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ABSTRACT

Machine learning and especially deep learning has had an increasing impact on
molecule and materials design. In particular, given the growing access to an abun-
dance of high-quality small molecule data for generative modeling for drug de-
sign, results for drug discovery have been promising. However, for many impor-
tant classes of materials such as catalysts, antioxidants, and metal-organic frame-
works, such large datasets are not available. Such families of molecules with
limited samples and structural similarities are especially prevalent for industrial
applications. As is well-known, retraining and even fine-tuning are challenging on
such small datasets. Novel, practically applicable molecules are most often deriva-
tives of well-known molecules, suggesting approaches to addressing data scarcity.
To address this problem, we introduce STRIDE, a generative molecule workflow
that generates novel molecules with an unconditional generative model guided by
known molecules without any retraining. We generate molecules outside of the
training data from a highly specialized set of antioxidant molecules. Our gener-
ated molecules have on average 21.7% lower synthetic accessibility scores and
also reduce ionization potential by 5.9% of generated molecules via guiding.

1 INTRODUCTION

Machine learning and especially deep learning algorithms for high-throughput generation and char-
acterization of materials are leading to a sea change in computational chemistry and materials sci-
ence. Data-driven predictive and generative models can lead to automated inverse design or digital
lab (see Abolhasani & Kumacheva (2023)), the holy grail of computational materials science. How-
ever, due to the broad range of materials with varying amounts of data availability, the effectiveness
of deep learning techniques varies greatly among different materials classes. Therefore, translating
materials data to numerical forms, referred to hereafter as the representation, is key since then such
disparate classes of molecules and materials can share representations and allow for transferable
models. Generative Deep Learning is an integral step in enabling inverse design for molecules, and
thus representations are integral to molecular design. The key topic to be addressed is the represen-
tation of molecules.

Large language models can generate responses to queries in various domains as the prompt is used
to condition the output of the model. This is commonly known as in-context learning. Similarly,
vision-generative models can be guided with images or text to generate images without the need for
re-training or even fine-tuning. This is significantly important as queries and prompts from highly
specialized domains are often quite restrictive and fine-tuning, let alone retraining, is not feasible
without detriment to the model. As discussed before, such situations are commonplace in material
science where classes of useful and desirable molecules are highly specialized and have only a few
known instances.

Motivated by the success of foundation models in language and computer vision, we investigate
guided molecule generation with in-context guidance on pre-trained models. We identify graph-
based generative models as suitable candidates for pre-training and in-context learning pipelines.
We propose STRIDE, structure guided generative workflow for inverse design of molecules. We
leverage a pre-trained 3D diffusion model, molecular encoding, and substructure-guidance to build
an automated, in-context learning-based framework for generating novel molecules in 3D.

The contributions of this work are, we:
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• Design a 3D molecule-based diffusion and high-throughput screening-based inverse design
workflow to automatically generate molecules and optimize for molecular properties.

• Develop sampling algorithms to guide a pre-trained 3D diffusion model to generate
molecules of interest without the need for retraining or a conditional model.

• Develop a novel substructure-guided sampling approach on top of pre-trained diffusion
models to generate novel molecules, allowing chemists and materials scientists to sample
molecules with desired fragments.

• Demonstrate that these 3D diffusion models generate specialized unseen classes of
molecules without retraining or even fine-tuning and our techniques can drastically im-
prove molecular properties such as synthetic accessibility.

Figure 1: (a) Shows our contribution of prompt selection from a database of known molecules with
only a few known samples. A molecular context graph and a user-provided subgraph are inputs
to the pre-trained generative model. (b) The pre-trained generator, an E(n) Equivariant Diffusion
Model, in our case generates new molecules conditioned on the given input. (c) The filter stage
checks the validity and predicts the properties of generated molecules. (d) Filtered molecules can be
added to the database to further guide the generator, creating a feedback loop.

We discuss the background representation and model considerations for molecular design workflows
in Section 2. In Section 3, we introduce our molecular generation pipeline STRIDE. Section 4
we demonstrate the application of the workflow on a representative small dataset. Section 5 and
Section 6 contextualize our contribution and discuss possible shortcomings and future directions,
respectively.

