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ABSTRACT

First-order Linear Differential Microphone Arrays (LDMAs)
are sensitive to sensor imperfections such as phase errors.
This paper analyses the impacts of both bounded and un-
bounded phase errors on first-order LDMAs. We propose
a tolerance threshold that allows bounded phase errors to
take various values. Moreover, White Noise Gain (WNG)
thresholds for preventing mainlobe misorientation are ob-
tained. Our work provides guidance for the design of robust
first-order LDMAs.

Index Terms— differential microphone array, phase er-
ror, white noise gain, mainlobe misorientation

1. INTRODUCTION

Microphone arrays are indispensable components of many
hands-free communication systems and speech recognition
systems in adverse environments [1–5]. Recently, LDMAs
have attracted a significant amount of interest, since they
possess a few advantages over traditional methods. Firstly,
they can construct relatively frequency-invariant beampat-
terns, and hence are appropriate for speech signal processing.
Secondly, they facilitate large Directivity Factors (DFs) with
small and compact apertures [6, 7].

It is well known that LDMAs, especially those of high
order, suffer from white noise amplification and struggle to
have high WNG values [8, 9]. As a result, LDMAs are sen-
sitive to sensor imperfections that worsen the robustness and
reduce WNG values [10, 11]. First-order LDMAs are com-
monly used to mitigate the influence of sensor imperfections.

Many works have investigated how sensor imperfections
affect first-order LDMAs [12–14]. In [12], DF and Front-to-
Back Ratio (FBR) lower bounds are optimised with respect to
sensor imperfections, but WNG optimisation is lacking. Re-
cent works [13, 14] show that sensor phase errors have a crit-
ical influence on the mainlobe orientation of first-order LD-
MAs pointing towards the endfire direction. However, the
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tolerance of phase errors claimed in [13, 14] does not reflect
practical scenarios by assuming that all microphones have
nearly identical values of bounded phase errors, which are
close to 0. Moreover, there is necessity to investigate un-
bounded phase errors that can be arbitrarily large. Although
they have been overlooked so far, unbounded phase errors
naturally arise in scenarios like wireless acoustic sensor net-
works where device synchronisation is challenging [15–18].

In this work, we propose a tolerance threshold for bounded
phase errors without the assumption that microphones should
have similar phase errors. We also derive WNG thresholds
for preventing the mainlobe misorientation due to bounded
and unbounded phase errors.

2. BACKGROUND

2.1. Signal Model

Consider a uniform linear array of M omnidirectional micro-
phones with inter-microphone spacing δ. The steering vector
of this array is defined as [19]

d(ω, cos θ) = [1 e−ȷωτ0 cos θ · · · e−ȷ(M−1)ωτ0 cos θ]T , (1)

where ω = 2πf is the angular frequency and f is the temporal
frequency, θ is the direction of arrival of the source signal
from the array axis, ȷ is

√
−1, c is the speed of sound in air

and τ0 = δ/c.
Beampattern characterizes the input-output behaviour of

microphone arrays in beamforming [20]. It is defined as

BM (ω, θ) = [d(ω, cos θ)]Hh(ω) (2)

=

M∑
m=1

Hm(ω)eȷ(m−1)ωτ0 cos θ (3)

where h(ω) = [H1(ω), H2(ω), · · · , HM (ω)]T is composed
of the filter coefficients. With distortionless constraint,
BM [ω, θ] has the property that

BM (ω, θ)

{
= 1, θ = θd

< 1, θ ̸= θd
, (4)

where θd is the desired look direction of the beamformer.
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2.2. Metrics of First-Order LDMA

By approximating the exponential term in (3) with Taylor
series, we get BM,1(θ), the beampattern of the first-order
LDMA with angle θ:

BM,1(θ) ≈
M∑
m=1

Hm(ω)

1∑
n=0

1

n!
[ȷ(m− 1)ωτ0 cos θ]

n (5)

=

M∑
m=1

Hm(ω) + ȷωτ0 cos θ

M∑
m=1

(m− 1)Hm(ω)

(6)

= a1,0 + a1,1 cos θ. (7)

where a1,0 and a1,1 are the real coefficients of BM,1(θ).
From (6) and (7), we can obtain the values for Hm’s by

following the least-norm principle:

Hm(ω) =
6(m− 1)a1,1

ȷωτ0M(M − 1)(2M − 1)
, m = 2, 3, · · · ,M,

(8)

and

H1(ω) = a1,0 −
M∑
m=2

Hm(ω) = a1,0 −
3a1,1

jωτ0(2M − 1)
.

