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Abstract001

Query rewriting is pivotal for enhancing dense002
retrieval, yet current methods demand large-003
scale supervised data or suffer from ineffi-004
cient reinforcement learning (RL) exploration.005
In this work, we first establish that guiding006
Large Language Models (LLMs) with a con-007
cise set of expert-crafted strategies substantially008
improves retrieval effectiveness on challeng-009
ing benchmarks, including HotpotQA, FEVER,010
NFCorpus, and SciFact. Building on this011
insight, we introduce the Strategy-Adaptive012
Generation Engine (SAGE), which operational-013
izes these strategies in an RL framework.014
SAGE introduces two novel reward shaping015
mechanisms- Strategic Credit Shaping (SCS)016
and Contrastive Reward Shaping (CRS)-to de-017
liver more informative learning signals. This018
strategy-guided approach not only achieves019
new state-of-the-art NDCG@10 results, but020
also uncovers a compelling emergent behav-021
ior: the agent learns to select optimal strategies,022
reduces unnecessary exploration, and gener-023
ates concise rewrites, lowering inference cost024
without sacrificing performance. Our findings025
demonstrate that strategy-guided RL, enhanced026
with nuanced reward shaping, offers a scalable,027
efficient, and more interpretable paradigm for028
developing the next generation of robust infor-029
mation retrieval systems.030

1 Introduction031

Effective information retrieval (IR) is increasingly032

reliant on dense retrieval systems, which map033

queries and documents into a shared semantic034

space. The performance of these systems, how-035

ever, is fundamentally bound by the quality of036

the input query. To bridge the significant gap be-037

tween a user’s initial intent and a query optimized038

for machine comprehension, query rewriting has039

emerged as a critical component. While LLMs040

have shown significant promise for data genera-041

tion, comprehension, and reasoning (Achiam et al.,042

2023; Wang et al., 2025a; Yang et al., 2025b,a; 043

Wang et al., 2025b), current methodologies face 044

two primary obstacles: traditional supervised fine- 045

tuning demands large-scale, costly manual anno- 046

tations, whereas modern RL approaches, such as 047

PPO (Schulman et al., 2017) and GRPO (Shao 048

et al., 2024), often struggle with inefficient explo- 049

ration. This inefficiency not only hampers the dis- 050

covery of optimal rewriting strategies but can also 051

result in unstable training dynamics and even catas- 052

trophic failures, where models produce incoherent 053

or irrelevant outputs. 054

While prior work by Li et al. (2024) has explored 055

strategy-based prompting, we find their strategies, 056

specifically designed for sparse retrieval in gen- 057

eral web search, struggle to generalize to the nu- 058

anced demands of dense retrieval and exhibit lim- 059

ited effectiveness on specialized benchmarks. To 060

address these challenges, we propose five novel 061

query-rewriting strategies specifically designed for 062

dense retrieval scenarios. These strategies signifi- 063

cantly enhance the ability of LLMs to effectively re- 064

formulate queries, consistently outperforming pre- 065

vious method (Li et al., 2024) on diverse and chal- 066

lenging benchmarks, including HotpotQA (Yang 067

et al., 2018), FEVER (Thorne et al., 2018), NF- 068

Corpus (Boteva et al., 2016), and SciFact (Wadden 069

et al., 2020). 070

The successful application of on-policy RL to 071

fine-tune LLMs is pioneered by algorithms such as 072

PPO (Schulman et al., 2017), which in turn inspired 073

a family of variants including GRPO (Shao et al., 074

2024), VAPO (Yue et al., 2025), and DAPO (Yu 075

et al., 2025). While these powerful algorithms 076

have enabled new capabilities in query rewriting for 077

LLMs, many prior approaches (Jiang et al., 2025) 078

simply adopt them as generic optimization tools, 079

without incorporating domain-specific guidance tai- 080

lored to the query rewriting task. 081

To bridge this gap, we introduce the Strategy- 082

Adaptive Generation Engine (SAGE), as demon- 083
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Figure 1: An overview of the SAGE framework. SAGE operationalizes expert-crafted strategies within a rein-
forcement learning loop. The policy model generates a strategy-guided rewrite, which is evaluated against the
environment to produce an initial reward (NDCG@10). This reward is then transformed by our novel shaping
modules-Strategic Credit Shaping or Contrastive Reward Shaping-to create a potent learning signal for the agent.

