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ABSTRACT

Effective data selection is essential for pretraining large language models (LLMs),
enhancing efficiency and improving generalization to downstream tasks. However,
existing approaches often require leveraging external pretrained models, making
it difficult to disentangle the effects of data selection from those of the external
pretrained models. In addition, they often overlook the long-term impact of selected
data if the model is trained to convergence, primarily due to the prohibitive cost of
full-scale LLM pretraining. In this paper, we introduce BLISS (BileveL Influence
Scoring method for data Selection): a lightweight data selection method that oper-
ates entirely from scratch, without relying on any external pretrained oracle models,
while explicitly accounting for the long-term impact of selected data. BLISS lever-
ages a small proxy model as a surrogate for the LLM and employs a score model to
estimate the long-term influence of training samples if the proxy model is trained
to convergence. We formulate data selection as a bilevel optimization problem,
where the upper-level objective optimizes the score model to assign importance
weights to training samples, ensuring that minimizing the lower-level objective
(i.e., training the proxy model over the weighted training loss until convergence)
leads to best validation performance. Once optimized, the trained score model
predicts influence scores for the dataset, enabling efficient selection of high-quality
samples for LLM pretraining. We validate BLISS by pretraining 410M/1B/2.8B
Pythia and LLaMA-0.5B models on selected subsets of the C4 dataset. Notably,
under the 1B model setting, BLISS achieves 1.7× speedup in reaching the same
performance as the state-of-the-art method, demonstrating superior performance
across multiple downstream tasks.

1 INTRODUCTION

The successful large-scale language model pretraining crucially relies on the careful choice of
pretraining data (Brown et al., 2020; Raffel et al., 2020; Du et al., 2022; Elazar et al., 2023). Recent
studies have shown that effective data selection (a.k.a., data curation) methods can enhance pretraining
efficiency (Xie et al., 2023a) and improve generalization (Engstrom et al., 2024; Wettig et al., 2024).
There are various types of data selection approaches for language model pretraining, including
language filtering (Laurençon et al., 2022; Wenzek et al., 2019), data deduplication (Lee et al., 2021;
Abbas et al., 2023), heuristic approaches (Rae et al., 2021; Penedo et al., 2023), data quality data
filtering (Brown et al., 2020; Gao et al., 2020; Chowdhery et al., 2023; Xie et al., 2023b; Wettig
et al., 2024), data mixing (Xie et al., 2023a; Albalak et al., 2023; Xia et al., 2023), and data influence
function based methods (Park et al., 2023; Engstrom et al., 2024; Yu et al., 2024). Despite the rich
literature of data selection methods in large language model (LLM) pretraining (e.g., a survey paper
in Albalak et al. (2024)), it is still unclear what properties are needed for the training data curation to
guarantee good performance: it remains an important real-world challenge (Li et al., 2024).

Existing approaches of data selection methods suffer from two major limitations. First, they often
require leveraging pretrained models (Brown et al., 2020; Xie et al., 2023b; Wettig et al., 2024) for
data-quality filtering, making it difficult to separate the effects of data selection from those of the
external pretrained models. For example, the QuRating method (Wettig et al., 2024) assigns quality
ratings to training samples based on responses from a pretrained LLM (e.g., GPT-3.5) before training
a QuRater model. This reliance raises uncertainty about the role of the external LLM in the training
process and whether its feedback is truly optimal. Moreover, the cost of invoking these external
pretrained models is prohibitively expensive during data selection process for large-scale pretraining.
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Figure 1: The pipeline of data selection and pretraining procedure. There are four main steps in one
round training, 1) Warm up LLM using randomly selected training data (e.g. 10k step); 2) Bilevel
optimization for score and proxy model, 3) Predict the data influence, and select Top-20% training
data based on their score ranking; 4) Retrain the LLM using the selected data (e.g., 10k steps); 5)
Evaluate on the downstream task. Repeating the above steps can achieve multiple-round training.

Second, they typically do not consider the long-term impact of selected data if the model is trained to
convergence. For example, the data influence function based approach (Yu et al., 2024) evaluates the
impact of individual training samples based on a single training step with the current model, which
does not capture the cumulative effects of data selection over the course of full model training.

In this paper, we introduce a new data selection method, to address the two major limitations of
existing approaches. Our method, namely BLISS (BileveL Influence Scoring method for data
Selection), is a lightweight data selection method that operates entirely from scratch, without relying
on any external pretrained models, while explicitly accounting for the long-term impact of selected
data. The core innovation of our approach lies in the integration of two lightweight models within
a novel bilevel optimization framework for data selection. Our method bypasses traditional data-
quality filtering and explicitly considers the long-term impact of selected data throughout training.
In particular, BLISS leverages a small proxy model as a surrogate for the LLM and employs a
score model to estimate the long-term influence of training samples if the proxy model is trained
to convergence. Our bilevel optimization problem has upper-level and lower-level objectives: the
upper-level objective optimizes the score model to assign importance weights to training samples,
ensuring that minimizing the lower-level objective (i.e., training the proxy model over the weighted
training loss until convergence) leads to best validation performance. Once the bilevel optimization is
solved, the trained score model predicts influence scores for the entire dataset, enabling the selection
of high-score samples for LLM pretraining. The pipeline of our proposed procedure is illustrated in
Figure 1. The main contributions of our paper are summarized as the following:

• We propose a principled approach to data selection for language model pretraining. Our
method, BLISS, leverages a novel bilevel optimization framework that employs a proxy
model and a score model to explicitly account for the long-term impact of selected data.
Unlike existing methods, BLISS operates from scratch without relying on any pretrained
oracle models for data-quality filtering, obviating any biases or risks that may arise from
such dependence1.

• We validate our method by pretraining 410M/1B Pythia and LLaMA-0.5B models on se-
lected subsets of C4 dataset. Experimental results on 1B setting demonstrate a 1.7× speedup
in reaching the same performance as the state-of-the-art method such as MATES (Yu et al.,
2024). Furthermore, we scale up our experiments to a 2.8B model pretraining used by the
data selected in the 1B experiment, and we demonstrate that our method consistently outper-
forms MATES at every round of data selection, achieving 1.4% performance improvement
over MATES (Yu et al., 2024).

• Through extensive ablation studies, we demonstrate the effectiveness of each component in
our bilevel optimization framework, further substantiating the robustness and efficiency of
our approach.