2 BACKGROUND

The key considerations for designing a molecular generation pipeline are the representations of
the molecules, the subsequent choice of deep learning architectures and models, and the inductive
biases prevalent in the pipeline as a result. In the following section, we give an overview of the 3D
geometric representation, the subsequent Euclidean equivariant model, and the diffusion architecture
used in this work.

2.1 MOLECULAR REPRESENTATION

The machine-digestible representation of molecules can take many forms. Choosing the correct rep-
resentation is a key challenge for materials and data scientists, as the most suitable representation

2



Under review as a conference paper at ICLR 2023

varies depending on the task at hand. In the era of deep learning, the predominant atom-level de-
scription of molecules has centered around two graph-based approaches: a strictly topological view
of atoms and their connectivity via bonds and a geometric view in 3D space, as a set of vertices
with distance weights along the edges. Though both views of a molecule are in some sense inter-
changeable, as 2D topological representation can be converted to 3D geometric representation using
conformer generators. MPNN Gilmer et al. (2017), CGCNN Xie & Grossman (2018), SchNet
Schütt et al. (2017), and GemNet Gasteiger et al. (2021), have shown that graph-based networks
can achieve state-of-the-art accuracy in molecular property prediction, and molecular dynamics.

in this work, we chose the latter. Similarly, atomic connectivity information from 3D positions can
be inferred using bond detection algorithms. Machine learning-based generative models are capable
of proposing molecules orders of magnitude faster than what can be screened with expensive com-
putational first principle methods such as DFT. In order to select molecules of interest and filter out
proposed molecules, inverse design workflows rely on high-throughput characterization algorithms
to select candidate molecules that can be subsequently studied with more computationally expen-
sive methods. Established high-throughput screening algorithms often rely on both geometric and
topological representations of molecules so interchangeable representations are desirable as there
are well-established methods for molecular property prediction.

2.2 E(N) EQUIVARIANT GRAPH NEURAL NETWORK

E(n) equivariant graph neural networks Satorras et al. (2021) (EGNN)s are special graph neural
networks that are equivariant to rotations, translations, reflections, and permutations, i.e. the Eu-
clidean group on N-dimensional Euclidean space, E(n), and permutations. EGNNs generally com-
prise multiple equivariant graph convolution layers (EGCL) which operate on graphs embedded in
n-dimensional Euclidean space. They are a natural choice for our 3D geometric representations.

For a graph G = (V, E) with vertices vi ∈ V and edges eij ∈ E , in additional to the canonical
vectors hi ∈ Rm and aij ∈ Rkrepresenting the vertex and edge features, each vertex also contains
xi ∈ Rn. xi is an n-dimensional vector representing the coordinate of vertex vi in an n-dimensional
space.

Formally, for a translation vector g ∈ Rn and rotation or reflection represented by an orthogonal
matrix Q ∈ Rn×n, we have the condition;

Qxl+1 + g,hl+1 = EGCL(Qxl + g,hl) (1)

In effect, each graph G is embedded into this n-dimensional space, and each EGCL is equivariant to
rotations, reflections, and translations on this space.

Following the notation from Gilmer et al. (2017) and Satorras et al. (2021), an EGCL consists of
message, aggregation, and update functions given by:

ml
ij = ϕe(h

l
i,h

l
j , ||xli − xj ||2,aij) (2)

xl+1
i = xl

i + C
∑
j∈Ni

(x− x)ϕx(mij) (3)

mi =
∑
j∈Ni

mij (4)

hl+1
i + ϕh(h

l
i,mi) (5)

Where, ϕe, ϕx, ϕh in expressions 2,3, and 5 are learnable functions, generally parameterized by
neural networks. Ni represents the set of neighbors for vertex i. We adopt the notation from Satorras
et al. (2021), and denote z = [x,h], where [·] is the concatenation operation, to denote the complete
set of node features of each graph.
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2.3 DIFFUSION MODELS

Score-based generative models progressively reverse a forward process that maps the data distri-
bution x to the normal distribution N (0, I). Diffusion models are a particular type of score-based
model where the reverse process is modeled as a Markov denoising process. The Markov process
is defined for time t = 0, . . . , T where the forward diffusion transition is defined by a multivariate
normal distribution, for all 0 ≤ s < t ≤ T :

q(zt|zs) = N (zt|αt|szs, σ
2
t|sI) (6)

where, αt|s = αt

αs
and σt|s = For the remained of the paper, we use follow variance preserving

process (Ho et al. (2020)), where α2
t = 1− σ2

t . We can express zt as a linear combination of initial
vector z0 and noise variable ϵ using the reparameterization trick:

zt = αtz0 + σtϵ ϵ ∼ N (0, I) (7)

For αT → 0, this describes a noising process of z0 such that zT is identical to Gaussian distribution
centered at 0 with unit variance.