(9)

The mainlobe orientation θmain is defined as

|BM,1(θmain)|2 = max
θ

|BM,1(θ)|2. (10)

Generally, θmain = θd and |BM,1(θmain)|2 = 1.
One common metric to measure the robustness of micro-

phone arrays is by using WNG [21]. It is defined as

WNG[h(ω)] =
|BM,1(θd)|2

[h(ω)]Hh(ω)
. (11)

Another commonly used metric is DF:

DF[h(ω)] =
|BM,1(θd)|2

1
2

∫ π
0
|BM,1(θ)|2 sin θdθ

. (12)

We assume that the source signal is from the endfire di-
rection, i.e., θd = 0◦. This implies that (7) can be rewritten
as a1,0 + a1,1 = 1. We also assume δ ≪ λ, which means the
spacing between microphones should be much smaller than
the wavelength. We consider the source signal to be far-field.
The reverberation effect is not included in this work.

3. ANALYSIS OF PHASE ERRORS

The steering vector with phase errors can be expressed as

d(p)(ω, cos θ) = [e−ȷψ1(ω) e−ȷωτ0 cos θ−ȷψ2(ω) · · ·
e−ȷ(M−1)ωτ0 cos θ−ȷψM (ω)]T , (13)

where ψm(ω) is the phase error of the mth microphone at the
frequency of ω.

Bounded phase errors generally appear in Analogue-to-
Digital Converters (ADCs) used for microphone arrays. They
are analysed in detail in Section 3.1. Large phase errors that
are unbounded do occur in scenarios like wireless acoustic
sensor networks. They are also discussed in Section 3.2.

3.1. Analysis of Bounded Phase Errors

We assume |ψm(ω)| ≤ ϵp, where ϵp is the non-negative
phase error bound close to 0. From (13), we can utilize Tay-
lor approximation to derive the beampattern of the first-order
LDMA with phase errors as

B(p)
M,1(θ) = [d(p)(ω, cos θ)]Hh(ω) (14)

≈ a1,0 + a1,1 cos θ + ȷa1,0ψ1(ω)−
3a1,1

ωτ0(2M − 1)

×

[
ψ1(ω)−

2
∑M
m=2(m− 1)ψm(ω)

M(M − 1)

]
. (15)

The beampattern coefficients distorted by phase errors can
be observed from (15), which are

a
(p)
1,0 = a1,0 + ȷa1,0ψ1(ω)−

3a1,1
ωτ0(2M − 1)

×

[
ψ1(ω)−

2
∑M
m=2(m− 1)ψm(ω)

M(M − 1)

]
, (16)

and a
(p)
1,1 = a1,1. To investigate whether phase errors will

affect θmain, we take the derivative of |B(p)
M,1(θ)|2 with respect

to θ:

d|B(p)
M,1(θ)|2

dθ
= −2a

(p)
1,1 sin θB

(p)
M,1(θ). (17)

This shows that
d|B(p)

M,1(θ)|
2

dθ has extrema when sin θ = 0 or
B(p)
M,1(θ) = 0. It is obvious that B(p)

M,1(θ) = 0 implies minima.
Since θmain is related to the maxima, we only need to consider
sin θ = 0, where θ = 0◦ or 180◦. If θmain = 0◦, phase errors
have no effect on θmain. Otherwise, mainlobe misorientation
happens when θmain ̸= θd.

Mainlobe misorientation can severely degrade the per-
formance of LDMAs [14]. It follows that the condition
to avoid mainlobe misorientation caused by phase errors is
|B(p)
M,1(0

◦)|2 ≥ |B(p)
M,1(180

◦)|2. We first examine

|B(p)
M,1(0

◦)|2 − |B(p)
M,1(180

◦)|2

= 4a1,1(a1,0 +
−6ΦT

ωτ0M(M − 1)(2M − 1)
a1,1), (18)
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where

ΦT =

M∑
m=2

(m− 1)(ψ1(ω)− ψm(ω)). (19)

To satisfy |B(p)
M,1(0

◦)|2 − |B(p)
M,1(180

◦)|2 ≥ 0, we get
ΦT ≤ ζ, where ζ is the tolerance threshold for phase errors:

ζ =
M(M − 1)(2M − 1)ωτ0a1,0

6(1− a1,0)
. (20)