strated in Fig. 1, a framework that directly in-084

tegrates our human-designed strategies into the085

GRPO algorithm, steering LLMs toward more ef-086

fective query-rewriting policies. To further re-087

fine the learning signal, we propose two novel re-088

ward shaping schemes. In addition to using the089

direct NDCG@10 score, we introduce Strategic090

Credit Shaping (SCS), which assigns credit based091

on the average performance of each strategy, and092

Contrastive Reward Shaping (CRS), which trans-093

forms absolute scores into relative performance094

measures.095

By reproducing prior approaches (Li et al., 2024;096

Jiang et al., 2025), we identify a significant form of097

reward hacking (Weng, 2024; Wang et al., 2024a)098

inherent in the query rewriting task. When fine-099

tuned on datasets such as HotpotQA (Yang et al.,100

2018), models tend to converge to the trivial pol-101

icy of directly copying the input query provided102

in the prompt, as modern retrievers like BGE-en-103

v1.5 (Xiao et al., 2023) already achieve strong base-104

line performance with the original queries. Notably,105

even semantically appropriate rewrites frequently106

result in lower retrieval scores, discouraging explo-107

ration and trapping the agent in a local optimum108

that precludes the discovery of potentially superior109

strategies.110

To address this issue, we promote exploration by111

modifying the prompt and penalizing outputs iden-112

tical to the original query. This approach encour-113

ages the agent to venture beyond the safe default.114

The effectiveness of this strategy is further vali-115

dated by detailed ablation studies in Section 4.3.116

We evaluate SAGE on two challenging datasets:117

HotpotQA (Yang et al., 2018) and NFCor- 118

pus (Boteva et al., 2016). Our results demonstrate 119

that SAGE achieves state-of-the-art retrieval effec- 120

tiveness as measured by NDCG@10. Notably, we 121

observe an emergent behavior where SAGE learns 122

a more efficient reasoning process, substantially 123

reducing token usage. This improved efficiency 124

directly translates to lower inference latency and 125

reduced computational costs. 126

Our main contributions are summarized as fol- 127

lows: 128

1. We show that prompting LLMs with a small 129

set of interpretable strategies substantially 130

improves query rewriting quality, establish- 131

ing the performance upper bound attainable 132

through prompting alone. 133

2. We introduce SAGE, a novel RL framework 134

that systematically integrates explicit strate- 135

gies into the learning process. SAGE au- 136

tonomously adapts strategy selection via our 137

proposed reward-shaping mechanisms, en- 138

abling more effective policy optimization. 139

3. We establish a new state-of-the-art in dense 140

retrieval effectiveness (NDCG@10) using 141

SAGE, while identifying a notable emergent 142

behavior: SAGE learns a more efficient rea- 143

soning process, substantially reducing infer- 144

ence latency and computational costs. 145

4. We provide comprehensive analyses and ab- 146

lation studies highlighting the critical impor- 147

tance of forced exploration. Our results un- 148

derscore the necessity of an explicit penalty 149
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mechanism to avoid reward hacking, offering150

