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ABSTRACT

Fairness of machine learning predictions is widely required in practice for legal,
ethical, and societal reasons. Existing work typically focuses on settings with-
out unobserved confounding, even though unobserved confounding can lead to
severe violations of causal fairness and, thus, unfair predictions. In this work, we
analyze the sensitivity of causal fairness to unobserved confounding. Our contri-
butions are three-fold. First, we derive bounds for causal fairness metrics under
different sources of unobserved confounding. This enables practitioners to exam-
ine the sensitivity of their machine learning models to unobserved confounding
in fairness-critical applications. Second, we propose a novel neural framework
for learning fair predictions, which allows us to offer worst-case guarantees of the
extent to which causal fairness can be violated due to unobserved confounding.
Third, we demonstrate the effectiveness of our framework in a series of experi-
ments, including a real-world case study about predicting prison sentences. To
the best of our knowledge, ours is the first work to study causal fairness under
unobserved confounding. To this end, our work is of direct practical value as a
refutation strategy to ensure the fairness of predictions in high-stakes applications.

1 INTRODUCTION

Fairness of machine learning predictions is crucial to prevent harm to individuals and society. For
this reason, fairness of machine learning predictions is widely required by legal frameworks (Baro-
cas & Selbst, 2016; De-Arteaga et al., 2022; Dolata et al., 2022; Feuerriegel et al., 2020; Frauen
et al., 2023a; Kleinberg et al., 2019). Notable examples where fairness is commonly mandated by
law are predictions in credit lending and law enforcement.
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Figure 1: Example: Causal graph for predict-
ing prison sentences.

A prominent fairness notion is causal fairness (e.g.,
Kilbertus et al., 2017; Plecko & Bareinboim, 2022;
Zhang & Bareinboim, 2018b). Causal fairness lever-
ages causal theory to ensure that a given sensitive
attribute does not affect prediction outcomes. For
example, in causal fairness, a prison sentence may
vary by the type of offense but should not be affected
by the defendant’s race. Causal fairness has several
advantages in practice as it directly relates to legal
terminology in that outcomes must be independent
of sensitive attributes (Barocas & Selbst, 2016).1

Existing works on causally fair predictions (e.g.,
Nabi & Shpitser, 2018; Zhang & Bareinboim, 2018a;b) commonly focus on settings with no un-
observed confounding and thus assume that the causal structure of the problem is fully known.
However, the assumption of no unobserved confounding is fairly strong and unrealistic in prac-

1In the literature, there is some ambiguity in the terminology around causal fairness. By referring to our fair-
ness notion as “causal fairness”, we are consistent with previously established literature (Plecko & Bareinboim,
2022). However, we acknowledge that there are other fairness notions based on causal theory (e.g., counterfac-
tual fairness), which do not present the focus here. More details about the difference are in Supplement C.1.
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tice (Carey & Wu, 2022; Fawkes et al., 2022; Kilbertus et al., 2019; Loftus et al., 2018; Plecko &
Bareinboim, 2022). This can have severe negative implications: due to unobserved confounding, the
notion of causal fairness may be violated, and, as a result, predictions can cause harm as they may
be actually unfair.

An example is shown in Fig. 1. Here, a prison sentence (=outcome) should be predicted while ac-
counting for the offense and crime history (=observed confounders). Importantly, race (=sensitive
attribute) must not affect the sentence. However, many sources of heterogeneity are often missing
in the data, such as the housing situation, family background, and birthplace (=unobserved con-
founders). If not accounted for, the prediction of prison sentences can be biased by the confounders
and, therefore, unfair. Additional examples from credit lending and childcare are in Supplement B.1.

Our paper: We analyze the sensitivity of causal fairness to unobserved confounding. Our main
contributions are three-fold (see Table 1):2

1. We derive bounds for causal fairness metrics under different sources of unobserved con-
founding. Our bounds serve as a refutation strategy to help practitioners examine the sen-
sitivity of machine learning models to unobserved confounding in fairness-critical applica-
tions.

2. We develop a novel neural prediction framework, which offers worst-case guarantees for
the extent to which causal fairness may be violated due to unobserved confounding.

3. We demonstrate the effectiveness of our framework in experiments on synthetic and real-
world datasets. To the best of our knowledge, we are the first to address causal fairness
under unobserved confounding.

2 RELATED WORK

         3

         2

         3

Literature stream Fair causal effects Unobs. confounding

x

xSensitivity analysis

Causal fairness

Our work

e.g., Wu et. al (2019a),
Zhang & Bareinboim

(2018a)
e.g., Frauen et. al

(2023b),
Tan (2006)

Level

Table 1: We make contributions to multiple literature
streams. Level according to Pearl’s causality ladder.

Fairness notions based on causal rea-
soning: Fairness notions based on causal
reasoning have received increasing atten-
tion (e.g., Chiappa, 2019; Chikahara et al.,
2021; Huang et al., 2022; Khademi et al.,
2019; Kilbertus et al., 2017; 2019; Nabi &
Shpitser, 2018; Nabi et al., 2019; Wu et al.,
2019a;b; 2022; Yao et al., 2023; Zhang et al., 2017; Zhang & Bareinboim, 2018a;b). For a detailed
overview, we refer to (Loftus et al., 2018; Nilforoshan et al., 2022; Plecko & Bareinboim, 2022).

Different fairness notions have emerged under the umbrella of causal reasoning (see Supplement C
for details). For example, the notion of counterfactual fairness (Kusner et al., 2017) makes re-
strictions on the factual and counterfactual outcomes. A different notion is causal fairness (Nabi &
Shpitser, 2018; Plecko & Bareinboim, 2022). Causal fairness makes restrictions on the causal graph.
It blocks specific causal pathways that influence the outcome variable and are considered unfair. In
this paper, we focus on the notion of causal fairness.

Fairness bounds in non-identifiable settings: One literature stream (Nabi & Shpitser, 2018; Wu
et al., 2019b) establishes fairness bounds for settings that are non-identifiable due to various reasons.
While we also derive fairness bounds, both types of bounds serve different purposes (i.e., to address
general non-identifiability vs. specificity to unobserved confounding).

Fair predictions that are robust to miss-specification: The works by Chikahara et al. (2021) and
Wu et al. (2019a) aim to learn prediction models that ensure fairness even in the presence of model
misspecification. However, none of these works trains prediction models for causal fairness that are
robust to unobserved confounding. This is one of our novelties.

Sensitivity of fairness to unobserved confounding: To the best of our knowledge, only one work
analyzes the sensitivity of fairness to unobserved confounding (Kilbertus et al., 2019), yet it has
crucial differences: (1) Their paper focuses on counterfactual fairness, whereas we focus on causal
fairness. (2) Their paper allows for unobserved confounding only between covariates, while we fol-
low a fine-grained approach and model different sources of unobserved confounding (e.g., between

2Both data and code for our framework are available in our GitHub repository.
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covariates and sensitive attribute). (3) Their paper builds upon non-linear additive noise models. We
do not make such restrictive parametric assumptions.

Sensitivity models: Sensitivity models (e.g., Jesson et al., 2022; Rosenbaum, 1987; Tan, 2006) are
common tools for partial identification under unobserved confounding. We later adopt sensitivity
models to formalize our setting. However, it is not possible to directly apply sensitivity models
to our setting (see Table 1). The reason is that sensitivity models perform partial identification on
interventional effects (=level 2 in Pearl’s causality ladder), whereas causal fairness involves (nested)
counterfactual effects (=level 3). For an in-depth discussion, see Supplement C.3.

Research gap: To the best of our knowledge, no work has analyzed the sensitivity of causal fairness
to unobserved confounding. We are thus the first to mathematically derive tailored fairness bounds.
Using our bounds, we propose a novel framework for learning fair predictions that are robust to the
misspecification of the underlying causal graph in terms of unobserved confounding.

3 SETUP

Notation: We use capital letters to indicate random variables X with realizations x. We denote
probability distributions over X by PX , i.e., X ∼ PX . For ease of notation, we omit the subscript
whenever it is clear from the context. If X is discrete, we denote its probability mass function by
P (x) = P (X = x) and the conditional probability mass functions by P (y | x) = P (Y = y | X =
x) for a discrete random variable Y . If X is continuous, p(x) then denotes the probability density
function w.r.t. the Lebesgue measure. A counterfactual outcome to y under intervention x̃ is denoted
as yx̃. We denote vectors in bold letters (e.g., X). For a summary of notation, see Supplement A.

We formulate the problem based on the structural causal model (SCM) framework (Pearl, 2014).
Definition 1 (SCM). Let V = {V1, . . . , Vn} denote a set of observed endogenous variables, let
U ∼ PU denote a set of unobserved exogenous variables, and let F = {fV1

, . . . , fVn
} with fVi

:
Pa(Vi) ⊆ V ∪U → Vi. The tuple (V,U,F , PU) is called a structural causal model (SCM).
We assume a directed graph GC induced by SCM C to be acyclic.
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Figure 2: Causal graph of the Stan-
dard Fairness Model with different
sources of unobserved confound-
ing UDE, UIE, and USE.

Setting: We consider the Standard Fairness Model (Plecko &
Bareinboim, 2022). The data V = {A,Z,M, Y } consist of
a sensitive attribute A ∈ A, observed confounders Z ∈ Z ,
mediators M ∈ M, and outcome Y ∈ R.

Unique to our setup is that we allow for three types of unob-
served confounding in the model: (1) unobserved confounding
between A and Y , which we refer to as direct unobserved con-
founding UDE; (2) between A and M, called indirect unob-
served confounding UIE; and (3) between A and Z, which we
refer to as spurious confounding USE. The set of unobserved
confounders is then given by U = {UDE, UIE, USE}. Fig. 2
shows the causal graph of the Standard Fairness Model, where
we show the different sources of unobserved confounding.

For ease of notation, we focus on discrete variables Z,M and
binary A, where for simplicity |A|= |M|= |Z|= 1. This is common in the literature (e.g., Khademi
et al., 2019; Plecko & Bareinboim, 2022; Wu et al., 2019a). Further, it also matches common
applications of our framework in law enforcement (Fig. 1), as well as credit lending and childcare
(Supplement B.1). In Supplement J, we discuss the extension to continuous features and provide
additional experimental results.

Path-specific causal fairness: Following Zhang & Bareinboim (2018a), we define the following
path-specific causal fairness as: (1) counterfactual direct effect (Ctf-DE) for the path A → Y ;
(2) indirect effect (Ctf-IE) for the path A → M → Y ; and (3) spurious effects (Ctf-SE) for the path
Z → A.

Ctf-DE measures direct discrimination based on the sensitive attribute. Ctf-IE and Ctf-SE together
measure indirect discrimination through factors related to the sensitive attribute, potentially working
as a proxy for the latter. The Ctf-IE corresponds to all indirect causal paths, whereas the Ctf-SE
measures all non-causal paths. In the prison sentence example (Fig. 1), the Ctf-DE could measure
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unequal prison sentences based on race. The Ctf-IE could be driven by the defendant’s court verdict
history, which itself might have been illegitimately affected by the offender’s race.

Causal fairness: Discrimination in terms of causal fairness is formulated through nested coun-
terfactuals 3 for each of the above path-specific causal fairness effects. Formally, one defines the
discrimination of realization A = ai compared A = aj for each path conditioned on a realization
A = a, i.e.,

DEai,aj (y | a) := P (yaj ,mai
| a)− P (yai | a), (1)

IEai,aj (y | a) := P (yai,maj
| a)− P (yai | a), (2)

SEai,aj
(y) := P (yai

| aj)− P (y | ai). (3)
The total variation, i.e., the overall discrimination of individuals with A = ai compared to A = aj ,
can then be explained as TVai,aj

= DEai,aj
(y | ai) − IEaj ,ai

(y | ai) − SEaj ,ai
(y) (Zhang &

Bareinboim, 2018a). Causal fairness is achieved when DEai,aj
(y | a), IEai,aj

(y | a), SEai,aj
(y)

are zero or close to zero. In practice, this is typically operationalized by enforcing that the effects
are lower than a user-defined threshold. For ease of notation, we abbreviate the three effects as DE,
IE, and SE. We further use CF to refer to any of the above three effects, i.e., CF ∈ {DE, IE,SE}.
We note that, although we focus on the three effects specified above, our framework for deriving
fairness bounds can also be employed for other fairness notions (see Supplement F).

Our aim: We aim to ensure causal fairness of a prediction model in settings where there exists
unobserved confounding, i.e., UDE, UIE, USE ̸= 0. Existing methods (e.g., Khademi et al., 2019;
Zhang & Bareinboim, 2018a) commonly assume that unobserved confounding does not exist, i.e.,
UDE, UIE, USE = 0. Therefore, existing methods are not applicable to our setting. Hence, we first
derive novel bounds for our setting and then propose a tailored framework.

