-tuning tasks but insufficient for full model pretraining. Second, their algorithm always updates
the original large models directly, which is computationally expensive if all parameters are updated.
In contrast, we propose a more efficient framework that introduces lightweight models (a score model
and a proxy model) to guide data selection, while allowing full parameter updates within these smaller
networks. To the best of our knowledge, our proposed bilevel influence scoring method is the first to
leverage bilevel optimization techniques for data selection in LLM pretraining.

3 PRELIMINARIES AND NOTATIONS

Suppose that we have a large-scale training dataset Dtr = {ξi | 0 ≤ i ≤ N − 1} and a downstream
task Dds. The goal is to select a subset of training set, namely Ds = {ξj | 0 ≤ j ≤ Q− 1, Q ≤ N},
to pretrain a large language model with a specific training budget (e.g., limited FLOPs), such that the
model can achieve high performance on the downstream task Dds. Generally, the downstream data is
inaccessible during pretraining. Instead, we can use a validation data Dval = {ζi | 0 ≤ i ≤M − 1}
to estimate the model’s performance on Dds, because these two datasets often have similar data
distributions or share common domain knowledge. A small subset of training data D̃tr ⊂ Dtr is
uniformly sampled from Dtr.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In bilevel optimization, f(·) and g(·) denote the upper-level (UL) and lower-level (LL) functions,
respectively. Machine learning often requires solving stochastic optimization problems f(·) =
Eξ∼Df

[F (·; ξ)] and g(·) = Eζ∼Dg
[G(·; ζ)], where Df and Dg are the underlying unknown data

distribution for f and g, respectively. F (·; ξ) denotes the upper-level stochastic objective function
and G(·; ζ) is the lower-level stochastic objective function. Noisy observations of f and g can be
collected by sampling from Df and Dg .

4 METHODS

4.1 BILEVEL INFLUENCE SCORING FRAMEWORK

The goal of data selection is to optimize the performance of the LLM on downstream tasks by training
it using an optimal subset of training data. However, directly searching for the optimal subset of
training samples faces prohibitive costs due to the combinatorial nature of the problem and the
high computational cost of estimating the performance of the LLM for every potential subset being
evaluated.

To address the aforementioned computational challenge, our bilevel influence scoring framework uses
a lightweight score model θs to predict the influence of every sample on the model’s performance
for the downstream task. The optimized score model is then used to infer the influence score of
training samples, enabling the selection of the subset with the highest influence, thus streamlining
the process to search for the optimal training data. Instead of directly estimating the performance
of LLM (parameterized by θtr) which is computationally expensive, our framework introduces a
lightweight proxy model θp to approximate the behavior of the LLM. Note that the score model and
the proxy model are both small models: they share a similar architecture and number of parameters.
To ensure the data preferences of the proxy model align with those of the LLM, we apply knowledge
distillation by minimizing the Kullback-Leibler (KL) divergence between the output logits of the
proxy model and the LLM. We formulate the bilevel optimization for data selection as follows:

min
θs

Φ(θs) := f(θ∗p(θs)) := Eζ∼DvalF (θ∗p(θs); ζ) (UL),

s.t. θ∗p(θs) ∈ argmin
θp

g(θp, θs) := Eξ∼Dtr
G(θp, θs; ξ) (LL).

(1)

where Eξ∼DtrG(θp, θs; ξ) =
∑N−1

i=0 PiL(θp; ξi) + γDKL (ℓ(θp; ξi)∥ℓ(θtr; ξi)) + λ∥θp∥2 and Pi =
eh(θs;ξi)∑N

j=1 eh(θs;ξj)
represents the importance weight of sample i, and h(·) : Rdx → (0, 1) is a function

that maps a sample from Rdx to an influence score in the range (0, 1). L(·) and F (·) denote the loss
functions for next token prediction, with a common choice being cross-entropy. The model’s output
logits are represented by ℓ(·). The KL divergence is defined as DKL(X∥Y) =

∑
i Xi log(

Xi

Yi
). γ and

λ are the regularization coefficients for the KL divergence and the weight decay terms, respectively.

BLISS evaluates the long-term influence of training samples if the proxy model is trained to its
convergence state θ∗p(θs). Specifically, the lower-level trains the proxy model on the weighted training
loss until convergence. This is notably different from other methods such as MATES (Yu et al., 2024),
which trains a single step on the selected data from the current model state before evaluating sample
influence. Consequently, MATES overlooks the long-term influence of training samples and may
not fully capture the importance of data for downstream tasks. It is also worth noting that the bilevel
data selection framework, described in formula (1), does not rely on any external pretrained models
which are typically trained on large-scale natural language corpora. This independence makes BLISS
a more self-contained approach to data selection, which also obviates any biases or risks associated
with external pretrained models that may involve proprietary or sensitive data.

4.2 ALGORITHM FOR UPDATING THE PROXY MODEL AND SCORE MODEL

Now we design efficient algorithms for solving the bilevel problem (1). The lower-level problem
aims to optimize the proxy model θp on the weighted training samples with the influence predicted
by the score model. Note that we freeze the LLM (θtr) through the process of solving the bilevel
optimization problem, as the LLM is used to infer the output logits. Therefore, we perform the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

following update for the lower-level objective on a mini-batch of size B:

θt+1
p = θtp − η1∇θp

B∑
i=1

G(θtp, θ
t
s; ξi)

= θtp − η1

B∑
i=1

(
Pi∇θpL(θtp; ξi) + γ

∑
j

∇θpℓj(θ
t
p; ξi) log

ℓj(θ
t
p; ξi)

ℓj(θttr; ξi)
+ 2λθtp

)
,

(2)

where ℓj(·) denotes the j-th logit of the output. Note that the exact computation of Pi depends on all
N samples, which is computationally infeasible. Therefore, we approximate Pi by replacing the full
summation in the denominator with a partial summation over a smaller subset. This approximation
is implemented in a distributed manner, significantly reducing the computational overhead. More
details can be found in Appendix G. For the upper-level update, we take the derivative of Φ(θs) with
respect to θs by chain rule, which is known as the hypergradient:

∇θsΦ(θs) = −∇2
θsθpg(θ

∗
p(θs), θs) [∇2

θpg(θ
∗
p(θs), θs)]

−1∇θpf(θ
∗
p(θs))︸ ︷︷ ︸

z

,
(3)

where z is the solution of the quadratic function minz
1
2z

T∇2
θp
g(θ∗p(θs), θs)z − zT∇θpf(θ

∗
p(θs)). It

can be solved by running a few steps of gradient descent in practice:

ztk+1 = ztk − η2
(
∇2

θpg(θ
t
p, θ

t
s)z

t
k −∇θpf(θ

t
p)
)
, (4)

where k is the number of gradient updates for updating z at a fixed iteration t of updating θs. We
run 3 steps of gradient descent to solve z in our experiments. Note that Equation (4) computes the
Hessian-Vector-Product (HVP) term∇2

