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Abstract
Mutual transfer learning aims to improve predic-
tion with knowledge from related domains. Re-
cently, federated learning is applied in this field
to address the communication and privacy con-
cerns. However, previous clustered federated
learning (CFL) solutions lack theoretical guar-
antee of learnability recovery and require time-
consuming hyper-parameter tuning, while central-
ized mutual transfer learning methods lack adapt-
ability to concept drifts. In this paper, we propose
the Adaptive Group Personalization method (Ada-
GrP) to overcome these challenges. We adap-
tively decide the recovery threshold with a non-
parametric method, adaptive threshold correction,
for tuning-free solution with relaxed condition.
Theoretical results guarantee the perfect learnabil-
ity recovery with the corrected threshold. Empiri-
cal results show AdaGrP achieves 16.9% average
improvement in learnability structure recovery
compared with state-of-the-art CFL baselines.

1. Introduction
Mutual transfer learning (Cheng et al., 2020; Xu et al., 2022)
is a learning paradigm in big data analysis. It aims to im-
prove prediction performance by transferring useful knowl-
edge among related domains. It is assumed in mutual trans-
fer learning that data domains are clustered into subgroups,
in which the domains share knowledge more efficiently, as
a learnability structure. For example, in climate analysis
(Vose et al., 2014), climate zones are formed by multiple
climate divisions as a learnability structure. Specifically,
assuming domain Di has subgroup label ki, i.e., Di P Ski

,
the response yi of sample size ni sampled from Di follows
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a two-layer linear mixed-effects model as

yi “ Xiβ ` Ziθi ` εi,

s.t. θi “ αki
` ui, Di P Ski

,
(1)

where Xi P Rniˆp, Zi P Rniˆq are global features and
heterogeneous features, and they correspond to parameters
β, θi. Global parameter β is shared among all the domains,
while heterogeneous parameter θi contains two components:
αk is only shared within the subgroup Sk, and ui represents
the domain-specific random effects that cannot be trans-
ferred. The learnability structure S “ tSk,@ku therefore
reveals the underlying relationships between domains and
helps accurate prediction. Typical applications include cli-
mate analysis (Salam & Salam, 2020; Cheng et al., 2020),
healthcare analysis (Zhang et al., 2021; Li et al., 2022), and
longitudinal data analyses (Hu et al., 2022).

The learnability structure S is usually unknown a priori in
the aforementioned applications. In order to recovery the
learnability structure S and improve prediction performance,
parameters should be estimated jointly with data in different
domains. Previous mutual transfer learning methods mainly
focus on centralized computing scenario. Data of each do-
main is collected and sent to a central server for estimation.
However, in the climate analysis applications (Vose et al.,
2014), the data will contain more than 4 billion samples if
collected per second. It is unaffordable to transfer such large
data to a central server. In the healthcare analysis (Li et al.,
2022; Luo et al., 2022), the data usually contain sensitive
information of patients and clinics (Bonomi & Jiang, 2018;
Janmey & Elkin, 2018). Leakage of these private data may
cause serious ethic problems. Therefore, Communication
bottleneck and Privacy concerns significantly hinder mutual
transfer learning from being widely adopted in emerging
applications.

Federated learning (FL) (McMahan et al., 2017; Konečnỳ
et al., 2016) provides a reliable distributed learning frame-
work to address these concerns. By transmitting parameter
updates only, the server eliminates the heavy burden of com-
municating all the data. Meanwhile, privacy is preserved
since raw data are not transmitted. Unfortunately, two chal-
lenges emerge in Federated Mutual Transfer Learning:

(1) Learnability Heterogeneity: Learnability structure not
only reveals the relationship between domains but also im-
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proves prediction performance. However, it is impossible
to benefit from such structure if single-model FL methods
is applied. Solution to estimate learnability structure S and
parameters β, αk simultaneously within the FL framework
remains unexplored.

(2) Concept Drift: With FL framework applied, it is pos-
sible for mutual transfer learning to apply to much larger
applications. Since FL framwork communicates with clients
among a long range of time, concept drift problems (Hsieh
et al., 2022) would arise, where the data distribution of do-
mains Di could have been changing due to user activities,
especially in longitudinal data analyses (Hu et al., 2022).
The previous stable distribution assumption in centralized
mutual transfer learning would therefore no longer hold.

Possible straightforward solution of applying FL to mutual
transfer learning is either to adapt previous centralized mu-
tual transfer learning methods to an FL framework, or to
apply previous work in FL with similar assumptions. Cen-
tralized mutual transfer learning methods estimate learnabil-
ity structure S by evaluating the distances of domains. As a
typical method, DiffS (Xu et al., 2022) recovers learnabil-
ity structure via complete-linkage clustering with a fixed
threshold based on their proposed domain metric. However,
it cannot deal with concept drift challenge well due to its
fixed threshold in the clustering. When the underlying dis-
tribution shifts, the previous threshold would possibly be
either too large or too small for new data. Previous work in
FL with similar assumptions includes Clustered Federated
Learning (CFL) methods (Sattler et al., 2020a) from Person-
alized Federated Learning (Tan et al., 2022). These methods
assume clients are partitioned into clusters. For example,
IFCA (Ghosh et al., 2020) cluster clients by their local losses
on different cluster models. FedDrift (Jothimurugesan et al.,
2023) further addresses concept drift problems by adaptively
creating and merging clusters. However, CFL methods fo-
cus on more general models so that they require tedious
hyper-parameter tuning and lack theoretical guarantee in
learnability structure recovery.

In this paper, we propose an Adaptive Group Personalization
method for Federated Mutual Transfer Learning (AdaGrP)
to overcome the above two challenges. We designed a non-
parametric algorithm to correct the threshold of learnability
structure recovery in each round, called adaptive threshold
correction, in order to fit in with concept drifts. Based on
such, AdaGrP utilizes a group personalization framework
to aggregate the heterogeneous parameters from different
subgroups and the global parameters simultaneously. We
theoretically prove that the recovered learnability structure
is perfect under a relaxed condition compared with previous
work. Numerical results also indicate the outperformance of
AdaGrP under concept drift environment. Our contribution
is summarized as follows:

• Novel method for federated mutual transfer learn-
ing: We propose a novel method, AdaGrP, for mutual
transfer learning under federated setting. We introduce
the proposed adaptive threshold correction algorithm,
to handle concept drift and leverage CFL framework
to update the global and heterogeneous parameters si-
multaneously.