The generative denoising process inverts the above forward process approximating z0 using a
neural network ẑ = ϕθ(zt, t), at each time step, t.

The reverse process with a fixed prior p(zT ) = N (0, I) is given by:

p(zt−1|zt, z0) = N (µt→s(zt, z0)), σ
2
t→sI) (8)

Following the eq. 8, one can iteratively reverse diffusion trajectory by sampling zs from zt via:

zs =
1

αt|s
zt −

σ2
t|s

αt|sσt
ϕθ(zt, t) + σt→sϵ ϵ ∼ N (0, I) (9)

Following Song et al. (2020); Ho et al. (2020), the diffusion model ϕθ can be optimized by the
simplified objective:

L(ϕθ) :=

T∑
t=1

Ez0∼q(z0),ϵt∼N (0,I)

[
| |ϕθ(zt, t)− ϵt||22

]
(10)

3 STRIDE

We propose STRIDE, a molecular generation workflow designed for generating exotic molecules
using a pre-trained 3D molecular generator. STRIDE consists of a pre-trained generative model and
multiple filtering models. The generation process can be run in a continuous loop and is segmented
into 3 stages: Generate, Filter, Feedback as shown in Fig. 1. .

3.1 PRE-TRAINED DIFFUSION MODEL

The backbone of STRIDE is a graph-based generative model. As shown in Fig. 1, STRIDE uses
a pre-trained generative model that can be ”prompted” or guided to perform low-temperature sam-
pling. Similar to text-to-image systems, one of the key components of STRIDE, is a frozen gen-
erative model. But unlike text-to-image models, the prompt encoding is not performed by a large
language model. Furthermore, it is infeasible to obtain a universal conditioning label for different
classes of molecules, so the generator must remain unconditional. For molecular data, the structure
is a significant indicator of performance and of interest, so the motif in itself is a graph. As a conse-
quence, the generation process is similar in spirit to image-guided image generation and in-painting
models.

While we focus on 3D equivariant graph diffusion models in this work, other graph-based models
such as Gebauer et al. (2019) can be used as well. For the remaining sections of the work, we use
the symbol, ϕθ, to denote a pre-trained graph-based generative diffusion model.
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(a) Partial diffusion guidance only partially ”destroys” the origi-
nal molecule, allowing the denoising network to recover similar
molecules

(b) Substructure or Motif conditioning
ensures certain parts of the subgraph are
guaranteed to exist in the final generated
molecule.

Figure 2: Guidance-strategies for pre-trained 3D molecular diffusion models

3.2 MOLECULAR CONDITIONING

A major concern for machine-aided molecular generation pipelines is the synthesizability of gener-
ated molecules. While de novo molecular generation and optimization techniques have been pro-
posed and shown promising results on multi-objective optimization for specific targets, Gao & Coley
(2020) shows that the utility of these approaches is hampered as molecules generated by state-of-
the-art generative models cannot be readily synthesized.

Instead of using our pre-trained diffusion model for de novo molecular generation, we condition
the generator on known functional molecules to leverage external knowledge of synthesizability and
industrial processes. The properties of molecules are intrinsically related to it’s structure. Therefore
unlike images, it is possible to condition molecular generation without additional labels or classifiers.
We use known molecular structures to guide pre-trained diffusion models to generate molecules of
interest.

Brock et al. (2018) and Kingma & Dhariwal (2018) have shown that ”low-temperature” or truncated
variance sampling can be used to generate high-fidelity, low-diversity images. Ho & Salimans
(2022) show that diffusion models can be guided similarly with a combination of conditional model
and unconditional model. As the structure of the generated molecule informs its fidelity, we can
similarly guide the molecular generator by truncating the Markov chain process. In the next sec-
tion, we describe the low-temperature sampling techniques for diffusion models and substructure
conditioning to guide the pre-trained generative model.