1Many commercial large-scale pretrained models strictly prohibit users from generating data or using them to
facilitate the training of other models, as doing so may result in severe legal consequences (OpenAI, 2024; Google,
2024). Our approach is entirely free from such legal concerns. We rely solely on algorithmic advancements
applied to a model trained from scratch, without any dependence on third-party pretrained large-scale models.
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2 RELATED WORK

Data Selection for Language Model Training. Early approaches to data selection primarily relied
on rule-based methods as language filters for training data, employing utility functions tailored to
specific datasets (Conneau & Lample, 2019; Raffel et al., 2020; Rae et al., 2021; Penedo et al., 2023).
Another key category is data deduplication (Lee et al., 2021; Sorscher et al., 2022; Penedo et al., 2023;
Abbas et al., 2023; Tirumala et al., 2023), which eliminates redundant samples to optimize training
efficiency and enhance performance on downstream tasks. A class of methods exist for performing
data-quality filtering, which can select data similar to high-quality corpus of data points (Brown et al.,
2020; Du et al., 2022; Gao et al., 2020; Xie et al., 2023b), with small perplexity (Chowdhery et al.,
2023; Wenzek et al., 2019). More recent methods leverage external pretrained LLMs to evaluate
the pretraining data quality (Wettig et al., 2024; Maini et al., 2024). In addition, a similar variant of
data selection is domain reweighting for data mixtures (Oren et al., 2019; Sagawa et al., 2019; Xie
et al., 2023a; Fan et al., 2023; Albalak et al., 2023; Chen et al., 2024), which re-scale the contribution
of each domain to enhance generalization. Another recently emerged line of research leverages the
tool of influence functions (Hampel, 1974; Cook, 1977; Ling, 1984; Koh & Liang, 2017) to evaluate
the impact of individual training samples on a fixed LLM (Park et al., 2023; Engstrom et al., 2024;
Yu et al., 2024). In contrast to these works, our work explicitly considers the long-term impact of
selected data if the model is not simply fixed but trained to convergence. In addition, our method can
train the model from scratch and does not need any extra information from any external pretrained
models, making it a scalable and effective solution.
Bilevel Optimization and Data Selection. Bilevel optimization provides a powerful framework
for modeling optimization problems with a nested structure (Bracken & McGill, 1973; Dempe,
2002). Recent research has focused on developing efficient bilevel optimization algorithms with
strong theoretical guarantees (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon
et al., 2023; Dagréou et al., 2022; Chen et al., 2023; Grazzi et al., 2022; Hao et al., 2024; Gong
et al., 2024). This approach has been widely applied in various machine learning tasks, including
meta-learning (Finn et al., 2017), hyperparameter optimization (Franceschi et al., 2018), and natural
language processing (Somayajula et al., 2023; Grangier et al., 2023). For the application of data
selection, bilevel optimization has been utilized for continual learning (Borsos et al., 2020; Zhou et al.,
2022; Hao et al., 2023) and data reweighting in LLM fine-tuning (Pan et al., 2024; Shen et al., 2024).
Our work is most closely related to SEAL (Shen et al., 2024), which focuses on selecting high-quality
and safe data to fine-tune a pretrained LLM, with the goal of aligning the model with safety and
ethical guidelines. However, our approach differs from SEAL in two key aspects: (1) Problem setting.
While SEAL operates in a fine-tuning context, our objective is to select data for pretraining an
LLM from scratch, aiming to improve downstream performance without relying on any external
pretrained models. (2) Model update mechanism. SEAL utilizes the LoRA technique (Hu et al.,
2021) to update both the data selector and the LLM during fine-tuning. However, this approach is
not directly applicable to our setting due to the following reasons. First, LoRA is only suitable for
fine-tuning tasks but insufficient for full model pretraining. Second, their algorithm always updates
the original large models directly, which is computationally expensive if all parameters are updated.
In contrast, we propose a more efficient framework that introduces lightweight models (a score model
and a proxy model) to guide data selection, while allowing full parameter updates within these smaller
networks. To the best of our knowledge, our proposed bilevel influence scoring method is the first to
leverage bilevel optimization techniques for data selection in LLM pretraining.

3 PRELIMINARIES AND NOTATIONS

Suppose that we have a large-scale training dataset Dtr = {ξi | 0 ≤ i ≤ N − 1} and a downstream
task Dds. The goal is to select a subset of training set, namely Ds = {ξj | 0 ≤ j ≤ Q− 1, Q ≤ N},
to pretrain a large language model with a specific training budget (e.g., limited FLOPs), such that the
model can achieve high performance on the downstream task Dds. Generally, the downstream data is
inaccessible during pretraining. Instead, we can use a validation data Dval = {ζi | 0 ≤ i ≤M − 1}
to estimate the model’s performance on Dds, because these two datasets often have similar data
distributions or share common domain knowledge. A small subset of training data D̃tr ⊂ Dtr is
uniformly sampled from Dtr.

In bilevel optimization, f(·) and g(·) denote the upper-level and lower-level functions, respectively.
Machine learning often requires solving stochastic optimization problems f(·) = Eξ∼Df

[F (·; ξ)]

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and g(·) = Eζ∼Dg
[G(·; ζ)], where Df and Dg are the underlying unknown data distribution for f

and g, respectively. Noisy observations of f and g can be collected by sampling from Df and Dg .

4 METHODS

4.1 BILEVEL INFLUENCE SCORING FRAMEWORK

The goal of data selection is to optimize the performance of the LLM on downstream tasks by training
it using an optimal subset of training data. However, directly searching for the optimal subset of
training samples faces prohibitive costs due to the combinatorial nature of the problem and the
high computational cost of estimating the performance of the LLM for every potential subset being
evaluated.

To address the aforementioned computational challenge, our bilevel influence scoring framework uses
a lightweight score model θs to predict the influence of every sample on the model’s performance
for the downstream task. The optimized score model is then used to infer the influence score of
training samples, enabling the selection of the subset with the highest influence, thus streamlining
the process to search for the optimal training data. Instead of directly estimating the performance
of LLM (parameterized by θtr) which is computationally expensive, our framework introduces a
lightweight proxy model θp to approximate the behavior of the LLM. Note that the score model and
the proxy model are both small models: they share a similar architecture and number of parameters.
To ensure the data preferences of the proxy model align with those of the LLM, we apply knowledge
distillation by minimizing the Kullback-Leibler (KL) divergence between the output logits of the
proxy model and the LLM. We formulate the bilevel optimization for data selection as follows:

min
θs

Φ(θs) := f(θ∗p(θs)) := Eζ∼DvalF
(
θ∗p(θs); ζ

)
,

s.t. θ∗p(θs) ∈ argmin
θp

g(θp, θs) := Eξ∼Dtr
G(θp, θs; ξ)

(1)

where Eξ∼Dtr
G(θp, θs; ξ) =

∑N−1
i=0 PiL(θp; ξi) + γDKL (ℓ(θp; ξi)∥ℓ(θtr; ξi)) + λ∥θp∥2 and Pi =

eh(θs;ξi)∑N
j=1 eh(θs;ξj)

represents the importance weight of sample i, and h(·) : Rdx → (0, 1) is a function

that maps a sample from Rdx to an influence score in the range (0, 1). L(·) and F (·) denote the loss
functions for next token prediction, with a common choice being cross-entropy. The model’s output
logits are represented by ℓ(·). The KL divergence is defined as DKL(X∥Y ) =

∑
i Xi log(

Xi

Yi
). γ and

λ are the regularization coefficients for the KL divergence and the weight decay terms, respectively.