4 BOUNDS FOR CAUSAL FAIRNESS UNDER UNOBSERVED CONFOUNDING

In the presence of unobserved confounding, the different path-specific causal fairness effects – i.e.,
CF ∈ {DE, IE,SE} – are not identifiable from observational data, and estimates thereof are thus
biased (Pearl, 2014). As a remedy, we derive bounds for DE, IE, and SE under unobserved con-
founding. To this end, we move from point identification to partial identification, where estimate
bounds under a sensitivity model S (elaborated later). Formally, we are interested in an upper bound
CF+

S and lower bound CF−
S corresponding to the path-specific causal fairness effect CF for all

CF ∈ {DE, IE,SE}.

To do so, we proceed along the following steps (see Fig. 3): 1 We decompose each CF ∈
{DE, IE,SE} into identifiable parts and unnested interventional effects. 2 We then use a suitable
sensitivity model S and the interventional effects to derive the upper CF+ and lower bound CF−

for each CF ∈ {DE, IE,SE}. Building upon our bounds, we later develop a neural framework for
learning a causally fair prediction model that is robust to unobserved confounding (see Sec. 5).

Sensitivity model S Counterfactual unnesting Partial identification for CF Constrained optimization

Causal fairness

potentially contains nested
counterfactuals

Unnested CF

identifiable and unidentifiable
terms

Fairness bounds

unidentifiable terms bounded
by sensitivity analysis

Fair predictions

controls maximum
unfairness Underlying setting Section 5

1 2

Figure 3: Our workflow for deriving bounds on causal fairness under unobserved confounding.

4.1 SETTING: GENERALIZED MARGINAL SENSITIVITY MODEL

We derive fairness bounds in the setting of causal sensitivity analysis (Imbens, 2003; Rosenbaum,
1987). Here, the underlying idea is to relax the assumption of no unobserved confounders by allow-

3Nested counterfactuals express multi-layered hypothetical scenarios by considering counterfactual state-
ments of subsequent events such as A → M → Y. One can view nested counterfactuals as multi-intervention
counterfactuals in which one intervention is (partly) intervened on by a second one, e.g., P (yai,maj

), which
reads as the probability of outcome Y = y under the intervention A = ai and the intervention M = m where
m itself is not affected by intervention A = ai but A = aj .
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ing for a certain strength of unobserved confounding through so-called sensitivity models. In our
work, we adopt the generalized marginal sensitivity model (GMSM) (Frauen et al., 2023b). A key
benefit of the GMSM is that it can deal with discrete mediators and both discrete and continuous out-
comes. Importantly, the GMSM includes many existing sensitivity models and thus allows to derive
optimality results for a broad class of models. 4 For an overview of causal sensitivity models and a
discussion of their applicability to derive fairness bounds, we refer the reader to Supplement C.2.
Definition 2 (Generalized marginal sensitivity model (GMSM)). Let V = {Z,A,M, Y }. Let
A,M and Z denote a set of observed endogenous variables, U a set of unobserved exogenous
variables, and G a causal directed acyclic graph (DAG) on V∪U. For an observational distribution
PV on V and a family P of joint probability distributions on V ∪U that satisfy

1

(1− ΓW ) p(a | z) + ΓW
≤ P (Uw = uW | z, a)

P (Uw = uW | z,do(a))
≤ 1

Γ−1
W p(a | z) + Γ−1

W

(4)

for W ∈ {M, Y }, the tuple S = (V,U,G, PV,P) is called a weighted generalized marginal
sensitivity model (GMSM) with sensitivity parameter ΓW ≥ 1.

The sensitivity parameter ΓW controls the width of the interval defined by the bounds. In practice,
it is determined based on domain knowledge of the magnitude of unobserved confounding on the
association between W and A or through data-driven heuristics (e.g., Jin et al., 2023; Kallus et al.,
2019). Importantly, our framework applies not only for known ΓW but is also of practical value for
unknown ΓW . We discuss practical considerations for both cases in Supplement B.2.

We introduce further notation: An acyclic SCM C = (V,UC ,F , PU), with U ⊆ UC , G ⊆ GC , is
compatible with sensitivity model S if UC does not introduce additional unobserved confounding
and the probability distribution PV∪UC induced by C belongs to P , i.e., PV∪UC ∈ P .5 The class of
SCMs C compatible with S is denoted as K(S).

Objective for bounding path-specific causal fairness: We now formalize our objective for iden-
tifying CF+

S and CF−
S . For CFC ∈ {DE, IE,SE}, we aim to find the causal effects that maximize

(minimize) CFC over all a possible SCMs compatible with our generalized sensitivity model S, i.e.,

CF+
S = sup

C∈K(S)

CFC and CF−
S = inf

C∈K(S)
CFC . (5)

As a result, we yield upper (+) and lower (−) bounds DE±
S , IE

±
S , and SE±

S for the different effects.

4.2 COUNTERFACTUAL UNNESTING (STEP 1)

The path-specific causal fairness effects CFC ∈ {DE, IE,SE} contain nested counterfactuals
(=level 3 of Pearl’s ladder of causality). Sensitivity analysis, however, is built upon interventional
effects (=level 2 of the ladder). Thus, incorporating sensitivity analysis into the fair prediction
framework is non-trivial. First, we must decompose the expressions CF into identifiable parts and
interventional effects, which solely depend on one intervention at a time. Hence, we now derive an
unnested expression of CFC in the following.
Lemma 1. CFC ∈ {DE, IE,SE} can be defined as a monotonically increasing function h over a
sum of unidentifiable effects e ∈ E in the SCM C, where E denotes the set of all effects in C, and an
identifiable term q, i.e.,

CFC = h
(∑

e∈E
e(v, C) + q

)
for CFC ∈ {DE, IE,SE}. (6)

Proof. The result follows from the ancestral set factorization theorem and the counterfactual factor-
ization theorem in (Correa et al., 2021). A detailed proof is in Supplement D.

4Other sensitivity models from the literature such as the marginal sensitivity model (MSM) (Tan, 2006)
are special cases of the aforementioned and therefore only of limited use for our general setting (e.g., the
MSM can only handle sensitive attributes that are binary but not discrete, or they can not estimate path-specific
causal fairness). In practice, it is up to the user to replace the GMSM with a suitable sensitivity model in our
framework.

5For a rigorous definition, see Supplement E.

5



Published as a conference paper at ICLR 2024

The effects e represent the single-intervention counterfactual effects, which can be bounded through
causal sensitivity analysis. The term q can be directly estimated from the data. Now, using Lemma 1,
we can rewrite Eq. (5) in an unnested way.

Remark 1. Let E+ be the set of single-intervention counterfactual effects e with e(v,S) ≥ 0 and
E− the set of e with e(v,S) < 0. Then, the bounds for CFC ∈ {DE, IE,SE} under GMSM S in
Eq. (5) can be obtained as

CF+
S = h

( ∑
e∈E+

sup
C∈K(S)

e(v, C)−
∑
e∈E−

inf
C∈K(S)

| e(v, C) | +q
)
, (7a)

CF−
S = h

( ∑
e∈E+

inf
C∈K(S)

e(v, C)−
∑
e∈E−

sup
C∈K(S)

| e(v, C) | +q
)
. (7b)

4.3 SENSITIVITY ANALYSIS TO BOUND PATH-SPECIFIC CAUSAL FAIRNESS (STEP 2)

We now use the expressions from counterfactual unnesting to derive upper (+) and lower (−) bounds
for the three path-specific causal effects (i.e., DE±, IE±, and SE±) under unobserved confounding
(U = {UDE, UIE, USE} ≠ 0). The following theorem states our main theoretical contribution.

Theorem 1 (Bounds on path-specific causal fairness). Let the sensitivity parameters for M and Y in
a GMSM be denoted by ΓM and ΓY . For binary sensitive attribute A ∈ {0, 1}, where, for simplicity,
we focus on discrete Z, the individual upper (+) and lower (−) bounds on the path-specific causal
fairness effects for specific y, ai, aj are given by

DE±ai,aj
(y | ai) =

1

P (ai)

∑
z∈Z,
m∈M

P±(y | m, z, aj)P
±(m | z, ai)P (z)

− P (aj)

P (ai)

∑
z∈Z,
m∈M

P (y | m, z, aj)P (m | z, ai)P (z)− P (y | ai),

(8)

IE±ai,aj
(y | aj) =

P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y | m, z, ai)[P (m | z, ai)− P (m | z, aj)]P (z)

+
∑
z∈Z,
m∈M

P (z)

P (aj)

(
P±(y | m, z, ai)P

±(m | z, aj)

− P∓(y | m, z, ai)P
∓(m | z, ai)

)
,

(9)

SE±ai,aj
(y) =

1

P (aj)

∑
z∈Z,
m∈M

P±(y | m, z, ai)P
±(m | z, ai)P (z)−

(
1 +

P (ai)

P (aj)

)
P (y | ai), (10)

for ai, aj ∈ A. Note that, in the continuous case, the sum over Z has to be replaced by the integral.
For a discrete M with F (m) denoting the CDF of P (m | z, ai), we define

P+(m | z, ai) =


P (m | z, ai)((1− Γ−1

M )P (ai | z) + Γ−1
M ), if F (m) < ΓM

1+ΓM

P (m | z, ai)((1− ΓM )P (ai | z) + ΓM ), if F (m− 1) > ΓM
1+ΓM

,
((1−P (ai|z))(1−ΓM )

1+ΓM
+ F (m)ΓM − F (m− 1)Γ−1

M

+P (ai | z)(F (m)(1− ΓM )− F (m− 1)(1− Γ−1
M )), otherwise,

P−(m | z, ai) =


P (m | z, ai)((1− ΓM )P (ai | z) + ΓM ), if F (m) < 1

1+ΓM

P (m | z, ai)((1− Γ−1
M )P (ai | z) + Γ−1

M ), if F (m− 1) > 1
1+ΓM

(1−P (ai|z))(1−ΓM )
ΓM

+ P (ai|z)
(1+ΓM )

+ F (m)Γ−1
M − F (m− 1)ΓM

+P (ai | z)(F (m)Γ−1
M − F (m− 1)(1− ΓM )) otherwise.

If Y is discrete, the probability functions P+(y | m, z, ai) and P−(y | m, z, ai) are defined analo-
gously. The probability functions for continuous Y are presented in Supplement E.
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Proof. We prove the theorem in Supplement D. The proof proceeds as follows: We unnest each
counterfactual term in DE, IE, and SE to receive expressions of the form given in Eq. (6). Subse-
quently, we derive bounds for each unidentifiable part in the unnested counterfactuals through sen-
sitivity analysis. Finally, we combine the bounds to prove the above statement for DE, IE, SE.

The bounds provide a worst-case estimate for CF ∈ {DE, IE,SE} for specific y, ai, aj under unob-
served confounding. Training predictors based on the bounds reduces the risk of harmful and unfair
predictions due to violating the no unobserved confounding assumption. The worst-case fairness
estimates are guaranteed to contain the true path-specific causal effects for sufficiently large sen-
sitivity parameters. The wider the interval defined through CF+ and CF−, the more sensitive the
path-specific causal effect to unobserved confounding, i.e., the less confidence we can have in our
results if not accounting for unobserved confounding. Thus, one can test the robustness of prediction
models as to what extent they are sensitive to unobserved confounding in high-risk applications.

We emphasize that Theorem 1 is independent of the distribution and dimensionality of unobserved
confounders and specific SCM formulations. Hence, the bounds are valid for discrete, categorical,
and continuous outcome variables, making them widely applicable to real-world problems.
Remark 2. Our bounds are sharp; that is, the bounds from Theorem 1 are optimal, and, therefore,
the equality sign in Eq. (5) holds.

The remark follows from (Frauen et al., 2023b). Our bounds can be interpreted as the supremum or
infimum of the path-specific causal effects in any SCM compatible with the sensitivity model.

5 BUILDING A FAIR PREDICTION MODEL UNDER UNOBSERVED
CONFOUNDING

Our goal is to train a prediction model fθ that is fair under unobserved confounding, where fairness
is denoted by the path-specific causal fairness effects. Recall that path-specific causal fairness is
unidentifiable under unobserved confounding. Therefore, we use our bounds CF+ and CF− for
CF ∈ {DE, IE,SE} from Theorem 1 to limit the worst-case fairness of the prediction, where worst-
case refers to the maximum unfairness, i.e., maximum deviation from zero, of each of the path-
specific causal effects under a given sensitivity model. Intuitively, we want our prediction model to
provide both accurate predictions and fulfill user-defined fairness constraints for each path-specific
causal effect, allowing the practitioner to incorporate domain knowledge and business constraints.

Bound computation: Theorem 1 requires bounds P±(y | z,m, a) and P±(m | z, a) to calcu-
late the overall bounds CF+, CF− for CF ∈ {DE, IE,SE} for specific y, ai, aj . For training a
robustly fair prediction model, we are now interested in deriving effects CF+

E (ai, aj) of the form
DE±

ai,aj
(E[Y ] | ai) and similarly for IE and SE.6 As a result, we replace P±(y | z,m, a) by

the non-random predicted outcome fθ(a, z,m). This way, we can estimate the unidentifiable effect
P±(y | z,m, a) and only need to obtain P±(m | z, a). This requires the conditional density esti-
mation for P (a | z), P (m | z, a) through pre-trained estimators gA : Z 7→ A and gM : A,Z 7→ M.