θp
g(θtp, θ

t
s)z

t
k and thus avoids the computationally prohibitive

operation of taking the inverse of the Hessian. The dimension of z is the same as that of the parameters
of the lightweight proxy model. Therefore, the computation of HVP within the PyTorch framework is
quite similar to that of gradient. In our implementation, we use the stochastic variants of Equation (3)
and Equation (4) for updating the score model. In particular, the approximation of hypergradient at
iteration t on the mini-batch B is

∇θsΦ̂(θ
t
s) = −

B∑
i=1

Pi∇θsh(θ
t
s; ξi)∇θpL(θtp; ξi)zt +

B∑
i=1

Pi

B∑
j=1

Pj∇θsh(θ
t
s; ξj)∇θpL(θtp; ξi)zt.

(5)
Then the update for the upper-level variable (θs) is θt+1

s = θts − η3∇θsΦ̂(θ
t
s). When the score model

converges over T steps, reaching θTs , it is then used to estimate the influence scores of the entire
training dataset in the current round by:Si = h(θTs , ξi), ∀ξi ∈ Dtr. Then the influence scores are
collected: {Si | 0 ≤ i ≤ |Dtr|}, and the top-ranked samples with the highest influence scores are
selected to construct Ds, which is used to pretraining the LLM (θtr).

The detailed implementation of the algorithm is presented in Algorithm 1. In practice, we use Adam
optimizer (Kingma & Ba, 2014) to update the upper-level variables, where we will update the Adam
gradient with the calculated hypergradient. The pretraining process is conducted over R rounds.
In each round, the algorithm performs data selection followed by LLM retraining. The training
dataset is partitioned into R shards. The data selection in round r is conducted on Dr

tr. The LLM
resumes training from the previous round’s checkpoint and updates to θrtr at the end of the r-th round.
Similarly, the score model also continues learning throughout the process, reaching θrs at the r-th
round. It is worth noting that the proxy model (θrp) is reinitialized with the warm-up model at the
beginning of each round. This prevents the model from overfitting to the previous round’s training
data and ensures it can better capture the evolving behavior of the LLM.

4.3 WARM UP MODELS

The key distinction between our algorithm and other data selection methods (Brown et al., 2020; Xie
et al., 2023b; Wettig et al., 2024) is that it operates independently of external pretrained models, avoid-
ing biases from data selection influenced by such models. However, without leveraging pretrained
knowledge, the proxy model, score model, and LLM tend to perform poorly in the initial phase due to
random parameter initialization. To mitigate this issue, we incorporate a model warm-up step before
data selection, similar to other data selection approaches (Yu et al., 2024; Xia et al., 2024), using

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 BLISS

1: Input: η1, η2, η3, R, T,K,Q,Dtr, D̃tr,Dval

2: Initialize: Warm up θ0,0p , θ0,0s , θ0,0tr using randomly selected training data.
3: for r = 0, . . . , R− 1 do
4: θ0,rp = θ0,0p # reset proxy/score parameters for the new round
5: θ0,rs = θT,r−1

s if r > 1 else θ0,0s

6: θ0,rtr = θQ,r−1
tr if r > 1 else θ0,0tr

7: for t = 0, . . . , T − 1 do
8: Sample ξrt , ξ̃

r
t , π

r
t ← D̃r

tr, and sample ζt ← Dval

9: θt+1,r
p = θt,rp − η1∇θpG(θt,rp , θt,rs ; ξrt) # LL: update the proxy model for lower-level

10: zt+1,r = GDLS(η2,K,∇θpG(θt,rp , θt,rs ; ξ̃rt),∇θpF (θt,rp , θt,rs ; ζt)) # solve the linear system

11: θt+1,r
s = Adam(θt,rs ,−∇2

θsθp
G(θt+1,r

p , θt,rs ;πr
t)z

t+1,r, η3)
2 # UL: update the score model

12: end for
13: Infer the influence score {Sr

i | 0 ≤ i ≤ |Dr
tr| − 1} on Dr

tr using θT,r
s

14: Sort {Sr
i } in descending order and select the 20% data with the highest influence scores from

Dr
tr to form the selected data Ds

15: for τ = 0, . . . , Q− 1 do
16: Sample ξτ from Ds.
17: θτ+1,r

tr = θτ,rtr − η4∇θtrℓ(θ
τ,r
tr ; ξτ) # pretrain the LLM

18: end for
19: end for

Algorithm 2 GDLS: Gradient Descent for the Linear System Solution

1: Input: η,K,∇θpg(θp), a
2: Initialize: z0
3: for k = 0, . . . ,K − 1 do
4: zk = zk−1 if k > 1 else z0
5: zk+1 = zk − η

(
∇2

θp
g(θp)zk − a

)
6: end for
7: Return zK

randomly selected samples. The lightweight proxy and score models share token embedding layers
and transformer blocks but differ in their final layers: the proxy model handles token generation,
while the score model outputs influence scores for individual samples. Consequently, only the proxy
model and the LLM require warm-up, while the score model can be initialized with the weights from
proxy model directly.

5 EXPERIMENTS

In this section, we validate the proposed bilevel influence scoring framework for pretraining data
selection. We apply the bilevel optimization algorithm to train a lightweight proxy model (θp) and
a score model (θs)) for data selection. We then pretrain a target LLM (θtr), specifically Pythia-
410M/1B, from scratch on a selected subset of the large-scale C4 dataset (Raffel et al., 2020), which
is designed for LLM pretraining. we then evaluate the pretrained LLM on multiple downstream
tasks and compare its performance against several baseline methods, including Random selection,
DSIR (Xie et al., 2023b), SemDeDup (Abbas et al., 2023), DsDm (Engstrom et al., 2024), LESS (Xia
et al., 2024), QuRating (Wettig et al., 2024), and MATES (Yu et al., 2024). We furthermore scale
up our experiment to 2.8B model pretraining and achieve 1.4% performance improvement over the
state-of-the-art method. The domain reweighting experiment is deferred to Appendix J.

