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Abstract

We study the impact of different reinitialization methods in several convolutional architec-
tures for small-size image classification datasets. We analyze the potential gains of reinitial-
ization and highlight limitations. We also study a new layerwise reinitialization algorithm
that outperforms previous methods and suggest explanations of the observed improved gen-
eralization. First, we show that layerwise reinitialization increases the margin on the training
examples without increasing the norm of the weights, hence leading to an improvement in
margin-based generalization bounds for neural networks. Second, we demonstrate that it
settles in flatter local minima of the loss surface. Third, it encourages learning general rules
and discourages memorization by placing emphasis on the lower layers of the neural network.

1 Introduction

Deep neural networks demonstrate state-of-the-art performance on many classification tasks. While often
highly overparameterized, modern deep architectures exhibit a remarkable ability to generalize beyond the
training sample even when trained without an explicit form of regularization (Zhang et al., 2017). A large
body of work has been devoted to offering insights into this “benign” overfitting phenomenon, including
explanations based on the margin (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2017;
Arora et al., 2018; Soudry et al., 2018), the curvature of the local minima (Keskar et al., 2017; Chaudhari
et al., 2019; Neyshabur et al., 2020), and the speed of convergence (Hardt et al., 2016), among others.

Recently, however, a number of works suggest that generalization in convolutional neural networks (CNNs)
could be improved further using reinitialization. Precisely, let w ∈ Rd be a vector that contains all of the
parameters in a neural network (e.g. filters in convolutional layers and weight matrices in fully-connected
layers). Let s ∈ {0, 1}d be a binary mask that is generated at random according to some probability mass
function. Then, “reinitialization” is selecting a subset of parameters and reinitializing them during training:

w ← (1− s)�w + s� η, (1)

where � is an element-wise multiplication and η is a random initialization of the model parameters. For
example, η may correspond to the weights of He or Xavier initializations (He et al., 2015; Glorot & Bengio,
2010). In the following, we refer to the update in (1) as a “reinitialization round.” Reinitialization methods
differ in how the binary mask s is selected. Four prototypical approaches are:

• Random subset: A random subset of the parameters of a fixed size is chosen uniformly at random
in each round. This includes, for example, the random weight level splitting (welsr) method studied
in (Taha et al., 2021), in which about 20% of the parameters are selected for reinitialization.

• Weight magnitudes: The smallest parameters in terms of their absolute magnitudes are reini-
tialized at each round. This can be interpreted as a generalization to the dense-sparse-dense (dsd)
workflow of Han et al. (2017) in which reinitialization occurs only once.

• Fixed subset: A subset is chosen at random prior to training and is fixed afterwards. It corresponds
to the weight level splitting (wels) method of Taha et al. (2021).
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Figure 1: Given a deep neural network starting with K convolutional blocks followed by other layers, lw
proceeds sequentially from bottom to top (see Algorithm 1). When in block k (e.g. k = 2 in the figure
above), the weights of all early blocks {1, . . . , k} are rescaled while subsequent layers are reinitialized. In
addition, a normalization layer is inserted following block K shown in red. Importantly, the network may
contain other normalization layers within each block, such as batch or layer normalization (Ioffe & Szegedy,
2015; Ba et al., 2016). Red layers correspond to the normalization layers inserted by lw, which are fixed
(non-trainable) at each round.

• Fully-connected layers: Only the last fully-connected layers are reinitialized. This includes, for
example, the method proposed in (Li et al., 2020). In (Zhao et al., 2018), only the classifier head is
reinitialized.

We denote these four methods as welsr, dsd, wels, and fc, respectively. Moreover, we denote the baseline
method of training once until convergence as bl.

In this paper, we also study a new reinitialization algorithm, which we denote as lw for its LayerWise
approach. The new algorithm is motivated by the common observation that lower layers in the neural
network tend to learn general rules while upper layers specialize (Yosinski et al., 2014; Arpit et al., 2017;
Raghu et al., 2019; Maennel et al., 2020; Baldock et al., 2021). While all reinitialization methods improve
generalization in CNNs, we demonstrate in Section 3 that lw often outperforms the other methods. It
encourages learning general rules by placing more emphasis on training the early layers of the neural network.
A more formal statement is presented in Section 3.

• Layerwise: A convolutional neural network is partitioned into K blocks (see Figure 1 and Algo-
rithm 1). At round k, the parameters at the lowest k blocks are rescaled back to their original norm
during initialization (see Algorithm 1) while the rest of the network is reinitialized. In addition, a
new normalization layer is inserted/updated following block k. This is repeated for a total of N ≥ 1
iterations for each block.

It is worth noting that fc is a special case of lw, in which K = 1 and N > 1. In addition, the concurrent
work of Zhou et al. (2021) also corresponds to K = 1 where the upper L layers are reinitialized at each round
for some fixed L > 1. Besides the prominent role of reinitialization, lw includes normalization and rescaling,
which we show in an ablation study in Appendix E to be important. In Appendix A, we discuss why lw can
be interpreted as a stochastic gradient descent (SGD) procedure to a well-defined stochastic loss. Next, we
illustrate the basic principles of these reinitialization methods on a minimal example with synthetic data.