• Tuning-free solution: AdaGrP eliminates hyper-
parameter tuning work by utilizing the nonparametric
adaptive threshold correction compared with common
methods. It saves much time and effort when dealing
with newly incoming data especially under concept
drift setting.

• Theoretical analysis: We theoretically analyze the
proposed AdaGrP in federated scenario. Results show
that AdaGrP is able to perfectly recover the learnability
structure in each communication round under a relaxed
condition compared with previous work. AdaGrP is
therefore ensured that it can keep capturing the drifting
concepts during the federated learning procedure.

• Synthetic and real-world experiments: We conduct
both synthetic and real-world experiments to compare
the proposed AdaGrP with state-of-the-art baselines.
Results show that AdaGrP outperforms significantly
with about 96.32% learnability structure recovery ac-
curacy compared with 91.52% of the best baseline.
Results in NOAA nClimDiv dataset also show the util-
ity of AdaGrP in real-world data.

Notations: Let bold lowercase characters like α be vectors,
bold uppercase characters like A be matrices, and calli-
graphic characters like A be sets. rN s “ t1, . . . , Nu is
the set of natural numbers less than N . |A| denotes the
cardinality of set A. ∥¨∥ is the ℓ2 norm. The squared root
A1{2 of a positive semi-definite matrix A is defined as
A1{2A1{2

“ A. 1pˆq , 0pˆq P Rpˆq denote p ˆ q matrices
with all entries filled with 1, or 0. Iq P Rqˆq denotes the
q ˆ q identity matrix. Ip¨q refers to the indicator function
that IpAq “ 1 iff A is true, otherwise 0.

2. Background
2.1. Problem Formulation

Consider a Federated Mutual Transfer Learning server with
M clients which correspond to M domains tDpτq

i , i P rM su

respectively. At time step τ P N`, client i samples its pri-
vate dataset tX

pτq

i ,Z
pτq

i ,y
pτq

i u from domain distribution
Ppτq

Di
. Then the response ypτq

i follows model (1) with an un-

known learnability structure Spτq “ tSpτq

k , k P rKsu. Here,
the domain-specific random effect upτq

i „ N p0, σ2
u,pτq

Iq,
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Algorithm 1 Learnability Structure Recovery with Differ-
ence Standardization Ψpθ;λq

1: Input: Heterogeneous parameters θi,@i; Threshold λ;
2: ∆ Ð p∆pθi,θjqqMˆM :“ p∆ijqMˆM ;
3: Initialize subgroups S “ tt1u, t2u, . . . , tMuu;
4: for m “ 1 to M ´ 1 do
5: if min

i‰j
∆ij ą λ then

6: break;
7: end if
8: uÐ argmin

i

ř

j‰i Ip∆ij ď λq s.t. Dj‰ i,∆ij ď λ;

9: v Ð argmin
j

∆uj ;

10: Add St “ Su Y Sv to S and remove Su, Sv;
11: Insert a new row and column into ∆ indexed with t,

where ∆t,j “ maxp∆u,j ,∆v,jq, @j ‰ u, v, t;
12: Remove the rows and columns in ∆ of Su, Sv;
13: end for
14: return S;

and the observation noise ε
pτq

i „ N p0, σ2
ε,pτq

Iq. Following
previous work (Cheng et al., 2020; Xu et al., 2022), we
further assume that σu and σε are known here with consis-
tent estimation of Restricted Maximum Likelihood method
(Richardson & Welsh, 1994). Federated mutual transfer
learning solves the generalized least square problem

min
S,β,α

LpτqpS,β,αq “

M
ÿ

i“1

ni

N
ℓ

pτq

i pβ,θiq,

“

M
ÿ

i“1

ni

N
r

pτqJ

i W
pτq

i r
pτq

i ,

s.t. θi “ αki
, where Dpτq

i P Ski
,@i P rM s,

(2)

where ri “ yi ´Xiβ ´Ziθi is the residual of domain Di.
W i “ pσ2

εI ` σ2
uZiZ

J
i q´1 is the inverse covariance of yi

given Xi, Zi. Following (Jothimurugesan et al., 2023), we
define that a concept drift occurs at time τ and at domain
Dpτq

i when Ppτq

Di
‰ Ppτ´1q

Di
. As a result, the global and

heterogeneous parameters βpτq, αpτq

k , and the learnability
structure Spτq would possibly change over time. The goal
of federated mutual transfer learning is to estimate these
during the communication rounds within time step τ .

2.2. Learnability Structure Recovery with Difference
Standardization

Under the centralized assumption that the server has full
accessibility to all the data, (Xu et al., 2022) proposes a
difference standardization method, called DiffS, for fast and
accurate estimation. The authors start with the minimizer of
the local loss ℓipβ,θq as

pβD
i ,θ

D
i qJ “ rGJ

i W iGis
´1GJ

i W iyi (3)

Here, Gi “ pXi,Ziq is the concatenation of the feature
matrices for notation simplification. The key idea of DiffS
is to recover the learnability structure S with the initial
estimator θD

i of heterogeneous parameter via the proposed
complete-linkage algorithm Ψ as

pS “ ΨpθD;λq, (4)

as presented by Algorithm 1, where θD
“ tθD

i ,@iu. Since
θD
i follows a normal distribution asymptotically with center

αki and random covariance, they argue that learnability
structure could be recovered easier by standardizing the
distances between θD

i as

∆pθD
i ,θ

D
j q “ pθD

i ´ θD
j qJpΣi ` Σjq´1pθD

i ´ θD
j q,

„

#

χ2
q, ki “ kj

χ12
q p∥µij∥2q, ki ‰ kj ,

(5)
where Σi “ p0qˆp, IqqrGJ

i W iGis
´1p0qˆp, IqqJ is the

covariance of θD
i . χ2

q , χ12
q pµq refer to centralized and non-

centralized χ2-distribution with q degrees of freedom and
non-centrality parameter µ. µij “ pΣi ` Σjq´1{2pαki

´

αkj
q where ki, kj are the true subgroup labels of Di, Dj .

∆ is then called the standardized domain distance and
used in Ψ instead of the raw distances of θD

i . We denote
∆D

ij “ ∆pθD
i ,θ

D
j q and similar notation is defined simi-

larly hereafter. The threshold λ chosen in DiffS is fixed as
F´1
q p0.99q where F´1

q p¨q is the inverse CDF of χ2
q to cover

99% of the ∆D
ij that ki “ kj .