5.1 DATASET SETTINGS

Following the approach of DsDm (Engstrom et al., 2024), we perform data selection and pretraining
using tokenized data. The procedure of BLISS is implemented for 5 rounds (i.e., R = 5),with the

2Adam(variable, gradient, lr) optimizer receives the current variable, its hypergradient and
learning rate. Then it updates the first and second momentum, then returns the updated variable.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

C4 dataset partitioned into five equal shards, denoted as {Dr
tr | 0 ≤ r ≤ 4}. Each training round

operates on a distinct data shard without replacement. In every round, we first uniformly sample a
small proportion (0.1%) from Dr

tr as the bilevel training set D̃r
tr for updating the proxy model. We

use LAMBADA (Paperno et al., 2016) as validation data for updating the score model. Other datasets,
including ARC-E (Clark et al., 2018), SQUAD (Rajpurkar, 2016), and PIQA (Bisk et al., 2020), are
evaluated in the ablation study (Appendix C.4).

To evaluate the performance of data selection algorithms, we run the pretraining model across 9
downstream tasks, including SciQ (Welbl et al., 2017), ARC-E (Clark et al., 2018), ARC-C (Clark
et al., 2018), LogiaQA (Liu et al., 2020), OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021).
These tasks cover a diverse range of reasoning and comprehension challenges, including question
answering, logical inference, commonsense reasoning, and coreference resolution. Thus it requires
models to demonstrate various capabilities, such as retrieving and applying scientific knowledge,
understanding causal relationships, resolving ambiguities in natural language, and making informed
choices among distractors. A good data selection algorithm is expected to select the "important" data
that boost model performance across these downstream tasks.

5.2 MODEL SETTINGS

The target pretraining model, Pythia-410M/1B/2.8B, consists of 410 million, 1 billion or 2.5 billion
trainable parameters. Both the proxy model and score model are based on Pythia-31M (for Pythia-
410M) or Pythia-160M (for Pythia-1B), but they serve different purposes: the proxy model acts as a
surrogate for the LLM and is trained for next-token prediction, while the score model functions as a
regression model that maps individual samples to corresponding influence scores. Details of model
settings are deferred to Appendix A. Notably, all models are trained from scratch using Gaussian
initialization for model parameters. Additional experimental details, including hyperparameter
choices, learning rate schedules, and distributed training strategies, are provided in Appendix E.

5.3 BILEVEL OPTIMIZATION FOR PROXY MODEL AND SCORE MODEL

In the Pythia-410M setting, the proxy model θp is updated with a “single-step" optimization per
iteration (line 9 in Algorithm 1). However, when scaling up to larger models like Pythia-1B, we
adopt a “multi-steps" update strategy for the proxy model to achieve a better lower-level solution. To
demonstrate the effectiveness of bilevel optimization in training the proxy model and score model,
we visulize the evolution of the training loss at during round 2 (Figure 6(a) in Appendix F) and round
5 (Figure 6(b) in Appendix F). Since the first round uses randomly selected data to warm up the LLM,
our data selection algorithm is employed from the second round onward.

Within each round, both losses exhibit a two-phase trend: they initially decrease rapidly before
experiencing a slight increase. This behavior arises due to the composition of the lower-level objective
function, which includes three terms: the weighted cross-entropy loss, the KL divergence loss, and a
regularization term. In the first phase, the weighted cross-entropy loss dominates, decreasing as the
proxy model is optimized. In the second phase, the KL divergence term becomes more influential.
Since the LLM has not yet been trained on the current dataset Dr

tr (it only performs inference in
bilevel training), its predictions may be suboptimal. The KL divergence term encourages the proxy
model to mimic the behavior of this "imperfect" LLM, leading to a slight performance degradation.
However, this ensures that the proxy model’s data preference aligns with that of the LLM, improving
the relevance of the selected training data and ultimately boosting the LLM’s downstream task
performance. An ablation study on the effect of KL divergence loss is presented in Section 6.2.

From round 2 to round 5, the score model is continuously optimized, leading to more accurate sample
weight assignments. This, in turn, enhances the proxy model’s performance on the weighted training
samples, further improving the quality of data selection.

5.4 EVALUATION RESULTS ON THE DOWNSTREAM TASKS

The LLM is continuously trained for 10,000 steps on the selected data in each round. After completing
five rounds of training, we evaluate the zero-shot performance of Pythia-410M/1B on various
downstream tasks and report the average accuracy along with the standard error for each dataset(see
Table 1. Our algorithm consistently outperforms MATES and random selection methods across
multiple tasks. For example on 410M setting, BLISS, compared with MATES, improves 2.4% on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of methods on zero-shot evaluation over multiple downstream datasets
(410M/1B model, 25B tokens data). Best results are marked bold. The accuracy with standard
error is reported based on the lm-evaluation-harness (Gao et al., 2021) implementation.

Methods (#FLOPs ×1019) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
410M Setting: 410M model, 25B tokens

Random (6.35) 64.1 (1.5) 40.2 (1.0) 25.6 (1.3) 24.7 (1.7) 29.4 (2.0) 58.9 (0.9) 39.7 (0.5) 67.1 (1.1) 50.6 (1.4) 44.5 (1.3)

MATES (8.11) 65.7 (1.5) 41.5 (1.0) 25.0 (1.3) 26.1 (1.7) 30.8 (2.1) 60.6 (0.9) 41.0 (0.5) 67.8 (1.1) 51.8 (1.4) 45.7 (1.4)

BLISS (8.08) 68.1 (1.5) 42.2 (1.0) 25.1 (1.3) 27.3 (1.7) 29.6 (2.0) 59.3 (0.9) 41.2 (0.5) 68.2 (1.1) 52.0 (1.4) 45.9 (1.4)

1B Setting: 1B model, 25B tokens

Random (17.67) 65.8(1.5) 43.7(1.0) 25.6(1.3) 27.5(1.8) 31.8(2.1) 60.2(0.9) 43.8(0.5) 68.9(1.1) 50.7(1.4) 46.4(1.4)

MATES (19.97) 67.3(1.5) 44.9(1.0) 25.9(1.3) 28.7(1.8) 32.2(2.1) 60.9(0.9) 45.3(0.5) 69.5(1.1) 52.4(1.4) 47.5(1.4)

BLISS (8.08) 69.4(1.5) 45.7(1.0) 24.8(1.3) 25.8(1.7) 33.2(2.1) 59.8(0.9) 47.8(0.5) 71.6(1.1) 52.9(1.4) 47.9(1.3)

Table 2: Average evaluation accuracy (15B to-
kens data) by pretraining 2.8B model with data
selected from the 1B model experiment.

Methods Round 1 (Random) Round 2 Round 3
MATES 45.9 (1.3) 47.4 (1.3) 47.6 (1.3)

BLISS 45.2 (1.3) 47.6 (1.3) 49.0 (1.3)

Table 3: Average evaluation accuracy of 3 rounds
by pretraining Llama-0.5B model. Llama-134M
is deployed as the proxy model in BLISS.