Objective: Our objective for training the prediction model fθ consists of two aims: (1) a low
prediction loss l(fθ) and (2) worst-case fairness estimates bounded by a user-defined threshold
γγγ = [γDE, γIE, γSE]

T . We formulate our objective as a constraint optimization problem:

min
θ

l(fθ) s.t.max{|CF+
E (ai, aj)|, |CF

−
E (ai, aj)|} ≤ γCF, ∀ CF ∈ {DE, IE,SE}, (11)

To solve Eq. (11) by gradient-based solvers, we first need to rewrite the constrained optimization
problem to a single loss function. For this, we make use of augmented Lagrangian optimization
(Nocedal & Wright, 2006), which allows us to add an estimate λλλ of the exact Lagrange multiplier to
the objective.7 We provide pseudocode for our training algorithm in Algorithm 1. In each iteration,
we calculate the upper ub(·) and lower bound lb(·) on each CFE(ai, aj), CF ∈ {DE, IE,SE}
according to Theorem 1. In Supplement E, we provide additional explanations and an extended
algorithm for multi-class classification.

6For regression and binary classification, the expectation is a reasonable choice of distribution functional.
For multiclass classification, replacing the expectation with other distributional quantiles or constraining the
effects for each class separately is also common in practice. More details are in Supplement E.4.

7For a detailed description; see Chapter 17 in Nocedal & Wright (2006).
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Algorithm 1: Training fair prediction models robust to
unobserved confounding

Input: Data {(Ai, Zi,Mi, Yi) : i ∈ {1, . . . , n}}, sensitivity parameter
ΓM , vector of fairness constraints γγγ, Lagrangian parameter vectors λλλ0 and
µµµ0 , pre-trained density estimators gA, gM , initial prediction model fθ0 ,
convergence criterion ε, Lagrangian update-rate α

Output: Fair predictions {ŷi : i ∈ {1, . . . , n}}, trained prediction model f∗
θ

1 fθj
← fθ0 ; λλλk ← λλλ0 ; µµµk ← µµµ0 for k ∈ max iterations do
/* Train prediction model */

2 for l ∈ nested epochs do
3 ŷ ← fθl

(A,Z,M);

/* Determine CF+
E ,CF−

E for CF ∈ {DE, IE, SE}
following Theorem 1 */

4 CF+
E ← ub(fθl

, (A,Z,M),ΓM , gA, gM );

5 CFE
− ← lb(fθl

, (A,Z,M),ΓM , gA, gM );

/* Optimization objective following Eq. (11) */
6 for CF ∈ {DE, IE, SE} do
7 cCF ← max{|(CF+

E )|, |(CF−
E )|}

8 end
9 c← [cDE, cIE, cSE]T ;

lagrangian← loss(fθl
)−λλλk(γγγ−c)− 1

2µµµk
(λλλk−λλλk−1)

2 ;

/* Update parameters of predictor */
10 fθl+1

← optimizer(lagrangian, fθl
)

11 end
12 if c ≤ γγγ then

/* Check for convergence */
13 if prediction loss(fθl ) ≤ ε then
14 f∗

θ ← fθl+1
;

15 break
16 end
17 end

/* Update Lagrangian parameters */
18 λλλk+1 ← max{λλλk − cµµµk , 0 } ; µµµk+1 ← αµµµk

19 end

Implementation details: We imple-
ment the underlying prediction model
as a three-layer feed-forward neu-
ral network with leaky ReLU acti-
vation function and dropout. Our
framework additionally requires pre-
trained density estimators gA, gM ,
for which we also use a feed-forward
neural network. Details about the
model architectures and hyperparam-
eter tuning are in Supplement G, in
which we also report the performance
of our prediction models.

6 EXPERIMENTS

Baselines: We emphasize that base-
lines for causal fairness under unob-
served confounding are absent. We
thus compare the following models:
(1) Standard refers to fθ trained only
on loss l without causal fairness con-
straints. Hence, the standard model
should lead to unfairness if trained on
an unfair dataset, even without unob-
served confounding. (2) Fair naı̈ve
is a prediction model where the loss
additionally aims to minimize unfair-

ness in terms of the unconfounded path-specific effects. Hence, causal fairness is considered only
under the assumption of no unobserved confounding. (3) Fair robust (ours) is our framework in Al-
gorithm 1 in which we train the prediction model wrt. causal fairness while additionally accounting
for unobserved confounding. Importantly, the architectures of the neural network fθ for the different
models are identical, so fairness improves only due to our tailored learning objective.

Performance metrics: We report path-specific causal fairness by computing bounds on the three
effects following Theorem 1. Ideally, the different values remain zero, even in the presence of
unobserved confounding. We report the averaged results and the standard deviation over five seeds.
We later report results for different sensitivity parameters ΓM in the Supplements.

6.1 DATASETS
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Figure 4: Validity of our bounds. Our bounds successfully con-
tain the oracle effects for different confounding levels Φ. Results
for different sensitivity parameters ΓM and ΓY = 1.

Synthetic datasets: We follow
common practice (e.g., Frauen
et al., 2023b; Kusner et al.,
2017) building upon synthetic
datasets for evaluation. This has
two key benefits: (1) ground-
truth outcomes are available for
bench-marking, and (2) we can
control the level of unobserved
confounding to understand the
robustness of our framework.

We consider two settings with
different types of unobserved confounding. Both contain a single binary sensitive attribute, me-
diator, confounder, and outcome variable. In setting “UDE”, we introduce unobserved confounding
on the direct effect with confounding level Φ and in setting “UIE”, unobserved confounding on the
indirect effect with level Φ. We generate multiple datasets per setting with different confounding
levels, which we split into train/val/test sets (60/20/20%). Details are in Supplement H.1.

Real-world dataset: Our real-world study is based on the US Survey of Prison Inmates (United
States. Bureau of Justice Statistics, 2021). We aim to predict the prison sentence length for drug
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offenders. For this, we build upon the causal graph from Fig. 1. We consider race as the sensitive
attribute and the prisoner’s history as a mediator. Details are in Supplement H.2.

6.2 RESULTS
UDE
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Figure 5: Effectiveness of achieving causal fairness as measured
by DE, IE,SE (from left to right), which should be close to zero.

Results for the synthetic
dataset: We show that our
framework generates valid
bounds (Fig. 4). Specifically,
we demonstrate that our bounds
successfully capture the true
path-specific causal fairness.
We find: (1) Our bounds (red)
include the oracle effect as long
as the sensitivity parameter is
sufficiently large. This demonstrates the validity of our bounds. (2) The naı̈ve effects, which assume
no unobserved confounding (blue), differ from the oracle effects. This shows that failing to account
for unobserved confounding will give wrong estimates of CF ∈ {DE, IE,SE}.

We now compare our framework against the baselines (Fig. 5) based on the estimated path-specific
causal fairness. We find: (1) The standard model (gray) fails to achieve causal fairness. The path-
specific causal fairness effects clearly differ from zero. (2) The fair naı̈ve model (purple) is better
than the standard model but also frequently has path-specific causal fairness effects different from
zero. (3) Our fair robust model (orange) performs best. The predictions are consistently better in
terms of causal fairness. Further, the results have only little variability across different runs, adding
to the robustness of our framework (Table 2). Importantly, our framework is also highly effective in
dealing with larger confounding levels. See Supplement I for further results.

Results for the real-world dataset: We aim to demonstrate the real-world applicability of our
framework. Since benchmarking is impossible for real-world data, we seek to provide insights into
how our framework operates in practice. In Fig. 6, we compare the predicted prison sentence from
(i) the standard model and (ii) our fair robust model. The standard model tends to assign much
longer prison sentences to non-white (than to white) offenders, which is due to historical bias and
thus deemed unfair. In contrast, our fair robust model assigns prison sentences of similar length.

DE IE SE

Standard upper 0.14± 0.00 −0.14± 0.00 0.01± 0.00
lower 0.06± 0.00 −0.25± 0.00 −0.02± 0.00

Fair naı̈ve upper 0.06± 0.05 −0.02± 0.01 0.00± 0.00
lower 0.05± 0.05 −0.04± 0.02 −0.00± 0.00

Fair robust (ours) upper 0.01± 0.02 −0.01± 0.01 0.00± 0.00
lower 0.00± 0.02 −0.02± 0.02 0.00± 0.00

Table 2: Estimated bounds on the synthetic dataset “UDE”
for confounding level Φ = 2; mean and std. over 5 runs.
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Figure 6: Predicted prison sentence
length (months) per race group from
the standard model (left) and the ro-
bustly fair model (right).

7 DISCUSSION

Applicability: We provide a general framework. First, our framework is directly relevant for many
settings in practice (see Supplement B.1). Second, it can be used with both discrete and continuous
features (see Supplement J). Third, it is not only applicable to the specific notions above, but it can
also be employed for other notions of causal fairness (see Supplement F).

Conclusion: Failing to account for unobserved confounding may lead to wrong conclusions about
whether a prediction model fulfills causal fairness. First, our framework can be used to perform
sensitivity analysis for causal fairness of existing datasets. This is often relevant as information
about sensitive attributes (e.g., race) cannot be collected due to privacy laws. Second, our framework
can be used to test how robust prediction models under causal fairness constraints are to potential
unobserved confounding. To this end, our work is of direct practical value for ensuring the fairness
of predictions in high-stakes applications.
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Andrew Jesson, Sören Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in individual-
level causal-effect estimates under hidden confounding. In International Conference on Machine
Learning (ICML), 2021.

Andrew Jesson, Alyson Douglas, Peter Manshausen, Maëlys Solal, Nicolai Meinshausen, Philip
Stier, Yarin Gal, and Uri Shalit. Assessing sensitivity to an unobserved binary covariate in an ob-
servational study with binary outcome. In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Ying Jin, Zhimei Ren, and Emmanuel J. Candès. Sensitivity analysis of individual treatment effects:
A robust conformal inference approach. Proceedings of the National Academy of Sciences of the
United States of America, 120(6), 2023.

Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In Conference on Neural
Information Processing Systems (NeurIPS), 2018.

Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal ef-
fects under unobserved confounding. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

Aria Khademi, Sanghack Lee, David Foley, and Vasant Honavar. Fairness in algorithmic decision
making: An excursion through the lens of causality. In World Wide Web Conference (WWW),
2019.

Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing,
and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. In Conference on
Neural Information Processing Systems (NeurIPS), 2017.

Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, and Ricardo Silva. The sensitivity of
counterfactual fairness to unmeasured confounding. In Conference on Uncertainty in Artificial
Intelligence (UAI 2019), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. In Innovations in Theoretical Computer Science Conference (ITCS), 2017.

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Cass R. Sunstein. Discrimination in the age
of algorithms. Journal of Legal Analysis, 10:113–174, 2019.

Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In
Conference on Neural Information Processing Systems (NeurIPS), 2017.

Joshua R. Loftus, Chris Russell, Matt J. Kusner, and Ricardo Silva. Causal reasoning for algorithmic
fairness. arXiv preprint, 1805.05859v1, 2018.

11



Published as a conference paper at ICLR 2024

Jonathan L. Lustgarten, Vanathi Gopalakrishnan, Himanshu Grover, and Shyam Visweswaran. Im-
proving classification performance with discretization on biomedical datasets. In AMIA Annual
Symposium, 2008.

Yuchen Ma, Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. Counterfactual fairness
for predictions using generative adversarial networks. arXiv preprint, 2023.

Myrl G. Marmarelis, Elizabeth Haddad, Andrew Jesson, Neda Jahanshad, Aram Galstyan, and Greg
Ver Steeg. Partial identification of dose responses with hidden confounders. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2023a.

Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan, and Fred Morstatter. Ensembled prediction
intervals for causal outcomes under hidden confounding. arXiv preprint, 2023b.

Matthew A. Masten and Alexandre Poirier. Inference on breakdown frontiers. Quantitative Eco-
nomics, 11(1):41–111, 2020.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Partial counterfactual identification
of continuous outcomes with a curvature sensitivity model. In Conference on Neural Information
Processing Systems (NeurIPS), 2023.

Wang Miao, Zhi Geng, and Eric Tchetgen Tchetgen. Identifying causal effects with proxy variables
of an unmeasured confounder. Biometrika, 105(4):987–993, 2018.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. In Conference on Artificial Intelligence
(AAAI), 2018.

Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. Learning optimal fair policies. In International
Conference on Machine Learning (ICML), 2019.

Hamed Nilforoshan, Johann Gaebler, Ravi Shroff, and Sharad Goel. Causal conceptions of fairness
and their consequences. In International Conference on Machine Learning (ICML), 2022.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, Nevw York, NY, USA, 2e
edition, 2006.

Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit.
B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In
International Conference on Machine Learning (ICML), 2023.

Judea Pearl. Interpretation and identification of causal mediation. Psychological Methods, 19(4):
459–481, 2014.

Drago Plecko and Elias Bareinboim. Causal fairness analysis: A causal toolkit for fair machine
learning. arXiv preprint, 2022.

Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka Kamei, and Ahmed E. Hassan. Impact of
discretization noise of the dependent variable on machine learning classifiers in software engi-
neering. IEEE Transactions on Software Engineering, 47(7):1414–1430, 2021.

Paul R. Rosenbaum. Sensitivity analysis for certain permutation inferences in matched observational
studies. Biometrika, 74(1):13, 1987.

Dan Soriano, Eli Ben-Michael, Peter J. Bickel, Avi Feller, and Samuel D. Pimentel. Interpretable
sensitivity analysis for balancing weights. Journal of the Royal Statistical Society Series A: Statis-
tics in Society, pp. 1–15, 2023.

Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the
American Statistical Association, 101(476):1619–1637, 2006.

United States. Bureau of Justice Statistics. Survey of prison inmates 2016. United States Inter-
university Consortium for Political and Social Research (distributor), 2021.

Tyler J. VanderWeele and Peng Ding. Sensitivity analysis in observational research: Introducing the
e-value. Annals of Internal Medicine, 167(4):268–274, 2017.

12



Published as a conference paper at ICLR 2024

Indu Sussan Varghese and R. Guna Sundari. The performance enhancement through discretization
of variables in classification using random forest as classifier. In International Conference on Hu-
mans and Technology: A Holistic and Symbiotic Approach to Sustainable Development (ICHT),
2022.

Songhua Wu, Mingming Gong, Bo Han, Yang Liu, and Tongliang Liu. Fair classification with
instance-dependent label noise. In Conference on Causal Learning and Reasoning, 2022.

Yongkai Wu, Lu Zhang, and Xintao Wu. Counterfactual fairness: Unidentification, bound and
algorithm. In International Joint Conference on Artificial Intelligence (IJCAI), 2019a.

Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. PC-fairness: A unified framework for
measuring causality-based fairness. In Conference on Neural Information Processing Systems
(NeurIPS), 2019b.

Liyuan Xu and Heishiro Kanagawa. Deep proxy causal learning and its application to confounded
bandit policy evaluation. In Conference on Neural Information Processing Systems (NeurIPS),
2021.

Liuyi Yao, Yaliang Li, Bolin Ding, Jingren Zhou, Jinduo Liu, Mengdi Huai, and Jing Gao. Path-
specific causal fair prediction via auxiliary graph structure learning. In World Wide Web Confer-
ence (WWW), 2023.

Mingzhang Yin, Claudia Shi, Yixin Wang, and David M. Blei. Conformal sensitivity analysis for
individual treatment effects. Journal of the American Statistical Association, pp. 1–14, 2022.

Junzhe Zhang and Elias Bareinboim. Fairness in decision-making – the causal explanation formula.
In Conference on Artificial Intelligence (AAAI), 2018a.

Junzhe Zhang and Elias Bareinboim. Equality of opportunity in classification: A causal approach.
In Conference on Neural Information Processing Systems (NeurIPS), 2018b.

Luu Zhang, Yongkai Wu, and Xintao Wu. A causal framework for discovering and removing direct
and indirect discrimination. In International Joint Conference on Artificial Intelligence (IJCAI),
2017.

Zhongheng Zhang, Cheng Zheng, Chanmin Kim, Sven van Poucke, Su Lin, and Peng Lan. Causal
mediation analysis in the context of clinical research. Annals of Translational Medicine, 4(21),
2016.

Qingyuan Zhao, Dylan S. Small, and Bhaswar B. Bhattacharya. Sensitivity analysis for inverse
probability weighting estimators via the percentile bootstrap. Journal of the Royal Statistical
Society Series B: Statistical Methodology, pp. 735–761, 2019.

13



Published as a conference paper at ICLR 2024

A NOTATION

A Set of nodes corresponding to sensitive attributes

M Set of nodes corresponding to mediators

Z Set of nodes corresponding to observed confounders

U Set of nodes corresponding to unobserved confounders

UDE, UIE, USE Unobserved confounders on the direct, indirect and spuri-
ous effect, respectively

Y, Ŷ Outcome and predicted outcome

X Set of possible values of random variable X

P (·) Probability distribution over a random variable

p(·) Probability density function of a continuous random vari-
able

P Family of probability distributions

C Structural causal model

G A causal graph

AnG(xi) Ancestors of xi in G
PaG(xi) Parents of xi in G
S Generalized marginal sensitivity model

ΓW Sensitivity parameter

K(S) Class of SCMs C compatible with sensitivity model S
DEa0,ai Counterfactual direct effect of ai wrt. a0
DE+

a0,ai
,DE−

a0,ai
Upper and lower bound on counterfactual direct effect

IEa0,ai
Counterfactual indirect effect of ai wrt. a0

IE+
a0,ai

, IE−
a0,ai

Upper and lower bound on counterfactual indirect effect

SEa0,ai
Counterfactual spurious effect of ai wrt. a0

SE+
a0,ai

,SE−
a0,ai

Upper and lower bound on counterfactual spurious effect

CF,CF+,CF− Causal fairness notion with upper and lower bound

D Functional mapping a density to a scalar value

fθ Prediction model with parameters θ

g Density estimator

γ Fairness constraint

Φ Confounding level

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
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B DISCUSSION OF APPLICATIONS

B.1 EXAMPLES: CAUSAL FAIRNESS WITH UNOBSERVED CONFOUNDING
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Outcome

Observed variables

Unobserved confounders

Figure 7: Example: causal graph for predicting
credit default risk.

Prediction of credit default risk: When ap-
plying for a loan, banks commonly evaluate the
applicant’s credit default risk based on various
factors, such as the applicant’s credit history,
occupation, and the presence of a guarantor.
Following the goal of profit maximization and
risk minimization, the bank will only grant the
loan to solvent applicants, i.e., applicants with
a low default risk.

Various fair lending laws across the globe re-
quire that the risk assessment must be fair and,
to this end, should not be affected by sensitive
information. An example could be whether or
not the applicant is an immigrant worker. The
example is shown in Figure 7. Therein, the
default risk is estimated based on information
about the occupation and wage of the applicant,
the size of the loan, the presence of a guarantor,
the housing situation of the applicant (since hypothecary credits can be based on the property), and
the credit history. A fair and strategy-optimizing prediction model should (i) control for any direct,
indirect, and spurious effect stemming from the fact of an applicant being an immigrant worker
and (ii) incorporate the potential effect of the unobserved variable race on the immigration as well
as credit history. Of note, laws in various countries forbid the collection and storage of informa-
tion about race so that such information is often missing, and, therefore, it presents an unobserved
confounder.

Training a machine learning method for predicting a new applicant’s default risk without accounting
for fairness constraints and potential unobserved confounding will likely result in biased and unfair
predictions and, thus, biased loan allocation. In the stated example, immigrant workers might not
receive a loan, although they would constitute a good risk in an unbiased assessment, whereas na-
tionals with a high default risk might falsely be granted a loan. This not only reinforces the societal
bias present in the data but also fails to optimize the bank’s strategy in terms of profit maximization
and risk minimization.
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# children, 

family 

structure

Sensitive attribute

Outcome

Observed variables

Unobserved confounders

Figure 8: Example: causal graph for predicting
acceptance to the nursery.

Prediction of acceptance of child to nursery:
Several works aim to leverage machine learn-
ing models in public organizations. One exam-
ple is the following. Due to a high birth rate
and a shortage of available places at childcare
facilities, not all children can often be admit-
ted to a nursery. The decision of which child to
admit might depend on the parents occupation,
the number of children in the family, and the
housing situation. The causal diagram is shown
in Figure 8, where we detail the mechanisms
behind a recommendation for admission to the
nursery. In the present example, we argue that
the financial status of the family should only
have a limited effect on the recommendation of
admission, i.e., the prediction unfairness intro-
duced by the financial status should be lower
than a specific threshold. Furthermore, multi-
ple unobserved factors typically influence the
family’s financial status and the observed variables. For example, the financial status and occupa-
tion could both be influenced by the family background, potentially mediated through the parent’s
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education. The residential neighborhood is related to the family’s financial status and the housing
situation. Then, a good financial standing might indicate the family’s ability to pay for personalized
private childcare (e.g., a nanny) and, therefore, could have a certain effect on the recommendation
for admission to a nursery. However, a machine learning model trained solely on the observed data
will inevitably provide biased and unfair recommendations.

The above examples show two important applications of causal fairness in practice where unob-
served confounding is prevalent and could be addressed by our framework.

B.2 DISCUSSION ABOUT KNOWLEDGE OF THE STRENGTH OF UNOBSERVED CONFOUNDING

In practice, knowledge of the unobserved confounding (UC) strength is beneficial but not fully
necessary. Importantly, our framework is of direct help in practice when (i) the maximum UC
strength is known or even when (ii) unknown. We discuss both use cases below:

1. There are often good reasons why the UC strength is known or can be upper-bounded.
Many fairness-relevant applications are rooted in social science, where there is a good
understanding of potential causes for biases (e.g., around gender, age, etc.). Hence, it is
often reasonable to assume that the UC strength is in a specific relationship with some
other observed variable. For example, based on domain knowledge, one can often say that
the UC strength is not as strong as (a multiple of) the observed variable (e.g., Cinelli &
Hazlett, 2020; Franks et al., 2019; Masten & Poirier, 2020; Zhang et al., 2016). In such
cases, the UC strength ΓW can be set by practitioners accordingly, and our framework can
be applied as discussed in the main paper

2. Even when the UC strength is unknown, our framework is of significant value in practice.
In this case, practitioners can employ our bounds to test the sensitivity of causal fairness
notions with respect to unobserved confounding in the data. One way to do so is to use
our framework to calculate bounds for increasing sensitivity parameters until the interval
defined by the bounds contains a certain value of interest, e.g., zero (indicating complete
fairness). The minimal sensitivity parameter to achieve this goal corresponds to the level
of unobserved confounding, which would be necessary to consider the data fair. Hence,
one can also view the sensitivity parameter as our uncertainty about the fairness of our
prediction model. Smaller sensitivity parameters that do not achieve the goal still pro-
vide information about the sign, i.e., direction, of the unfair effect Hsu & Small (2013).
Generally, testing various sensitivity parameters is a common technique in real-world ap-
plications of sensitivity analysis (e.g., Hsu & Small, 2013; Jin et al., 2023; VanderWeele &
Ding, 2017). In sum, even when the UC strength is unknown, our framework can thus be
of large practical value.

Furthermore, several approaches have been proposed to choose sensitivity parameters in practice.
We refer to, e.g., Jin et al. (2023); Kallus et al. (2019); Dı́az & van der Laan (2013); Imai & Ya-
mamoto (2013) for further discussions.
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C EXTENDED RELATED WORK

C.1 FAIRNESS IN MACHINE LEARNING

In the following, we present an extended discussion of related works. First, we give a brief taxonomy
of algorithmic fairness. Then, we discuss related causal fairness notions and explain the difference
between counterfactual and causal fairness. For the latter, we heavily rely on Plecko & Bareinboim
(2022) and refer to their work for an in-depth discussion of causal fairness analysis.

Algorithmic fairness: There are mainly two classes of fairness notions, namely, statistical notions
and notions based on causal reasoning (Fawkes et al., 2022). Often, statistical fairness notions are
incompatible with one another (Fawkes et al., 2022; Kilbertus et al., 2019; Kleinberg et al., 2017)
and cannot provide intuitive results (Nabi & Shpitser, 2018). Causality-based notions can help in
overcoming such problems. Relatedly, fairness notions can be defined on a group or individual level,
where the specific choice depends on practical considerations (Loftus et al., 2018). Our framework
focuses on group-level fairness. Although developed for training fair prediction models, the results
can also be used to explain individual discrimination in a prediction model.

At a technical level, fairness in predictions can be achieved at different steps: during pre-processing,
in-processing, or post-processing. Since a prediction model trained on data fair labels is not nec-
essarily fair itself (Ashurst et al., 2022), pre-processing fairness notions do not always mitigate the
unfairness present in the resulting prediction. Therefore, in our work, we seek to ensure fairness in
the presence of unobserved confounding through an in-processing approach.

Causal vs. counterfactual fairness: Causal fairness measures quantify the association of a sensi-
tive attribute and the target variable through causal mechanisms in a structural causal model (SCM)
(Plecko & Bareinboim, 2022). Specifically, a causal fairness notion must fulfill the three elementary
structural fairness criteria: (1) the structural direct criterion, assessing if the target is a function of
the sensitive attribute; (2) the structural indirect criterion, determining the presence of an effect of
a mediator variable on the target which in turn is influenced by the sensitive attribute; and (3) the
structural spurious criterion, evaluating the presence of a confounder between the sensitive attribute
and the target. Causal fairness notions can, therefore, differentiate between direct and indirect dis-
crimination to mathematically account for legal definitions of fairness, such as disparate impact and
disparate treatment, or incorporate business necessities.