The authors proved theoretically that Algorithm 1 with stan-
dardized domain distance is able to perfectly recover the
true learnability structure. However, according to their dis-
cussion in the paper, λ should be larger when dealing with
large M datasets due to more possible outliers in the sub-
groups. Similarly, λ should be smaller with smaller M to
avoid including too many inter-group ∆D

ij under the thresh-
old. This indicates that the fixed threshold cannot well adapt
to different data distribution, especially under concept drift
problems that distribution may change rapidly.

3. Methodology
3.1. Adaptive Group Personalization for Federated

Mutual Transfer Learning

Combine the ideas of CFL and centralized mutual trans-
fer learning methods, we propose the Adaptive Group
Personalization method for federated mutual transfer learn-
ing (AdaGrP). Assume there are R communication rounds
in each time step, AdaGrP considers the optimization prob-
lem at the r-th communication round in time step τ as

min
Sr,βr,αr

LpτqpSr,βr,αrq,

s.t. Sr “ Ψ
´

θr; rλpθr
q

¯

,
(6)
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Figure 1. An illustration of the proposed AdaGrP. Generally, there are 8 steps in each communication round: (1) sample from corresponding
data domains; (2) conduct local updates; (3) upload to server; (4) compute standardized domain distances; (5) adaptive threshold
correction (Section 3.2); (6) learnability structure recovery; (7) parameter aggregation; (8) broadcast new parameters. These steps repeat
for R times as R communication rounds in one time step. At the last round of a time step, AdaGrP proceeds to (9) estimation output.

where Sr denotes the learnability structure recovered by
Algorithm 1 with adaptive threshold rλpθr

q in the r-th round.
θr

“ tθr
i ,@iu and θr

i denotes the θi updated by client i at
r-th round. To solve this problem, we illustrate the main
steps of AdaGrP in Figure 1. Generally, AdaGrP follows the
basic federated learning framework (step 1–3 & 8): clients
conduct local updates with private data and only transfer
parameters in communications. On server side, we divide
the solution to problem (6) into two components: 1) learn-
ability recovery (step 4–6) and 2) parameter estimation
(step 7). For the learnability recovery part, we propose the
Adaptive Threshold Correction (step 5) method to adap-
tively decide the threshold rλpθr

q based on θr. We present
the detailed description of adaptive threshold correction in
Section 3.2. For the parameter estimation part, we construct
the whole Group Personalization algorithm of AdaGrP in
Section 3.3 inspired by Group Personalized FL method (Liu
et al., 2022b) that clients contribute their updates to their
own subgroup.

3.2. Adaptive Threshold Correction

As mentioned in Section 2.2, a fixed threshold of Algorithm
1 cannot well adapt to concept drift environment. In order to
figure out an adaptive threshold with theoretical guarantee,
we propose the adaptive threshold correction algorithm Λ

in Algorithm 2 and let the adaptive threshold rλpθr
q used in

r-th round be
rλpθr

q “ Λp∆pθr
qq, (7)

where ∆pθr
q “ t∆pθr

i ,θ
r
jq,@i ă ju “ t∆r

ij ,@i ă ju

is the standardized domain distances computed with θr.
Algorithm 2 starts with a over-estimation of rλpθr

q as λsup.
In practice, we set λsup “ F´1

q p1 ´ 10´3q to cover most
of the cases. In each iteration, the proportion pχ of the ∆r

ij

less than the current rλ is firstly updated. Then, the local
density P∆prλq of the distances ∆pθr

q is estimated by the
commonly used k nearest neighbor method (Zhao & Lai,
2022). Once detected that

pP∆prλq ă 2pχχ
2
qprλq, (8)

where χ2
qp¨q is the PDF of χ2

q , the algorithm returns the
current rλ as the rλpθr

q in this round. Otherwise, it moves
rλ to a smaller one and continues the iteration. Algorithm
stops anyway when rλ ď λinf which is the preset minimum
of rλpθr

q. We set λinf “ F´1
q p0.9q in practice.

The motivation of Λ starts with the distribution of standard-
ized domain distance. According to (5), the population of
∆D

ij follows a mixture of χ2-distributions as

P∆pxq “ pχχ
2
qpxq `

ÿ

iăj

pijχ
12
q px; ∥µij∥2q, (9)
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Algorithm 2 Adaptive Threshold Correction Λp∆q

1: Input: Domain distances ∆ “ t∆ij ,@i ă j P rM su;
Maximum and minimum threshold λsup, λinf ;

2: Sort ∆;
3: rλ Ð λsup;
4: kM Ð r

a

MpM ´ 1q{2s;
5: while rλ ą λinf do
6: Update pχ estimation with threshold rλ;
7: pP∆prλq Ð K-NEARESTNEIGHBORSprλ,∆; kM q;
8: if pP∆prλq ă 2pχχ

2
qprλq then

9: break;
10: else
11: rλ Ð max

iăj
∆ij s.t. ∆ij ă rλ;

12: end if
13: end while
14: return rλ.

15: K-NEARESTNEIGHBORSpx,X, kq:
16: N “ # points in X;
17: Find δ that px ´ δ, x ` δq contains exact k points in X;
18: pPpxq Ð k{2Nδ

19: return pPpxq.

where χ12
q p¨;µq is the PDF of χ12

q pµq. pχ, pij are the propor-
tions of ∆D

ij that follows χ2 or χ12p∥µij∥2qq, respectively.
In fact, the threshold λ in Algorithm 1 is served for the clas-
sification of ∆D

ij to be regarded as following χ2
q or χ12

q p¨q.
In DiffS, the assumption is made to the data that,

Assumption 3.1 (Subgroup differentiation). Denote S as
the true learnability structure and K “ |S|. Dλ´, λ` (0 ă

λ´ ă λ`) that satisfy @k P rKs, @i, j P Sk, max
i,jPSk

∆D
ij ă

λ´, and @k P rKs, Di P Sk,min
jRSk

∆D
ij ą λ`.

Since DiffS chooses the fixed threshold as F´1
q p0.99q,

where F´1
q p¨q is the inverse CDF of χ2

q , Assumption 3.1
is actually with an implicit contraint that,

Condition 1 (DiffS constraint). λ´ ď F´1
q p0.99q ď λ`.

However, due to the randomness of real-world data, µij

varies dramatically that Condition 1 would possibly not hold.
Under such situation, we propose to correct the threshold
to a more proper one based on the estimated heterogeneous
parameters θr

i at round r, denoted as rλpθr
q, in order to

guarantee the performance of learnability structure recovery.

Assume there is an oracle threshold decision method, to
which µij , pij is accessible a priori. The best choice λ˚ of
the threshold should satisfy that

pχχ
2
qpλ˚q “

ÿ

iăj

pijχ
12
q pλ˚; ∥µij∥2q

ñ P∆pλ˚q “ 2pχχ
2
qpλ˚q.