(20) clearly shows that phase errors can cause mainlobe
misorientation when ΦT > ζ. To keep the mainlobe orienta-
tion at 0◦, ΦT should be no larger than ζ. By examining the
numerator elements of ζ, we can find four robustness boost-
ing factors. Firstly, M suggests that more number of micro-
phones can boost the robustness of first-order LDMAs. Sec-
ondly, ω = 2πf suggests that first-order LDMAs are more ro-
bust at higher frequency bands. Thirdly, τ0 = δ/c0 suggests
that larger microphone spacing helps with array robustness.
Lastly, a1,0 suggests the choice of beampattern coefficients
plays a role in array robustness.

Based on (11), we can further derive the WNG formula
with the presence of phase errors as

WNG[h(ω)] =
|B(p)
M,1(θd)|2

[h(ω)]Hh(ω)
. (21)

Apply ΦT ≤ ζ and θd = 0◦ into (21), we get

WNG[h(ω)] ≥
a21,1 + a21,0ψ1(ω)

2

[h(ω)]Hh(ω)
. (22)

By letting ψ1(ω) = ϵp, we can get

WNGT [h(ω)] =
a21,1 + a21,0ϵ

2
p

[h(ω)]Hh(ω)
. (23)

(23) offers a practical robustness threshold of first-order LD-
MAs. As long as the tested WNG value of a first-order LDMA
is higher than WNGT [h(ω)], it will not suffer from mainlobe
misorientation with the presence of ϵp-bounded phase errors.

3.2. Analysis of Unbounded Phase Errors

For unbounded phase errors, we can rewrite (14) without ap-
proximating phase delay terms, which becomes

B(p′)
M,1(θ)

≈ a1,0e
ȷψ1 +

3a1,1
ωτ0(2M − 1)

[
2
∑M
m=2(m− 1)eȷψm

ȷM(M − 1)
+ ȷeȷψ1 ]

+
6a1,1

∑M
m=2(m− 1)2eȷψm cos θ

M(M − 1)(2M − 1)
(24)

By combining (17) and (24), we get the derivative of |B(p′)
M,1(θ)|2

with respect to θ:

d|B(p′)
M,1(θ)|2

dθ
=

−12a1,1
∑M
m=2(m− 1)2eȷψm

M(M − 1)(2M − 1)
B(p′)
M,1(θ) sin θ.

(25)

Similar to the analysis of (17), from (25) we observe that we
only need to consider |B(p′)

M,1(0
◦)|2 ≥ |B(p′)

M,1(180
◦)|2 to avoid

mainlobe misorientation. The difference D = |B(p′)
M,1(0

◦)|2 −
|B(p′)
M,1(180

◦)|2 can be derived from (24):

D =
24a1,0a1,1

∑M
m=2(m− 1)2 cos(ψ1 − ψm)

M(M − 1)(2M − 1)
−

72a21,1
∑M
m=2(m− 1)2 sin(ψ1 − ψm)

ωτ0M(M − 1)(2M − 1)2
−

144a21,1
∑M
m1=2

∑M
m2=2(m1 − 1)(m2 − 1)2 sin(ψm2 − ψm1)

ωτ0M2(M − 1)2(2M − 1)2
.

(26)

(26) shows that unbounded phase errors can also cause main-
lobe misorientation if D < 0.

Denote |B(p′)
M,1(0

◦)|2max as the maximal value of |B(p′)
M,1(0

◦)|2.
Define ψT = ψm′ − ψ1 to be the theoretical phase difference
that yields |B(p′)

M,1(0
◦)|2max, where m′ = 2, 3, · · · ,M . By

examination, we derive

ψT = nπ − tan−1

[
a1,0ωτ0(2M − 1)

3a1,1

]
. (27)

It follows that |B(p′)
M,1(0

◦)|2max is deduced as

|B(p′)
M,1(0

◦)|2max

= a21,0 +
18a21,1

ω2τ20 (2M − 1)2
+

6a1,0a1,1 sin(ψT )

ωτ0(2M − 1)

−
18a21,1 cos(ψT )

ω2τ20 (2M − 1)2
+ a21,1 +

1

2
D (28)

≥ a21,0 +
18a21,1(1− cos(ψT ))

ω2τ20 (2M − 1)2
+

6a1,0a1,1 sin(ψT )

ωτ0(2M − 1)