1.1 Synthetic Data Example

Setup. Let x ∈ R128 be the instance and y be its label, which is sampled uniformly at random from the
set {0, 1, ..., 7}. For the instances, on the other hand, each of the first 3 coordinates of x is chosen from
{−1, 1} to encode the label y in binary form. For example, instances in class 0 would have their first three
coordinates as (−1,−1,−1), whereas instances in class 5 would have (1,−1, 1). Consequently, the first three
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Algorithm 1 Pseudocode of lw
Input: (1) Neural network with identified sequence of K ≥ 1 conv blocks; (2) Training dataset; (3) N ≥ 1.
Output: Trained model parameters.
Training:

1: Initialize the neural network architecture;
2: For each layer l, compute sl = ||Wl||2, where Wl are the weights of layer l.
3: for k ∈ (1, 2, . . . ,K) do
4: for n ∈ (1, 2, . . . , N) do
5: for j ∈ (1, 2, . . . , k) do # rescaling
6: for layer ∈ Block j do
7: Wlayer ← (slayer/||Wlayer||2) ·Wlayer
8: end for
9: end for

10: Pick a batch X of training set uniformly at random;
11: Compute Z: the output of Block k of X;
12: Compute µ, σ ∈ R: mean and standard deviation of Z;
13: if n = 1 then
14: Insert lambda layer λx : (x− µ)/σ after block k;
15: else
16: Update lambda layer with new values of µ and σ;
17: end if
18: Reinitialize all layers above block k;
19: Fine-tune the entire model until convergence;
20: end for
21: end for

Table 1: Test accuracy [%] for the synthetic data experiment of Section 1.1 with different signal strengths
α and different reinitialization methods. We observe that all initialization methods (with the exception of
dsd) improve generalization in this example setting with lw performing best. In addition, reinitialization
methods also tend to reduce the variance of the test accuracy.
α bl welsr dsd wels fc lw

0.5 20.3± 0.6 24.6± 1.0 22.9± 0.6 23.1± 1.4 23.6± 3.0 25.2± 0.8
1.0 50.7± 5.4 72.9± 0.9 53.4± 0.7 66.1± 2.1 68.6± 2.1 72.3± 3.6
2.0 94.6± 2.0 98.2± 0.4 90.3± 1.4 96.8± 0.1 99.0± 0.2 99.8± 0.2

coordinates of an instance correspond to its “signal.” The remaining 125 entries of x are randomly sampled
i.i.d. from N (0, 1).

Although we focus in this work on convolutional neural networks, we use a multilayer perceptron (MLP)
in this synthetic data experiment because the inputs are not images but generic feature vectors. The MLP
contains two hidden layers of 32 neurons with ReLU activations (Nair & Hinton, 2010) followed by a classifier
head with softmax activations. It optimizes the cross–entropy loss. We train on 256 examples using gradient
descent with learning rate 0.05.

Methods. Treating every layer as a block, we have K = 3. If 200 training steps are used per round of
reinitialization and N = 3, lw trains the model once for 200 steps after which the 2nd and 3rd layers are
reinitialized (in addition to rescaling and normalization). This is carried out N = 3 times in the first layer
before k is incremented. The same process is repeated on each layer making a total of 200×N ×K = 1, 800
training steps overall. In wels, welsr, dsd, and fc, the model is trained for 200 steps before reinitialization
is applied, and this is repeated K × N times for the same total of 1, 800 steps. The baseline method
corresponds to training the model once without reinitialization for a total of 1, 800 training steps.

Results. When trained for 1,800 steps, the baseline (bl) achieves 100% training accuracy, but only around
51% test accuracy. The large gap between training and test accuracy for such a simple task is reminiscent of
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the classical phenomenon of overfitting. Note that the number of training examples is 256, which is generally
small for 128 features of equal variance. On the other hand, reinitialization improves accuracy as shown in
Table 1 even though these reinitialization methods do not have access to any additional data and use the
same optimizer and hyper-parameters as baseline training. The training accuracy is 100% in all cases. We
also observe that reinitialization tends to reduce the variance of the accuracy (with respect to the seed).

In the above experiment, both the signal part (first three coordinates) and the noise part (remaining coordi-
nates) have the same scale (standard deviation 1). We can make the classification problem easier or harder
by multiplying the signal part by a signal strength α > 1 or α < 1, respectively. We present the average test
accuracy in Table 1 for a selection of values of α with N = 3. Appendix B contains additional results when
weight decay is added.

1.2 Contribution

In this work, we study a new layerwise reinitialization algorithm lw, which often outperforms other methods.
We provide two explanations, supported by experiments, for why it improves generalization in convolutional
neural networks. First, we show that lw improves the margin on the training examples without increasing
the norm of the weights, hence leading to an improvement in known margin-based generalization bounds in
neural networks. Second, we show that lw settles in flatter local minima of the loss surface.

Furthermore, we provide a comprehensive study comparing previous reinitialization methods: First, we
evaluate different methods within the same context. For example, the comparison in (Taha et al., 2021)
uses only a single reinitialization round of the dense-sparse-dense approach (dsd) when dsd can be extended
to multiple rounds. Also, (Zhao et al., 2018) uses an ensemble of classifiers when reinitializing the fully-
connected layers, which could (at least partially) explain the improvement in performance. By contrast, we
follow a coherent training protocol for all methods. Second, we use our empirical evaluation to analyze the
effect of the experiment’s design, such as augmentation, dropout and momentum. The goal is to determine
if the effect of reinitialization could be achieved by tuning such settings. Third, we employ decision tree
classifiers to identify when each reinitialization method is likely to outperform others. In summary, we:

1. Study a new reinitialization method, denoted lw, which is motivated by common observations
of generalization and memorization effects across the neural network’s layers. We show that it
outperforms other methods with a statistically significant evidence at the 95% level.

2. Suggest two explanations, supported by experiments, for why lw is more successful at improving
generalization in CNNs compared to other methods.