(10)

Algorithm 3 AdaGrP at time step τ

1: Input: Number of clients M ; Sample size of each
domain ni; Maximum communication round limit R;
Number of local update steps T ; Learning rate η;

2: if τ “ 1 then
3: Initialize S0 Ð ttiu, i P rM su;
4: Initialize β0, α0

k, k P r|S0|s;
5: else
6: S0 Ð Spτ´1q, β0

Ð βpτ´1q, α0
k Ð α

pτ´1q

k ;
7: end if
8: for r “ 1 to R do
9: for i P rM s client in parallel do

10: ki Ð k such that Di P Sr´1
k ;

11: βr
i ,θ

r
i Ð LOCALUPDATEpβr´1,αr´1

ki
q;

12: end for
13: ∆r

ij Ð ∆pθr
i ,θ

r
jq,@i, j;

14: rλpθr
q Ð Λp∆pθr

qq;
15: Sr Ð Ψpθr; rλpθr

qq;
16: βr,αr Ð AGGREGATIONpβr

i ,θ
r
i ,Srq

17: end for
18: return SR, βR, αR

k , k P r|SR|s.

19: LOCALUPDATEpβ,θiq:
20: for t “ 1 to T do
21: pβ,θiq “ pβ,θiq ´ η∇ℓipβ,θiq;
22: end for
23: return β, θi.

24: AGGREGATIONpβi,θi,Sq:
25: N “

ř

iPrMs ni, Nk “
ř

DiPSk
ni, @k;

26: β Ð
ř

iPrMs
ni

N βi, αk Ð
ř

DiPSk

ni

Nk
θi, @k;

27: return β, αk, @k.

As an additional but reasonable assumption, we suppose
λ´ ă λ˚ ă λ`. Thus, by setting λ˚ as the threshold in
Algorithm 1, Theorem 4.3 in (Xu et al., 2022) tells that it
is able to recover the true learnability structure. Inspired by
(10), we propose to estimate λ˚ by nonparametric density
estimation as described in Algorithm 2. Therefore, λinf ,
λsup serves for a search range for λ˚. It can be detected
that rλ approaches λ˚ by (10). Since we start with a over-
estimated rλ and assume the PDFs are monotonic around
λ˚, the criterion reduces to (8). Thus the returned rλpθr

q

would be the best estimation of λ˚. We further theoretically
guarantee the perfect recovery with the corrected threshold
rλpθr

q in Section 4.2. We also show the detailed condition of
AdaGrP is much relaxed compared with Condition 1. The
whole algorithm of AdaGrP is described in the next section.

3.3. Group Personalization based Solution

AdaGrP solves (6) by Group Personalization and Adap-
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tive Threshold Correction as presented in Algorithm 3. In
the beginning, learnability structure is initialized with one
client in each subgroup and parameters are initialized ran-
domly. AdaGrP communicates with clients for R rounds at
time step τ . At the r-th communication round, with previous
learnability structure Sr´1, clients start local update with
the shared global parameter βr´1 and the heterogeneous
parameter αr´1

ki
of their corresponding subgroups. After

local updates, standardized distances between domains ∆r
ij

are calculated with the updated heterogeneous parameters
θr and are further used in the Adaptive Threshold Correc-
tion algorithm Λp∆pθr

qq. New learnability structure Sr is
then recovered by Algorithm 1 with the corrected threshold
rλpθr

q. The aggregation of parameters is in a mixed Group
Personalization manner. Global parameter βr is aggre-
gated just as FedAvg, while heterogeneous parameters αr

k

are aggregated by subgroups. With true learnability struc-
ture, the aggregation of Algorithm 3 is identical to FedAvg
framework. As we prove in Section 4.2 that the rλpθr

q cor-
rected by Algorithm 2 is able to recover the true structure
during communication, the convergence of AdaGrP is then
guaranteed by the convergence analyses of FedAvg frame-
work (Li et al., 2019; Wang & Joshi, 2021), which has been
widely studied. When the last communication round ends,
AdaGrP provides the final estimation of βR, αR, SR as the
estimation of the current time step τ as βpτq, αpτq, Spτq.

4. Theoretical Analysis
We theoretically analyze the proposed AdaGrP, especially
the effectiveness of adaptive threshold correction. Firstly we
show in Section 4.1 that adaptive threshold correction is able
to find the best threshold λ˚ defined by oracle decision (10).
We further combine with the FL framework to derive the
condition for AdaGrP to perfectly recover the learnability
structure during communications in Section 4.2.

4.1. Threshold Correction in Centralized Setting

Assume we apply adaptive threshold correction (Algorithm
2) to decide the threshold in Algorithm 1 in a centralized
learning framework, i.e., using θD instead of θr to com-
pute standardized domain distances. Denote the threshold
corrected by Algorithm 2 as rλ, and the best threshold de-
fined by (10) as λ˚. We analyze the learnability structure
recovered by rλ in the following condition and theorem.

Condition 2 (Centralized AdaGrP constriant). λ´ ď λsup,
λ` ě λinf , where λinf , λsup are defined in Algorithm 2.

Theorem 4.1. Assume Assumption 3.1 holds and λ´ ă

λ˚ ă λ`. Denote the true learnability structure as S˚.
Under Condition 2, it satisfies that ΨpθD; rλq “ S˚, where
Ψ refers to Algorithm 1.

Remark 4.2. See proof in Appendix A.1. The main idea is

that λ˚ can be consistently estimated by rλ via the condition
(10) used in Algorithm 2. By Theorem 4.3 in (Xu et al.,
2022), it ensures rS is identical to the true S. Note that the
constraint here, i.e., Condition 2, is well relaxed compared
with the implicit constraint in DiffS, i.e., Condition 1, so that
AdaGrP is able to cover more cases of data in the estimation.
Thus, the recovery ability of AdaGrP is guaranteed under
centralized setting.

4.2. Recovery Ability in Federated Setting

In this section, we analyze the ability of learnability struc-
ture recovery of AdaGrP and answer the question that: could
AdaGrP keep capturing the dynamic learnability structure
in federated environment with concept drifts?

In the federated setting, local updates introduce uncertainty
to the estimated parameters, leading to the uncertainty of
λ˚ estimation. We first derive the error bound of the stan-
dardized domain distance estimated during communication.