As a specific notion, counterfactual fairness (Kusner et al., 2017) enforces the outcome variable to
be identical in both the current observation and a hypothetical counterfactual world in which the
protected attribute has a different realization. It specifically focuses on the total variation in the
outcome caused by a change in the sensitive attribute and does not differentiate between multiple
pathways of discrimination. Many extensions and methods for ensuring counterfactual fairness have
been introduced in the literature (e.g., Chiappa, 2019; Kilbertus et al., 2017; Ma et al., 2023).

Several causal fairness measures are also based on counterfactuals (see Plecko & Bareinboim (2022)
for a taxonomy overview), so we warn that the naming in the literature may be misleading. There-
fore, we highlight the differences in the following. Importantly, counterfactual fairness and any
fairness notion built upon it differs from counterfactual-based causal fairness notions in three fun-
damental aspects: (1) admissibility, (2) ancestral closure, and (3) identifiability. We discuss the
aspects in the following:

1. Admissibility: Even if the counterfactual fairness metric evaluates to zero and thus implies
that a model is fair, there is still no guarantee for both the direct and indirect association of
the sensitive attribute and the target being zero, as the effects might cancel out. To this end,
counterfactual fairness is inadmissible w.r.t. the structural criteria.

2. Ancestral closure: Ancestral closure requires all ancestors of the sensitive attribute to be
observed. This implies that there cannot be any unobserved confounders on an association
containing the sensitive attribute, which is unlikely to hold in practice. Causal fairness
notions, on the other hand, allow for endogenous ancestors.

3. Identifiability: Throughout our paper, we have dealt with unidentifiability of causal fairness
due to unobserved confounding, arguing that the assumption of no unobserved confound-
ing does not hold in practice. If the full SCM was known, the fairness notion would be
identifiable. Counterfactual fairness, however, is never identifiable from observational data
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if mediators between the sensitive attribute and the target exist, even if the full SCM is
specified.

In sum, both causal vs. counterfactual fairness are entirely different notions. In our work, we focus
on causal fairness.

C.2 CAUSAL SENSITIVITY ANALYSIS

Causal sensitivity analysis has widely been employed for partial identification problems. By impos-
ing assumptions on the strength of unobserved confounding and, therefore, relaxing the assumption
of no unobserved confounding, various causal effects can be bounded in the presence of unobserved
confounding. The resulting bounds can often prove that the causal quantities of interest cannot be
explained away by unobserved confounding. Especially for real-world studies and policy learning,
sensitivity models thus provide important tools for assessing the sensitivity of a causal estimate to
unobserved confounding through deriving informative regions for the causal effect (Kallus et al.,
2019).

The main sensitivity models introduced in the literature are: the sensitivity model of Rosenbaum
(Rosenbaum, 1987) employing randomization tests; the non-parametric marginal sensitivity model
(Tan, 2006); and the recent f -sensitivity models (Jin et al., 2023). For binary treatments A ∈ {0, 1},
the marginal sensitivity model (MSM) Tan (2006) is defined as

1

Γ
≤ π(z)

1− π(z)

1− π(z, u)

π(z, u)
≤ Γ, (12)

where π(z) = P (A = 1 | z) denotes the observed propensity score and π(z, u) = P (A = 1 | z, u)
denotes the full propensity score.

Multiple extensions have been developed recently, especially for the MSM, which has received
much attention in the literature. Most work has focused on the average treatment effect (ATE) and
conditional average treatment effect (CATE) for binary treatment settings (e.g., Dorn & Guo, 2022;
Dorn et al., 2022; Jesson et al., 2021; Kallus et al., 2019; Oprescu et al., 2023; Zhao et al., 2019).
Popular extensions for the MSM include sensitivity models for continuous treatments (Jesson et al.,
2022; Marmarelis et al., 2023a). For continuous treatments A, the continuous marginal sensitivity
model (CMSM) Jesson et al. (2022) is defined through

1

Γ
≤ P (a | z, u)

P (a | z)
≤ Γ. (13)

Other extensions include augmentations to individual treatment effects (Yin et al., 2022; Jin et al.,
2023; Marmarelis et al., 2023b).

The work by Frauen et al. (2023b) introduces the Generalized Marginal Sensitivity Model (GMSM):
For an observational distribution PV on V and a family P of joint probability distributions on V∪U
that satisfy

1

(1− ΓW ) qW (a, z) + ΓW
≤ P (Uw = uW | z, a)

P (Uw = uW | z,do(a))
≤ 1

Γ−1
W qW (a, z) + Γ−1

W

(14)

for W ∈ {M,Y } and weight function qW (a, z) ∈ [0, 1], the tuple S = (V,U,G, PV,P) is called
a weighted generalized marginal sensitivity model (GMSM) with sensitivity parameter ΓW ≥ 1. It
can be shown that, for weight functions q(a, z) = P (a | z) (MSM) and q(a, z) = 0, the MSM and
the CMSM are special cases of the weighted GMSM (Frauen et al., 2023b). Therefore, the GMSM
generalizes many of the aforementioned approaches as it allows to derive bounds for binary and
continuous treatments as well as different causal queries (e.g., CATE, distributional effects).

Causal sensitivity analysis has also been applied to other settings, such as off-policy learning (e.g.,
Hatt et al., 2022; Kallus & Zhou, 2018) or partial identification of counterfactual queries (Melnychuk
et al., 2023). Recently, neural frameworks for automated generalized sensitivity analysis have been
proposed (Frauen et al., 2024). Only one other work besides us has employed sensitivity analysis
to study fairness notions under unobserved confounding (Kilbertus et al., 2019). Nevertheless, this
work focuses on the notion of counterfactual fairness (and not causal fairness) and is limited to
non-linear additive noise models.
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Rationale behind our choice of sensitivity models:

In the following, we compare multiple extensions of the MSM with respect to applicability and
discuss the strengths and weaknesses. Thereby, we provide a justification of why we adopt the
GMSM in our paper.

A general benefit of the MSM is that it does not impose parametric assumptions on the data-
generating process, thus enabling wide applicability to many domains. Nevertheless, the sensitivity
model is only defined for a single binary treatment variable. Mutliple extensions derive bounds
based on the MSM (e.g., Dorn & Guo, 2022; Dorn et al., 2022; Jesson et al., 2021; Kallus et al.,
2019; Oprescu et al., 2023; Zhao et al., 2019). However, the bounds provided by the extensions
above are unnecessarily conservative. Therefore, Dorn & Guo (2022) and Jin et al. (2023) derived
closed-form solutions for sharp bounds under the MSM.

The main weaknesses of the above extensions are (i) the limitation to binary treatment and (ii) the
restricted focus on the (conditional) average treatment effect. To overcome weakness (i), Bonvini
et al. (2022); Jesson et al. (2022) and Marmarelis et al. (2023a) proposed extensions for continuous
treatments. Additionally, Bonvini et al. (2022) extended the setting to time-varying treatment and
confounding variables. To overcome weakness (ii), Jin et al. (2023); Marmarelis et al. (2023b) and
Yin et al. (2022) introduced sensitivity models to cover the individual treatment effect (ITE).

In our work, we adopt the GMSM. The generalized marginal sensitivity model (GMSM) (Frauen
et al., 2023b) provides a general causal sensitivity framework that can incorporate continuous, dis-
crete, and time-varying treatments. The resulting bounds are sharp and applicable to multiple causal
effects (e.g., CATE, ATE) as well as to mediation analysis, path analysis, and for distributional ef-
fects. Overall, the GMSM is thus highly suitable for deriving bounds on causal fairness metrics
and thus makes our framework widely applicable to various settings (e.g., discrete and continuous
variables, etc.). Of note, we use the GMSM only to formalize our setting, while the actual derivation
of bounds is non-trivial (and is not a direction application of the GMSM). The reason is that the
GMSM makes interventional queries (=level 2 in Pearl’s causality ladder), while our task involves
counterfactual queries (=level 3). Hence, existing bounds are not applicable; instead, a new and
careful derivation of bounds that are tailored to our setting is needed.

We also summarize the above discussion in Table 3, which provides a systematic overview of the
applicability of existing MSM extensions.

Table 3: Overview of key extensions of the MSM for causal sensitivity analyses. Applicability/non-
applicability is indicated by a green tick (✓) and a red cross (✗), respectively.

MSM extensions Treatment type Causal query

Binary Cont. (C)ATE Distributional Individual treatment
effects effect (ITE)

Tan (2006) ✓ ✗ ✓ ✗ ✗
Kallus et al. (2019) ✓ ✗ ✓ ✗ ✗
Zhao et al. (2019) ✓ ✗ ✓ ✗ ✗
Jesson et al. (2021) ✓ ✗ ✓ ✗ ✗
Dorn & Guo (2022) ✓ ✗ ✓ ✗ ✗
Dorn et al. (2022) ✓ ✗ ✓ ✗ ✗
Oprescu et al. (2023) ✓ ✗ ✓ ✗ ✗
Soriano et al. (2023) ✓ ✗ ✓ ✗ ✗
Bonvini et al. (2022) ✗ ✓ ✓ ✗ ✗
Jesson et al. (2022) ✗ ✓ ✓ ✗ ✗
Marmarelis et al. (2023a) ✗ ✓ ✓ ✗ ✗
Jin et al. (2023) ✓ ✗ ✗ ✗ ✓
Yin et al. (2022) ✓ ✗ ✗ ✗ ✓
Marmarelis et al. (2023b) ✓ ✗ ✗ ✗ ✓
Frauen et al. (2023b) ✓ ✓ ✓ ✓ ✓

C.3 CHALLENGES IN SENSITIVITY ANALYSIS FOR CAUSAL FAIRNESS

We transfer concepts from sensitivity analysis to the causal fairness literature by (i) showing the
applicability of sensitivity analysis outside the field of standard causal effects, and (ii) providing a
solution tool for assessing causal fairness under unobserved confounding as well as a direction for
future research. Nevertheless, sensitivity models are not directly compatible with causal fairness
notions. We elaborate on the difficulty and our proposed solution below.
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In the following, we rephrase our workflow in terms of Pearl’s ladder of causality (Fig. 9): We aim
to provide bounds for causal fairness notions, which can be estimated from the data. Causal fairness
notions are located on level three of Pearl’s ladder, i.e., they contain counterfactual expressions.
However, sensitivity models are interventional queries and thus located on level two. Hence, existing
bounds from sensitivity models are not applicable. To remedy the above, we need to develop a
framework to bridge the gap between levels three and two.

Therefore, we propose the following approach to deriving bounds: (i) we propose to decompose
the nested counterfactuals into interventional (non-identifiable due to unobserved confounding) and
identifiable effects. This step is non-trivial and requires customization for every causal fairness
notion. Then, (ii) we employ sensitivity analysis to derive bounds on the interventional terms.
The resulting fairness bounds consist of a concatenation of sensitivity bounds and the decomposed
identifiable effects. We present a schematic of our workflow in terms of the ladder of causality in
Fig. 9.

1: Association

2: Intervention

3: Counterfactual

Causal fairness 
nested (multi-intervention)

counterfactuals

Unnested CF
single interventions 

Fairness bounds
partial identification

Counterfactual
unnesting and
identification

Sensitivity
analysis

Figure 9: Our workflow in terms of Pearl’s ladder of causality. Note: sensitivity models like the
GMSM are interventional queries (=level 2 in Pearl’s causality ladder), while our task involves
counterfactual queries (=level 3), because of which a tailored framework for deriving bounds is
needed.
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D PROOFS

In the following, we derive proofs for our main theorem from Section 4. According to the three-step
approach presented in Section 4, we first provide a theoretical background on the sensitivity model S
(the GMSM). Then, we perform counterfactual unnesting of the path-specific causal effects. Finally,
we prove the overall bounds per counterfactual effect.

D.1 THEORETICAL BACKGROUND ON GMSMS

We can derive bounds on single-counterfactual causal effects, i.e. unnested counterfactuals, in a
GMSM based on the following theorem.
Theorem 2. (Frauen et al., 2023b) Let S be a GMSM with sensitivity parameters ΓW , W ∈ M ∪
{Y }. Further, we restrict each unobserved confounder U ∈ U to be the parent of only one element
in M ∪ {Y }, i.e., there does not exist unobserved confounding between mediators and outcome as
well as between mediators themselves. Let K(S) denote the class of SCMs C compatible with S.
Let F (·) as denote the CDF corresponding to P (· | Z,MW , A). For a continuous W , we define

P+(w | z,mW , a) =

{
1

s+W
P (w | z,mW , a), if F (w) ≤ ΓW

1+ΓW

1
s−W

P (w | z,mW , a), if F (w) > ΓW

1+ΓW

(15)

and

P−(w | z,mW , a) =

{
1

s−W
P (w | z,mW , a), if F (w) ≤ 1

1+ΓW

1
s+W

P (w | z,mW , a), if F (w) > 1
1+ΓW

.
(16)

For a discrete W ∈ N, we define

P+(w | z,mW , a) =


1

s+W
P (w | z,mW , a), if F (w) < ΓW

1+ΓW

1
s−W

P (w | z,mW , a), if F (w − 1) > ΓW

1+ΓW

1
s+W

( ΓW

1+ΓW
− F (w − 1)) + 1

s−W
(F (w)− ΓW

1+ΓW
), otherwise.