valuable insights for effectively training RL-151

based rewriting models.152

2 Methodology153

The core idea of our methodology is to replace154

black-box RL optimization with explicit, human-155

interpretable decision-making. To this end, we156

propose the Strategy-Adaptive Generation Engine157

(SAGE), which reformulates query rewriting as a158

structured, strategy-driven decision process. Our159

framework directly incorporates expert-crafted160

strategies into RL training to systematically guide161

both exploration and policy learning, as illustrated162

in Figure 1.163

2.1 Problem Formulation164

We frame query rewriting as an RL task. Given an165

initial user query qorig and a document collection166

D, the objective is to learn a policy π that generates167

an improved query q. The environment evaluates168

the rewritten query using NDCG@10, yielding an169

initial reward rorig = NDCG@10(q,D), which is170

further refined by our reward shaping methods (see171

Section 2.4) to produce the final reward rfinal. The172

agent thus aims to maximize the expected final173

reward: Eq∼π(·|qorig)[rfinal]. We use GRPO (Shao174

et al., 2024) as our optimization algorithm and in-175

corporate a set of expert-crafted rewriting strategies176

S = {s1, s2, . . . , s5}, providing explicit guidance177

for query reformulation.178

2.2 Explicit Strategic Primitives179

To move beyond generic prompting, we introduce180

five explicit, expert-crafted query rewriting strate-181

gies, each tailored to address specific challenges182

in dense retrieval. These strategies systematically183

alter the semantic structure of queries to mitigate184

common retrieval failures. The primitives, summa-185

rized in Table 4, are not mutually exclusive and186

often involve inherent trade-offs (e.g., semantic187

expansion may improve recall at the expense of188

precision). Collectively, they constitute the dis-189

crete action space from which our SAGE frame-190

work dynamically selects and applies. Detailed191

prompt templates for each strategy are provided in192

Appendix A.1.193

2.3 The SAGE Framework194

SAGE operationalizes our expert-crafted strategies195

by embedding them within an on-policy RL algo-196

rithm. In contrast to black-box methods, SAGE197

transforms the task from unconstrained text gen- 198

eration into a structured, two-part action selection 199

process, making the agent’s decision-making more 200

explicit and interpretable. The overall workflow is 201

illustrated in Figure 1. 202

For each input query, the policy model generates 203

a batch of N rollouts, where each action is a struc- 204

tured pair, {qi, si}, comprising the rewritten query 205

and the integer ID of the selected strategy. This 206

formulation requires the LLM to produce not only 207

an effective rewrite but also an explicit strategy 208

choice, rendering its intent interpretable. 209

Each rewritten query qi is evaluated by the re- 210

trieval environment to obtain an initial reward 211

rorig,i, measured by NDCG@10. In conventional 212

RL, this raw score serves as the final reward; how- 213

ever, we argue that it provides insufficient learning 214

signal, as it neither credits effective strategy se- 215

lection nor clearly distinguishes superior rewrites 216

within a batch. To address this, we process the 217

initial rewards with a dedicated reward shaping 218

module (see Section 2.4), which transforms the 219

raw scores into a more informative signal rfinal,i for 220

policy updates. 221

2.4 Reward Shaping Mechanisms 222

To provide the agent with a more informative learn- 223

ing signal, we introduce two novel reward shap- 224

ing mechanisms that go beyond simply using the 225

raw NDCG@10 score. While the direct score is 226

a standard choice, it provides only limited feed- 227

back: it fails to explicitly reward the selection of 228

high-performing strategies and does not encourage 229

intra-batch competition, as it treats all positive out- 230

comes similarly-making little distinction between 231

adequate and exceptional rewrites. To address these 232

shortcomings, we propose two new mechanisms 233

that transform the raw score into a more effective 234

learning objective, as illustrated in Figure 2. 235

Strategic Credit Shaping (SCS): This method 236

aims to explicitly solve the credit assignment prob- 237

lem by rewarding the agent for selecting high- 238

performing strategies. Within a given batch of roll- 239

outs, we first group them by their chosen strategy 240

si. We then compute the average initial reward, 241

r̄orig(si), for each strategy group and rank them 242

based on this score. The final reward for an individ- 243

ual rollout is its original score scaled by the inverse 244

of its strategy’s rank: 245

rSCS,i =
rorig,i

rank(si)
(1) 246
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Figure 2: An illustration of our two proposed reward shaping mechanisms. (a) SCS solves the credit assignment
problem by grouping rollouts based on their chosen strategy, ranking these strategies by their average performance,
and then scaling the individual rewards by their strategy’s rank. (b) CRS sharpens the learning signal by normalizing
each reward against a baseline (e.g., the batch median), reframing the objective as outperforming the typical
performance.

This mechanism directly encourages the agent to247

converge on strategies that are collectively more248

effective, providing a clearer signal for strategic249

decision-making.250

Contrastive Reward Shaping (CRS): This251

method introduces intra-batch competition by nor-252

malizing rewards against a dynamic baseline, effec-253

tively penalizing underperforming rewrites while254

rewarding those that surpass the batch’s typical per-255

formance. The final reward is the advantage over256

this baseline:257

rCRS,i = rorig,i − baseline (2)258

This forces the agent to learn policies that outper-259

form the batch’s typical performance, rather than260

simply achieving any positive score. By creating a261

clearer distinction between superior and mediocre262

rewrites, CRS sharpens the reward landscape and263

accelerates learning.264

2.5 Countering Reward Hacking with Forced265

Exploration266

Reproducing previous work (Jiang et al., 2025; Li267

et al., 2024), we observe pervasive reward hack-268

ing in query rewriting: agents exploit reward func-269

tion loopholes to achieve high scores without ful-270

filling the intended objective. In our setting, the271

strong baseline performance of modern retrievers 272

allows agents to obtain high rewards simply by 273

copying the original query, a strategy the policy 274

model quickly adopts since it has direct access to 275

the input. As a result, the agent becomes trapped in 276

a deceptive local optimum, stifling exploration of 277

potentially superior rewriting strategies. To directly 278

counteract this, we introduce two mechanisms de- 279

signed to force exploration. 280

Exploration Penalty. We apply a simple penalty 281

term to disincentivize the agent from reverting to 282

the trivial policy of copying the input. The final 283

reward, rfinal, is calculated by applying this penalty 284

to the base reward signal, rbase, which represents 285

the output from our main reward calculation (either 286

direct NDCG@10, SCS, or CRS). The relationship 287

is formally defined as: 288

rfinal =

{
rbase − p if qorig = q

rbase otherwise
(3) 289

where qorig is the original query, q is the rewrit- 290

ten query, and p is a fixed penalty hyperparameter. 291

This formulation ensures that the agent is explicitly 292

penalized only when it outputs a query identical to 293

the input, thereby directly encouraging the explo- 294

ration of novel rewrites. 295
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Figure 3: Performance scaling laws for query rewriting using the BGE-base-en-v1.5 retriever across four benchmark
datasets: HotpotQA, FEVER, NFCorpus, and SciFact. Each subplot compares the upper-bound performance
(NDCG@10) of our Strategy-Guided Prompting (SGP) against the strategies from DMQR-RAG(Li et al., 2024),
evaluated via a Best-of-N methodology across the Qwen3 model series (Yang et al., 2025a).