Lemma 4.3 (Error bound of standardized domain dis-
tance). Denote ω as the smallest eigenvalue among all the
GJ

i W iGi, @i. The error between the true standardized
domain distance ∆D

ij and the standardized domain distance
∆r

ij calculated at r-th round after t local update steps in
Algorithm 3 with learning rate η ă 1

2ω satisfies

E
“
ˇ

ˇ∆r
ij ´ ∆D

ij

ˇ

ˇ

‰

ď Cijp1 ´ 2ηωqt{2, (11)

where Cij “ 2C0∥Σ´1{2
ij ∥22 `4

?
C0∥Σ´1

ij pθD
i ´θD

j q∥ and
C0 “ max

i
∥θ0

i ´ θD
i ∥2.

See detailed proof in Appendix A.2. Denoting Et “

max
i,j

E
“
ˇ

ˇ∆r
ij ´ ∆D

ij

ˇ

ˇ

‰

and CM “ max
i,j

Cij , we state the

constraint of AdaGrP under FL setting as

Condition 3 (AdaGrP constraint). The following condition
holds in each rount r: (1) λ´ ` Et ď λsup; (2) λ` ´ Et ě

λinf ; (3) η ă 1
2ω ; (4) t ą

2pln pλ`´λ´q´ln 2CM q

ln p1´2ηωq
.

Remark 4.4. According to Lemma 4.3, we know that ∆r
ij

converges linearly with gradient descent. Due to the error,
the conditions in Condition 2 are tightened with Et. We
emphasize here that such tightening would vanish quickly
with larger local steps t. The condition (4) is derived
from the condition that Et ă 1{2pλ` ´ λ´q so that the
interval pλ´, λ`q would not vanish and λ˚ could still ex-
ist. For SGD, the learning rate, i.e., condition (3), should
be changed to 1{ωt and the convergence rate reduces to
Op1{tq. Correspondingly, the condition (4) would be like
t ą C 1

M{pλ` ´ λ´q2.

Considering recovering the learnability structure Spτq at
time step τ , we provide the following conclusion of the
recovery ability of AdaGrP under federated setting.
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Theorem 4.5. Assume Assumption 3.1 holds and λ´ ă

λ˚ ă λ`. Under Condition 3, AdaGrP satisfies that

Ψpθr; rλpθr
qq “ Ψpθr;λ˚q,@r P rRs. (12)

With sufficient local updates that t ą
2 lnCλ{CM

ln p1´2ηωq
,

Ψpθr; rλpθr
qq “ Spτq,@r P rRs, (13)

where Cλ “ minpλ` ´ λ˚, λ˚ ´ λ´q.

Remark 4.6. See proof in Appendix A.3. The theorem
indicates that with sufficient local updates and acceptable
tightening of Condition 2, the learnability structure could
be perfectly recovered via the updated parameters θr and
the corrected threshold rλpθr

q. Since such perfect recovery
is achievable in each communication round at any time step,
an affirmative answer is thus obtained for the question in
the beginning: AdaGrP is able to capture the dynamic learn-
ability structure during the whole procedure under federated
concept drift environment.

5. Related Work
Centralized Mutual Transfer Learning Centralized ap-
proaches for mutual transfer learning mainly try to learn
the parameters with regularization or assumption in the loss
functions. For example, some assume parameters are linear
combinations of some latent or low-dimensional cluster cen-
ters (Han & Zhang, 2015). Different regularizers are also
used in the previous work, such as Lasso (Tibshirani, 1996),
Frobenious norm (Evgeniou & Pontil, 2004), and other com-
mon norms (Gong et al., 2012; Jalali et al., 2010). Chen et
al. propose the state-of-the-art method called CD Fusion
(Cheng et al., 2020) that leverage confidence distribution
to accelerate the computation. Inspired by the confidence
distribution, Xu et al. propose DiffS (Xu et al., 2022) in
order to significantly reduce the computational complexity
with standardized domain difference.

In centralized approaches, data are collected and sent to
the central server for estimation. In such a scenario, the
algorithms can easily achieve optimal solution. However,
data may not available nowadays for those privacy-sensitive
applications (Mothukuri et al., 2021; Liu et al., 2022a). Ad-
ditionally, the upload of raw data costs much in communica-
tion between clients and especially the server. As the scale
of data grows, communication bandwidth would become
the bottleneck to transfer all the data.

Clustered Federated Learning Federated approaches
with similar assumptions with mutual transfer learning are
mainly clustered federated learning (CFL) methods. Clus-
tered federated learning was first proposed by (Sattler et al.,
2020a;b) in order to address the statistical heterogeneity
problem (Sattler et al., 2019) in federated learning. CFL

tries to split the clients based on their gradient directions
to form multiple subgroups of clients, which is consistent
with the definition of learnability structure in mutual transfer
learning. The idea of clustering clients was further devel-
oped towards different directions. Some methods focus
on improving the algorithm by applying conventional but
simple clustering methods such as hierarchical clustering
(Briggs et al., 2020), k-means (Long et al., 2023), or de-
centralized clustering strategy (Ghosh et al., 2020). Other
authors put efforts on utilizing CFL in the scenario of per-
sonalized federated learning (PFL) (Tan et al., 2022). Group
personalization (Liu et al., 2022b; Duan et al., 2021) was
therefore proposed to study how the clustering strategy im-
proves personlization performance.

Although FL approaches address the communication con-
cerns, drawbacks also exist. Vanilla CFL (Sattler et al.,
2020a) bi-partition the clients at a time, which incurs ineffi-
cient computation costs. The followers (Ghosh et al., 2020;
Long et al., 2023) handled the drawback via classical cluster-
ing methods but they need to specify the number of clusters
ahead of learning. Group personalized methods even require
detailed cluster structure before estimation. This hinders
their easy use in federated mutual transfer learning where
the true learnability structure are unknown.

6. Experiments
The following baseline methods are included in the com-
parisons: two SOTA CFL methods, IFCA (Ghosh et al.,
2020), FeSEM (Long et al., 2023), the SOTA FL method
for concept drift, FedDrift (Jothimurugesan et al., 2023).
Also, we include a version of AdaGrP with fixed threshold
F´1
q p0.99q as AdaGrP (w/o), as an ablation study. All the

experiments were conducted on a Linux server with two
Intel(R) Xeon(R) Gold 5117 CPUs and 256 GiB memory.