3. Present a comprehensive evaluation study of reinitialization methods covering more than 1,000
experiments for four convolutional architectures: (1) simplified CNN, (2) VGG16 (Simonyan &
Zisserman, 2015), (3) MobileNet (Howard et al., 2017) and (4) ResNet50 (He et al., 2016a). We
conduct the evaluation over 6 benchmark image classification datasets of small size (up to 12,000
training examples per dataset). We do not observe consistent gains of reinitialization with large
datasets, so we omit those from the comparison and focus on the small-data regime.

2 Related Work

Reinitialization. As stated earlier, a number of works suggest that reinitializing a subset of the neural
network parameters during training can improve generalization. This includes, the dense-sparse-dense (dsd)
training workflow proposed by Han et al. (2017), in which reinitialization occurs only once during training.
However, as the authors argue, the improvement in accuracy in dsd could be attributed to the effect of
introducing sparsity, not reinitialization. Another example is “Knowledge Evolution”, including weight
level splitting (wels) and its randomized version (welsr) (Taha et al., 2021). It was noted that wels
outperformed welsr, which agrees with our observations. Finally, some recent works propose to reinitialize
the fully-connected layers only (Li et al., 2020; Zhao et al., 2018). In particular, reinitializing the last layer
several times and combining the models into an ensemble can improve performance (Zhao et al., 2018).
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However, the improvement in accuracy could (at least partially) be attributed to the ensemble of predictors,
not to reinitialization per se. For fair comparison, we extend dsd to multiple rounds of reinitialization and
do not use an ensemble of predictors.

Generalization Bounds. Several generalization bounds for neural networks have been proposed in the
literature. Of those, a prototypical approach is to bound the generalization gap by a particular measure
of the size of weights normalized by the margin on the training set. Examples of measures of the size
of weights include the product of the `1 norms (Bartlett, 1998) and the product of the Frobenius norms of
layers (Neyshabur et al., 2015), among others (Bartlett et al., 2017; Neyshabur et al., 2017; Arora et al., 2018).
While such generalization bounds are often loose, they were found to be useful for ranking models (Neyshabur
et al., 2017). The fact that rich hypothesis spaces could still generalize if they yield a large margin over the
training set was used previously to explain the performance of boosting (Schapire et al., 1997). In Section 4,
we show that lw boosts the margin on the training examples without increasing the size of the weights.

Flatness of the Local Minimum. Another important line of work examines the connection between
generalization and the curvature of the loss at the local minimum (Keskar et al., 2017; Neyshabur et al.,
2017; Foret et al., 2021). Deep neural networks are known to converge to local minima with sparse eigenvalues
(>94% zeros) in their Hessian (Chaudhari et al., 2019). Informally, a flat local minimum is robust to data
perturbation, and this robustness can, in turn, be connected to regularization (Bishop, 1995). In fact, some
of the benefits of transfer learning were attributed to the flatness of the local minima (Neyshabur et al.,
2020). For a precise treatment, one may use the PAC-Bayes framework to derive a generalization bound
that comprises of two terms: (1) sharpness of the local minimum, and (2) the weight norm over noise
ratio (Neyshabur et al., 2017). Similar terms also surface in the notion of “local entropy” (Chaudhari et al.,
2019). We show in Section 4 that lw improves both terms.

Generalization vs. Memorization. Several works point out that early layers in a neural network tend
to learn general-purpose representations whereas later layers specialize, e.g. (Raghu et al., 2019; Arpit et al.,
2017; Yosinski et al., 2014; Maennel et al., 2020). This can be observed, for instance, using probes, in which
classifiers are trained on the layer embeddings. As demonstrated in (Cohen et al., 2018) and (Baldock et al.,
2021), deep neural networks learn to separate classes at the early layers with real labels (generalization) but
they only separate classes at later layers when the labels are random (memorization). One explanation for
why lw improves generalization is that it encourages learning general rules at early layers and discourages
memorization at later layers.

3 Analysis

3.1 Empirical Study

We begin by evaluating the performance of the five reinitialization methods discussed in Section 1 for four
convolutional architectures on 6 small-size benchmark image classification datasets (see Table 4 for details).
Appendix F summarizes related experiments on CIFAR10 and CIFAR100. All images are resized to 224×224.
The architectures are (1) simplified CNN, (2) VGG16 (Simonyan & Zisserman, 2015), (3) MobileNet (Howard
et al., 2017) and (4) ResNet50 (He et al., 2016a). We denote these by scnn, vgg16, mobilenet, and
resnet50, respectively. We use He-initialization (He et al., 2015) unless stated otherwise. Details about
each architecture and the hyper-parameters are provided in Appendix C.

To recall, every reinitialization method trains the same model on the same dataset for several rounds. After
each round, a binary mask of the model parameters is selected according to the reinitialization criteria and
the update in Eq. (1) is applied for some random initialization η. After that, the model is fine-tuned on
the same data. Blocks in lw correspond to the standard blocks of the architecture (e.g. a block in Figure
1 would correspond to either an identity or a convolutional block in ResNet50). Also, 10% of the training
split is reserved for validation, which is used for early stopping in all methods.

To evaluate the relative performance of the reinitialization methods, we perform a set of experiments in which
we fix the hyperparameters for all architectures and datasets to the same values. The hyperparameters were
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Table 2: Test accuracy results [%] for the five reinitialization methods on the six benchmark datasets:
Oxford-IIIT (Parkhi et al., 2012a), Stanford Dogs (Deng et al., 2009), Cars (Krause et al., 2013b), Caltech-
101 (Fei-Fei et al., 2004b), Cassava (Mwebaze et al., 2019a), and Caltech-UCSD Birds 200 (Welinder et al.,
2010a). Values in bold/underlined are the best/second-best results. The symbols b,r,d,w,f,l are for
baseline, welsr, dsd, wels, fc, and lw, respectively. In lw, N = 1. Every reinitialization uses the same
number of rounds K (cf. Appendix C) and they are trained for the same number of epochs (including the
baseline). In wels, welsr, and dsd, we reinitialize 20% of the parameters, following Taha et al. (2021).