BLISS evaluates the long-term influence of training samples if the proxy model is trained to its
convergence state θ∗p(θs). Specifically, the lower-level trains the proxy model on the weighted training
loss until convergence. This is notably different from other methods such as MATES (Yu et al., 2024),
which trains a single step on the selected data from the current model state before evaluating sample
influence. Consequently, MATES overlooks the long-term influence of training samples and may
not fully capture the importance of data for downstream tasks. It is also worth noting that the bilevel
data selection framework, described in formula (1), does not rely on any external pretrained models
which are typically trained on large-scale natural language corpora. This independence makes BLISS
a more self-contained approach to data selection, which also obviates any biases or risks associated
with external pretrained models that may involve proprietary or sensitive data.

4.2 ALGORITHM FOR UPDATING THE PROXY MODEL AND SCORE MODEL

Now we design efficient algorithms for solving the bilevel problem (1). The lower-level problem
aims to optimize the proxy model θp on the weighted training samples with the influence predicted
by the score model. Note that we freeze the LLM (θtr) through the process of solving the bilevel
optimization problem, as the LLM is used to infer the output logits. Therefore, we perform the
following update for the lower-level objective on a mini-batch of size B:

θt+1
p = θtp − η1∇θp

B∑
i=1

G(θtp, θ
t
s; ξi)

= θtp − η1

B∑
i=1

(
Pi∇θpL(θtp; ξi) + γ

∑
j

∇θpℓj(θ
t
p; ξi) log

ℓj(θ
t
p; ξi)

ℓj(θttr; ξi)
+ 2λθtp

)
,

(2)
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where ℓj(·) denotes the j-th logit of the output. Note that the exact computation of Pi depends on all
N samples, which is computationally infeasible. Therefore, we approximate Pi by replacing the full
summation in the denominator with a partial summation over a smaller subset. This approximation
is implemented in a distributed manner, significantly reducing the computational overhead. More
details can be found in Appendix G. For the upper-level update, we take the derivative of Φ(θs) with
respect to θs by chain rule, which is known as the hypergradient:

∇θsΦ(θs) = −∇2
θsθpg(θ

∗
p(θs), θs) [∇2

θpg(θ
∗
p(θs), θs)]

−1∇θpf(θ
∗
p(θs))︸ ︷︷ ︸

z

,
(3)

where z is the solution of the quadratic function minz
1
2z

T∇2
θp
g(θ∗p(θs), θs)z − zT∇θpf(θ

∗
p(θs)). It

can be solved by running a few steps of gradient descent in practice:

ztk+1 = ztk − η2
(
∇2

θpg(θ
t
p, θ

t
s)z

t
k −∇θpf(θ

t
p)
)
, (4)

where k is the number of gradient updates for updating z at a fixed iteration t of updating θs. We
run 3 steps of gradient descent to solve z in our experiments. Note that Equation (4) computes the
Hessian-Vector-Product (HVP) term∇2

θp
g(θtp, θ

t
s)z

t
k and thus avoids the computationally prohibitive

operation of taking the inverse of the Hessian. The dimension of z is the same as that of the parameters
of the lightweight proxy model. Therefore, the computation of HVP within the PyTorch framework is
quite similar to that of gradient. In our implementation, we use the stochastic variants of Equation (3)
and Equation (4) for updating the score model. In particular, the approximation of hypergradient at
iteration t on the mini-batch B is

∇θsΦ̂(θ
t
s) = −

B∑
i=1

Pi∇θsh(θ
t
s; ξi)∇θpL(θtp; ξi)zt +

B∑
i=1

Pi

B∑
j=1

Pj∇θsh(θ
t
s; ξj)∇θpL(θtp; ξi)zt.

(5)Then the update for the upper-level variable (θs) is

θt+1
s = θts − η3∇θsΦ̂(θ

t
s). (6)

When the score model converges over T steps, reaching θTs , it is then used to estimate the influence
scores of the entire training dataset in the current round by:Si = h(θTs , ξi), ∀ξi ∈ Dtr. Then the
influence scores are collected: {Si | 0 ≤ i ≤ |Dtr|}, and the top-ranked samples with the highest
influence scores are selected to construct Ds, which is used to pretraining the LLM (θtr).

The detailed implementation of the algorithm is presented in Algorithm 1. The pretraining process is
conducted over R rounds. In each round, the algorithm performs data selection followed by LLM
retraining. The training dataset is partitioned into R shards. The data selection in round r is conducted
on Dr

tr. The LLM resumes training from the previous round’s checkpoint and updates to θrtr at the
end of the r-th round. Similarly, the score model also continues learning throughout the process,
reaching θrs at the r-th round. It is worth noting that the proxy model (θrp) is reinitialized with the
warm-up model at the beginning of each round. This prevents the model from overfitting to the
previous round’s training data and ensures it can better capture the evolving behavior of the LLM.

4.3 WARM UP MODELS

The key distinction between our algorithm and other data selection methods (Brown et al., 2020; Xie
et al., 2023b; Wettig et al., 2024) is that it operates independently of external pretrained models, avoid-
ing biases from data selection influenced by such models. However, without leveraging pretrained
knowledge, the proxy model, score model, and LLM tend to perform poorly in the initial phase due to
random parameter initialization. To mitigate this issue, we incorporate a model warm-up step before
data selection, similar to other data selection approaches (Yu et al., 2024; Xia et al., 2024), using
randomly selected samples. The lightweight proxy and score models share token embedding layers
and transformer blocks but differ in their final layers: the proxy model handles token generation,
while the score model outputs influence scores for individual samples. Consequently, only the proxy
model and the LLM require warm-up, while the score model can be initialized with the weights from
proxy model directly.