6.1. Experiments on Synthetic Data

Experiment Settings We generate synthetic data follow-
ing (Xu et al., 2022; Cheng et al., 2020). Detailed gen-
eration method is described in Appendix B.1. We divide
M clients into K subgroups as learnablity structure. Each
client generates n samples as the design matrix pXi,Ziq.
Data parameters tM,n,K, p, qu are varied for comparisons
in different data scales one at a time. The samples are di-
vided with the proportion of 7 : 1 : 2 for training, validation,
and testing. We generate 5 replications for each setting of
data parameters and report the average performance. For
each method, we set the maximum number of communica-
tion rounds R “ 30, the maximum number of local steps
T “ 10000. Other detailed settings are described in Ap-
pendix B.2. Clients early stops when validation error does
not drop by 50 updates. Note that IFCA and FeSEM require
preset number of clusters. We assume there is oracle for
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Figure 2. Overall performance of the methods under concept drift environment. NMI, RMSE and Mean Error represent the performance
of learnability structure recovery, parameter estimation and prediction. The data parameters are varied one at a time based on M “ 50,
p “ q “ 10, n “ 200, K “ 3. The three connected points of each case in (b) represents the values of three time steps respectively.

these methods and set as the true K.

Metrics We compare these methods in the following as-
pects: (1) Learnabiltiy structure recovery ability: We use
normalized mutual information (NMI) (Ana & Jain, 2003;
Vinh et al., 2009), a permutation-independent measurement
of the agreement of two cluster assignments, to evaluate
the learnability recovery ability for each method. Its value
varies within r0, 1s and the larger value indicates more agree-
ment. (2) Heterogenous parameter estimation error: We
use root mean square error (RMSE) to measure the error
between the estimated heterogeneous parameters pθi and the
true ones αki

. (3) Prediction error: Mean squared error is
used to evaluate the prediction error of each method.

Results: (a) Changing learnability structure In order
to evaluate the methods under concept drift environment,
we set time step τ “ 1, 2 and change the learnability struc-
ture at τ “ 2. Specifically, the data of clients are shifted
by one client along rM s, i.e., kp2q

i “ k
p1q

i`1. The results is
shown in Figure 2a. AdaGrP (w/o) is omitted in RMSE
and Error comparisons because it is very close to AdaGrP
compared with others. The full figure is shown in Appendix
B.3. Generally, AdaGrP (w/o) is slightly worse than Ada-
GrP due to its fixed threshold. The performances of the 3
baselines roughly arranged in the order of IFCA, FeSEM,
FedDrift. Note that although both IFCA and FeSEM ben-
efit from the oracle number of clusters, they still behave
poorly in many cases due to lack of theoretical guarantee
in recovering learnability structure. They may behave even
worse with suboptimal number of clusters. Baselines show
unstable performance when data setting varies, resulting in
undulate metrics in Figure 2a. We notice that the results
is similar with normal experiments without concept drift.
As a result, we think the unstable performance is caused
by their suboptimal recovery of learnability structure. Ada-

GrP is only affected heavier with varying dimensionality.
This is reasonable since task complexity grows with dimen-
sionality. Additionally, we notice that the performances on
learnability structure recovery (NMI), parameter estimation
(RMSE), and prediction (Error) are positively correlated. It
demonstrates our claim that better recovery of learnability
structure helps better parameter learning. In addition, we
find it difficult for FedDrift to decide its hyper-parameter
δ properly. We search from δ “ t0.01, 0.1, 1, 10, 100u and
only δ “ 100 provides reasonable learnability structure in-
stead of one client in each subgroup. Notice that FedDrift
has less error at p “ q “ 50 is because it creates 11.8
clusters on average instead of the true number 3.

Results: (b) Varying Noise Level As mentioned before,
the population of standardized domain distance ∆ij would
be heavily affected by the dynamic environment. We simu-
late such variation by varying the noise level of the random
effect ui and ε to change µij in (5). In this experiment,
we set time step τ “ 1, 2, 3 and change the noise level at
each step. The noise levels σu, σε are doubled in τ “ 2 and
then quartered in τ “ 3. The results are shown in Figure
2b and the three points starting from each tick represent the
value of three step respectively. We omit AdaGrP (w/o) as in
Results (a). Generally, the concept drift problem becomes
more serious and baselines all behave worse than chang-
ing learnability structure experiments. AdaGrP is hardly
affected due to the tuning-free adaptive threshold correction
strategy. FedDrift is affected the most and we notice that
it could hardly recover the true learnability structure in the
experiments. The estimated number of clusters by FedDrift
varies from single digit to almost M (the number of clients),
resulting in the poor performance. IFCA and FeSEM can
provide reasonable estimates in the first time step (τ “ 1),
while they are easy to fall in suboptimal cluster structure
in the following time steps (τ “ 2, 3, concept drift occurs).
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Figure 3. Learnability structure recovered during 5 time steps for the average temperature prediction task in NOAA nClimDiv dataset.

AdaGrP (w/o) drops more performance than AdaGrP does in
most of the cases, indicating that adaptive threshold is able
to handle the varying distribution of standardized domain
distance.

6.2. Experiments on NOAA nClimDiv Database

We apply AdaGrP and the above baseline methods in the
NOAA nClimDiv database (Vose et al., 2014) for the aver-
age temperature prediction task. The main task is to estimate
the monthly average temperature based on 8 meteorologi-
cal features. Palmer drought severity index (PDSI), Palmer
hydrological drought index (PHDI), precipitation (PCPN)
and Palmer Z index (ZNDX) are features collected in each
data domain. Following (Cheng et al., 2020; Xu et al.,
2022), three dummy variables, i.e., Summer (June, July,
August), Fall (September, October, November) and Winter
(December, January, February) are added. Another dummy
variable Spring (March, April, May) feature is treated as
the intercept term. The 3 heterogeneous features, i.e., in-
tercept, PCPN and ZNDX, are selected by inspecting the
kernel densities following (Cheng et al., 2020). To analyze
the concept drift in the climate data, we split the data of
125 years into 5 periods, 25 years in one, to form 5 time
steps, denoted as τ “ 1, 2, 3, 4, 5. We show the recov-
ered learnability structures at the end of each time step in
Figure 3. We only compare the three methods, AdaGrP,
AdaGrP (w/o), and FedDrift, is because these methods can
automatically figure out the number of clusters while the
number of clusters in IFCA and FeSEM has to be tuned
manually. We conduct hyper-parameter tuning for FedDrift
from δ “ t0.01, 0.1, 1, 10, 100u. Only the last one δ “ 100