3.2.1 SAMPLING METHODS

We introduce alternative sampling methods from our pre-trained diffusion model which provide
varying levels of stochasticity in the generation process. In the generation procedure detailed in Ho
et al. (2020), the diffusion process (DDPM) is reversed from a latent encoding at time t. Performing
the forward process for t = T timesteps leads to all information of x0 being lost. Thus, we perform
partial diffusion sampling by sampling s such that 0 ≤ s ≤ T where T is the maximum number of
diffusion steps. Using Equation 6

Implicit Sampling Processes Song et al. (2020) introduced a reformulation of the forward and
generative processes in 6 and 9 which are deterministic. This ensures that the generated molecules
z0 depend only on the initial state zT . Unlike the DDPM sampling strategy, this allows for semantic
interpolation and conservation of high-level characteristics in the latent state zT .

zs =

(
1

αt|s

)
(zt − σtϕθ(zt, t)) + σsϕθ(zt, t) (11)
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Neural ODE Reformulation Rearraning Eq. 11, we can see that the sampling procedure can be
viewed as a differential equation with

zt
αt

− zs
αs

=

(
σt

αt
− σs

αs

)
ϕθ(zt, t) (12)

We can then reparameterize λt =
σt

αt
and z̄t =

zt

αt
to arrive at the ODE:

dz̄(t) = ϕθ

(
z̄t

1 + λ2
t

)
dλ(t) (13)

As mentioned in Song et al. (2020), in the continuous case, equation 12 is the first-order Euler
approximation of the ODE in equation 13. For s ≈ t, we can use the approximation ϕθ(zs, s) ≈
ϕθ(zt, t), to obtain a non-stochastic iterative encoding process with:

zt = αt|szs +
(
σt − σsαt|s

)
ϕθ(zs, s) (14)

3.2.2 MOTIF GUIDANCE

In order for proposed molecules to be practically applicable they must be stable and synthesiz-
able. Ideally, proposed molecules can be synthesized with existing industrial processes based on
well-known reaction pathways. Often new practical materials are derivatives of existing, known
molecules. To improve our molecular guidance workflow and add further user-controllability, we
develop a motif-based guidance, to generate molecules with guaranteed substructures. A condition-
ing molecule is split into 2 or more substructures. The desired substructures or motifs are masked
with maskmotif. The non-masked atoms are treated as free atoms and are placed using the generator.
The reverse process in Eq. 9 is updated with:

zt−1 = maskmotif ⊙ zt−1 + (1−maskmotif)⊙ ẑt−1 (15)

where, maskmotif is 1 if the atom is part of the motif and 0 if it is a free atom. maskmotif ⊙ zt−1

is calculated using the forward process in Eq. 6 or it’s variants detailed above. The free atoms are
updated using the denoising neural network. It is important to note that the denoising steps on the
entire graph rather than just the free atoms. In effect, the generation task is reformulated as a graph
completion task with a frozen subgraph. The pseudo-code for the sampling procedure is provided in
Appendix C Alg 4.

4 RELATED WORK

The first key challenge in generating molecules is of course designing molecules with valid valence
structures that obey the laws of chemistry. Topological models are ideal for capturing valence rules
as the rules are based on the discrete connectivity of atoms in a molecule. Gómez-Bombarelli
et al. (2018) use deep generative models to generate new SMILES (Simplified Molecular Input Line
Entry Specification) strings. Kusner et al. (2017) extend such generative algorithms by imposing
syntactic and semantic constraints on the decoder such that generated molecules are always topolog-
ically valid. While generating valid structures, the SMILES and connectivity-based representation
is inherently unable to capture many of the physical invariances present in molecules Guimaraes
et al. (2017). Steric effects are difficult to capture as spatial and geometric forces are not evident in
these representations. Rotational and permutation symmetries are also not present in such represen-
tations. As a result, theoretical molecules proposed with these methods are often unsynthesizable.
Furthermore, other classes of materials such as periodic crystals also pose difficulties for SMILES,
SELFIES, and other character-based representations as transfer learning is unfeasible.