5 EXPERIMENTS

In this section, we validate the proposed bilevel influence scoring framework for pretraining data
selection. Without relying on external pretrained models, we apply the bilevel optimization algorithm

5
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Algorithm 1 BLISS

1: Input: η1, η2, η3, R, T,K,Q,Dtr, D̃tr,Dval

2: Initialize: Warm up θ0,0p , θ0,0s , θ0,0tr using randomly selected training data.
3: for r = 0, . . . , R− 1 do
4: θ0,rp = θ0,0p # reset proxy/score parameters for the new round
5: θ0,rs = θT,r−1

s if r > 1 else θ0,0s

6: θ0,rtr = θQ,r−1
tr if r > 1 else θ0,0tr

7: for t = 0, . . . , T − 1 do
8: Sample ξrt , ξ̃

r
t , π

r
t ← D̃r

tr, and sample ζt ← Dval

9: (single/double loops) θt+1,r
p = θt,rp − η1∇θpG(θt,rp , θt,rs ; ξrt )

10: zt+1,r = GDLS(η2,K,∇θpG(θt,rp , θt,rs ; ξ̃rt ),∇θpF (θt,rp , θt,rs ; ζt))

11: θt+1,r
s = θt,rs − η3∇2

θsθp
G(θt+1,r

p , θt,rs ;πr
t )z

t+1,r

12: end for
13: Infer the influence score {Sr

i | 0 ≤ i ≤ |Dr
tr| − 1} on Dr

tr using θT,r
s

14: Sort {Sr
i } in descending order and select the 20% data with the highest influence scores from

Dr
tr to form the selected data Ds

15: for τ = 0, . . . , Q− 1 do
16: Sample ξτ from Ds.
17: θτ+1,r

tr = θτ,rtr − η4∇θtrℓ(θ
τ,r
tr ; ξτ ) # pretrain the LLM

18: end for
19: end for

Algorithm 2 GDLS: Gradient Descent for the Linear System Solution

1: Input: η,K,∇θpg(θp), a
2: Initialize: z0
3: for k = 0, . . . ,K − 1 do
4: zk = zk−1 if k > 1 else z0
5: zk+1 = zk − η

(
∇2

θp
g(θp)zk − a

)
6: end for
7: Return zK

to train a lightweight proxy model (θp) and a score model (θs)) for data selection. We then pretrain a
target LLM (θtr), specifically Pythia-410M/1B, from scratch on a selected subset of the large-scale
C4 dataset (Raffel et al., 2020), which is designed for LLM pretraining.

To assess the effectiveness of our approach, we evaluate the pretrained LLM on multiple downstream
tasks and compare its performance against several baseline methods, including Random selection,
DSIR (Xie et al., 2023b), SemDeDup (Abbas et al., 2023), DsDm (Engstrom et al., 2024), LESS (Xia
et al., 2024), QuRating (Wettig et al., 2024), and MATES (Yu et al., 2024). We furthermore scale
up our experiment to 2.8B model pretraining and achieve 1.4% performance improvement over the
state-of-the-art method.

5.1 DATASET SETTINGS

Following the approach of DsDm (Engstrom et al., 2024), we perform data selection and pretraining
using tokenized data. The procedure of BLISS is implemented for 5 rounds (i.e., R = 5),with the
C4 dataset partitioned into five equal shards, denoted as {Dr

tr | 0 ≤ r ≤ 4}. Each training round
operates on a distinct data shard without replacement. In every round, we first uniformly sample a
small proportion (0.1%) from Dr

tr as the bilevel training set D̃r
tr for updating the proxy model. We

use LAMBADA (Paperno et al., 2016) as validation data for updating the score model. Other datasets,
including ARC-E (Clark et al., 2018), SQUAD (Rajpurkar, 2016), and PIQA (Bisk et al., 2020), are
evaluated in the ablation study (Appendix C.4).

To evaluate the performance of data selection algorithms, we run the pretraining model across 9
downstream tasks, including SciQ (Welbl et al., 2017), ARC-E (Clark et al., 2018), ARC-C (Clark
et al., 2018), LogiaQA (Liu et al., 2020), OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021).
These tasks cover a diverse range of reasoning and comprehension challenges, including question
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Table 1: Comparison of methods on zero-shot evaluation over multiple downstream datasets
(410M/1B model, 25B tokens data). Best results are marked bold. The accuracy with standard
error is reported based on the lm-evaluation-harness (Gao et al., 2021) implementation.

Methods (#FLOPs ×1019) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
410M Setting: 410M model, 25B tokens

Random (6.35) 64.1 (1.5) 40.2 (1.0) 25.6 (1.3) 24.7 (1.7) 29.4 (2.0) 58.9 (0.9) 39.7 (0.5) 67.1 (1.1) 50.6 (1.4) 44.5 (1.3)

MATES (8.11) 65.7 (1.5) 41.5 (1.0) 25.0 (1.3) 26.1 (1.7) 30.8 (2.1) 60.6 (0.9) 41.0 (0.5) 67.8 (1.1) 51.8 (1.4) 45.7 (1.4)

BLISS (8.08) 68.1 (1.5) 42.2 (1.0) 25.1 (1.3) 27.3 (1.7) 29.6 (2.0) 59.3 (0.9) 41.2 (0.5) 68.2 (1.1) 52.0 (1.4) 45.9 (1.4)

1B Setting: 1B model, 25B tokens

Random (17.67) 65.8(1.5) 43.7(1.0) 25.6(1.3) 27.5(1.8) 31.8(2.1) 60.2(0.9) 43.8(0.5) 68.9(1.1) 50.7(1.4) 46.4(1.4)

MATES (19.97) 67.3(1.5) 44.9(1.0) 25.9(1.3) 28.7(1.8) 32.2(2.1) 60.9(0.9) 45.3(0.5) 69.5(1.1) 52.4(1.4) 47.5(1.4)

BLISS (8.08) 69.4(1.5) 45.7(1.0) 24.8(1.3) 25.8(1.7) 33.2(2.1) 59.8(0.9) 47.8(0.5) 71.6(1.1) 52.9(1.4) 47.9(1.3)

answering, logical inference, commonsense reasoning, and coreference resolution. Thus it requires
models to demonstrate various capabilities, such as retrieving and applying scientific knowledge,
understanding causal relationships, resolving ambiguities in natural language, and making informed
choices among distractors. A good data selection algorithm is expected to select the "important" data
that boost model performance across these downstream tasks.