+ a21,1 = |B(p′)
M,1(0

◦)|2T ′ , (29)

where (29) is obtained by applying D ≥ 0 into (28). Con-
sequently, the maximal WNG threshold for unbounded phase
errors is

WNGT ′ [h(ω)] =
|B(p′)
M,1(0

◦)|2T ′

[h(ω)]Hh(ω)
. (30)

With unbounded phase errors, (29) and (30) indicate that
more microphones enhance the robustness of LDMAs.
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4. EXPERIMENTAL RESULTS

Without loss of generality, we use the first microphone in LD-
MAs as the reference for phase errors. Therefore, ψ1 is 0
throughout our experiments. We configure a baseline setup
of first-order LDMAs, which sets f = 1 kHz, M = 3 and
δ = 0.01 m.

The beampatterns with and without bounded phase errors
for the baseline settings are demonstrated in Fig. 1. The blue
solid lines represent beampatterns without phase errors. ΦT
values adopted are listed in Table 1, where ’C’, ’H’ and ’S’
represent cardioid, hypercardioid and supercardioid respec-
tively. In Fig. 2, vertical lines are ζ values computed by using
(20). ΦT values on the left of corresponding ζ lines do not
cause mainlobe misorientation. Combine Fig. 1 and 2. We
can see that whenever ΦT < ζ, the mainlobe orientation stays
at 0◦.

From Fig. 2, we can also observe that cardioid has the
largest tolerance threshold ζ and its WNG values are always
larger than the other two beampatterns given the same ΦT
values. Negative ΦT values indicate that the phase differ-
ences between microphones have not disturbed the original
order of microphones for receiving signals. In other words,
the effect of having negative ΦT values is equivalent to en-
larging the inter-microphone spacing. Therefore, the WNG
values increase when the ΦT values become more negative. It
is interesting to note that the DF values of cardioid and super-
cardioid increase a bit for small positive ΦT values. This can
be corroborated by the beampattern shapes in Fig. 1(i) and
1(iii). We can see that the beampatterns drawn in green dash-
dotted lines have narrower mainlobes than the beampatterns
drawn in blue solid lines. The DF rebounce in Fig. 2(ii) can
be also explained by the corresponding beampatterns in Fig.
1(ii). The beampattern drawn in a green dash-dotted line has
more directivity than the beampattern drawn in a pink dotted
line at 180◦. This suggests the opposite is true at 0◦.

Fig. 3 shows that unbounded phase errors can also cause
mainlobe misorientation. Deploying more microphones can
increase the WNG threshold WNGT ′ , which enhances the ro-
bustness of first-order LDMAs. Notably, the ∆ψ is 0.154
for cardioid according to [14], which can be refuted by ψr
and ψg . This demonstrates mainlobe misorientation can be
avoided even when some phase errors are larger than ∆ψ.

Table 1. ΦT values used in Fig. 1.
Red Dashed
Line

Green Dash-
dotted Line

Pink Dotted
Line

C -0.5 0.5 1.5
H -0.5 1.2 1.5
S -0.5 0.3 1.5

(i) Cardioid (ii) Hypercardioid (iii) Supercardioid

Fig. 1. Beampatterns of baseline settings with bounded phase
errors. ΦT values used in the figure can be found in Table 1.

(i) WNG vs ΦT (ii) DF vs ΦT

Fig. 2. WNG and DF plots of baseline settings with bounded
phase errors. Red dashed line: cardioid. Green dash-dotted
line: hypercardioid. Pink dotted line: supercardioid.

(i) Beampatterns (ii) WNGT ′ vs M

Fig. 3. Cardioid beampatterns of baseline settings with un-
bounded phase errors. ψr = [0 12 0.2], ψg = [0 − 10 0.5],
ψf = [0 − 0.1 − 7].

5. CONCLUSION

This paper examined the effects of phase errors on first-order
LDMAs. We derived the tolerance threshold of bounded
phase errors and WNG thresholds of both bounded and un-
bounded phase errors. In practice, the mainlobe misorienta-
tion due to bounded phase errors can be detected by using
the tolerance threshold. When the tolerance threshold is
exceeded, we know that mainlobe misorientation happens.
Our WNG thresholds of both bounded and unbounded phase
errors can serve as design criteria for the robustness of first-
order LDMAs. If the WNG values are above the WNG
thresholds, mainlobe misorientation of first-order LDMAs is
guaranteed not to happen.
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