(17)

and

P−(w | z,mW , a) =


1

s−W
P (w | z,mW , a), if F (w) < 1

1+ΓW

1
s+W

P (w | z,mW , a), if F (w − 1) > 1
1+ΓW

1
s−W

( 1
1+ΓW

− F (w − 1)) + 1
s+W

(F (w)− 1
1+ΓW

), otherwise.

(18)

With F+(·), F−(·) and FC(·) denoting the conditional CDFs corresponding to P+(w | z,mW , a),
P−(w | z,mW , a) and PC(· | z,mW ,do(A = a)), respectively, we yield

F+(·) = inf
C∈K(S)

FC(w) and F−(·) = sup
C∈K(S)

FC(w) (19)

for all w.

D.2 COUNTERFACTUAL UNNESTING

We perform counterfactual unnesting based on the counterfactual identifiability theory presented in
(Correa et al., 2021). We adopt the notation therein. Let VX, V ∈ V,X ⊆ V denote a counterfactual
expression for V . The ancestral set of VX is given by AnG(VX) = {Wz | W ∈ AnGX(V ), z =
X ∩AnGX(V )}, where GX denotes the graph deduced from G when removing all edges going out of
variables X.

For the general case, let W∗ denote a set of arbitrary counterfactual variables. The corresponding
ancestral set is defined as AnG(W∗) =

⋃
Wt∈W∗

AnG(Wt), where t denotes the respective inter-
vention.
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Theorem 3 (Ancestral set factorization from (Correa et al., 2021)). Let W∗ be an ancestral set, i.e.,
AnG(W∗) = W∗, and let w∗ be a realization of W∗. Then,

P (W∗ = w∗) = P

( ∧
Wt∈W∗

Wpa(W ) = wt

)
, (20)

where the subscript t denotes the set of interventions on W present in W∗. Note that t might be
the empty set, i.e., the variable W is not intervened on. The set of interventions pa(W ) for each
Wt ∈ W∗ corresponds to the interventions t for non-empty t. Otherwise, pa(W ) is given by the
parents PaG(W ) of W .

Analyzing counterfactuals such as in Eq. (20) based on their counterfactual factors (‘ctf-factors’)
can aid in deciding its identifiability in a given graph. A counterfactual factor P (W1[pa(W1)]

=

w1,W2[pa(W2)]
= w2, . . . ,Wl[pa(Wl)]

= wl) for Wi ∈ V, where potentially Wi = Wj for some
i, j ∈ {1, . . . , l} generalizes the parent-child relationship encoded in c-factors to the counterfactual
domain. The brackets around the subscript denote the interventions on the enumerated variables Wi

for i ∈ {1, . . . , l}.

Theorem 4 (Counterfactual factorization from (Correa et al., 2021)). Let P (W∗ = w∗) be a coun-
terfactual factor with a topological order over the variables in G[V(W∗)]. Further, let C1, . . . ,Ck

be the c-components of the stated graph, Cj∗ := {Wpa(W ) ∈ W∗ | W ∈ Cj} with cj the values in
w∗. Then, one yields

P (W∗ = w∗) =
∏
j

P (Cj∗ = cj∗) . (21)

In the following, we will use the stated counterfactual unnesting theory to split the expressions
P (yai | a) and P (yai,maj

| a) into the respective counterfactual factors. We thus obtain

P (yai | a)
(∗)
=

1

P (a)

∑
z∈Z,
m∈M

P (yai
, a, z,mai

)
(∗∗)
=

1

P (a)

∑
z∈Z,
m∈M

P (yai,z,m, az, z,mai,z), (22)

where we leverage the ancestral set expansion (∗) and the counterfactual factorization (∗∗) from
above, respectively. If we assume there exists unobserved confounding between sensitive attribute
and mediator (UIE), sensitive attribute and covariates (USE), and sensitive attribute and outcome
(UDE), this expression cannot be reduced further.

The expression for the second term of interest follows similarly via

P (yai,maj
| a) = 1

P (a)

∑
m∈M

P (yai,m, a,maj
) =

1

P (a)

∑
z∈Z,
m∈M

P (yai,z,m, az, z,maj ,z). (23)

As a result, we can write path-specific causal fairness as a combination of identifiable effects and
single-counterfactual effects, which subsequently can be bounded following Theorem 2. Hence, we
yield

DEai,aj
(y | ai) =P (yaj ,mai

| ai)− P (yai
| ai) (24)

=
1

P (ai)

∑
z∈Z,
m∈M

P (yaj ,z,m, az, z,mai,z)− P (y | ai) (25)

=
1

P (ai)

∑
z∈Z,
m∈M

P (y|z,m, do(aj))P (m | do(ai), z)P (z) (26)

− P (aj)

P (ai)

∑
z∈Z,
m∈M

P (y | m, z, aj)P (m, z | ai)− P (y | ai),
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IEai,aj
(y | aj) =P (yai,maj

| aj)− P (yai
| aj) (27)

=
1

P (aj)
(
∑
z∈Z,
m∈M

P (yai,z,m, az, z,maj ,z)−
∑
z∈Z,
m∈M

P (yai,z,m, az, z,mai,z)) (28)

=
1

P (aj)

∑
z∈Z,
m∈M

P (y|z,m, do(ai))P (m | do(aj), z)P (z) (29)

− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y | m, z, ai)P (m, z | aj)

− 1

P (aj)

∑
z∈Z,
m∈M

(P (y, z,m | do(ai))− P (y, z,m | ai)P (ai)),

SEai,aj
(y) =P (yai

| aj)− P (y | ai) (30)

=
1

P (aj)

∑
z∈Z,
m∈M

P (yai,z,m, az, z,mai,z)− P (y | ai) (31)

=
1

P (aj)

∑
z∈Z,
m∈M

(P (y, z,m | do(ai))− P (y, z,m | ai)P (ai))− P (y | ai).

In the above equations, the effects with do-interventions are unidentifiable in the presence of unob-
served confounding. Furthermore, we present details on the performed calculations in the proofs of
Lemma 2 and Lemma 3.

D.3 COUNTERFACTUAL IDENTIFICATION AND BOUNDS

We use the following corollary.

Corollary 1. Let X and A be two variables of a structural causal model. By consistency it holds

P (Xa) = P (X | A = a)P (A = a) + P (Xa | A ̸= a)P (A ̸= a). (32)

Proof. Follows directly from basic probability theory.

We start by deriving bounds for expressions of the form P (yai
| a). If a = ai, there is nothing

to show, since, by consistency, we have P (yai | ai) = P (y | ai). Therefore, let a ̸= ai in the
following.

Lemma 2. For a binary sensitive attribute with ai ̸= aj , it holds

P+(yai
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P+(y | z,m, ai)P
+(m | ai, z)P (z)− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y, z,m | ai),

(33)

P−(yai | aj) =
1

P (aj)

∑
z∈Z,
m∈M

P−(y | z,m, ai)P
−(m | ai, z)P (z)− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y, z,m | ai).

(34)
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Proof. By Theorem 3, we can write

P (yai
| aj) =

∑
z∈Z,
m∈M

P (yai
, z,mai

| aj)

=
1

P (aj)

∑
z∈Z,
m∈M

[
P (y, z,m | do(ai))− P (y, z,m | ai)P (ai)

−
∑

a′ ̸=ai,
a′ ̸=aj

P (yai
, z,mai

| a′)P (a′)
]
.

(35)

For binary sensitive attributes, this reduces to

P (yai
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

[P (y, z,m | do(ai))− P (y, z,m | ai)P (ai)]. (36)

The first term is not identifiable but can be bounded in a GMSM by rewriting the term as∑
z∈Z,
m∈M

P (y, z,m | do(ai)) =
∑
z∈Z,
m∈M

P (y | z,m,do(a1))P (m | do(a1), z)P (z). (37)

Then, the desired statement follows by Theorem 2.

With the results from above, we turn to the derivation of bounds for the second factor P (yai,maj
|a).

Based on the causal explanation formula, we only have to consider the case a = aj .

Lemma 3. For binary sensitive attributes, it holds

P+(yai,maj
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P+(y | z,m, ai)P
+(m | aj , z)P (z)

− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y|m, z, ai)P (m | z, aj)P (z),

(38)

P−(yai,maj
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P−(y | z,m, ai)P
−(m | aj , z)P (z)

− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y | m, z, ai)P (m | z, aj)P (z).

(39)

Proof. According to Section D.2, we can write

P (yai,maj
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P (ym | maj
, z, do(ai))P (m | z, do(aj))P (z)

− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y | m, z, ai)P (maj
, z | ai)

− 1

P (aj)

∑
z∈Z,
m∈M

∑
l ̸=i,j

P (yai,m,maj
, z | al)P (al).

(40)
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If A is binary, this reduces to

P (yai,maj
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P (y | z,m, do(ai))P (m|do(aj), z)P (z)

+
∑
z∈Z,
m∈M

P (y | m, z, ai)P (m, z | aj)−
1

P (aj)

∑
z∈Z,
m∈M

P (ym,maj
, z | ai).

(41)

We further use

P (yai,m,maj
, z | ai) =

1

P (ai)
P (y | maj

, z, do(ai))P (m | z, do(aj))P (z)

− P (aj)

P (ai)
P (ym,maj

, z | do(ai), aj),
(42)

and, then, the overall expression follows, i.e.,

P (yai,maj
| aj) =

1

P (aj)

∑
z∈Z,
m∈M

P (y|z,m, do(ai))P (m | do(aj), z)P (z)

− P (ai)

P (aj)

∑
z∈Z,
m∈M

P (y | m, z, ai)P (m, z | aj).
(43)

Overall, we want to bound the path-specific causal fairness effects (i.e., Ctf-DE, Ctf-IE, and Ctf-SE),
which consist of differences of the two expressions analyzed above. In the following, we derive the
bounds for each counterfactual factor.

Proof for Theorem 1:

Employing Theorem 2, Lemma 2, and Lemma 3, the counterfactual direct effect is upper bounded
by

DE+
ai,aj

(y | ai) = P+(yaj ,mai
| ai)− P−(yai | ai) (44)

=
1

P (ai)

∑
z∈Z,
m∈M

P+(y | z,m, aj)P
+(m | ai, z)P (z) (45)

− P (aj)

P (ai)

∑
z∈Z,
m∈M

P (y | m, z, aj)P (m | z, ai)P (z)− P (y | ai)

and lower bounded by
DE−

ai,aj
(y | ai) = P−(yaj ,mai

| ai)− P+(yai | ai) (46)

=
1

P (ai)

∑
z∈Z,
m∈M

P−(y | m, z, aj)P
−(m | z, ai)P (z) (47)

− P (aj)

P (ai)

∑
z∈Z,
m∈M

P (y | m, z, aj)P (m | z, ai)P (z)− P (y | ai).

The results for the indirect counterfactual effect follow directly by setting
IE+

ai,aj
(y | aj) = P+(yai,maj

| aj)− P−(yai
| aj) (48)

and
IE−

ai,aj
(y | aj) = P−(yai,maj

| aj)− P+(yai
| aj). (49)

Similarly, the bounds for the spurious counterfactual effect can be derived to
SE+

ai,aj
(y) = P+(yai

| aj)− P (y | ai) (50)
and

SE−
ai,aj

(y) = P−(yai
| aj)− P (y | ai). (51)
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E EXTENDED THEORY

E.1 COMPATIBILITY OF SCMS

An acyclic SCM C = (V,UC ,F , PU), such that U ⊆ UC , G ⊆ GC , is compatible with sensitivity
model S if UC does not introduce additional unobserved confounding and the probability distribu-
tion PV∪UC induced by C belongs to P , i.e., PV∪UC ∈ P .

We further assume no additional unobserved confounding. That is, we have: For each M denote
PaG(M) the observed parents in V. Then, U is a valid adjustment set for the relationship between
PaG(M) and M , i.e., P (m | do(PaG(M) = pa)) =

∫
P (m | do(PaG(M) = pa),U = u)P (U =

u)du.

E.2 EXTENSION OF THEOREM 1

In the following, we provide an extension of Theorem 1 for bounding the counterfactual effects of
continuous outcome variables.