5.2 MODEL SETTINGS

The target pretraining model, Pythia-410M/1B/2.8B, consists of 410 million, 1 billion or 2.5 billion
trainable parameters. Both the proxy model and score model are based on Pythia-31M (for Pythia-
410M) or Pythia-160M (for Pythia-1B), but they serve different purposes: the proxy model acts as a
surrogate for the LLM and is trained for next-token prediction, while the score model functions as a
regression model that maps individual samples to corresponding influence scores. Details of model
settings are deferred to Appendix A. Notably, all models are trained from scratch using Gaussian
initialization for model parameters. Additional experimental details, including hyperparameter
choices, learning rate schedules, and distributed training strategies, are provided in Appendix E.

5.3 BILEVEL OPTIMIZATION FOR PROXY MODEL AND SCORE MODEL

In the Pythia-410M setting, the proxy model θp is updated with a “single-step" optimization per
iteration (line 9 in Algorithm 1). However, when scaling up to larger models like Pythia-1B, we
adopt a “multi-steps" update strategy for the proxy model to achieve a better lower-level solution. To
demonstrate the effectiveness of bilevel optimization in training the proxy model and score model,
we visulize the evolution of the lower-level training loss and upper-level validation loss during round
2 (Figure 6 in Appendix F) and round 5 (Figure 7 in Appendix F). Since the first round uses randomly
selected data to warm up the LLM, our data selection algorithm is employed from the second round
onward.

Within each round, both losses exhibit a two-phase trend: they initially decrease rapidly before
experiencing a slight increase. This behavior arises due to the composition of the lower-level objective
function, which includes three terms: the weighted cross-entropy loss, the KL divergence loss, and a
regularization term. In the first phase, the weighted cross-entropy loss dominates, decreasing as the
proxy model is optimized. In the second phase, the KL divergence term becomes more influential.
Since the LLM has not yet been trained on the current dataset Dr

tr (it only performs inference in
bilevel training), its predictions may be suboptimal. The KL divergence term encourages the proxy
model to mimic the behavior of this "imperfect" LLM, leading to a slight performance degradation.
However, this ensures that the proxy model’s data preference aligns with that of the LLM, improving
the relevance of the selected training data and ultimately boosting the LLM’s downstream task
performance. An ablation study on the effect of KL divergence loss is presented in Section 6.2.

From round 2 to round 5, the score model is continuously optimized, leading to more accurate sample
weight assignments. This, in turn, enhances the proxy model’s performance on the weighted training
samples, further improving the quality of data selection.

5.4 EVALUATION RESULTS ON THE DOWNSTREAM TASKS

The LLM is continuously trained for 10,000 steps on the selected data in each round. After completing
five rounds of training, we evaluate the zero-shot performance of Pythia-410M/1B on various
downstream tasks and report the average accuracy along with the standard error for each dataset(see
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Table 2: Average evaluation accuracy (15B to-
kens data) by pretraining 2.8B model with data
selected from the 1B model experiment.

Methods Round 1 (Random) Round 2 Round 3
MATES 45.9 (1.3) 47.4 (1.3) 47.6 (1.3)

BLISS 45.2 (1.3) 47.6 (1.3) 49.0 (1.3)

Table 3: Average evaluation accuracy of 3 rounds
by pretraining Llama-0.5B model. Llama-134M
is deployed as the proxy model in BLISS.

Methods Round 1 (Random) Round 2 Round 3
MATES 43.12 (1.27) 44.53 (1.27) 45.01 (1.27)

BLISS 43.12 (1.27) 44.57 (1.27) 45.65 (1.27)

Table 4: Total FLOPs for pretraining 410M/1B model with 25B tokens.
Model #FLOPs ×1019 Ratio Model #FLOPs ×1019 Ratio
MATES: 410M model, 25B tokens BLISS: 410M model, 25B tokens
Model pretraining 6.35 78.3% Model pretraining 6.35 79.28%
Oracle data influence collection 0.29 3.58% Warm up the proxy/score model 0.07 0.87%
Data influence model training 0.01 0.1% Bilevel optimization 0.13 1.62%
Data influence model inference 1.46 18.0% Data influence model inference 1.53 19.10%
Total 8.11 100.00% Total 8.08 100.00%
MATES: 1B model, 25B tokens BLISS: 1B model, 25B tokens
Model pretraining 17.67 88.5% Model pretraining 17.67 90.48%
Oracle data influence collection 0.83 4.1% Warm up the proxy/score model 0.07 0.36%
Data influence model training 0.01 0.1% Bilevel optimization 0.261 1.34%
Data influence model inference 1.46 7.3% Data influence model inference 1.53 7.83%
Total 19.97 100.00% Total 19.53 100.00%

Table 1. Our algorithm consistently outperforms MATES and random selection methods across
multiple tasks. For example on 410M setting, BLISS, compared with MATES, improves 2.4% on
SciQ, 0.7% on ARC-E, 0.8% on LogiQA, 0.2% on HellaSwag, 0.4% on PIQA, 0.2% on WinoGrande,
and 0.2% on average accuracy (see Table 8). Additionally, Figure 2 presents the evaluation results
in relation to pretraining FLOPs and training steps. BLISS consistently outperforms other baseline
methods throughout the entire five-round pretraining process (with 10k steps per round). In particular,
our method on 1B setting achieves a 1.7× speedup in reaching the same performance as MATES,
further validating the effectiveness of our data selection approach.

Scaling Up to 2.8B Model Pretraining using the Data Selected by 160M/1B Experiment. To
further validate the selected data is of good quality regardless of model size, we pretrain a larger
model of 2.8B parameters with data selected from the 1B model experiment with 160M proxy
and score models. We run MATES and BLISS for 3 rounds (15B tokens). As shown in Table 2,
BLISS consistently outperforms MATES across all data selection rounds, achieving 1.4% accuracy
improvement over MATES in round 3.

Generalize model architecture to LLaMA family. We also explore LLaMA architecture models to
validate the generalization of our method. Specifically, we use LLaMA-0.5B as the target pretraining
model, and LLaMA-134M as the proxy model and score model. In each round, we first minimize
the difference between the proxy model and the target model by training the proxy model toward a
lower KL divergence. Then we periodically reset the proxy model to the initial state, in addition to
resetting it at the beginning of each round. Table 3 presents the evaluation results compared with
MATES, where BLISS exhibits strong data selection performance. At the round 3, our algorithm
improves over MATES by 0.6%. More details are presented in Appendix B.

5.5 COMPUTATIONAL COST

We follows the FLOPs estimation method in Li et al. (2024) and report the total GPU FLOPs,
including the pretraining, model warm-up, and data selection. Our main observation is: without
relying on any external pretrained models as required in MATES, BLISS achieves higher
average downstream performance while consuming fewer FLOPs. A detailed comparison of total
FLOPs consumption is provided in Table 4.