B R D W F L B R D W F L

oxford-iiit scnn 13.7±.9 12.0±.6 13.4±.2 14.0±.6 14.0±.4 15.0±.4 vgg16 16.2±.1 16.7±.9 16.9±.9 16.4±.5 29.7±.8 25.6±.9

mobile 13.4±.2 13.8±.6 17.2±.1 15.9±2. 14.8±3. 30.1±.8 resnet 24.0±.1 24.2±.6 22.9±.1 24.9±.2 23.7±1. 28.5±.1

dogs scnn 5.8±.3 5.2±.5 5.2±.1 5.1±.5 5.1±.1 6.1±.2 vgg16 11.4±.2 11.8±.1 10.7±.4 10.3±.1 24.2±.6 19.1±.9

mobile 9.7±.3 8.6±1. 9.0±1. 11.6±.4 9.9±.5 19.2±1. resnet 14.0±.1 17.5±1. 19.2±2. 16.0±1. 13.9±0.622.0±.7

cars196 scnn 3.4±.1 3.4±.0 3.4±.4 3.5±.3 3.2±.1 3.8±.1 vgg16 6.5±1. 5.5±.1 7.7±.4 7.0±.1 20.9±.1 9.9±.5

mobile 6.1±2. 8.9±1. 5.3±2. 7.4±.5 6.8±1. 22.2±.1 resnet 10.1±2. 12.8±.6 13.4±6. 13.7±1. 10.4±.1 12.6±.3

caltech101 scnn 51.1±.4 49.9±.1 49.8±.8 48.4±.9 50.8±.7 50.7±.1 vgg16 54.1±.3 55.4±.7 54.2±.5 55.9±.3 69.1±.1 57.3±1

mobile 36.7±.9 43.0±3. 44.9±.4 40.9±3. 42.3±1. 47.0±.7 resnet 50.4±.8 54.6±.8 55.0±.4 52.9±2. 50.7±1. 53.3±3.

cassava scnn 59.4±.4 58.6±.1 58.6±.7 59.8±1. 61.6±.1 63.9±.3 vgg16 58.4±.2 59.5±1. 58.4±2. 62.1±2. 58.5±.0 59.3±1.

mobile 52.6±.7 57.9±2. 63.6±.3 62.2±.4 55.4±1. 70.0±2. resnet 61.9±4. 57.3±1. 62.8±2. 58.1±.4 56.7±2. 63.9±2.

birds2010 scnn 2.0±.1 2.6±.3 2.3±.1 2.2±.6 2.4±.3 2.4±.1 vgg16 3.8±.4 4.3±.6 4.1±.4 3.4±.2 8.5±.6 5.1±2.

mobile 4.5±1. 3.9±.3 5.2±.4 5.9±.6 5.3±1. 8.1±.5 resnet 6.9±.4 8.7±.3 10.0±.1 10.0±.5 6.5±.1 10.0±.7

+ Augmentation

oxford-iiit scnn 15.1±.5 14.6±.6 14.3±.5 14.7±.4 16.0±3. 16.6±3. vgg16 22.0±3. 20.0±2. 20.9±3. 20.7±3. 39.1±3. 29.8±4.

mobile 27.7±1. 24.1±1. 23.2±2. 24.3±1. 23.5±1. 41.7±1. resnet 29.7±.3 33.3±.3 39.1±.2 31.9±.4 36.6±.3 34.4±.3

dogs scnn 7.4±.3 8.2±.2 7.7±.3 8.0±.1 8.1±.2 8.6±.3 vgg16 16.0±4. 16.9±3. 15.5±2. 16.7±4. 37.3±4. 31.2±9.

mobile 19.0±.8 19.5±.5 27.1±.8 18.8±.7 20.7±.3 35.8±.8 resnet 26.4±1. 30.7±1. 28.4±1. 35.2±2. 33.3±1. 36.9±1.

cars scnn 5.6±.2 6.0±.5 5.3±.1 5.5±.2 7.3±.3 5.8±.2 vgg16 11.7±.4 10.7±.4 11.2±.4 11.4±.1 43.6±.2 22.4±.4

mobile 6.9±2. 16.2±1. 9.1±1. 11.9±1. 13.8±1. 44.0±1. resnet 21.8±1. 42.5±2. 33.2±1. 43.1±2. 36.7±2. 43.6±1.

caltech101 scnn 50.1±.5 52.2±.5 52.2±.5 51.5±.5 54.4±.5 52.8±.4 vgg16 55.9±1. 55.8±3. 57.1±3. 56.3±3. 67.1±2. 59.1±3.

mobile 41.0±2. 41.5±2. 47.4±3. 41.8±3. 48.0±1. 46.3±1. resnet 50.2±2. 51.9±1. 53.1±.7 57.5±1. 52.1±2. 50.5±.9

cassava scnn 58.9±.5 60.6±.1 59.4±.2 62.2±.5 67.0±.4 69.3±.7 vgg16 70.3±2. 70.0±1. 70.0±1. 71.2±1. 71.5±1. 68.3±4.

mobile 62.3±1. 72.8±.7 80.1±.8 76.1±.7 77.3±.5 81.1±.4 resnet 46.5±2. 79.2±2. 82.9±2. 82.6±1. 77.6±2. 73.9±2.