Proactive Exploration Prompting. In contrast296

to prior work (Li et al., 2024), which instructs the297

model to keep the query unchanged if a better one is298

not found, our prompting philosophy is designed to299

actively encourage the agent to explore alternative300

rewrites.301

We validate the effectiveness of these forced ex-302

ploration mechanisms in our ablation studies in303

Section 4.3.304

3 Experiment305

3.1 Effectiveness of Rewriting Strategies306

To empirically validate our five expert-crafted307

strategies (detailed in Section 2.2 and Ap-308

pendix A.1), we conduct a comprehensive scal-309

ing law analysis using BGE-en-base-v1.5 (Xiao310

et al., 2023) as the retriever. We compare our311

Strategy-Guided Prompting (SGP) to the strategies312

in DMQR-RAG (Li et al., 2024) under a Best-of-313

N methodology, with results shown in Figure 3.314

Across all four challenging datasets, including315

HotpotQA (Yang et al., 2018), FEVER (Thorne316

et al., 2018), NFCorpus (Boteva et al., 2016), and317

SciFact (Wadden et al., 2020), our SGP consis-318

tently and substantially outperforms the baseline.319

This demonstrates that our strategies provide a320

more effective upper-bound on performance by suc-321

cessfully guiding the LLM towards higher-quality322

query rewrites. Similar trends of SGP outperform-323

ing the baseline are observed when using the Con- 324

triever (Izacard et al., 2021) retriever, with detailed 325

results provided in Appendix A.2. 326

3.2 Comparison with State-of-the-Art 327

Baselines 328

Having established the upper-bound potential of 329

our expert-crafted strategies (Section 3.1), we now 330

evaluate the full SAGE framework. Our prelimi- 331

nary analysis indicates that for datasets like FEVER 332

and SciFact, the potential for improvement via RL 333

is constrained, due to either a high performance 334

baseline from the original query or a high explo- 335

ration cost required for marginal gains. Conse- 336

quently, to provide a more meaningful evaluation 337

of SAGE’s optimization capabilities, we focus our 338

main RL experiments on HotpotQA and NFCorpus, 339

which present a larger performance gap and thus a 340

more dynamic learning environment. 341

Unless otherwise specified, all experiments are 342

conducted using BGE-en-base-v1.5. Detailed train- 343

ing settings are provided in Appendix A.3. 344

We benchmark SAGE against a diverse suite 345

of strong baselines to demonstrate its effective- 346

ness. This includes state-of-the-art open-source 347

models Qwen3-4B, Qwen3-8B, Qwen3-14B, GPT- 348

4.1, GPT-o4-mini, Claude-Sonnect-4, Gemini-2.5- 349

Flash, Gemini-2.5-Pro, Deepseek-R1 (Yang et al., 350

2025a; Team et al., 2023; Achiam et al., 2023; An- 351
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Method HotpotQA NFCorpus

NDCG@10 ↑ Avg. Tokens ↓ NDCG@10 ↑ Avg. Tokens ↓

Baselines
Original Query 0.6633 0 0.3677 0
Qwen3-4B 0.6366 1598 0.3527 911
Qwen3-8B 0.4295 1966 0.3298 885
Qwen3-14B 0.5251 1682 0.3473 586
GPT-4.1 0.7118 297 0.3711 205
GPT-o4-mini 0.6915 776 0.3809 440
Claude-Sonnet-4-thinking 0.6515 1451 0.3701 1152
Gemini-2.5-Flash 0.6425 1614 0.3689 957
Gemini-2.5-Pro 0.6671 1986 0.3663 1096
Deepseek-R1 0.6262 2182 0.3270 1251
DeepRetrieval + Qwen3-4B 0.6681 232 0.3676 343
DMQR-RAG + Qwen3-4B 0.5812 798 0.1808 1032

Our Method (SAGE)
SAGE (Direct) 0.6894 92 0.3776 229
SAGE-SCS 0.6955 66 0.3967 139
SAGE-CRS 0.6918 69 0.4035 154

Table 1: SAGE achieves state-of-the-art performance with remarkable efficiency. This table compares our SAGE
framework, fine-tuned on Qwen3-4B, against strong baselines including the re-evaluated DeepRetrieval method
and significantly larger proprietary models like Gemini-2.5-Pro and GPT-o4-mini. All models are evaluated with
a maximum response length of 4096 tokens. The results demonstrate that SAGE not only outperforms other RL
approaches but also achieves retrieval effectiveness (NDCG@10) competitive with these massive models, while
requiring substantially fewer tokens.

thropic, 2025; Guo et al., 2025). For a fair compar-352

ison under our controlled experimental setup, we353

also re-evaluate prior RL-based methods, including354

DeepRetrieval (Jiang et al., 2025) and the strategies355

from DMQR-RAG (Li et al., 2024). Against these356

baselines, we report the performance of SAGE en-357

hanced with our two novel reward shaping mecha-358

nisms, SAGE-SCS and SAGE-CRS.359

The results presented in Table 1 clearly demon-360

strate the dual advantage of our SAGE frame-361

work. In terms of retrieval effectiveness, our SAGE362

variants establish a new state-of-the-art. Notably,363

SAGE, fine-tuned on Qwen3-4B, consistently out-364

performs specialized RL-based approaches like365

DeepRetrieval also fine-tuned from Qwen3-4B366

in our experiment setting. More strikingly, our367

method achieves performance that is competitive368

with, and in some cases superior to, significantly369

larger and more powerful proprietary models such370

as Gemini-2.5-Pro, GPT-o4-mini.371

More striking than the performance gains is the372

emergent efficiency of our SAGE framework. We373

observe that SAGE consistently generates rewrites374

using substantially fewer tokens than competing375

methods, a phenomenon that is even more pro-376

nounced when using our SCS and CRS reward 377

shaping schemes. We attribute this to the agent 378

learning to prioritize more direct reasoning paths, 379

effectively discovering a shortcut to high-quality 380

rewrites without being explicitly optimized for 381

brevity. 382

This finding has profound practical implications. 383

In a production environment, the long, static por- 384

tion of our strategic prompt can be pre-processed 385

and its KV cache stored. At inference time, the sys- 386

tem only needs to generate a short reasoning, sig- 387

nificantly reducing latency and computational cost. 388

This architectural advantage, which decouples the 389

pre-computable prompt context from the short dy- 390

namic generation, makes SAGE a highly attrac- 391

tive solution for real-world, performance-critical 392

retrieval systems. 393

4 Ablation Study 394

To isolate and quantify the impact of our core con- 395

tributions, we conduct a series of ablation studies. 396

Our experiments are designed to answer several 397

key questions: (1) What is the performance gain 398

from our expert-crafted strategies compared to an 399

unguided RL baseline? And what is the contribu- 400
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Original Query: Starving Tumors of Their Blood Supply. Target: Optimize this search query for better results