Graph-based representations of molecules have also been used for molecular generation tasks. Jin
et al. (2018) use graph-structured encoder and junction tree-based decoder to generate molecular
structures. While graph-structured generative models as introduced by De Cao & Kipf (2018) allow
for a greater representation of long-range atomic interactions and provide geometric information
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about the molecule. Thus our work is is built on the class of 3D diffusion models introduced by
Hoogeboom et al. (2022). Our sampling algorithms follow the literature in image-based diffusion
models by Ho et al. (2020); Song et al. (2020); Kingma et al. (2021). The substructure sampling
algorithms are inspired by the in-painting and outpainting algorithms using diffusion models by
Lugmayr et al.. Concurrently to our work, Runcie & Mey (2023) also proposes a guided diffusion
for molecular generation using iterative latent variable refinement by Choi et al. (2021). This is
analogous to the substructure guiding case, although the guiding coefficients required to converge
are low.

5 EXPERIMENTS

5.1 EXPERIMENT SET UP

We use an unconditional EDM as the molecular generator for our experiments. The model is trained
using the QM9 dataset from Ramakrishnan et al. (2014). The network architecture and the training
hyper-parameters are provided in Appendix A. We use a rule-based bond detection algorithm as
well as the DetermineBonds function provided in RDKIT Landrum (2013). Furthermore, we use
two additional pre-trained neural networks, AIMNet-NSE Zubatyuk et al. (2021) and ALFABET
St. John et al. (2020) for ionization potential (IP) and bond disassociation energy (BDE) predictions,
respectively. AIMNet-NSE significantly requires 3D positions of the molecule for predicting where
whereas ALFABET requires atom connectivity and bond order information. We also use RDKit
to measure the synthetic accessibility (SA) score Ertl & Schuffenhauer (2009) of the generated
molecules .

5.1.1 TARGET DATASET

As mentioned above, conditioning on small datasets generated by experts is of particular importance
for the practical applicability of deep learning-based generative workflows. We select 29 publicly
available antioxidants in the AODB dataset by Deng et al. (2023) from the anti-oxidant dataset
as detailed by Moussa et al. (2023). Antioxidants inhibit oxidation and have various industrial
applications. Significantly, such a small disparate dataset, as compared with the pre-training dataset,
provides an important case study. In many cases, materials engineers are tasked to sample from this
sparse subset of the dataset. The entire dataset is reproduced in Appendix B

5.2 GUIDED GENERATION RESULTS

(a) Real (b) Context-Guided (c) Substructure-Guided

Figure 3: Visualizations of generated molecules with guiding algorithms.

We shift the distribution of generated molecules of the pre-trained model using the sampling methods
based on Equations. 9 and 11 and the partials diffusion process. Significantly, in Fig. 4 we show
improved SAScores.

The diversity of the context molecules is a concern as so few samples are available. As a result,
we also turn on the feedback loop to take highly synthesizable (SA score ¡ 3) and low ionization
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Figure 4: STRIDE is able to significantly shift the distribution of generated molecules by performing
partial diffusion sampling on the real dataset. We see improved SAScore and ionization potentials
when guiding with the small target dataset.

potential (¡ 165 kcal/mol) molecules and reuse them as feedback to generate molecules. Figure 5
shows a slight improvement in generated molecules properties.

Figure 5: Figure of diffusion dynamics for the different encoding and sampling methods

6 DISCUSSION AND FUTURE WORK

A major concern for the generative model used is the full N2 adjacency matrix required for the
generation process and the bond inference. This is of particular concern when scaling up to large
molecules such as polymers which may have hundreds of atoms per molecule. The adjacency matrix
is equivalent to the attention matrix prevalent in modern deep-learning models. Thus the optimiza-
tion techniques for both full and sparse attention matrices may be applied in these models as well.
Furthermore, improvements in diffusion models over discrete probabilities may alleviate issues.

Our current experiments show a significant decrease in model efficiency, as many of the guided
molecules are invalid. We believe this is due to the small size of the pre-training dataset as well as
the exceptionally few context molecules. We plan on re-training the backbone model for STRIDE
using significantly more data. Furthermore, recent work in 3D + 2D graph diffusion models by
Vignac et al. (2023), Zhang et al. (2023), and Peng et al. (2023) show significant improvements in
generation capabilities and highlight the need for inverse design systems built around such models.