birds2010 scnn 3.8±.5 3.7±.2 4.0±.3 3.2±.2 4.2±.1 3.8±.1 vgg16 5.5±1. 6.5±1. 5.6±.7 5.8±.9 13.2±1. 9.8±2.

mobile 6.6±.5 9.0±.7 8.1±.7 6.2±.4 7.4±.7 9.8±.7 resnet 8.5±.4 12.5±.4 11.2±.4 13.0±.6 11.9±.4 10.6±.5

+ Augmentation + Dropout

oxford-iiit scnn 15.8±.5 13.6±.5 14.3±.3 15.1±.5 19.3±.5 17.1±.5 vgg16 25.3±3. 26.7±1. 26.6±2. 26.4±3. 43.4±3. 34.4±5.

mobile 28.4±1. 29.1±1. 27.8±1. 27.9±1. 22.0±1. 41.0±1. resnet 33.1±.3 35.2±.2 41.2±.3 37.4±.3 32.6±.3 35.6±.3

dogs scnn 8.4±.3 8.9±.3 7.6±.3 8.0±.3 9.6±.3 9.1±.3 vgg16 17.7±4. 19.7±4. 19.5±3. 18.9±3. 34.9±7. 35.9±9.

mobile 17.8±.8 23.5±.5 27.3±.9 22.4±.8 20.5±.5 35.0±.4 resnet 30.7±1. 33.3±1. 33.1±.9 33.8±.9 34.5±.9 40.1±.9

cars scnn 6.3±.1 6.2±.2 5.9±.1 6.8±.2 7.4±.1 6.4±.2 vgg16 14.3±.7 18.9±.3 12.6±.3 16.6±.4 45.2±.1 34.2±.5

mobile 9.5±1. 16.1±1. 30.8±1. 24.1±2. 16.4±1. 44.5±1. resnet 19.8±2. 45.7±1. 43.0±1. 48.1±3. 45.0±3. 47.5±2.

caltech101 scnn 51.4±.4 53.5±.3 51.1±.3 52.6±.1 52.4±.4 53.6±.3 vgg16 59.6±2. 61.7±3. 60.8±1. 61.0±3. 68.1±4. 62.7±.7.

mobile 47.1±2. 43.0±1. 47.5±1. 45.6±1. 51.3±1. 49.4±2. resnet 50.6±2. 54.1±3. 54.6±1. 55.7±1. 51.4±2. 50.3±1.

cassava scnn 61.8±.5 62.9±.3 60.7±.2 61.9±.1 68.4±.1 68.6±.1 vgg16 70.1±2. 71.4±2. 73.7±3. 71.0±2. 71.1±2. 71.9±5.

mobile 68.5±1. 70.0±1. 78.6±1. 74.3±1. 73.7±1. 80.5±3. resnet 74.2±2. 77.6±2. 81.5±1. 80.9±1. 73.5±2. 78.6±1.

birds2010 scnn 4.0±.2 4.0±.1 3.5±.2 3.7±.2 3.3±.1 4.4±.2 vgg16 6.5±3 8.1±1. 8.5±2. 8.1±1. 18.6±1. 12.6±1.

mobile 2.5±.7 9.6±.7 5.1±.6 6.3±.7 8.4±.2 9.0±.9 resnet 11.5±.4 14.8±.6 13.3±.7 15.2±1. 13.5±.7 13.3±.3
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Table 3: Statistical significance: a star (?) implies that the column method outperforms the row with sta-
tistically significant evidence at the 95% level, computed using the exact binomial test. A circle (◦) implies
that statistical significance holds even after applying Holm’s step-down correction for multiple hypothesis
tests (Demšar, 2006). Only lw performs better than the baseline across all architectures. For resnet50,
reinitialization methods except fc perform better than the baseline with no clear winner among them.

scnn vgg16 mobilenet resnet50
b r d w f l b r d w f l b r d w f l b r d w f l

b ◦ ? ◦ ◦ ◦ ? ◦ ◦ ?
r ? ? ? ? ?
d ? ? ? ?
w ? ? ◦ ? ◦
f ?
l ?

Table 4: Overview of the 6 benchmark datasets.
Name |Training| |Test| # Classes

oxford-iiit (Parkhi et al., 2012b) 3,680 3,669 37
dogs (Khosla et al., 2011) 12,000 8,580 120
cars196 (Krause et al., 2013a) 8,144 8,041 196
caltech101 (Fei-Fei et al., 2004a) 3,060 6,084 101
cassava (Mwebaze et al., 2019b) 5,656 1,885 4
birds2010 (Welinder et al., 2010b) 3,000 3,033 200

chosen to work reasonably well across all combinations; in particular they enable reaching 100% training
accuracy in all cases. We use SGD with an initial learning rate of 0.003 and momentum 0.9. The learning
rate is decreased by a factor of 2 whenever the validation error does not improve for 20 epochs. The
batch size is 256 and a maximum of 100k minibatch steps are used. We run all experiments, as explicitly
stated, without data augmentation or with mild augmentation consisting of horizontal flipping and random
cropping (in which the size is increased to 248 × 248 before a crop of size 224 × 224 is selected). Such
fixed hyperparameters are suboptimal for some combinations of architectures and datasets and therefore the
resulting numbers can be worse than state-of-the-art results. However, they enable reaching 100% training
accuracy in all combinations of models and datasets. For example, increasing the learning rate to 0.01 would
prevent ResNet50 from progressing its training error beyond that of random guessing on cassava.