<think>The input "Starving Tumors of Their Blood Supply" is 

underspecified and could be ambiguous. To retrieve relevant 

information, I use Strategy 1 (Semantic Expansion) to add related 

concepts like "cancer", "tumors", "blood supply", and "therapy". 

This helps in retrieving information on cancer therapies that target 

tumor blood supply, including terms like "anti-angiogenic therapy" 

and "tumor hypoxia".</think>

<answer>    {        "query": "Tumor angiogenesis cancer therapy 

anti-angiogenic therapy - cancer treatment: starving tumors of blood 

supply, tumor hypoxia, blood vessel formation (angiogenesis), 

cancer metastasis, bevacizumab (Avastin) - cancer treatment 

strategies to inhibit tumor blood supply and suppress tumor growth",        

"strategy": 1    }</answer>'

<think>Okay, the user\‘s query is “Starving Tumors of Their Blood 

Supply”. I need to rewrite this into a dense retrieval query. …First, I 

should identify the key concepts here. The main idea is about tumors and 

their blood supply. …. However, the example in the problem had a shorter 

version. So perhaps "Tumor blood supply starvation" or "Starving tumors 

blood supply".Alternatively, maybe "Tumor blood supply deprivation" is 

better. ... But I need to make sure it\'s a query that would be used for 

dense retrieval, which is typically shorter and more 

specific. …Alternatively, "Depriving tumors of blood supply" but that\'s 

longer. Hmm. The original query is a bit of a phrase, so maybe the dense 

version is "Tumor blood supply deprivation" or "Starving tumors blood 

supply". I think the best is to use "Tumor blood supply deprivation" as the 

query.</think>

<answer>{   "query": "Tumor blood supply deprivation"}</answer>'

Baseline Method Our Strategy-Based Method

673 
tokens

176
tokens

𝑆𝑐𝑜𝑟𝑒𝑠
0.267

𝑆𝑐𝑜𝑟𝑒𝑠
0.672

Figure 4: Qualitative comparison illustrating the mechanism behind SAGE’s dual advantage. The baseline model
(left), lacking strategic guidance, engages in a verbose and convoluted reasoning process, resulting in a suboptimal
query. In contrast, SAGE (right) leverages an explicit strategy to find a direct and efficient path to a more semantically
accurate rewrite, achieving superior retrieval effectiveness with a fraction of the token generation cost.

Method HotpotQA NFCorpus

NDCG@10 ↑ Avg. Tokens ↓ NDCG@10 ↑ Avg. Tokens ↓

Baseline (No Strategic Guidance)
DeepRetrieval 0.6681 232 0.3676 343

Our Method (with Strategic Guidance)
SAGE (Direct) 0.6894 92 0.3775 229
SAGE-SCS 0.6955 66 0.3966 139
SAGE-CRS 0.6918 69 0.4035 154

Table 2: Ablation study on the impact of strategic guidance. We compare the performance of a standard RL baseline
against our SAGE framework, which incorporates expert-crafted strategies. The results highlight the significant
gains in both effectiveness (NDCG@10) and efficiency (Avg. Tokens) brought by our strategic guidance.

tion of our novel reward shaping mechanisms (SCS401

and CRS) compared to a direct reward? (2) How402

critical is the exploration penalty for overcoming403

reward hacking?404

4.1 The Impact of Strategic Guidance405

The most significant finding from our ablation406

study is the dramatic impact of strategic guidance.407

As shown in Table 2, removing our expert-crafted408

strategies and reverting to a "black-box" RL ap-409

proach results in a significant degradation in perfor-410

mance. While this change leads to a notable drop in411

NDCG@10 across both datasets, the more striking412

effect is on efficiency, where the average response413

length increases dramatically. This demonstrates414

that models trained without strategic guidance are415

not only less effective but also substantially less416

efficient.417

To provide a more intuitive understanding, Fig.418

4 presents a direct case comparison. The output419

from the model trained without strategies is generic420

and fails to capture the query’s nuance, whereas421

the output from SAGE is scientifically precise and 422

far more effective for retrieval. 423

Furthermore, we see the additional benefits of 424

our reward shaping mechanisms. On both datasets, 425

SAGE-SCS and SAGE-CRS further improve upon 426

the SAGE (Direct) baseline, pushing the perfor- 427

mance ceiling even higher while maintaining su- 428

perior efficiency. This confirms that while strate- 429

gic guidance is the foundational improvement, our 430

novel reward shaping schemes provide a crucial 431

secondary optimization. 432

4.2 Analysis of Training Dynamics 433

Beyond final performance, the training dynamics 434

also reveal the superiority of the SAGE framework. 435

As illustrated in Appendix A.4, the baseline model 436

trained without strategies quickly gets trapped in 437

a local optimum. Its performance stagnates after 438

only a few training steps, and its response length 439

remains high and volatile throughout the process. 440

In stark contrast, SAGE demonstrates contin- 441

uous performance improvement during training. 442
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Experimental Condition NDCG@10 ↑ Modification Rate ↑

Conservative Prompt ("keep unchanged") 0.671 0.509
Proactive Exploration Prompt 0.694 0.951
Proactive Prompt + Penalty (p = 0.02) 0.692 0.998

Table 3: Ablation study on different exploration mechanisms for SAGE-SCS on the HotpotQA dataset. We compare
three settings: (1) using a conservative prompt, (2) using a proactive exploration prompt, and (3) combining the
proactive prompt with an exploration penalty.