The limitations of the transferability of models and representation across material types and
chemistries from distinct domains limit the application of cutting-edge deep learning techniques
to materials science. New and exciting materials often require knowledge and experimentation on
sparsely distributed and highly self-similar data. Ideally, foundational models for chemistry and
materials would be trained on large swaths of available data and would generalize on materials from
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unseen domains. Such models require carefully chosen representations derived from natural laws
and architectures that are transferable across materials. Akin to the lowest common multiple be-
tween a set of numbers, the features used to represent the data must be present entire data domain of
the models. Since we show that in-context learning can be enabled on 3D equivariant diffusion mod-
els and generate targeted molecules, such models present a promising avenue for a viable foundation
model for chemistry.
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Figure 6: Subset of Anti-oxidant data in AODB used as the target dataset

A PRE-TRAINING DETAILS

We use an E(3)-equivariant neural network to approximate the backward process of our diffusion
model. We use a 9-layer EGCL, where learnable functions ϕe, ϕx, ϕu in 2 are approximated using
by multi-layer perceptions.

A.1 EDM TRAINING

EDM Hyperparameters The EDM network architecture consists of a 9-Layer Equivariant GNN.
Further details of each operation can be found in Appendix B in Hoogeboom et al. (2022). For our
network, we select nf to be 256.
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The input node features consist of a 9-element vector. x ∈ R3 is the euclidean coordinates of each
node. hatom ∈ R5 is the one-hot encoded representation of the atom type. hcharge ∈ R1 is the charge
of the element. The input to the model is rescaled as [x, 0.25hatom, 0.1hcharge]

Training Hyperparameters The network is trained for 3000 epochs on the QM9 dataset using T =
1000 diffusion steps.

B TARGET DATASET INFORMATION

The set of molecules used to prompt the workflow and perform analysis can be viewed in Fig. 6.

The validity of the molecules is screened using the following bond distances in Table 1 to determine
the bond order. Then valence conditions for each atom are checked to guarantee

Bond Atoms Single Double Triple Aromatic
H - H 74
H - C 109
H - N 101
H - O 96
C - C 154 134 120 140
C - N 147 129 116
C - O 143 120 113
N - N 145 125 110 134
N - O 140 121
O - O 148 121

Table 1: Typical bond distances (pm) used for validity calculations

C SAMPLING ALGORITHMS GUIDANCE

The sampling algorithm from Hoogeboom et al. (2022) is reproduced here:

Algorithm 1 Probabilistic Sampling from EDM

1: Input: Data point x, Trained model ϕθ

2: Sample zT ∼ N (0, I)
3: for t in T, T − 1, . . . , 1 where s = t− 1 do
4: ϵ ∼ N (0, I)
5: Subtract COG from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]

6: zs =
1

αt|s
zt −

σ2
t|s

αt|sσt
ϕθ(zt, t) + σt→sϵ

7: end for
8: Sample x,h ∼ p(x,h|z0)

Algorithm 2 Implicit Sampling from EDM

1: Input: Data point x, Trained model ϕθ

2: Sample zT ∼ N (0, I)
3: for t in T, T − 1, . . . , 1 where s = t− 1 do
4: Subtract COG from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]

5: zs =
(

1
αt|s

)
(zt − σtϕθ(zt, t)) + σsϕθ(zt, t)

6: end for
7: Sample x,h ∼ p(x,h|z0)
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Algorithm 3 Partial Diffusion

1: Input: Data point x, Trained model ϕθ

2: Sample S ∼ [100, 200, 500, 700]
3: ϵ ∼ N (0, I)
4: zT = αSx+ σS

5: for t in T, T − 1, . . . , 1 where s = t− 1 do
6: Subtract COG from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]
7: zs = inversion(zt, ϕθ)
8: end for
9: Sample x,h ∼ p(x,h|z0)

Here either Algorithm 1 or 2 can be used for inversion.

Algorithm 4 Motif-Guidance

1: Input: Data point x, Trained model ϕθ

2: Sample S ∼ [100, 200, 500, 700, 1000], motif m, motif mask mask
3: ϵ ∼ N (0, I)
4: zT = αSx+ σS

5: mT = αSm+ σSϵ
6: for t in T, T − 1, . . . , 1 where s = t− 1 do
7: for t in 1, 2, . . . , num resamples do
8: Subtract COG from ϵ(x) in ϵ = [ϵ(x), ϵ(h)]
9: zus = inversion(zt, ϕθ)

10: zks = αSm+ σSϵ inversion(zt, ϕθ)
11: zs = mask ⊙ zus + (1−mask)⊙ zus
12: end for
13: end for
14: Sample x,h ∼ p(x,h|z0)
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