Table 2 provides the detailed results of the five reinitialization methods across the benchmark datasets in three
settings: (1) no augmentation or dropout is used, (2) with augmentation, and (3) with both augmentation
and dropout rate 0.25. We perform an exact binomial test to evaluate which method performs statistically
significantly better across the settings. In Table 3, we summarize these results. We observe that only lw
outperform the baseline across all architectures with statistically significant evidence, and outperforms the
other reinitialization methods in all architectures except resnet50. In resnet50, reinitialization methods
except fc perform better than the baseline but with no clear winner among them. Moreover, fc performs
generally better than wels, welsr, and dsd. It is worth reiterating, that fc is a special case of lw that
corresponds to K = 1 and N > 1.

3.2 Effect of Experiment Design

To determine when a particular reinitialization method outperforms others, we train a decision tree classifier
on the outcomes of several experiments that vary in design by, for example, number of classes, size of
the training dataset, augmentation, and dropout. Every setting contains experiment runs of each of the 5
reinitialization methods in addition to the baseline for the four architectures and 6 benchmark datasets.

We use the decision tree classifier, implemented using the Scikit-Learn package (Pedregosa et al., 2011), for
interpretability. We use a minimum leaf size of 7 in the decision tree and a maximum depth of 4. Figure 2
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Figure 2: A decision tree classifier trained to predict the best reinitialization method based on the experiment
design. The features are the training set size, number of classes, neural network architecture, dropout rate
and augmentation. In general, lw performs best overall except in vgg16, where fc performs better. The
decision tree classifier has a maximum depth of 4 and a minimum number sample leaf of 7.

displays the resulting decision tree. In general, lw performs best overall except in vgg16, where fc performs
better.

3.3 Compute

In Table 2, every reinitialization round is trained until convergence. However, improvement in generalization
can also be obtained at lower computational overhead by stopping early in each round. This is demonstrated
in Figure 3 for all six benchmark datasets. As shown in the figure, early stopping allows to realize the gain of
reinitialization without incurring significant additional overhead. In addition, we show in Appendix E that
training is faster in subsequent rounds of reinitialization.

4 Relations to the Generalization Risk

Boosting the Margin. As discussed earlier in Section 2, a typical approach for bounding the general-
ization gap in deep neural networks is to use a particular measure of the size of the weights normalized
by the margin on the training sample. Let D be the number of layers in a neural network, whose output
is a composition of functions: f(x) = f1 ◦ f2 ◦ · · · fD(x), where each fi(x) is of the form fi(x) = σ(Wix)
for some matrix Wi and ReLU activation σ. Then, one measure of the size of the weight that relates to
generalization is the product of the Frobenius norms of layers

∏d
i=1 ||W ||2F (Neyshabur et al., 2015; 2017).

This is normalized by the margin γ > 0 on the training examples, which is the smallest difference between
the score assigned to the true label and the next largest score. For a better visualization, we use the margin
of the softmax output in the interval [0, 1].

Figure 4 displays the smallest 400 margins on the training sample for each of the benchmark datasets. As
shown in the figure, lw boosts the margin on the training sample considerably when compared to previous
reinitialization methods. Most importantly, lw achieves this without increasing the size of the weights. To
take the contribution of the normalization layers into account when calculating the product

∏d
i=1 ||W ||2F ,

we compare the product of the norms of the input to the classifier head (activations) and the norm of the
weights of the classifier head in each method. We observe that lw tends to maintain the same size of the
weights as the baseline. Appendix D provides further details.

8
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Figure 3: The test accuracy of reinitialization methods with different compute budgets (no augmentation or
dropout) is plotted for each dataset. The x-axis is the number of training steps per reinitialization round.
For the baseline, the test accuracy is plotted over the same total number of steps as reinitialization methods.
Most reinitialization methods quickly surpass the accuracy of the baseline for the same amount of compute
and can reap benefit of reinitialization without having to train until convergence in each round.

We provide an informal argument for why this happens in lw. First, the product of the norms of the
weights in the identified K blocks in lw (cf. Figure 1 and Algorithm 1) tend to remain unchanged due to
the normalization layers inserted after each round. What changes is the norm of the final layers (following
block K), but their norm tends to shrink because they train from scratch faster with each round. As for the
margin, because the network classifies all examples correctly in a few epochs in the final round of lw, any
additional epochs have the effect of increasing the margin to reduce the cross entropy loss.

Sharpness of the Local Minima. Finally, we observe that the final solution provided by lw seems to
reside in a “flatter” local minima of the loss surface than in the baseline. One method for quantifying flatness
is to compare the impact on the training loss when the model parameters are perturbed by Gaussian noise,
which has been linked to generalization (Neyshabur et al., 2017). To recall, both lw and bl share the same
size of the weights (cf. Appendix D). Figure 5 shows that the solution reached by lw is more robust to
model perturbation than in standard training. More precisely, for every amount of noise added into the
model parameters w, the change in the training loss in lw is smaller than in standard training suggesting
that the local minimum is flatter in lw.

5 Discussion and Limitations

In this paper, we study a new reinitialization method for deep neural networks. Empirical results show that
it improves generalization better than previous methods across a wide range of architectures and hyper-
parameters. It relates to prior works that distinguish learning general rules in earlier layers from exceptions

9
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Figure 4: For each dataset, the top figure shows the smallest 400 margins in the training sample for different
reinitialization methods. lw (orange) boosts the margin considerably compared to the other reinitialization
methods. The bottom figure of each dataset provides the same comparison between lw and bl. The curves
are displayed separately for a better visualization, as they almost coincide in the wide ranged log-scale in
the top figure.
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Figure 5: Bi-criteria plots for the change in training accuracy (y-axis) when the model parameters are
perturbed by standard Gaussian noise N (0, σ2I) for each dataset. Lower curves suggest flatter local minima
and better generalization.

to the rules in later layers, because lw places more emphasis on the early layers of the neural network. We
also argue that the improved generalization can be connected to the sharpness of the local minima and the
margins on the training data.