Methods Round 1 (Random) Round 2 Round 3
MATES 43.12 (1.27) 44.53 (1.27) 45.01 (1.27)

BLISS 43.12 (1.27) 44.57 (1.27) 45.65 (1.27)

SciQ, 0.7% on ARC-E, 0.8% on LogiQA, 0.2% on HellaSwag, 0.4% on PIQA, 0.2% on WinoGrande,
and 0.2% on average accuracy (see Table 8). Additionally, Figure 2 presents the evaluation results
in relation to pretraining FLOPs and training steps. BLISS consistently outperforms other baseline
methods throughout the entire five-round pretraining process (with 10k steps per round). In particular,
our method on 1B setting achieves a 1.7× speedup in reaching the same performance as MATES,
further validating the effectiveness of our data selection approach.

Scaling Up to 2.8B Model Pretraining using the Data Selected by 160M/1B Experiment. To
further validate the selected data is of good quality regardless of model size, we pretrain a larger
model of 2.8B parameters with data selected from the 1B model experiment with 160M proxy
and score models. We run MATES and BLISS for 3 rounds (15B tokens). As shown in Table 2,
BLISS consistently outperforms MATES across all data selection rounds, achieving 1.4% accuracy
improvement over MATES in round 3.

Generalize model architecture to LLaMA family. We also explore LLaMA architecture models to
validate the generalization of our method. Specifically, we use LLaMA-0.5B as the target pretraining
model, and LLaMA-134M as the proxy model and score model. In each round, we first minimize
the difference between the proxy model and the target model by training the proxy model toward a
lower KL divergence. Then we periodically reset the proxy model to the initial state, in addition to
resetting it at the beginning of each round. Table 3 presents the evaluation results compared with
MATES, where BLISS exhibits strong data selection performance. At the round 3, our algorithm
improves over MATES by 0.6%. More details are presented in Appendix B.

5.5 COMPUTATIONAL COST

We follows the FLOPs estimation method in Li et al. (2024) and report the total GPU FLOPs,
including the pretraining, model warm-up, and data selection. Our main observation is: without
relying on any external pretrained models as required in MATES, BLISS achieves higher
average downstream performance while consuming fewer FLOPs. A detailed comparison of total
FLOPs consumption is provided in Table 4, and running time/memory comparison is presented in
Appendix H.

With the same pretraining budget for LLM and an equivalent number of training tokens, BLISS
is more efficient in data selection than MATES. The higher computational cost of MATES is due
to its reliance on oracle data influence estimation, which involves computing the loss change after
performing a one-step gradient descent update on an individual training sample. This process is
highly time-consuming, because it requires per-sample gradient and cannot increase the batch size
per GPU. In contrast, BLISS formulates data selection as a bilevel optimization problem, enabling
the lightweight score model and proxy model to be trained to convergence within relatively few
steps, i.e., 3,000 per round (ablation study for bilevel steps is presented in Appendix I). While BLISS
introduces additional training steps for warming up the proxy and score models from scratch, this
cost is negligible compared to the overall pretraining FLOPs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Total FLOPs for pretraining 410M/1B model with 25B tokens.
Model #FLOPs ×1019 Ratio Model #FLOPs ×1019 Ratio
MATES: 410M model, 25B tokens BLISS: 410M model, 25B tokens
Model pretraining 6.35 78.3% Model pretraining 6.35 79.28%
Oracle data influence collection 0.29 3.58% Warm up the proxy/score model 0.07 0.87%
Data influence model training 0.01 0.1% Bilevel optimization 0.13 1.62%
Data influence model inference 1.46 18.0% Data influence model inference 1.53 19.10%
Total 8.11 100.00% Total 8.08 100.00%
MATES: 1B model, 25B tokens BLISS: 1B model, 25B tokens
Model pretraining 17.67 88.5% Model pretraining 17.67 90.48%
Oracle data influence collection 0.83 4.1% Warm up the proxy/score model 0.07 0.36%
Data influence model training 0.01 0.1% Bilevel optimization 0.261 1.34%
Data influence model inference 1.46 7.3% Data influence model inference 1.53 7.83%
Total 19.97 100.00% Total 19.53 100.00%

2 4 6 8
Training FLOPs (1e19)

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

Av
g.

 D
ow

ns
tr

ea
m

 A
cc

BLISS
MATES
Random

10k 20k 30k 40k 50k
Training Steps

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

Av
g.

 D
ow

ns
tr

ea
m

 A
cc

BLISS
MATES
Random

(a) Pretrain 410M model

5 10 15 20
Training FLOPs (1e19)

44.0

44.9

45.8

46.7

47.6

48.5

Av
g.

 D
ow

ns
tr

ea
m

 A
cc

1.7x faster
BLISS
MATES
Random

10k 20k 30k 40k 50k
Training Steps (x1000)

44.0

44.9

45.8

46.7

47.6

48.5

Av
g.

 D
ow

ns
tr

ea
m

 A
cc

1.7x faster
BLISS
MATES
Random

(b) Pretrain 1B model

Figure 2: The downstream performance of Pythia-410M/1B model w.r.t. pretraining FLOPs and
steps, where the first point denotes the performance of a warm-up model trained on random data.

6 ABLATION STUDIES

To inspect the effectiveness of key techniques used in our proposed algorithm, we conduct ablation
studies on the effect of bilevel optimization (Section 6.1), KL divergence loss (Section 6.2), the
impact of softmax reparameterization on the score model’s outputs (Appendix C.1), the size of proxy
model (Appendix C.2), the initialization for the score model (Appendix C.3), and the influence of
different validation datasets (Dval) on performance (Appendix C.4).

6.1 SINGLE-LEVEL VERSUS BILEVEL OPTIMIZATION

In bilevel algorithm, the hyper-gradient is essential for the update of upper level parameters. To
verify the effectiveness of bilevel update for the upper-level parameters, we compare bilevel update
with a single update, which update θs and θp together using both training and validation data for the
lower-level objective. Specifically, the upper and lower levels are reduced to a single level problem:
the upper-level and lower-level parameters are updated simultaneously on validation dataset and
training dataset respectively. With the same number of training steps as bilevel training, the average
accuracy of single level update degrades 0.5% as shown in Table 5 in Appendix Appendix C.

6.2 KL DIVERGENCE ALIGNS THE PROXY MODEL WITH THE LLM

Our objective is to select training data that maximizes the LLM’s performance on downstream tasks.
To achieve this, the proxy model must effectively represent the LLM, which we enforce by applying
KL divergence loss to align their output logits. As shown in Figure 3 (Appendix C), incorporating KL
divergence leads to improved performance across most downstream tasks, with a 9.3% accuracy boost
on LogiQA and a 1.4% increase in average accuracy. Interestingly, while removing KL divergence
results in a lower validation loss (as seen in Figure 7 compared to Figure 6(a) in Appendix F), it does
not translate to better downstream performance. These findings highlight the importance of bridging
the gap between the proxy model and the LLM to ensure effective data selection, demonstrating that
a closer alignment between the two models leads to better overall performance.