With the same pretraining budget for LLM and an equivalent number of training tokens, BLISS
is more efficient in data selection than MATES. The higher computational cost of MATES is due
to its reliance on oracle data influence estimation, which involves computing the loss change after
performing a one-step gradient descent update on an individual training sample. This process is
highly time-consuming, because it requires per-sample gradient and cannot increase the batch size
per GPU. In contrast, BLISS formulates data selection as a bilevel optimization problem, enabling
the lightweight score model and proxy model to be trained to convergence within relatively few steps
(3,000 per round). While BLISS introduces additional training steps for warming up the proxy and
score models from scratch, this cost is negligible compared to the overall pretraining FLOPs.
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Figure 2: The downstream performance of Pythia-410M/1B model w.r.t. pretraining FLOPs and
steps, where the first point denotes the performance of a warm-up model trained on random data.

Table 5: Comparison of BLISS with different settings(without softmax and single level updata) over
multiuple downstream datasets (410M model, 10B tokens) with 20k-step training.

Methods SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
Without softmax 63.5(1.5) 41.0(1.0) 22.4(1.2) 25.7(1.7) 30.0(2.1) 52.8(0.9) 38.8(0.5) 67.4(1.1) 51.0(1.4) 43.6(1.3)

Single Level 64.4(1.5) 42.3(1.0) 22.2(1.2) 24.1(1.7) 30.6(2.1) 55.0(0.9) 39.7(0.5) 67.1(1.1) 52.1(1.4) 44.2(1.3)

BLISS 65.5(1.5) 40.8(1.0) 23.4(1.2) 27.2(1.7) 29.8(2.0) 58.9(0.9) 36.0(0.5) 67.6(1.1) 53.4(1.4) 44.7(1.3)

6 ABLATION STUDIES

To inspect the effectiveness of key techniques used in our proposed algorithm, we conduct ablation
studies on the effect of bilevel optimization (Section 6.1), KL divergence loss (Section 6.2), the
impact of softmax reparameterization on the score model’s outputs (Appendix C.1), the size of proxy
model (Appendix C.2), the initialization for the score model (Appendix C.3), and the influence of
different validation datasets (Dval) on performance (Appendix C.4).

6.1 SINGLE-LEVEL VERSUS BILEVEL OPTIMIZATION

In bilevel algorithm, the hyper-gradient is essential for the update of upper level parameters. To
verify the effectiveness of bilevel update for the upper-level parameters, we compare bilevel update
with a single update, which update θs and θp together using both training and validation data for the
lower-level objective. Specifically, the upper and lower levels are reduced to a single level problem:
the upper-level and lower-level parameters are updated simultaneously on validation dataset and
training dataset respectively. With the same number of training steps as bilevel training, the average
accuracy of single level update degrades 0.5% as shown in Table 5.

6.2 KL DIVERGENCE ALIGNS THE PROXY MODEL WITH THE LLM

Our objective is to select training data that maximizes the LLM’s performance on downstream tasks.
To achieve this, the proxy model must effectively represent the LLM, which we enforce by applying
KL divergence loss to align their output logits. As shown in Figure 3 (Appendix C), incorporating KL
divergence leads to improved performance across most downstream tasks, with a 9.3% accuracy boost
on LogiQA and a 1.4% increase in average accuracy. Interestingly, while removing KL divergence
results in a lower validation loss (as seen in Figure 8 compared to Figure 6 in Appendix F), it does
not translate to better downstream performance. These findings highlight the importance of bridging
the gap between the proxy model and the LLM to ensure effective data selection, demonstrating that
a closer alignment between the two models leads to better overall performance.

7 CONCLUSION

In this paper, we present BLISS, a lightweight bilevel influence scoring method for data selection
in language model pretraining. BLISS utilizes a proxy model, a score model, and a novel bilevel
optimization framework to capture the long-term influence of data without relying on external
pretrained models. Experimental results demonstrate its effectiveness in selecting data for pretraining
Pythia and LLaMA models. However, current data selection methods primarily focus on language
models. In future work, we plan to extend our approach to visual or multimodal models.
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REPRODUCIBILITY STATEMENT

We submit an anonymized code with training/evaluation scripts, configurations, seeds, and environ-
ment files in the supplementary materials. All base models are publicly available: Pythia (under
EleutherAI Apache-2.0 license) and LLaMA (under Meta Llama 2 Community License Agreement).
Datasets C4 is accessible on HuggingFace under the licenses stated on their corresponding Hugging
Face dataset cards (loganengstrom/dsdm-candidate-c4). We include download scripts, preprocess-
ing/splits, and references to their dataset cards. These materials sufficiently support the reproduction
of our results.
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A DETAILS OF MODEL SETTINGS

The proxy model and score model serve different purposes: the proxy model acts as a surrogate
for the LLM and is trained for next-token prediction, while the score model functions as a re-
gression model that maps individual samples to their corresponding influence scores. To trans-
form the proxy model into the score model, we modify its architecture by replacing the final
Linear layer with an AdaptiveAvgPool layer, followed by a Linear layer and a Sigmoid
activation. Specifically, given the output from the preceding transformer blocks with dimension
[Batch,token_size,Emb_size], the AdaptiveAvgPool layer computes the average em-
bedding feature across tokens. The Linear layer then maps the pooled token representations to a
single-dimensional output, which is subsequently passed through a Sigmoid activation to produce
an influence score within the range (0, 1). In contrast, the proxy model’s final Linear layer maps
features from previous layers to the vocabulary dimension for token prediction.

B IMPLEMENTATION DETAILS IN LLAMA EXPERIMENT

Model Setup In LLaMA setting, the target model is LLaMA-0.5B, and the proxy/score model is
LLaMA-134M. They are warmed up under the same process as Pythia setting.

Training Details of Proxy/Score Model There is a little difference in how we deal with the proxy
model in LLaMA setting compared to Pythia setting. In addition to resetting the proxy model
(LLaMA-134M) at the beginning of each round, we reset it to the initial state every 50 steps of the
update of the score model. We distill the target model into the proxy model by minimizing the KL
divergence for 240 steps. Then the checkpoint of the proxy model is saved as “initial" state. Since
periodic resetting the proxy model ensures a close alignment between two models, we remove the KL
divergence regulation term in the lower level loss function. To achieve a better lower-level solution,
the proxy model executes 4 lower-level updates, each computed on a batch of 64 samples. After the
score model is trained for 50 optimization steps, we reset the proxy model to the initial state.