To assess the limitations of the proposed method, we conducted ablation studies, statistical tests as well
as failure analysis using decision trees. Those revealed that layerwise reinitialization yields a significant
improvement in cases where the generalization gap is large, such as when using poor hyper-parameters or
small datasets. The improvement is small, however, when the generalization gap is small, such as when the
training data is large.

Our takeaway message is that the accuracy of convolutional neural networks can be improved for small
datasets using bottom-up layerwise reinitialization, where the number of reinitialized layers may vary de-
pending on the available compute budget. At one extreme, one would benefit from reinitializing the classifier’s
head alone, but reinitializing all layers in sequence with rescaling and normalization yields better results.
We hope that the description of the observed positive effects will inspire others to study them more and to
develop more efficient alternatives.
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A Layerwise Reinitialization as a Stochastic Gradient Descent

Before presenting our empirical study of the different reinitialization methods, we discuss briefly why reini-
tialization can be interpreted as a stochastic gradient descent (SGD) procedure to a well-defined stochastic
loss. Later in Section 4, we present arguments for the improved generalization in lw that are linked to the
margin on the training examples as well as the flatness of the local minimum.

Consider the following simplified training protocol. In a multi-layer neural network, let w0 ∈ Rd0 be the set
of weights at the first layer and write w̄0 ∈ Rd−d0 for the set of weights at all later layers. Let wt

0 and w̄t
0 be

the set of weights after round t. We will simplify discussion by denoting wt = (wt
0, w̄

t
0) ∈ Rd and focusing

on the first layer alone.

Given a loss function L : Rd → R, training via stochastic gradient descent (SGD) leads to a stationary point
of the loss surface (i.e. a solution w such that ∇L(w) = 0). Let S be the set of stationary points of L. To
mimic the behavior of lw, suppose that training proceeds at round t by reinitializing w̄0 and applying the
proximal operator to the full set of weights w:

wt = arg min
w∈S
||w − wt−1||22. (2)

Informally, (2) selects a stationary point of L that is nearest to the current solution in the reinitialization
round. If we write ΨS for the indicator function of the set S:

ΨS(w) =
{

0, w ∈ S
∞, w /∈ S,

(3)

then a single training round in (2) corresponds to a gradient descent step to the Moreau envelope of
ΨS (Parikh & Boyd, 2014), denoted MΨS , which in this case is the distance to S. That is, a training
round in (2) is equivalent to the gradient update step:

wt+1 = wt −∇MΨS (wt). (4)

However, for the set of weights at the first layer w0, reinitialization transforms the update rule in (4) into a
stochastic gradient step wt+1

0 = wt
0 −∇ft(wt

0), in which ft is a stochastic loss function whose randomness is
derived from the randomness of w̄0 and satisfies:

ft(w0) = MΨS ((w0, w̄
t
0)) = min

(x,x̄)∈S

{
||x− w0||22 + ||x̄− w̄0||22

}
. (5)

Hence, a single reinitialization round, where the weights of the first layer are retained while the rest is
reinitialized, can be interpreted as a stochastic gradient descent step to the loss in (5), which penalizes
weights at the first layer w0 that change significantly when the rest of the network is reinitialized and
retrained. Repeating this several times for the first layer is analogous to choosing a large value of N � 1 in
lw. Once the first layer is trained, its output can be normalized before proceeding to the next layer, which
is what lw achieves.

B Synthetic Data Experiment

We use the same type of data as described in Section 1, but look in more detail at the more difficult case
α = 0.5, this means the first three entries of the data encode the 8 possible labels as the 8 corners of the
cube [−0.5, 0.5]3, whereas the remaining entries are still sampled from the standard normal distribution.
In addition, one may add a weight decay penalty to the task and examine the impact of rescaling alone.
Specifically, we consider two cases:

• Rescaling: Instead of training once for T epochs, we train 5 times for T/5 epochs, and in between
we scale back all weights such that the norm of each layer matches the norm after initialization.
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• Reinitialization (“lw”): In addition to rescaling, we re-initialize the layers above the first one in the
first two rounds, above the second layer in the next two rounds, and only the top layer in the last
round.

The results are shown in Table 5. We use the same type of data as described above, but focus now at the
more difficult case of α = 0.5.

We observe that one can get significantly better results with weight decay. Nevertheless, lw gives an
additional benefit on top of the L2 regularization: The best baseline result is 0.77, but the best results with
Rescaling or lw are at 0.89 / 0.86. Note that the best L2 penalty needs to be estimated (e.g. by cross
validation) for each data set and training procedure. In this case, less L2 penalty is needed if we apply
Rescaling / lw .

In this particular experiment, rescaling seems to already give the full effect but this is not generally the case
in natural image datasets, in which the gain seems to be modest without reinitialization.

Table 5: Test accuracies (average of 100 runs)
L2 penalty Baseline Rescaling lw

0.0 0.19 0.21 0.25
0.005 0.51 0.67 0.82
0.01 0.54 0.89 0.85
0.02 0.58 0.87 0.86
0.05 0.77 0.78 0.79
0.1 0.59 0.63 0.64

C Experiment Setup

Throughout the main text, we use four different architectures: one simple convolutional neural network, and
three standard deep convolutional models.

In all architectures, we use weight decay with penalty 10−5. We also use layer normalization (Ba et al.,
2016), implemented in TensorFlow (Abadi et al., 2015) using GroupNormalization layers with groups=1.
Similar results are obtained when using Batch Normalization (Ioffe & Szegedy, 2015).