More importantly, we observe a compelling emer-443

gent behavior: as SAGE learns to better utilize444

its strategies, it also learns to achieve the opti-445

mal rewrite with a more concise reasoning process.446

This results in a steady and significant decrease in447

the average response length over time, proving that448

our framework not only learns more effectively but449

also more efficiently.450

4.3 The Critical Role of the Exploration451

Penalty452

In reproducing prior work (Jiang et al., 2025; Li453

et al., 2024), we identify a significant challenge454

in this task: the agent’s strong tendency to revert455

to a trivial policy of outputting the original query456

without modification. We attribute this reward-457

hacking behavior to two primary causes. First, the458

high baseline performance of modern retrievers459

makes the "do-nothing" action a safe, high-reward460

option. This issue is exacerbated by instructions461

in prior work like Li et al. (2024), which explicitly462

instructs the agent to preserve the original query463

if a rewrite is deemed unnecessary, reinforcing464

this conservative policy from the start of train-465

ing. Second, many powerful retrievers have been466

trained on these benchmarks, making them brittle467

and highly sensitive to phrasing, where even mi-468

nor, semantically-sound modifications can lead to a469

sharp drop in performance. This combination traps470

the agent in a deceptive local optimum, making any471

exploration a high-risk endeavor.472

To break this cycle and force meaningful ex-473

ploration, we implement a two-pronged approach.474

First, in contrast to prior work (Li et al., 2024)475

which explicitly instructs the agent to keep the orig-476

inal query if no better one is found, our prompt477

philosophy actively encourages exploration, de-478

tailed is demonstrated in Appendix A.1. Second,479

and more critically, we introduce a simple penalty480

term, subtracting a fixed value p=0.05 from the re-481

ward whenever the generated query is identical to482

the original, directly disincentivizing this reward-483

hacking behavior. 484

To validate the effectiveness of these mech- 485

anisms, we conducted an ablation study using 486

the SAGE-SCS model on HotpotQA. The results, 487

shown in Table 3, clearly demonstrate the value of 488

our approach: simply replacing the conservative 489

prompt with our proactive exploration prompt sub- 490

stantially increases both NDCG@10 and the mod- 491

ification rate, highlighting the critical role of en- 492

couraging exploration. However, the use of an ex- 493

ploration penalty reveals a critical trade-off. While 494

it drives the modification rate to 0.998, we observe 495

a slight decrease in NDCG@10. This suggests that 496

in cases where the original query is already op- 497

timal, enforcing modifications via a penalty may 498

slightly impair peak performance. Thus, although 499

the penalty is highly effective for maximizing ex- 500

ploration and mitigating reward hacking, its ap- 501

plication should be carefully balanced against the 502

specific task’s need for exhaustive exploration ver- 503

sus optimal end performance. 504

5 Conclusion 505

In this work, we introduced SAGE, a novel frame- 506

work designed to address the black-box nature and 507

inefficient exploration of conventional RL-based 508

query rewriting. By integrating expert-crafted 509

strategies and novel reward shaping mechanisms 510

(SCS and CRS) into the RL loop, SAGE achieves 511

state-of-the-art retrieval effectiveness and emergent 512

efficiency, substantially reducing inference costs. 513

Importantly, our approach effectively mitigates re- 514

ward hacking by explicitly promoting exploration 515

and penalizing trivial, unmodified rewrites. These 516

findings demonstrate that strategy-guided RL not 517

only enhances effectiveness and efficiency but also 518

leads to more transparent and controllable retrieval 519

systems. 520
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6 Limitation521

6.1 Evaluation Datasets522

One of the key innovations introduced in this pa-523

per is the query rewrite strategy or policy. This524

approach relies on manual analysis to craft rewrit-525

ing strategies tailored to specific datasets. How-526

ever, this methodology poses certain limitations. In527

particular, it is less applicable to domains such as528

sparse retrieval and SQL-based retrieval, where the529

query structure is already well-defined and leaves530

little room for rewriting strategies. Consequently,531

the benefits of our approach are constrained in these532

scenarios. Our work is therefore primarily focused533

on the dense retrieval setting, where more flexibil-534

ity in query reformulation exists.535
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A Appendix724