C MORE ABLATION STUDIES

In this section, we provide more ablation studies to verify the effectiveness of each component in our
algorithm design.
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Figure 3: The performance comparison of bilevel optimization with/without KL divergence. The
number on the bar indicate the accuracy improvement compared to the method without KL divergence.

C.1 SOFTMAX REPARAMETRIZATION FOR SCORE MODEL’S OUTPUT

In our experiment, we apply a softmax function on all batch samples’ score across GPUs to obtain
the importance weights Pi. Note that the raw output of the score model is already within the range
(0, 1), but we add another softmax function on top of it. We want to demonstrate the effectiveness of
this softmax reparameterization. Intuitively, the main benefit is that it naturally amplifies important
samples while downweighting less useful ones, improving the overall data selection process.
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Table 6: Comparison of BLISS with different size of proxy/score model and on zero-shot evaluation
over multiuple downstream datasets (410M model, 10B tokens) with 20k-step training.

Method SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
BLISS (Pythia-31M) 65.5(1.5) 40.8(1.0) 23.4(1.2) 27.2(1.7) 29.8(2.0) 58.9(0.9) 36.0(0.5) 67.6(1.1) 53.4(1.4) 44.7(1.3)

BLISS (Pythia-160M) 63.8(1.5) 40.8(1.0) 23.4(1.2) 27.5(1.8) 29.8(2.0) 51.3(0.9) 38.3(0.5) 67.6(1.1) 50.4(1.4) 44.1(1.3)

To assess the impact of the softmax reparameterization, we conduct an ablation experiment comparing
two approaches: (i) naive weighting, where the raw outputs of the score model are used directly
as sample weights; (ii) softmax weighting, where the softmax-transformed outputs of the score
model determine the sample weights. The results, shown in Table 5, indicate that softmax weighting
consistently outperforms naive weighting, leading to a 1.1% improvement in average downstream
accuracy. This demonstrates that softmax effectively enhances data selection by better distinguishing
important samples.

C.2 THE SIZE OF PROXY MODEL

We conduct experiments using two different sizes of proxy/score models (31M and 160M) for a
410M LLM. We observe that the KL divergence between the proxy and the LLM remains low for
both sizes-0.15 for the 160M model and 0.10 for the 31M model. The corresponding learning curves
are shown in Figure 4, which presents the results from round 2. The performance comparison of two
sizes of proxy model is summarized in Table 6. These findings suggest that even a small proxy model
(31M) is sufficient to serve as an effective surrogate for the 410M LLM.

(a) Training loss vs. steps (b) KL divergence (c) Training loss vs. steps (d) KL divergence

Figure 4: The evolution of the lower-level training loss and KL divergence for different proxy model
size. Subfigures (a), (b): Proxy model size 31M, target LLM size 410M. Subfigures (c), (d): Proxy
model size 160M, target LLM size 410M.

C.3 INITIALIZATION METHOD FOR THE SCORE MODEL

In Algorithm 1, we initialize the score model in each new round using the parameters from the last
round. This design is motivated by the role of the score model: it learns data representations and ranks
the importance of training samples. As training progresses, the model’s ability of feature learning
improves, making it beneficial to retain learned representations across rounds.

To validate this, we conduct ablation studies comparing two cases:

1. Original BLISS (BLISS-org): the score model in each round is initialized with the parame-
ters from the last round.

2. Modified Initialization (BLISS†): the score model in each round is reset to its initial
parameters from round 1.

We then use the trained score models from two cases to select training data and pretrain the target
LLM for 15B tokens, respectively. The resulting LLMs are evaluated on multiple downstream
datasets. As shown in Table 7, BLISS† achieves an average performance that is 0.4% lower than
BLISS-org, demonstrating that continuous initialization leads to better data ranking and improved
downstream performance.
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Table 7: Comparison of methods on zero-shot evaluation over multiple downstream datasets (410M
model, 15B tokens). BLISS-org denotes the original algorithm, and BLISS† is a variant which uses
different initialization method for the score model.

Methods (#FLOPs ×1019) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average
BLISS-org 67.7 (1.5) 41.7 (1.0) 23.6 (1.2) 25.8(1.7) 28.4(2.0) 56.0 (0.8) 39.7 (0.5) 68.7 (1.1) 53.2 (1.4) 44.9 (1.3)

BLISS† 65.2 (1.5) 41.6 (1.0) 23.4 (1.2) 27.1 (1.7) 29.8 (2.0) 57.5 (0.8) 34.9 (0.5) 67.7 (1.1) 53.5 (1.4) 44.5 (1.3)

Figure 5: Comparison of BLISS trained with different validation datasets (410M model, 10B tokens).
We compare our method with different validation datasets with random selection on 1 downstream
task in each subplot.

C.4 VALIDATION DATASETS

The upper-level optimization aims to minimize the proxy model’s loss on the validation dataset,
meaning different validation datasets influence data selection. We use different validation set,
including SQUAD, ARC-E, LAMBADA, and PIQA, to conduct the bilevel data training, then
compare the corresponding downstream performance.

As shown in Figure 5, our algorithm outperforms random selection on most downstream tasks, except
BoolQ, regardless of the validation dataset. Notably, LAMBADA yields the highest average accuracy,
improving 1.15% over random selection, likely due to its broad domain coverage.

We also notice that our averaged performance is greatly affected by the accuracy of BoolQ task across
all validation datasets. This indicates that it is hard to learn when the answer is too short like yes or
no.

D ADDITIONAL RESULTS

Since we use the same experimental settings as MATES(Yu et al., 2024), including pretrain-
ing model, data and training steps, we evaluate MATES on the downstream tasks with their
checkpoint model (https://huggingface.co/yuzc19/pythia-410m-mates/blob/
main/iter-200800-ckpt.pth) of 50k steps. For other baselines, we quote Table 1 from
MATES(Yu et al., 2024) for convenience of look-up for the performance of more algorithms.

E EXPERIMENTAL HYPERPARAMETERS

Table 9 shows the hyperparameter settings in our experiments. We use cosine learning rate scheduler
in bilevel optimization, WSD(Yu et al., 2024) learning rate scheduler for pretraining and constant
learning rate for GDLS. We use double loop to update the proxy model when employing 1B LLM,
i.e., 5 steps for the lower level update. The experiments run on 8 A6000 GPUs with Distributed Data
Parallel (DDP) strategy.
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Table 8: Results of Different Methods under the 410M/1B Setting. Subscripts denote standard
deviations. Best scores are in bold.