7 CONCLUSION

In this paper, we present BLISS, a lightweight bilevel influence scoring method for data selection
in language model pretraining. BLISS utilizes a proxy model, a score model, and a novel bilevel
optimization framework to capture the long-term influence of data without relying on external
pretrained models. Experimental results demonstrate its effectiveness in selecting data for pretraining
Pythia and LLaMA models. However, current data selection methods primarily focus on language
models. In future work, we plan to extend our approach to visual or multimodal models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We submit an anonymized code with training/evaluation scripts, configurations, seeds, and environ-
ment files in the supplementary materials. All base models are publicly available: Pythia (under
EleutherAI Apache-2.0 license) and LLaMA (under Meta Llama 2 Community License Agreement).
Datasets C4 is accessible on HuggingFace under the licenses stated on their corresponding Hugging
Face dataset cards (loganengstrom/dsdm-candidate-c4). We include download scripts, preprocess-
ing/splits, and references to their dataset cards. These materials sufficiently support the reproduction
of our results.

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-
efficient learning at web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540,
2023.

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing
for language model pre-training. In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in
Large Foundation Models, 2023.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in Neural Information Processing Systems, 33:14879–14890,
2020.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations Research, 21(1):37–44, 1973.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher Ré.
Skill-it! a data-driven skills framework for understanding and training language models. Advances
in Neural Information Processing Systems, 36, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. Advances in
neural information processing systems, 32, 2019.

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):15–18,
1977.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. arXiv preprint
arXiv:2201.13409, 2022.

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

DKYoon. Slimpajama-6b. HuggingFace Hub, 2023. https://huggingface.co/
datasets/DKYoon/SlimPajama-6B.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Yanai Elazar, Akshita Bhagia, Ian Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, et al. What’s in my big data? arXiv
preprint arXiv:2310.20707, 2023.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization
estimation. arXiv preprint arXiv:2310.15393, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. A nearly optimal single loop algorithm for stochastic
bilevel optimization under unbounded smoothness. In Forty-first International Conference on
Machine Learning, 2024.

Google. Gemini API Additional Terms of Service, 2024. URL https://ai.google.dev/
gemini-api/terms. Accessed: January 30, 2025.

David Grangier, Pierre Ablin, and Awni Hannun. Bilevel optimization to learn training distributions
for language modeling under domain shift. In NeurIPS 2023 Workshop on Distribution Shifts: New
Frontiers with Foundation Models, 2023.

Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Bilevel optimization with a lower-level
contraction: Optimal sample complexity without warm-start. arXiv preprint arXiv:2202.03397,
2022.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

11

https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://ai.google.dev/gemini-api/terms
https://ai.google.dev/gemini-api/terms

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation
and algorithm. Advances in Neural Information Processing Systems, 36, 2023.

Jie Hao, Xiaochuan Gong, and Mingrui Liu. Bilevel optimization under unbounded smoothness: A
new algorithm and convergence analysis. In The Twelfth International Conference on Learning
Representations, 2024.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882–4892. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023.

Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen,
et al. The bigscience roots corpus: A 1.6 tb composite multilingual dataset. Advances in Neural
Information Processing Systems, 35:31809–31826, 2022.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
preprint arXiv:2107.06499, 2021.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training
sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao. Token-wise influential training data retrieval
for large language models. arXiv preprint arXiv:2405.11724, 2024.

Robert F Ling. Residuals and influence in regression, 1984.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephras-
ing the web: A recipe for compute and data-efficient language modeling. arXiv preprint
arXiv:2401.16380, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

OpenAI. OpenAI Terms of Service, 2024. URL https://openai.com/terms. Accessed: Jan
30, 2025.

Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
language modeling. arXiv preprint arXiv:1909.02060, 2019.

12

https://openai.com/terms

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio: Scalable
bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Yanzhou Pan, Huawei Lin, Yide Ran, Jiamin Chen, Xiaodong Yu, Weijie Zhao, Denghui Zhang, and
Zhaozhuo Xu. Alinfik: Learning to approximate linearized future influence kernel for scalable
third-party llm data valuation. arXiv preprint arXiv:2503.01052, 2025.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations (ICLR), 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned llm fine-tuning
via bilevel data selection. arXiv preprint arXiv:2410.07471, 2024.

Sai Ashish Somayajula, Lifeng Jin, Linfeng Song, Haitao Mi, and Dong Yu. Bi-level finetuning with
task-dependent similarity structure for low-resource training. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 8569–8588, 2023.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining
via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36:53983–53995, 2023.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from
web crawl data. arXiv preprint arXiv:1911.00359, 2019.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
data for training language models. arXiv preprint arXiv:2402.09739, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V
Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
pretraining. Advances in Neural Information Processing Systems, 2023a.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023b.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. arXiv preprint arXiv:2406.06046, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

C Zhang, H Zhong, K Zhang, C Chai, R Wang, X Zhuang, T Bai, J Qiu, L Cao, J Fan, et al.
Harnessing diversity for important data selection in pretraining large language models. arXiv
preprint arXiv:2409.16986, 2024.

Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, Zonghao Chen, and Tong Zhang. Probabilistic
bilevel coreset selection. In International Conference on Machine Learning, pp. 27287–27302.
PMLR, 2022.

Xinlin Zhuang, Jiahui Peng, Ren Ma, Yinfan Wang, Tianyi Bai, Xingjian Wei, Qiu Jiantao, Chi
Zhang, Ying Qian, and Conghui He. Meta-rater: A multi-dimensional data selection method for
pre-training language models. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 10856–10896, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DETAILS OF MODEL SETTINGS

The proxy model and score model serve different purposes: the proxy model acts as a surrogate
for the LLM and is trained for next-token prediction, while the score model functions as a re-
gression model that maps individual samples to their corresponding influence scores. To trans-
form the proxy model into the score model, we modify its architecture by replacing the final
Linear layer with an AdaptiveAvgPool layer, followed by a Linear layer and a Sigmoid
activation. Specifically, given the output from the preceding transformer blocks with dimension
[Batch,token_size,Emb_size], the AdaptiveAvgPool layer computes the average em-
bedding feature across tokens. The Linear layer then maps the pooled token representations to a
single-dimensional output, which is subsequently passed through a Sigmoid activation to produce
an influence score within the range (0, 1). In contrast, the proxy model’s final Linear layer maps
features from previous layers to the vocabulary dimension for token prediction.