A.1 Strategy-Guided Prompting725

As referenced in Section 2.2, we present detailed726

strategies and the complete prompt used to guide727

our policy model in Table 4 and Figure 5.728

A.2 SGP Performance with Contriever729

To confirm that our findings are robust and not730

specific to a single retriever, we replicated the ex-731

periment using Contriever (Izacard et al., 2021). As732

detailed in Fig 6, our strategy again demonstrates a733

significant performance margin over the methods734

proposed by DMQR-RAG(Li et al., 2024).735

A.3 Training Hyperparameters736

For all experiments, we fine-tune the Qwen3-737

4B (Yang et al., 2025a) model using Verl (Sheng738

et al., 2024) and GROP (Shao et al., 2024), a re-739

inforcement learning framework. We experiment740

with rollout numbers of 16 and 32. All training741

is conducted on 8 NVIDIA A100 GPUs. Unless742

otherwise specified, we use the default hyperpa-743

rameters provided by Verl.744

A.4 Detailed Training and Response Length745

Curves746

This section provides the detailed learning curves747

that support our analysis of training dynamics in748

the main text. Fig. 7 and Fig. 8 illustrate the val-749

idation NDCG@10 and the average training roll-750

out response length as a function of training steps.751

These plots compare the learning trajectories of our752

SAGE variants against a baseline model trained753

without strategies. The results demonstrate that754

while the baseline model’s performance quickly755

stagnates, our SAGE framework exhibits a supe-756

rior learning trajectory, achieving continuous im-757

provement in effectiveness while simultaneously758

learning to generate more concise responses.759

A.5 Related Work760

The Evolution of Query Rewriting Query761

rewriting has long been a cornerstone of IR, aimed762

at bridging the semantic gap between user intent763

and document representations. Early approaches764

typically relies on rule-based methods, thesaurus765

expansion, or statistical machine translation tech-766

niques. Although effective in specific contexts,767

these approaches often lack robustness and required768

extensive domain-specific feature engineering or769

sizable parallel corpora (Rocchio Jr, 1971; Zhai and770

Lafferty, 2001; Abdul-Jaleel et al., 2004; Dalton 771

et al., 2014; Xu et al., 2009; Xiong and Callan, 772

2015). The advent of pre-trained sequence-to- 773

sequence models (Liu et al., 2019; Devlin et al., 774

2018), such as BART (Lewis et al., 2020) and 775

T5 (Raffel et al., 2020), significantly reshape query 776

rewriting, framing it explicitly as a supervised fine- 777

tuning task. However, this new paradigm intro- 778

duces a critical bottleneck: heavy reliance on large- 779

scale, high-quality annotated query pairs, which 780

are costly and labor-intensive to construct. 781

Reinforcement Learning for Query Rewriting 782

To alleviate reliance on explicit supervision, recent 783

approaches leverage RL to guide the generative 784

capabilities of LLMs using weaker signals (Schul- 785

man et al., 2017; Shao et al., 2024; Jiang et al., 786

2025; Li et al., 2024; Wang et al., 2025b,d,c). How- 787

ever, the application of these powerful algorithms 788

often reveals significant limitations. A common ap- 789

proach is to treat the LLM as a black box, applying 790

on-policy algorithms like PPO without modifica- 791

tion (Jiang et al., 2025), which overlooks the need 792

for specialized guidance. Other lines of work focus 793

on prompt engineering, but strategies tailored for 794

sparse retrieval in general web search (Li et al., 795

2024) exhibit limited effectiveness when trans- 796

ferred to dense retrieval tasks. Furthermore, even 797

approaches that integrate reward models, such as 798

Wang et al. (2025d), can be flawed; they often rely 799

on an arbitrary, static fusion of scores from multiple 800

fine-tuned reward models, lacking dynamic feed- 801

back from the actual retrieval environment. This 802

highlights a fundamental gap: existing RL-based 803

methods frequently neglect the nuanced, domain- 804

specific guidance required to fully exploit the po- 805

tential of dense retrieval systems. In contrast, our 806

SAGE framework addresses this gap by introducing 807

a novel layer of explicit, human-designed strategic 808

guidance. It achieves this through two core inno- 809

vations: first, by equipping the agent with a set 810

of fine-grained strategies for query augmentation, 811

and second, by proposing novel reward calcula- 812

tion schemes like SCS and CRS to provide a more 813

nuanced and effective learning signal. 814

Challenge in RL: Reward Hacking Beyond the 815

lack of strategic guidance, applying RL to genera- 816

tive tasks introduces a further challenge. A perva- 817

sive issue in reinforcement learning is reward hack- 818

ing, where an agent learns to maximize a misspeci- 819

fied or ambiguous reward function in unintended 820

ways. This often results in the agent securing high 821
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Strategy Targeted Challenge Primary Use Case
Senmantic Expansion Vocabulary mismatch between query

and documents.
General purpose, especially in specialized
domains (e.g., NFCorpus).

Entity Disambiguation Ambiguous entities leading to incor-
rect retrieval.

Queries with common names or acronyms.

Sub-question Decomposi-
tion

Complex, multi-step information
needs.

Multi-hop QA (e.g., HotpotQA).

Concise Rewriting Query noise from redundant or conver-
sational phrases.

Improving precision for overly verbose
user queries.

Neutralized Claim Reformu-
lation

Retriever’s confirmation bias towards
a stated claim.

Fact-checking and verification (e.g.,
FEVER, SciFact).