Methods(#FLOPs∗1e19) SciQ ARC-E ARC-C LogiQA OBQA BoolQ HellaSwag PIQA WinoGrande Average

410M Setting: 410M model, 25B tokens

Random(6.35) 64.1(1.5) 40.2(1.0) 25.6(1.3) 24.7(1.7) 29.4(2.0) 58.9(0.9) 39.7(0.5) 67.1(1.1) 50.6(1.4) 44.5(1.3)

DSIR(6.35) 63.1(1.5) 39.9(1.0) 23.8(1.2) 27.0(1.7) 28.4(2.0) 58.3(0.9) 39.6(0.5) 66.8(1.1) 51.5(1.4) 44.3(1.3)

LESS(246.35) 64.6(1.5) 42.3(1.0) 23.1(1.2) 25.2(1.7) 30.4(2.1) 55.6(0.9) 41.9(0.5) 67.2(1.1) 51.0(1.4) 44.6(1.4)

SemDeDup(7.81) 63.5(1.5) 42.4(1.0) 24.4(1.3) 27.6(1.7) 30.0(2.1) 58.2(0.9) 40.8(0.5) 67.8(1.1) 52.3(1.4) 45.2(1.3)

DsDm(10.72) 65.4(1.5) 41.7(1.0) 24.7(1.3) 27.5(1.8) 29.0(2.1) 57.5(0.9) 40.3(0.5) 67.1(1.1) 50.1(1.4) 44.9(1.4)

QuRating(26.35) 64.8(1.5) 42.0(1.0) 25.4(1.3) 25.3(1.7) 30.2(2.1) 58.9(0.9) 40.7(0.5) 67.5(1.1) 52.1(1.4) 45.2(1.4)

MATES(8.11) 65.7(1.5) 41.5(1.0) 25.0(1.3) 26.1(1.7) 30.8(2.1) 60.6(0.9) 41.0(0.5) 67.8(1.1) 51.8(1.4) 45.7(1.4)

BLISS(8.08) 68.1(1.5) 42.2(1.0) 25.1(1.3) 27.3(1.7) 29.6(2.0) 59.3(0.9) 41.2(0.5) 68.2(1.1) 52.0(1.4) 45.9(1.4)

1B Setting: 1B model, 25B tokens

Random(17.67) 65.8(1.5) 43.7(1.0) 25.6(1.3) 27.5(1.8) 31.8(2.1) 60.2(0.9) 43.8(0.5) 68.9(1.1) 50.7(1.4) 46.4(1.4)

DSIR(17.67) 65.8(1.5) 42.6(1.0) 24.7(1.3) 28.7(1.8) 29.2(2.0) 59.7(0.9) 44.2(0.5) 68.3(1.1) 53.2(1.4) 46.3(1.4)

SemDeDup(19.13) 66.8(1.5) 45.5(1.0) 25.3(1.3) 27.6(1.8) 30.6(2.1) 60.2(0.9) 45.3(0.5) 69.7(1.1) 52.5(1.4) 47.1(1.4)

DsDm(22.04) 68.2(1.5) 45.0(1.0) 26.5(1.3) 26.6(1.7) 29.4(2.0) 59.0(0.9) 44.8(0.5) 68.9(1.1) 51.9(1.4) 46.7(1.3)

QuRating(37.67) 67.1(1.5) 45.5(1.0) 25.6(1.3) 26.9(1.7) 29.8(2.0) 60.3(0.9) 45.2(0.5) 70.2(1.1) 51.6(1.4) 46.9(1.3)

MATES(19.97) 67.3(1.5) 44.9(1.0) 25.9(1.3) 28.7(1.8) 32.2(2.1) 60.9(0.9) 45.3(0.5) 69.5(1.1) 52.4(1.4) 47.5(1.4)

BLISS(8.08) 69.4(1.5) 45.7(1.0) 24.8(1.3) 25.8(1.7) 33.2(2.1) 59.8(0.9) 47.8(0.5) 71.6(1.1) 52.9(1.4) 47.9(1.3)

Table 9: Experimental settings

Hyperparameters Values

Pretrain
Data set C4
Tokens 25B
Model Pythia-410M/1B/2.8B, LLaMA-0.5B
batch size 512
Sequence length 1024
Max learning rate 1e-3

bilevel optimization
Proxy/Score model Pythia-31M (for 410M LLM), Pythia-160M (for 1B LLM), LLaMA-134M (for LLaMA-0.5B LLM)
γ 1e-2
λ 1e-6
batch size 16(Pythia-410M, LLaMA-0.5B)/32(Pythia 1B)
Proxy/Score model learning rate(η1/η2) 1e-5
GDLS learning rate(η) 1e-2
GDLS steps(K) 3
Score model steps 3k(Pythia-410M/1B)/1k(LLaMA-0.5B)
Proxy model steps 3k(Pythia-410M/1B)/1k(LLaMA-0.5B)
Initialization of score/proxy model Randomly initialized

(a) Training loss vs. steps (b) Validation loss vs.
steps

Figure 6: The evolution of the lower-level train-
ing loss and upper-level validation loss in round
2.

(a) Training loss vs.
steps

(b) Training loss vs.
steps

Figure 7: The evolution of Lower-level training
loss and upper-level validation loss in round 5.

F EVOLUTION OF TRAINING AND VALIDATION LOSS

In Figure 6, 7, the training loss and validation loss correspond to the lower-level and upper-level
objective functions in Equation (1), respectively.
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(a) Training loss vs. steps (b) Validation loss vs. steps

Figure 8: The visualization of lower-level training loss and the upper-level validation loss in round 2
bilevel optimization without KL divergence.

G DISTRIBUTED SOFTMAX TO COMPUTE INFLUENCE SCORE

In bilevel optimization, the importance weight Pi is computed based on a mini batch that is distributed
across different GPUs. However, back propagation through different GPUs is not implemented by
Pytorch. Thus we deploy "distributed softmax" in practice. In detail, our implementation requires 3
times of communication among GPUs.

Pi =
eh(θs;ξi)∑B
j=1 e

h(θs;ξj)
(7)

As equation (7) shows, the denominator of Pi is the summation of every sample’s exponential score.
Therefore, in the first communication, each GPU gets the scores from others and calculates the
denominator locally. A second communication is required to compute the term

∑B
j=1 Pj∇θsh(θ

t
s; ξj)

in equation (5). In detail, we need to gather gradients of h and L’ of every sample across all
GPUs. After computing hyper-gradients of every sample, they are accumulated to update upper-level
variables. With efficient communication API provided by Fabric https://lightning.ai/
docs/fabric/stable/, the time consumed in bilevel optimization of each round is within 1.5
hours.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology. Their use is limited to polish the writing.
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