B IMPLEMENTATION DETAILS IN LLAMA EXPERIMENT

Model Setup In LLaMA setting, the target model is LLaMA-0.5B, and the proxy/score model is
LLaMA-134M. They are warmed up under the same process as Pythia setting.

Training Details of Proxy/Score Model There is a little difference in how we deal with the proxy
model in LLaMA setting compared to Pythia setting. In addition to resetting the proxy model
(LLaMA-134M) at the beginning of each round, we reset it to the initial state every 50 steps of the
update of the score model. We distill the target model into the proxy model by minimizing the KL
divergence for 240 steps. Then the checkpoint of the proxy model is saved as “initial" state. Since
periodic resetting the proxy model ensures a close alignment between two models, we remove the KL
divergence regulation term in the lower level loss function. To achieve a better lower-level solution,
the proxy model executes 4 lower-level updates, each computed on a batch of 64 samples. After the
score model is trained for 50 optimization steps, we reset the proxy model to the initial state.

C MORE ABLATION STUDIES

In this section, we provide more ablation studies to verify the effectiveness of each component in our
algorithm design.

20% 30% 40% 50% 60% 70%
Accuracy (%)

piqa
openbookqa

arc_challenge
sciq

hellaswag
logiqa

winogrande
arc_easy

boolq
Avg Acc

D
at

as
et

s

+0.6%
+6.4%

+9.3%
+3.0%

+1.3%
+2.0%

+1.4%

BO /wo KL-DIV
BO /w KL-DIV

Figure 3: The performance comparison of bilevel optimization with/without KL divergence. The
number on the bar indicate the accuracy improvement compared to the method without KL divergence.

Table 5: Comparison of BLISS with different settings(without softmax and single level updata) over
multiuple downstream datasets (410M model, 10B tokens) with 20k-step training.

Methods SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
Without softmax 63.5(1.5) 41.0(1.0) 22.4(1.2) 25.7(1.7) 30.0(2.1) 52.8(0.9) 38.8(0.5) 67.4(1.1) 51.0(1.4) 43.6(1.3)

Single Level 64.4(1.5) 42.3(1.0) 22.2(1.2) 24.1(1.7) 30.6(2.1) 55.0(0.9) 39.7(0.5) 67.1(1.1) 52.1(1.4) 44.2(1.3)

BLISS 65.5(1.5) 40.8(1.0) 23.4(1.2) 27.2(1.7) 29.8(2.0) 58.9(0.9) 36.0(0.5) 67.6(1.1) 53.4(1.4) 44.7(1.3)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Comparison of BLISS with different size of proxy/score model and on zero-shot evaluation
over multiuple downstream datasets (410M model, 10B tokens) with 20k-step training.

Method SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
BLISS (Pythia-31M) 65.5(1.5) 40.8(1.0) 23.4(1.2) 27.2(1.7) 29.8(2.0) 58.9(0.9) 36.0(0.5) 67.6(1.1) 53.4(1.4) 44.7(1.3)

BLISS (Pythia-160M) 63.8(1.5) 40.8(1.0) 23.4(1.2) 27.5(1.8) 29.8(2.0) 51.3(0.9) 38.3(0.5) 67.6(1.1) 50.4(1.4) 44.1(1.3)

C.1 SOFTMAX REPARAMETRIZATION FOR SCORE MODEL’S OUTPUT

In our experiment, we apply a softmax function on all batch samples’ score across GPUs to obtain
the importance weights Pi. Note that the raw output of the score model is already within the range
(0, 1), but we add another softmax function on top of it. We want to demonstrate the effectiveness of
this softmax reparameterization. Intuitively, the main benefit is that it naturally amplifies important
samples while downweighting less useful ones, improving the overall data selection process.

To assess the impact of the softmax reparameterization, we conduct an ablation experiment comparing
two approaches: (i) naive weighting, where the raw outputs of the score model are used directly
as sample weights; (ii) softmax weighting, where the softmax-transformed outputs of the score
model determine the sample weights. The results, shown in Table 5, indicate that softmax weighting
consistently outperforms naive weighting, leading to a 1.1% improvement in average downstream
accuracy. This demonstrates that softmax effectively enhances data selection by better distinguishing
important samples.

C.2 THE SIZE OF PROXY MODEL

We conduct experiments using two different sizes of proxy/score models (31M and 160M) for a
410M LLM. We observe that the KL divergence between the proxy and the LLM remains low for
both sizes-0.15 for the 160M model and 0.10 for the 31M model. The corresponding learning curves
are shown in Figure 4, which presents the results from round 2. The performance comparison of two
sizes of proxy model is summarized in Table 6. These findings suggest that even a small proxy model
(31M) is sufficient to serve as an effective surrogate for the 410M LLM.

(a) Training loss vs. steps (b) KL divergence (c) Training loss vs. steps (d) KL divergence

Figure 4: The evolution of the lower-level training loss and KL divergence for different proxy model
size. Subfigures (a), (b): Proxy model size 31M, target LLM size 410M. Subfigures (c), (d): Proxy
model size 160M, target LLM size 410M.

C.3 INITIALIZATION METHOD FOR THE SCORE MODEL

In Algorithm 1, we initialize the score model in each new round using the parameters from the last
round. This design is motivated by the role of the score model: it learns data representations and ranks
the importance of training samples. As training progresses, the model’s ability of feature learning
improves, making it beneficial to retain learned representations across rounds.

To validate this, we conduct ablation studies comparing two cases:

1. Original BLISS (BLISS-org): the score model in each round is initialized with the parame-
ters from the last round.

2. Modified Initialization (BLISS†): the score model in each round is reset to its initial
parameters from round 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: Comparison of BLISS trained with different validation datasets (410M model, 10B tokens).
We compare our method with different validation datasets with random selection on 1 downstream
task in each subplot.

We then use the trained score models from two cases to select training data and pretrain the target
LLM for 15B tokens, respectively. The resulting LLMs are evaluated on multiple downstream
datasets. As shown in Table 7, BLISS† achieves an average performance that is 0.4% lower than
BLISS-org, demonstrating that continuous initialization leads to better data ranking and improved
downstream performance.

Table 7: Comparison of methods on zero-shot evaluation over multiple downstream datasets (410M
model, 15B tokens). BLISS-org denotes the original algorithm, and BLISS† is a variant which uses
different initialization method for the score model.