Lemma 4. Let F (y) denote the CDF of P (y | m, z, ai) for a continuous outcome Y . Then, the
probability functions p+(y | m, z, ai) and p−(y | m, z, ai) are given by

p+(y | m, z, ai) =

{
((1− ΓY )

−1P (ai | z) + Γ−1
Y )p(y | m, z, ai), if F (y) ≤ ΓY

1+ΓY

((1− ΓY )P (ai|z) + ΓY )p(y | m, z, ai). if F (y) > ΓY

1+ΓY
.

(52)

and

p−(y | m, z, ai) =

{
((1− ΓY )P (ai | z) + ΓY )p(y | m, z, ai), if F (y) ≤ 1

1+ΓY

((1− ΓY )
−1P (ai | z) + Γ−1

Y )p(y | m, z, ai), if F (y) > 1
1+ΓY

.
(53)

The bounds require estimating the observational density p(y | z,m, a). Nevertheless, in practice, we
can only observe the empirical distribution from which we can obtain p̂(y | z,m, a) via an arbitrary
conditional density estimator. The work in (Frauen et al., 2023b) introduces importance sampling
estimators for finite sample bounds, which can be adapted to estimate the observational density.

E.3 COUNTERFACTUAL IDENTIFIABILITY FOR SUB-PROBLEMS

Our work obtains bounds on the counterfactual effects in a general setting with unobserved con-
founding, i.e., U = {UDE, UIE, USE} ≠ 0. Now, we state the counterfactual identification results
for subproblems in which subsets of U are considered to be zero.

In Section D, we employ counterfactual unnesting theory to split the expressions P (yai
| a) and

P (yai,maj
| a) into the respective counterfactual factors. For the first factor, we derive

P (ya0
| a) = 1

P (a)

∑
z,m

P (ya0,z,m, az, z,ma0,z). (54)

If we assume that there exists unobserved confounding between sensitive attribute and mediator
(UIE), sensitive attribute and covariates (USE), and sensitive attribute and outcome (UDE), this ex-
pression cannot be reduced further. Other possible scenarios of unobserved confounding are exam-
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ined in the following. By the counterfactual factorization theorem, we yield

UDE = UIE = USE = 0 : P (ya0
, a) =

∑
z,m

P (ya0,z,m)P (az)P (z)P (ma0,z), (55)

USE ̸= 0, UDE = UIE = 0 : P (ya0 , a) =
∑
z,m

P (ya0,z,m)P (az, z)P (ma0,z), (56)

UIE ̸= 0, UDE = USE = 0 : P (ya0
, a) =

∑
z,m

P (ya0,z,m)P (az,ma0,z)P (z), (57)

UDE ̸= 0, USE = UIE = 0 : P (ya0
, a) =

∑
z,m

P (ya0,z,m, az)P (z)P (ma0,z), (58)

USE, UIE ̸= 0, UDE = 0 : P (ya0 , a) =
∑
z,m

P (ya0,z,m)P (az, z,ma0,z), (59)

USE, UDE ̸= 0, UIE = 0 : P (ya0
, a) =

∑
z,m

P (ya0,z,m, az, z)P (ma0,z), (60)

UIE, UDE ̸= 0, USE = 0 : P (ya0
, a) =

∑
z,m

P (ya0,z,m, az,ma0,z)P (z). (61)

All terms in the first two cases are directly identifiable from the data. In all other cases, one term is
unidentifiable for a ̸= a0. To derive our bounds, we focus on the general case, allowing for all three
types of unobserved confounding. The expression for the second term of interest follows similarly.

E.4 TRAINING ALGORITHM FOR FAIR PREDICTION

In the following, we discuss Algorithm 1 in more detail. Depending on the task, i.e., binary clas-
sification, multi-class classification, or regression, the precise calculations of the constraints might
vary. Therefore, we will discuss all tasks separately:

1. Binary classification: Assume A, Y ∈ {0, 1}. For each of the three different fairness
effects CF ∈ {DE, IE,SE}, we are interested in, e.g., CF(Y = 1 | A = 1). Due to sym-
metry reasons for binary sensitive attributes A (e.g., discrimination of women compared to
men is symmetric to discrimination of men compared to women), it is sufficient to focus
on one realization of the sensitive attribute. Therefore, we obtain only one constraint per
CF ∈ {DE, IE,SE}, i.e., three constraints in total.

2. Regression: For continuous outcome variables Y ∈ R, it is reasonable to consider the
expectation over Y . Therefore, for this task, we also obtain one constraint per CF and thus
three constraints overall.

3. Multi-class classification: For this task, two different options exist for defining the con-
straints we aim to optimize over. Option one follows the same reasoning as in binary
classification and regression in that one can constrain the expected CF over all realizations
of Y for each CF ∈ {DE, IE,SE}. A more fine-grained approach is to constrain each CF
for each possible realization of Y , y ∈ Y . As a result, we need to optimize our predictor
with respect to 3 × |Y| constraints. Although this is feasible for binary classification, it
can be highly challenging for large |Y|. Which of these options to choose for a specific
problem is left to the practitioner.

Algorithm 1 (main paper) provides the training procedure for binary classification and regression.
In Algorithm 2, we present an alternative training procedure for multi-class classification in which
we impose one constraint for each CF ∈ {DE, IE,SE} × y ∈ Y .
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Algorithm 2: Alternative training procedure for fair multi-class classification models robust to
unobserved confounding

Input: Data {(Ai, Zi,Mi, Yi) : i ∈ {1, . . . , n}}, sensitivity parameter ΓM , vector of fairness constraints γγγ, Lagrangian parameter vectors
λλλ0 and µµµ0 , pre-trained density estimators gA, gM , initial prediction model fθ0 , convergence criterion ε, Lagrangian update-rate α

Output: Fair predictions {ŷi : i ∈ {1, . . . , n}}, trained prediction model f∗
θ

/* Initialize parameters */
1 fθj

← fθ0 ; λλλk ← λλλ0 ; µµµk ← µµµ0 for k ∈ max iterations do
/* Train prediction model */

2 for l ∈ nested epochs do
3 ŷ ← fθl

(A,Z,M);

/* Determine CF+,CF− for CF ∈ {DE, IE, SE} following Theorem 1 for each y ∈ Y */

4 CF+
y ← ub(fθl

, (A,Z,M),ΓM , gA, gM , y), ∀y ∈ Y ;

5 CF−
y ← lb(fθl

, (A,Z,M),ΓM , gA, gM , y), ∀y ∈ Y ;

/* Optimization objective following Eq. (11) */
6 for CF ∈ {DE, IE, SE}, ∀y ∈ Y do
7 cCFy ← max{|CF+

y |, |CFy
−|}

8 end
9 c← [cDEy1

, . . . , cDEyd
, cIEy1

, . . . , cIEyd
, cSEy1

, . . . , cSEyd
]T , where d = |Y|;

10 lagrangian← loss(fθl
)− λλλk(γγγ − c)− 1

2µµµk
(λλλk − λλλk−1)

2;

/* Update parameters of predictor */
11 fθl+1

← optimizer(lagrangian, fθl
)

12 end
13 if c ≤ γγγ then

/* Check for convergence */
14 if prediction loss(fθl ) ≤ ε then
15 f∗

θ ← fθl+1
;

16 stop
17 end
18 end

/* Update Lagrangian parameters */
19 λλλk+1 ← max{λλλk − cµµµk , 0 } ; µµµk+1 ← αµµµk

20 end

We note that, depending on the task, the algorithms optimize with respect to three or 3 × |Y| con-
straints. Therefore, the vectors λλλ,µµµ,γγγ and the final fairness vector c are also of these dimensions.

We also note the following: In Algorithm 1 (main paper), the maximum in Line 7 is always taken
over the two values |E(CF+)| and |E(CF−)| for each CF ∈ {DE, IE,SE}. In Algorithm 2, the
maximum in Line 7 is computed over the two values |CF+

y | and |CFy
−| for each CF × y ∈ |Y|.

The two algorithms thus differ concerning the number of evaluations of the maximum, i.e.. three
evaluations in Alg. 1 (main paper) and 3× |Y| in Alg. 2.
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F BOUNDS ON FURTHER FAIRNESS METRICS

Here, we show that our framework is general and can be applied to a broad set of fairness notions.
Our main paper focused on fairness bounds based on the path-specific causal fairness effects (Zhang
& Bareinboim, 2018a). Nevertheless, our approach is general and can be easily applied to other
notions of fairness as well. In the following, we outline the derivation of bounds for the fair on
average causal effect (Khademi et al., 2019) and path-specific individual fairness (Chiappa, 2019;
Wu et al., 2019b).

F.1 EXTENSION TO THE FAIR ON AVERAGE CAUSAL EFFECT (FACE)

Khademi et al. (2019) introduced the definition of a fair on average causal effect (FACE) of group
fairness, which we denote by FACE(ai). We further define the generalized form of the effect for
non-binary attributes as average FACE

AFACE(A) := EA[FACE(ai)] = EA[E[Y | do(A = ai)]]− E[Y | do(A = a0)]. (62)

A fair predictor should ideally return FACE(ai) = 0 for all ai ∈ A, which implies AFACE(A) =
0. Nevertheless, the single effects might not always be identifiable. In these cases, the average FACE
can be used as a relaxation.

For j = 1, . . . , l, k = |A|, we define

E[Ŷ ] =
∑
z∈Z

∑
m∈M

E[Ŷ | z,m,do(aj)]P (m | z,do(aj))P (z).

The upper and lower bounds for E[Ŷ | z,m,do(aj)] and P (m | z,do(aj)) can iteratively be
derived through the algorithm for causal sensitivity analysis with mediators presented in (Frauen
et al., 2023b). The upper bound ubaj and lower bound lbaj of FACE(aj) (with respect to baseline
a0) are then given by

ubaj
=
∑
z∈Z

P (z)[
∑
m∈M

(E+(Y | z,m, aj)P
+(m | z, aj)− E−(Y | z,m, a0)P

−(m | z, aj))],

(63)

lbaj =
∑
z∈Z

P (z)[
∑
m∈M

(E−(Y | z,m, a0)P
−(m | z, aj))− E+(Y | z,maj)P

+(m | z, aj)]. (64)

For the bounds for AFACE(A), |A|= k, it follows that

ub =
1

k − 1

∑
a′∈A\a0

uba′ , lb =
1

k − 1

∑
a′∈A\a0

lba′ . (65)

We note that the above bounds should be used cautiously since highly positive and negative effects
can cancel out in the definition for AFACE. However, this is not due to our derivation but due to the
definition of considering average effects at the population level without analyzing the heterogeneity
across the population.

F.2 EXTENSION TO PATH-SPECIFIC INDIVIDUAL FAIRNESS

Path-specific individual fairness (Chiappa, 2019; Wu et al., 2019b) along the path π wrt. sensitive
attributes a0, a1 is achieved, if for all z ∈ Z,

EYa0
,Ya1

[Ya1|π − Ya0
| Z = z] = 0 (66)

holds. To build a fair prediction framework based on this fairness notion, we need to derive bounds
on the expressions P (Ya1|π | Z = z) and P (Ya0 | Z = z).
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For simplicity, we assume wlog. that π represents the path A → M → Y for a single mediator M .
Then, for the first term, it holds that

P (Ya1|π = y | Z = z) (67)

=
∑

m∈M
P (Ya1

= y,M = ma1
| Z = z) (68)

=
∑

m∈M
P (Y = y | do(A = a1),M = m,Z = z)P (M = m | do(A = a1), Z = z). (69)

The second term directly decomposes into

P (Ya0
= y | Z = z) (70)

=
∑

m∈M
P (Y = y | do(A = a0),M = m,Z = z)P (M = m | do(A = a0), Z = z). (71)

We observe that both terms constitute subproblems of our bounds derived in Supplement D. The
terms do not contain nested counterfactual expressions but only interventional effects. Therefore,
we can obtain the bounds from Theorem 2.
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G IMPLEMENTATION DETAILS

We implemented the experiments in PyTorch Lightning. Code and data for the reproducibility of the
results are provided in our GitHub repository.

All neural network classifiers used in our study consisted of three layers with leaky ReLU activation
function and dropout. For optimization, we used Adam (Kingma & Ba, 2015).

Our proposed fair predictor training framework requires a pre-trained model for estimating the den-
sity of the mediators based on the confounders and the sensitive attribute. The density of the sensitive
attribute conditioned on the confounders is taken as the relative frequency. Since we only consider
discrete mediators, a simple multi-class classifier is sufficient to perform the density estimation. We
use the same neural network architecture for mediator prediction as for our standard classifier.