provides reasonable estimation and the other δ result in too
many clusters (ą 30). In the initial step (τ “ 1), both Ada-
GrP with or without adaptive threshold correction provide
reasonable recovery of the learnability structure, while Fed-
Drift estimates 18 clusters that are randomly distributed. In
the time step 2, FedDrift manages to converge to a good esti-
mation because local updates become stable. AdaGrP (w/o)
almost discards its initial estimation and only leaves few
divisions in one of the two clusters. In the following time
steps (τ “ 3, 4, 5), the estimation of AdaGrP remains the
outline of the initial one and only has several changing in the
cluster identities of divisions. It is reasonable since climate
zones would not change quickly. AdaGrP provides similar
learnability structure compared with the climate zones de-
fined by International Energy Conservation Code (IECC)
(Council, 2012). Orange group roughly corresponds to the
zone 6, 7 and the eastern part of zone 5. However, with fixed
threshold, AdaGrP (w/o) has difficulty in distinguishing the
subgroups. The clusters estimated by AdaGrP (w/o) is hard
to explain and completely unbalanced. FedDrift is unable to
figure out learnability structure in the beginning and eventu-
ally merges all the subgroups together. It may be explained
by its sensibility to the threshold used in its merging strategy.
With a large threshold, the cluster would tend to be merged
into a single one, while with a small threshold, the new
clusters would appear more frequently. This make FedDrift
to require careful hyper-parameter tuning in practice. To
compare with, AdaGrP gets rid of hyper-parameters and
still provides valuable estimations. These results indicate
the threshold correction method used by AdaGrP is not only
able to capture real learnability structure hidden in the data
but also easy to apply.
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A. Proof of Theorems
A.1. Proof of Theorem 4.1

Proof. Consider the case that q ą 2. Denote the mode of χ2
qpxq as mχ “ maxpq ´ 2, 0q. Also denote the smallest mode of

χ12
q px; ∥µij∥2q among i, j as mχ1 . It can be inferred under Condition 2 that mχ ă λ˚ ă mχ1 and with high possibility that

mχ ă λ´, mχ1 ą λ`. Due to the monotonicity of the χ2 distributions, χ2
qpxq decreases and

ř

iăj χ
12
q px; ∥µij∥2q increases

within pmχ,mχ1 q. As λ˚ satisfies (10), thus @λ P pλ´, λ
˚q,

pχχ
12
q pλq ă

ÿ

iăj

pijχ
12
q pλ; ∥µij∥2qq

ñ P∆pλq ă 2pχχ
12
q pλq.

(14)

Also @λ P pλ˚, λ`q,
P∆pλq ą 2pχχ

12
q pλq. (15)

With the analysis of k nearest neighbor density estimation method (Zhao & Lai, 2022), it satisfies that

Er pP∆pλqs “ P∆pλq. (16)

Here we assume λsup is not too large and λinf is not too small that points ∆D
ij within the search interval pλinf , λsupq would

not account for much proportion. Then the estimation of P∆pλq and pχ can be regarded consistent during the algorithm. In
practice, we let λsup “ F´1

q p1 ´ 10´3q and λinf “ F´1
q p0.9q. Given rλ´ that triggers Algorithm 2 to break for satisfying

rP∆prλ´q ă 2pχχ
12
q prλ´q, (17)

it can be inferred that rλ´ P pλ´, λ
˚q compared with (14) and based on the condition λ´ ď λsup. We denote the λ in the

last iteration as rλ`. Similarly,
rP∆prλ`q ă 2pχχ

12
q prλ`q, (18)

which indicates that rλ` P pλ˚, λ`q compared with (15) and based on the condition λ` ě λinf . Thus, according to the
algorithm, rλ´ and rλ` are two neighbor points selected from the sorted ∆D

ij , choosing any threshold rλ P rrλ´, rλ`q has the
same effect as threshold λ˚. According to Theorem 4.3 in (Xu et al., 2022), which we put here for reference,

Theorem A.1 (Learnability structure recovery guarantee). Denoting S˚ as the true learnability structure, supposing that
the Assumption 3.1 is satisfied and learnability structure pS is recovered via Algorithm 1 with some threshold λ P pλ´, λ`q,
thus pS “ S˚.

any threshold rλ P rrλ´, rλ`q would satisty the condition and would therefore guarantee the learnability structure recovery to
be perfect. Since the rλpθr

q decided by Algorithm 2 is rλ´ which is within the interval, Theorem 4.1 is thus proved.

A.2. Proof of Lemma 4.3

In the following, we denote Ω as the largest eigenvalue among all the GJ
i W iGi, i P rM s, which is

Ω “ max
iPrMs

ρ
´

GJ
i W iGi

¯

, (19)

and ω as the least, which is
ω´1 “ max

iPrMs
ρ

´

pGJ
i W iGiq

´1
¯

, (20)

where ρ is the spectral radius.

Lemma A.2 (Ω-smoothness and ω-strongly convexity of local loss). Local losses ℓipβ,θq, i P rM s are all Ω-smooth and
ω-strongly convex, which means @w1 “ pβ1,θ1q,w2 “ pβ2,θ2q,

ℓipw1q ď ℓipw2q ` pw1 ´ w2qJ∇ℓipw2q `
Ω

2
∥w1 ´ w2∥2, (21)

ℓipw1q ě ℓipw2q ` pw1 ´ w2qJ∇ℓipw2q `
ω

2
∥w1 ´ w2∥2. (22)

12
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The proofs of the above lemma are trivial. Now we can prove Lemma 4.3.

Proof. Denote ∆θr
“ θr

i ´ θr
j and ∆θD

“ θD
i ´ θD

j . The expected error between the estimated standardized domain
distance at round r and the true one is

E
“

|∆r
ij ´ ∆D

ij |
‰

“ E
”

|∆θrJΣ´1
ij ∆θr

´ ∆θDJΣ´1
ij ∆θD

|

ı

“ E
”

|p∆θr
´ ∆θD

qJΣ´1
ij p∆θr

` ∆θD
q|

ı

“ E
”

|p∆θr
´ ∆θD

qJΣ´1
ij p∆θr

´ ∆θD
q ` 2∆θDJΣ´1

ij p∆θr
´ ∆θD

q|

ı

ď E
”

∥Σ´1{2
ij ∥22∥p∆θr

´ ∆θD
q∥2 ` 2∥Σ´1

ij ∆θD∥ ¨ ∥p∆θr
´ ∆θD

q∥
ı

ď 2∥Σ´1{2
ij ∥22 ¨ E

”

∥θr
i ´ θD

i ∥2
ı

` 4∥Σ´1
ij ∆θD∥ ¨ E

”

∥θr
i ´ θD

i ∥
ı

.