Methods (#FLOPs ×1019) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
BLISS-org 67.7 (1.5) 41.7 (1.0) 23.6 (1.2) 25.8(1.7) 28.4(2.0) 56.0 (0.8) 39.7 (0.5) 68.7 (1.1) 53.2 (1.4) 44.9 (1.3)

BLISS† 65.2 (1.5) 41.6 (1.0) 23.4 (1.2) 27.1 (1.7) 29.8 (2.0) 57.5 (0.8) 34.9 (0.5) 67.7 (1.1) 53.5 (1.4) 44.5 (1.3)

C.4 VALIDATION DATASETS

The upper-level optimization aims to minimize the proxy model’s loss on the validation dataset,
meaning different validation datasets influence data selection. We use different validation set,
including SQUAD, ARC-E, LAMBADA, and PIQA, to conduct the bilevel data training, then
compare the corresponding downstream performance.

As shown in Figure 5, our algorithm outperforms random selection on most downstream tasks, except
BoolQ, regardless of the validation dataset. Notably, LAMBADA yields the highest average accuracy,
improving 1.15% over random selection, likely due to its broad domain coverage.

We also notice that our averaged performance is greatly affected by the accuracy of BoolQ task across
all validation datasets. This indicates that it is hard to learn when the answer is too short like yes or
no.

D ADDITIONAL RESULTS

Since we use the same experimental settings as MATES(Yu et al., 2024), including pretrain-
ing model, data and training steps, we evaluate MATES on the downstream tasks with their
checkpoint model (https://huggingface.co/yuzc19/pythia-410m-mates/blob/
main/iter-200800-ckpt.pth) of 50k steps. For other baselines, we quote Table 1 from
MATES(Yu et al., 2024) for convenience of look-up for the performance of more algorithms.

17

https://huggingface.co/yuzc19/pythia-410m-mates/blob/main/iter-200800-ckpt.pth
https://huggingface.co/yuzc19/pythia-410m-mates/blob/main/iter-200800-ckpt.pth

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Results of Different Methods under the 410M/1B Setting. Subscripts denote standard
deviations. Best scores are in bold.

Methods(#FLOPs∗1e19) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average

410M Setting: 410M model, 25B tokens

Random(6.35) 64.1(1.5) 40.2(1.0) 25.6(1.3) 24.7(1.7) 29.4(2.0) 58.9(0.9) 39.7(0.5) 67.1(1.1) 50.6(1.4) 44.5(1.3)

DSIR(6.35) 63.1(1.5) 39.9(1.0) 23.8(1.2) 27.0(1.7) 28.4(2.0) 58.3(0.9) 39.6(0.5) 66.8(1.1) 51.5(1.4) 44.3(1.3)

LESS(246.35) 64.6(1.5) 42.3(1.0) 23.1(1.2) 25.2(1.7) 30.4(2.1) 55.6(0.9) 41.9(0.5) 67.2(1.1) 51.0(1.4) 44.6(1.4)

SemDeDup(7.81) 63.5(1.5) 42.4(1.0) 24.4(1.3) 27.6(1.7) 30.0(2.1) 58.2(0.9) 40.8(0.5) 67.8(1.1) 52.3(1.4) 45.2(1.3)

DsDm(10.72) 65.4(1.5) 41.7(1.0) 24.7(1.3) 27.5(1.8) 29.0(2.1) 57.5(0.9) 40.3(0.5) 67.1(1.1) 50.1(1.4) 44.9(1.4)

QuRating(26.35) 64.8(1.5) 42.0(1.0) 25.4(1.3) 25.3(1.7) 30.2(2.1) 58.9(0.9) 40.7(0.5) 67.5(1.1) 52.1(1.4) 45.2(1.4)

MATES(8.11) 65.7(1.5) 41.5(1.0) 25.0(1.3) 26.1(1.7) 30.8(2.1) 60.6(0.9) 41.0(0.5) 67.8(1.1) 51.8(1.4) 45.7(1.4)

BLISS(8.08) 68.1(1.5) 42.2(1.0) 25.1(1.3) 27.3(1.7) 29.6(2.0) 59.3(0.9) 41.2(0.5) 68.2(1.1) 52.0(1.4) 45.9(1.4)

1B Setting: 1B model, 25B tokens

Random(17.67) 65.8(1.5) 43.7(1.0) 25.6(1.3) 27.5(1.8) 31.8(2.1) 60.2(0.9) 43.8(0.5) 68.9(1.1) 50.7(1.4) 46.4(1.4)

DSIR(17.67) 65.8(1.5) 42.6(1.0) 24.7(1.3) 28.7(1.8) 29.2(2.0) 59.7(0.9) 44.2(0.5) 68.3(1.1) 53.2(1.4) 46.3(1.4)

SemDeDup(19.13) 66.8(1.5) 45.5(1.0) 25.3(1.3) 27.6(1.8) 30.6(2.1) 60.2(0.9) 45.3(0.5) 69.7(1.1) 52.5(1.4) 47.1(1.4)

DsDm(22.04) 68.2(1.5) 45.0(1.0) 26.5(1.3) 26.6(1.7) 29.4(2.0) 59.0(0.9) 44.8(0.5) 68.9(1.1) 51.9(1.4) 46.7(1.3)

QuRating(37.67) 67.1(1.5) 45.5(1.0) 25.6(1.3) 26.9(1.7) 29.8(2.0) 60.3(0.9) 45.2(0.5) 70.2(1.1) 51.6(1.4) 46.9(1.3)

MATES(19.97) 67.3(1.5) 44.9(1.0) 25.9(1.3) 28.7(1.8) 32.2(2.1) 60.9(0.9) 45.3(0.5) 69.5(1.1) 52.4(1.4) 47.5(1.4)

BLISS(8.08) 69.4(1.5) 45.7(1.0) 24.8(1.3) 25.8(1.7) 33.2(2.1) 59.8(0.9) 47.8(0.5) 71.6(1.1) 52.9(1.4) 47.9(1.3)

Table 9: Experimental settings.

Hyperparameters Values

Pretrain
Data set C4
Tokens 25B
Model Pythia-410M/1B/2.8B, LLaMA-0.5B
batch size 512
Sequence length 1024
Max learning rate 1e-3

bilevel optimization
Proxy/Score model Pythia-31M (for 410M LLM), Pythia-160M (for 1B LLM), LLaMA-134M (for LLaMA-0.5B LLM)
γ 1e-2
λ 1e-6
batch size 16(Pythia-410M, LLaMA-0.5B)/32(Pythia 1B)
Proxy/Score model learning rate(η1/η3) 1e-5
GDLS learning rate(η2) 1e-2
GDLS steps(K) 3
Score model steps 3k(Pythia-410M/1B)/1k(LLaMA-0.5B)
Proxy model steps 3k(Pythia-410M/1B)/1k(LLaMA-0.5B)
Initialization of score/proxy model Randomly initialized

E EXPERIMENTAL HYPERPARAMETERS

Table 9 shows the hyperparameter settings in our experiments. We use cosine learning rate scheduler
in bilevel optimization, WSD(Yu et al., 2024) learning rate scheduler for pretraining and constant
learning rate for GDLS. We use double loop to update the proxy model when employing 1B LLM,
i.e., 5 steps for the lower level update. The experiments run on 8 A6000 GPUs with Distributed Data
Parallel (DDP) strategy.