Hyperparameters of the classification models were kept fixed across the three classifiers on the
simulated datasets for better comparability. The models consisted of one hidden layer of size ten
and a dropout layer with a rate of 0.1 and were trained with a batch size of 128 and an initial learning
rate of 0.0001. We trained the fair naı̈ve model and the fair robust model with a fairness constraint
of γ = 0.02, initial Lagrangian parameters λ = 0.1, µ = 0.02, and an update rate of α = 1.5. The
prediction performance presented in terms of the ROC AUC is presented in Table 4. To facilitate the
evaluation of the overall performance (i.e. performance and fairness performance), we introduce a
fairness utility function.
Definition 3 (Fairness utility). We define the utility of a fair predictor as the weighted sum of its
fairness and its prediction performance measured as the ROC AUC: For ω ∈ [0, 1]

U(fθ) = ωR(fθ)− (1− ω)F (fθ), (72)

where F represents the fairness evaluated through a causal fairness notion and R the ROC AUC.

We set F (fθ) =
1
3 (max{|DE+

E |, |DE−
E |}+max{|IE+

E |, |IE
−
E |}+max{|SE+

E |, |SE
−
E |}) and ω = 0.5

for our calculations. We report the performance in terms of the fairness utilities of all classifiers as
well in Table 4. Note that the defined utility is upper bounded by one but does not have a lower
bound. Thus, negative utilities are possible.

Table 4: Performance of the prediction models on the simulated datasets measured by the ROC AUC
and the fairness utility.

ROC AUC Fairness utility

Experiment Standard Fair naı̈ve Fair robust Standard Fair naı̈ve Fair robust

ΦUDE = 1 0.8579 0.8112 0.6780 − 0.7284 − 0.8074 − 0.5004
ΦUDE = 2 0.8245 0.7885 0.7618 − 0.7402 − 0.8138 − 0.4662
ΦUDE = 3 0.8037 0.8003 0.5226 − 0.7550 − 0.8137 − 0.5871
ΦUDE = 4 0.7535 0.7466 0.5754 − 0.7809 − 0.8409 − 0.5741

ΦUIE = 1 0.8929 0.8671 0.7187 − 0.9026 − 0.6405 − 0.5334
ΦUIE = 2 0.9150 0.8667 0.6856 − 0.8948 − 0.6348 − 0.5332
ΦUIE = 3 0.8964 0.8271 0.7382 − 0.9066 − 0.6497 − 0.5145
ΦUIE = 4 0.8557 0.8254 0.7321 − 0.9276 − 0.6581 − 0.5290

For our real-world case study, we also employed three-layered networks with leaky ReLU activation
function and dropout. The robustly fair model was trained with a fairness constraint of γ = 0,
initial Lagrangian parameters λ = 3.0, µ = 1.5, an update rate of α = 1.5, and a sensitivity
parameter of Γ = 2. The hyperparameters (hidden layer dimension, dropout rate, learning rate)
of the density estimator and prediction model were optimized with the library Optuna (https://
optuna.org/) across 100 trials. The final parameters and the prediction performance measured
by the MSE are stated in Table 5.
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Table 5: Hyperparameters and prediction performance of the mediator density estimator and predic-
tion model on the real-world dataset.

Model MSE Learning rate Hidden dimension Dropout

Density estimator — 0.0009 256 0.2100
Standard predictor 3.2383 0.0294 32 0.3175
Robustly fair predictor 4.9607 0.0001 64 0.4503

H EVALUATION SETTINGS

H.1 SYNTHETIC DATASET

We consider two settings with different types of unobserved confounding. Both contain a single bi-
nary sensitive attribute, mediator, confounder, and outcome variable. We call the first setting “UDE”.
Therein, we introduce an unobserved confounder on the direct effect with confounding level Φ. We
call the second setting “UIE”. Therein, we introduce an unobserved confounder on the indirect effect
with confounding level Φ.

We then generate synthetic datasets for each setting and confounding level. Specifically, we draw
each 20,000 samples from the following structural equations for UDE, UIE ∼ N (Φ, e−4) with Φ ∈
[1, 4]:

Z ∼ Bernoulli(0.5)

A ∼ Bernoulli(σ(5Z − UDE))

M ∼ Bernoulli(σ(4A+ 2Z)

Y ∼ Bernoulli(σ(3A+ Z + 2M − UDE)),

and

Z ∼ Bernoulli(0.5)

A ∼ Bernoulli(σ(5Z − UIE))

M ∼ Bernoulli(σ(4A+ 2Z − UIE)

Y ∼ Bernoulli(σ(3A+ Z + 2M)),

where σ is the sigmoid function. We restrict the Bernoulli probability to fall in the interval
[0.02, 0.98] to guarantee overlap. The simulation is performed through the partially randomized
causal simulator PARCS (https://pypi.org/project/pyparcs/).

H.2 REAL-WORLD DATASET

Our real-world study is based on the U.S. Survey of Prison Inmates (SPI); see United States. Bureau
of Justice Statistics (2021). Based on the survey data, we created a dataset for predicting prison
sentences for drug offenders. We consider the race of the defendant as the sensitive attribute and
prison history as a mediating factor. Overall, the prison sentence should only depend on the type
of offense. As unobserved confounders, we consider the defendant’s family’s crime history and
citizenship. Formally, we filter the survey data based on the following criteria:

• General filter criterion “drug offense”: Our analysis only considers prisoners sentenced
for drug offenses. Therefore, we filter the complete survey data for offense type “drug”‘.
Furthermore, we split the type into “trafficking” and “possession”, represented through a
binary variable, and disregard other non-specified drug offenses.

• Race: We aim to diminish the effects of race, especially “white American”, on the prison
sentence. Therefore, we combine all information about the defendant’s race into a binary
variable representing “white” and “non-white,” respectively.

• Offense type: We encode the offense type into multiple binary variables indicating drug
possession, manufacturing or growing, import of drugs to the US, distribution of drugs,
and drug money laundry.
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• Sentence: We use information about the prison sentence length in months as a continuous
target variable. We restrict the imprisonment length to a maximum of one year for our
analysis.

• Crime history: Prior court verdicts can characterize crime history. We encode information
about the defendant’s prior sentences into a discrete variable indicating the severity of the
crime history, if any.

• Family history: We are interested if a family member of the defendant had been sentenced
to prison before. Therefore, we combine all survey information about the former impris-
onment of parents, children, and spouses into a binary variable indicating if at least one
family member had been imprisoned before.

• Citizenship / Immigrant to the U.S.: The defendant’s citizenship (if it is non-U.S.) is not
included in the publicly available data due to privacy concerns. Hence, we use information
about U.S. citizenship as a proxy, which we encode as a binary variable.

Individuals who did not provide an answer to the respective question or who answered “I do not
know” were excluded from our analysis. We imputed missing target values through kNN-imputation
with 10 neighbors. We split the resulting dataset in the ratio 60%, 20% , 20% for training, validating,
and testing our models, respectively.
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I ADDITIONAL EXPERIMENTAL RESULTS

In the following, we present further experimental results to demonstrate our framework.

I.1 BOUNDS FOR VARYING SENSITIVITY PARAMETERS

In Figure 10 and Figure 11, we present results for the fairness of the predictions. Here, we examine
the three classifiers as in our main paper but when using varying sensitivity parameters variable
in {1.2, 2.0, 5.0} for calculating the bounds. We observe the same behavior as in our main paper:
the interval defined through the bounds increases in the sensitivity parameter. For the standard
prediction model, the interval eventually covers the original path-specific effect in the data. Together,
the results further demonstrate the effectiveness of our framework.

Figure 10: Bounds of the three prediction models on the dataset including direct unobserved con-
founding on DE, IE, SE (left to right) for increasing sensitivity parameter (top to bottom).

Figure 11: Bounds of the three prediction models on the dataset including indirect unobserved
confounding on DE, IE, SE (left to right) for increasing sensitivity parameter (top to bottom).
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I.2 PERFORMANCE COMPARISON FOR VARYING SENSITIVITY PARAMETER
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Figure 12: Increase in prediction loss (MSE) in
percent for increasing sensitivity parameter cho-
sen for training the fair regressor. Mean and stan-
dard deviation calculated over 5 runs.

We now assess the robustness of our frame-
work with respect to the sensitivity parame-
ter used for training the fair prediction model,
i.e., the level of unobserved confounding as-
sumed to be present in the data. To do so, we
trained multiple fair regression models on the
real-world dataset for increasing sensitivity pa-
rameters Γ ∈ [1, 4]. In Figure 12, we show the
relative increase in performance loss (∆ MSE)
compared to the naı̈vely fair prediciton model,
i.e., Γ = 1. We observe only a very small in-
crease in performance loss, which demonstrates
the robustness of our framework.
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J EXTENSION TO CONTINUOUS FEATURES

For simplicity, we have introduced our framework framework for discrete features in the main paper.
Nevertheless, our framework is directly applicable to continuous features. The derivations of the
bounds are straightforward; they replace the sum over all realizations of Z with the integral. For the
direct effect, it follows that

DE±ai,aj
(y | ai) =

1

P (ai)

∫
Z

∑
m∈M

P±(y | m, z, aj)P
±(m | z, ai)p(z)dz

− P (aj)

P (ai)

∫
Z

∑
m∈M

P (y | m, z, aj)P (m | z, ai)p(z)dz − P (y | ai),

(73)

where p(z) denotes the density of Z. The other effects follow in the same manner.

To show the applicability of our framework for continuous features, we perform binary classification
on a dataset with multiple continuous features. The dataset is generated as

Z1 ∼ Uniform[0.5− 0.02USE, 1.5− 0.02USE]

Z2 ∼ Uniform[1− 0.02USE, 2− 0.02USE]

Z3 ∼ Uniform[1.5− 0.02USE, 2.5− 0.02USE]

Z4 ∼ Uniform[2− 0.02USE, 3− 0.02USE]

A ∼ Bernoulli(σ(0.1UIE + 0.1UDE + 0.05USE + 0.25Z1 + 0.25Z2 + 0.25Z3 − 0.5Z4))

M ∼ Bernoulli(σ(0.1Z1 + 0.1Z2 + 0.1Z3 − 0.5Z4 + 2A− 0.1UIE)

Y = 1[(0.1Z1+0.1Z2+0.1Z3+0.1Z4+M+2A−0.1UDE)≥2],

for UDE, UIE, USE ∼ N (Φ, e−4) with Φ ∈ [1, 4].

We train the three classifiers (analogous to our main paper): (1) standard, (2) fair naı̈ve, and (3) fair
robust (=our). We train them on the above datasets with sensitivity parameter Φ = 2 and fairness
constraints of 0.5 on all effects. For simplicity, we optimize the constraint classifiers with a fixed
penalty constraint with weight λ = 2 instead of augmented lagrangian optimization.

In Figure 13, we present bounds on the three classifiers for sensitivity parameter 2.0. We observe
that training the classifier via our framework successfully restricts the bounds to be lower than the
constraint level of 0.5. In sum, the results confirm the effectiveness of our framework also in settings
with continuous features.
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Figure 13: Fairness bounds on the three classifiers on experiments with multiple continuous con-
founders.

We report the performance of the prediction models in Table 6. We observe that our fair robust
model only suffers from a low loss in prediction performance while achieving fairness below the
threshold of 0.5 for all three effects.

Beyond continuous features, it may also be interesting to use our framework for continuous medi-
ators. Deriving sharp bounds for continuous mediators in sensitivity analysis is highly non-trivial.
Therefore, no non-parametric method for such a problem has been developed so far. Nevertheless,
this posits an interesting direction for future research. As such, we suggest the following solution
approaches:

• Discretization: Discretization is commonly used in causal inference and policy learning
to handle continuous variables (e.g., actions in reinforcement learning are commonly dis-
crete to yield continuous values). Discretization may induce an overall performance loss,
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Table 6: Performance of the prediction models on the continuous datasets measured by the
ROC AUC and the fairness utility.

ROC AUC Fairness utility

Experiment Standard Fair naı̈ve Fair robust Standard Fair naı̈ve Fair robust

ΦUDE ,ΦUIE ,ΦUSE = 1 1.0000 0.9921 0.7048 − 0.5360 − 0.0094 − 0.0302
ΦUDE ,ΦUIE ,ΦUSE = 2 1.0000 0.9326 0.9774 − 0.5361 − 0.0369 0.0737
ΦUDE ,ΦUIE ,ΦUSE = 3 1.0000 0.9383 0.9647 − 0.5356 − 0.0339 0.1158
ΦUDE ,ΦUIE ,ΦUSE = 4 1.0000 0.8783 0.9536 − 0.5356 − 0.0723 0.1072

yet, recently, there have been several methods for handling and minimizing this loss (e.g.,
Rajbahadur et al., 2021). For certain machine learning models, discretization can even
increase the model performance (e.g., Lustgarten et al., 2008; Varghese & Sundari, 2022).

• Proxy variables: Another idea is to employ proxy variables instead of sensitive attributes to
enforce fairness (e.g., Gupta et al., 2018; Kilbertus et al., 2017) or learning causal effects
based on proxies to circumvent unidentifiability due to unobserved confounders (e.g., Miao
et al., 2018; Xu & Kanagawa, 2021). Hence, one solution is to incorporate continuous
mediators into our framework through a discrete proxy variable of the mediator.
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