Table 4: Overview of our five expert-crafted rewriting strategies and their targeted applications.

scores by exploiting loopholes, rather than mas-822

tering the desired behavior or accomplishing the823

true underlying objective (Weng, 2024; Wang et al.,824

2024a; Wen et al., 2025; Wang et al., 2024b).825

In the context of query rewriting, this problem826

manifests in a particularly deceptive form. Since827

the policy model has access to the original query, it828

can discover a trivial, low-effort strategy: leave the829

query unchanged. Given that modern retrievers can830

achieve high baseline performance on the original831

queries for many benchmarks, this "do nothing"832

policy is often reinforced with a strong, positive833

reward. This effectively traps the agent in a lo-834

cal optimum, allowing it to "hack" the reward by835

avoiding the risk of exploration altogether. Our836

work directly confronts this challenge by introduc-837

ing mechanisms to force meaningful exploration.838
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def make_prefix(dp):

INSTRUCTION = """You are a query rewriting expert for dense retrieval systems used in multi-hop question answering and fact verification. 

Your task is to rewrite the input question or claim into a query that is optimized for retrieval effectiveness.

The final rewritten query must be in JSON format inside <answer> ... </answer> tags!!!

Format:

<answer>

{

"query": "...",

"strategy": a number between 1 and 5

}

</answer>

Each rewriting strategy below serves a different goal. You must choose the most appropriate one based on the complexity, ambiguity, and structure of the input.

### Strategy 1: Semantic Expansion ###

Expand underspecified queries by including related concepts, entities, or context needed to retrieve the correct evidence.

Example:

Original: "COVID policy 2021"

Rewritten:

<answer>

{

"query": "COVID-19 government travel and quarantine policies in the year 2021",

"strategy": 1            

}

</answer> 

### Strategy 2: Entity Disambiguation ###

Clarify ambiguous entities by adding information like occupation, nationality, or time period to help the retriever identify the correct entity.

Example:

Original: "Obama was born in Hawaii."

Rewritten:

<answer>

{

"query": "Barack Obama, the former U.S. President, was born in Hawaii.",

"strategy": 2

}

</answer> 

### Strategy 3: Sub-question Decomposition ###

Break down multi-hop or compositional questions into simpler sub-questions, or rewrite them into a fully-specified single-hop form.

Example:

Original: "Where was the CEO of SpaceX born?"

Rewritten: 

<answer>

{

"query": "Where was Elon Musk, the CEO of SpaceX, born?",

"strategy": 3

}

</answer> 

### Strategy 4: Concise Rewriting ###

Strip redundant phrases and retain only the most semantically meaningful keywords and named entities for high-precision retrieval.

Example:

Original: "Can you tell me what’s the location of the big tower in Paris called the Eiffel Tower?"

Rewritten: 

<answer>

{

"query": "Eiffel Tower location in Paris",

"strategy": 4

}

</answer> 

### Strategy 5: Neutralized Claim Reformulation ###

Convert fact-checking claims into neutral, answer-seeking questions so the retriever can return both supporting and refuting passages.

Example:

Original: "The Eiffel Tower is in Berlin."

Rewritten: 

<answer>

{

"query": "What is the location of the Eiffel Tower?",

"strategy": 5

}

</answer>     

Now rewrite the following input. Make sure to:

- Explicitly name all entities (e.g., “the president” → “Barack Obama”),

- Include necessary intermediate entities (if multi-hop),

- Avoid inserting hallucinated or assumed answers.

- Explore more strategies and avoid over-relying on any single approach. 

- Choose the strategy number (1–5) based on the actual approach used, not arbitrarily.

""" + f"""

Here is the question: {dp['query']}

Show your work in <think> </think> tags.

Let's think step by step.

<think>

"""

return INSTRUCTION

Figure 5: Full Prompt Structure for Strategy-Guided Rewriting. The figure presents the complete instructional
prompt provided to the LLM agent. It specifies the overall task, formally defines each of our five expert-crafted
strategies, and provides illustrative examples to guide their application.
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Figure 6: Performance scaling laws for query rewriting using the Contriever (Izacard et al., 2021) retriever across
four benchmark datasets: HotpotQA (Yang et al., 2018), FEVER (Thorne et al., 2018), NFCorpus (Boteva et al.,
2016), and SciFact (Wadden et al., 2020). Each subplot compares the upper-bound performance (NDCG@10) of
our SGP against the strategies from Li et al. (2024), evaluated via a Best-of-N methodology across the Qwen3
model series (Yang et al., 2025a). The results demonstrate the superior scaling potential and higher performance
ceiling of our approach.
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Figure 7: Training dynamics on the HotpotQA dataset. Each row corresponds to a different method: (from top
to bottom) baseline without strategies, SAGE (Direct), SAGE-CRS, and SAGE-SCS. The left column plots the
validation NDCG@10 (evaluated every 30 steps) over training steps, while the right column plots the average
response length. The baseline stagnates early, whereas all SAGE variants show continuous improvement in
NDCG@10 and a steady decrease in response length.
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Figure 8: Training dynamics on the NFCorpus dataset. Each row corresponds to a different method. The left column
plots validation NDCG@10(evaluated every 30 steps), and the right column shows average response length. As with
HotpotQA, the baseline model’s performance plateaus while exhibiting high response length. In contrast, our SAGE
variants, particularly SAGE-SCS and SAGE-CRS, demonstrate both stable performance gains and a significant
reduction in response length over the course of training.
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