F EVOLUTION OF TRAINING AND VALIDATION LOSS

In Figure 6(a), 6(b), we visualize the curves training loss pretraining round 2 and 5.

G DISTRIBUTED SOFTMAX TO COMPUTE INFLUENCE SCORE

In bilevel optimization, the importance weight Pi is computed based on a mini batch that is distributed
across different GPUs. However, back propagation through different GPUs is not implemented by
Pytorch. Thus we deploy "distributed softmax" in practice. In detail, our implementation requires 3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Round 2. (b) Round 5.

Figure 6: The evolution of training loss in a round.

(a) Training loss vs. steps (b) Validation loss vs. steps

Figure 7: The visualization of lower-level training loss and the upper-level validation loss in round 2
bilevel optimization without KL divergence.

times of communication among GPUs.

Pi =
eh(θs;ξi)∑B
j=1 e

h(θs;ξj)
(6)

As equation (6) shows, the denominator of Pi is the summation of every sample’s exponential score.
Therefore, in the first communication, each GPU gets the scores from others and calculates the
denominator locally. A second communication is required to compute the term

∑B
j=1 Pj∇θsh(θ

t
s; ξj)

in equation (5). In detail, we need to gather gradients of h and L’ of every sample across all
GPUs. After computing hyper-gradients of every sample, they are accumulated to update upper-level
variables. With efficient communication API provided by Fabric https://lightning.ai/
docs/fabric/stable/, the time consumed in bilevel optimization of each round is within 1.5
hours.

H RUNNING TIME AND MEMORY

We measured the memory and runtime of the data selection stage for both BLISS and MATES under
different target (or pretraining) model sizes (for short, T: target). The results are shown in Table 10.
We have two observations:

• BLISS scales well with larger target models. Note that the target model is not an optimization
variable for the bilevel optimization and it is only used for calculating the KL divergence.
Therefore, it does not affect the scalability of bilevel optimization. When increasing the
target from 410M to 1B, BLISS’s memory and runtime grow moderately (49.46→ 74.51
GB; 5.03→ 11.82 hours), as expected.

• BLISS is significantly faster than MATES. MATES incurs high cost because each round
requires oracle data collection. For every example, MATES performs a one-step gradient
update on the target model and evaluates the validation loss change to compute influence
scores. This per-example simulation dominates runtime. In contrast, BLISS avoids all

19

https://lightning.ai/docs/fabric/stable/
https://lightning.ai/docs/fabric/stable/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Training loss with different steps. Figure 9: Test loss on SlimPajama-6B.

per-example oracle evaluations in MATES and performs bilevel optimization directly on the
proxy/score model, leading to 2− 3× faster data selection.

Table 10: The comparison of runtime and memory in data selection stage.

Setting Memory peak (GB) Total data selection time (hours)
MATES: T: 410M 36.36 18.0

MATES: T: 1B 63.52 30.32

BLISS: T: 410M 49.46 5.03

BLISS: T: 1B 74.51 11.82

I ABLATION STUDY FOR BILEVEL OPTIMIZATION STEPS

We did the ablation study to investigate the steps of bilevel optimization. As shown in Figure 8,
both the 3k-step and 5k-step settings converge to nearly the same training loss. This indicates that
3k steps are sufficient for the proxy model, as increasing the steps to 5k does not yield additional
improvements. So we fix the training steps of bilevel optimization to 3k steps in main experiments.

J DOMAIN REWEIGHTING

To verify the fidelity of proxy models to full-scale LLMs, we conduct a domain-reweighting ex-
periment on the SlimPajama-6B dataset (DKYoon, 2023), which contains d = 7 domains: ArXiv,
Books, C4, CommonCrawl, GitHub, StackExchange, and Wikipedia. The objective is to learn optimal
domain weights α ∈ Rd such that a model trained on data sampled according to the weights achieves
the best downstream performance.

We compare two settings:

1. Case 1 (with proxy model): The lower level optimizes a lightweight proxy model (LLaMA-
134M) with output alignment to the target LLM (LLaMA-300M), and the upper level learns
the domain weights α̃.

2. Case 2 (without proxy model): The lower level directly optimizes the target LLM (LLaMA-
300M), and the upper level learns the domain weights α.

We perform bilevel optimization for 1,000 steps in both cases to learn the domain weights, where
10% of the original training set is held out as the validation set for the upper-level objective, and the
remaining 90% is used as the lower-level training set. After obtaining α̃ and α, we train two final
LLaMA-300M models on data sampled according to each set of weights, respectively . Figure 10
presents the learning curves of domain weights for both cases. We observe that the trajectories of α̃
and α are highly similar across most domains (e.g., in the domain of Wikipedia, Book, Stackexchange),
demonstrating that the proxy model maintains high fidelity to the full-scale LLM in data selection.

Finally, we evaluate the resulting pretrained LLMs on the test set of SlimPajama-6B, and the results
are shown in Figure 9. The test loss curves show that data selection based on the proxy model
maintains high fidelity to the full-scale LLM, while significantly outperforming random selection.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Wikipedia (b) Book (c) Stackexchange

(d) Commoncrawl (e) Arxiv (f) Github

Figure 10: Learning curves of domain weights.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology. Their use is limited to polish the writing.

21

	Introduction
	Related Work
	Preliminaries and Notations
	Methods
	Bilevel Influence Scoring Framework
	Algorithm for Updating the Proxy Model and Score Model
	Warm Up Models

	Experiments
	Dataset Settings
	Model Settings
	Bilevel Optimization for Proxy Model and Score Model
	Evaluation Results on the Downstream Tasks
	Computational Cost

	Ablation Studies
	Single-level versus Bilevel Optimization
	KL Divergence Aligns the Proxy Model with the LLM

	Conclusion
	Details of Model Settings
	Implementation Details in LLaMA Experiment
	More Ablation Studies
	Softmax Reparametrization for Score Model's Output
	The Size of Proxy Model
	Initialization Method for the Score model
	Validation Datasets

	Additional results
	Experimental Hyperparameters
	Evolution of training and validation loss
	Distributed Softmax to Compute Influence Score
	Running Time and Memory
	Ablation Study for Bilevel Optimization Steps
	Domain Reweighting
	The Use of Large Language Models (LLMs)