(23)

The next step is to bound the local update error Er∥θD
i ´ θr

i ∥s. Note that θD
i is the minimizer of local loss, it is commonly

known that with learning rate η ă 1{p2ωq, gradient descent guarantees linear convergence rate for the strongly convex loss
ℓi of

E
”

∥θt
i ´ θD

i ∥2
ı

ď ∥θ0
i ´ θD

i ∥2p1 ´ 2ηωqt,@i P rM s. (24)

Denoting C0 “ max
i

∥θ0
i ´ θD

i ∥2, the error (23) becomes

E
“

|∆r
ij ´ ∆D

ij |
‰

ď 2C0∥Σ´1{2
ij ∥22p1 ´ 2ηωqt ` 4

a

C0∥Σ´1
ij ∆θD∥p1 ´ 2ηωqt{2

ď

´

2C0∥Σ´1{2
ij ∥22 ` 4

a

C0∥Σ´1
ij ∆θD∥

¯

p1 ´ 2ηωqt{2.
(25)

For stochastic gradient descent, the convergence rate is changed to Op1{tq with η “ 1{ωt and the error bound becomes
Op1{

?
tq. The derivation is similar.

A.3. Proof of Theorem 4.5

Proof. With t ą
2pln pλ`´λ´q´ln 2CM q

ln p1´2ηωq
in Condition 3, according to Lemma 4.3,

λ´ ` Et ă λ` ´ Et. (26)

Firstly, we consider the simple situation that λ´ ` Et ă λ˚ ă λ` ´ Et. Under Condition 3, we can denote that
λ1

´ “ λ´ `Et, λ1
` “ λ` ´Et. Therefore, λ1

´ ă λ˚ ă λ1
` and Condition 2 is satisfied. According to the proof of Theorem

4.1, the recovered learnability structure is perfect as

Ψpθr; rλpθr
qq “ Ψpθr;λ˚q “ Spτq, if λ˚ P pλ´ ` Et, λ` ´ Etq. (27)

Consider the situation that λ˚ R pλ1
´, λ

1
`q. Condition 2 is no longer satisfied and thus Ψpθr; rλpθr

qq is not guaranteed to be
identical to Spτq. However, the corrected threshold rλpθr

q is still the best estimation of λ˚. It can be proved similarly that

Ψpθr; rλpθr
qq “ Ψpθr;λ˚q, if λ˚ R pλ´ ` Et, λ` ´ Etq. (28)

To conclude, Ψpθr; rλpθr
qq “ Ψpθr;λ˚q under Condition 3 only.

Further consider the situation that t ą
2 lnCλ{CM

ln p1´2ηωq
, where Cλ “ minpλ` ´ λ˚, λ˚ ´ λ´q. In this situation, Et ă Cλ

according to Lemma 4.3. Thus, λ˚ P pλ´ ` Et, λ` ´ Etq now and the proof reduces to the first situation. For SGD updater,
the condition of local steps t would be changed to Op1{C2

λq, but the main conclusion is the same.

B. Additional Details of Experiments
B.1. Data Preparation

we divide M clients into K subgroups as learnablity structure. K clients are first selected for each subgroup. The subgroup
labels of the rest clients are randomly chosen. Each client generates n samples as the design matrix pXi,Ziq „ N p0,ΣDq

13
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where ΣD “ 0.3 ¨ 1pp`qqˆpp`qq ` 0.7Ip`q. The response vector yi is calculated via (1). β is sampled from N p0, 16Ipq.
In order to meet Assumption 3.1 and keep a proper signal-noise ratio, αk is obtained by shift the elements of αk´1, e.g.,
αk “ pαk´1r2 :s,αk´1r0sq. α0 is 4σ2

u

?
q times of the evenly spaced q points from r´1, 1s. The matrix of αk is then

rotated by a random orthogonal matrix. The noise parameters are set as σ2
u “ 0.5, σ2

ε “ 1. The parameters M , K, n, p,
and q are varied for comparisons in different data scales one at a time with the base case of M “ 50, K “ 3, n “ 200,
p “ q “ 10.

B.2. Supplement to Experiment Settings

• Learning rate: We conduct multiple tentative experiments to decide the optimal learning rate within
t0.1, 0.01, 0.001, 0.0001u. For the synthetic data, we found that η “ 0.001 has the best convergence rate and
would not lead to NaNs. For the NOAA dataset, we choose η “ 0.005 in order to slightly accelerate the learning.

• Communication round: In the experiment, we found that most of the method converges after about 5–10 rounds.
We set the maximum of communication rounds as 30 in the synthetic experiments so that there would be 15 or 10
rounds in each time step in either experiment. For the NOAA dataset, we set 10 rounds per time step with a total of 50
communication rounds.

B.3. Detailed Results on Synthetic Dataset
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Figure 4. Full results for Changing Learnability Structure experiments.
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Figure 5. Full results for Varying Noise Level experiments.

C. Complexity Comparison
The computational complexity of Algorithm 2 is dominated by the sort of distances, which is OpM2 logMq. However, the
total complexity of AdaGrP is dominated by the calculation of standardized domain difference with OpM2qq instead of
Algorithm 2. To compare with, previous centralized mutual transfer learning methods cost OpM2qq for clustering. The
common CFL methods (IFCA, FedDrift) cost OpMKn2pp`qqq for clustering under mutual transfer learning task since they
need to compute loss. We emphasize here that Algorithm 2 mainly runs on the server which has more adequate computation
resources, while CFL methods require clients to compute their own cluster identities, leading to the scaling bottleneck.

D. Limitation Discussion
We consider the limitation of AdaGrP as follows:

• Data Distribution: Our method may fail with data that distribute completely differently from the linear mixed-effects
model, e.g., natural language processing, recommendation systems tasks. These tasks are beyond mutual transfer
learning and we suggest to address them with domain-specific solutions. **Data Distribution:** Our method may fail
with data that distribute completely differently from the linear mixed-effects model, e.g., natural language processing,
recommendation systems tasks. These tasks are beyond mutual transfer learning and we suggest to address them with
domain-specific solutions.
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• Anomaly Detection: In the paper, we assume all the concept drifts should be detected and the methods should react to
them. However, it is possible that attackers or system failure (like anomalies) create fake concept drifts during the
learning. A possible solution is to apply anomaly detection in AdaGrP and only react to true concept drifts to have
more robustness against anomalies.

• Model Averaging: We use a simple model averaging strategy in AdaGrP as used in Group Personalized Federated
Learning. In the aggregation, the clients’ parameters are weighed by the local sample sizes. However, it is possible
that clients with smaller data sizes should be weighed more due to their importance in the researches. Different model
averaging ways could be further studied.
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