In all experiments, we use SGD as an optimizer with a learning rate of 0.003 and momentum 0.9. Also, we
use a batch size of 256. All experiments are executed on Tensor Processing Units (TPU) for a maximum of
100,000 minibatch steps per reinitialization round. We resize images to 224× 224 in all experiments.

Simple CNN (scnn). This architecture contains four convolutional blocks followed by one dense layer
before the classifier head. The number of convolutional blocks K used in this architecture is 4. Every convo-
lutional block is a 2D convolutional layer, followed by layer normalization and ReLU activation. Precisely:

conv2d 32 filters
layer_norm; activation_relu

conv2d 32 filters
layer_norm; activation_relu
max_pooling2d

conv2d 64 filters
layer_norm; activation_relu

conv2d 64 filters
layer_norm; activation_relu
max_pooling2d

flatten
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Figure 6: For each reinitialization method, the Gaussian approximation of the density of the ratio of the size
of the weights over the size of the weights in the baseline method is shown. The density of the ratio in lw
is concentrated around 1, which implies that lw tends to not increase the size of the weights. See Appendix
D for details.

dense 512 units
layer_norm; activation_relu

dropout
classifier_head

MobileNetV1 (mobilenet). This is the standard shallow MobileNet architecture (Howard et al., 2017).
The standard blocks in this architecture are either convolutional blocks with layer normalization and ReLU
or depthwise separable convolutions with depthwise and pointwise layers followed by layer normalization
and ReLU (see Figure 3 in (Howard et al., 2017)). In the shallow architecture, the number of convolutional
blocks K is 7.

VGG16 (vgg16). This is the standard VGG16 architecture (Simonyan & Zisserman, 2015). The standard
blocks in this architecture are convolutional layers with layer normalization and ReLU (Table 1 in (Simonyan
& Zisserman, 2015)). The number of convolutional blocks K is 13.

ResNet50 (resnet50). This is the standard ResNet50 architecture (He et al., 2016b). The standard
blocks in this architecture either identity blocks or convolutional blocks (see Table 1 in (He et al., 2016b)).
The number of convolutional blocks K used in this architecture is 16.

D Size of the Weights

To calculate the norm of the weights while taking the contribution of the normalization layers into account,
we compute the norm of the input to the classifier head (activations) for a random training sample of size
256. Then, we compute the Frobenius norm of the weights at the classifier head. Finally, we compute
their product, which reflects the product of the Frobenius norm of layers stated in the generalization bound.
Figure 6 shows a a Gaussian approximation to the ratio of the size of the weights of each reinitialization
method over the size of the weights in the baseline. As shown in the figure, lw tends to maintain the size
of the weights, while also boosting the margin on the training examples as discussed in the main paper.

E Ablation

lw includes rescaling, normalization, and reinitialization. In some cases, these may not all be required and
reinitialization alone suffices, but this is not always the case. We observe a consistent improvement in lw
when rescaling and normalization are included, in addition to fine-tuning the whole model at each round.
In general:

• The improvement in generalization in lw cannot be attributed to rescaling or normalization alone.
Reinitialization has the main effect.
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• There exist experiment designs in which reinitialization fails without fine-tuning the model.

• We observe cases in which rescaling alone helps but adding reinitialization improves performance
further.

• The gain from lw cannot be obtained by just training the baseline longer (i.e. using the same
computational budget).

In this section, we show that the primary effect in lw comes from reinitialization, and that the improvement
in generalization cannot be attributed to rescaling or normalization alone. We also show that fine-tuning the
whole model performs better than freezing the early layers. Finally, we illustrate a case where lw without
normalization fails.

Rescaling. Generally, rescaling yields a small improvement on top of reinitialization and most of the gain
of lw can often be achieved without it. Nevertheless, rescaling offers benefits. For example, in the six
datasets in Table 4 plus CIFAR10 and CIFAR100, if we apply lw with rescaling vs. lw without rescaling,
we observe that rescaling tends to offer better performance. The following table provides the probability
(over the choice of the dataset) that rescaling yields better results compared to without it:

With no augmentation and no dropout 87.5%
With augmentation and no dropout 62.5%
With augmentation and dropout 37.5%

In addition, one can construct settings in which reinitialization without rescaling fails. For example, when
training vgg16 on CIFAR100 without normalization layers using the following parameters:

Learning Rate: 0.003, Momentum: 0, Batch size: 256
Dropout Rate: 0, Initializer: He Normal, Weight Decay: 0,

reinitialization fails to progress beyond random guessing without rescaling.

Reinitialization. We use the vgg16 architecture with the same hyperparameters as listed in Appendix C.
We repeat the same experiments across all datasets including rescaling and normalization but without reini-
tialization and compare the resulting accuracy when reinitialization is added. We also include experiments
with and without augmentation as well as with and without dropout. When we compare the difference
in outcomes using the exact binomial test, the improvement of reinitialization compared to rescaling and
normalization alone is statistically significant with a p-value of less than 10−9.

Fine-tuning vs. Freezing. lw fine-tunes the entire model in each round. One alternative approach
is to freeze the early blocks. However, because of the co-adaptability between neurons that arises during
training (Yosinski et al., 2014), freezing some layers and fine-tuning the rest is difficult to optimize and can
harm its performance (Yosinski et al., 2014). This is also true for reinitialization methods in general. Hence,
the entire model including the kept layers is fine-tuned at each round. If we consider vgg16 and the six
datasets in Table 4 plus CIFAR10 and CIFAR100, for example, and apply lw with freezing vs. lw with
fine-tuning, we observe that fine-tuning improves performance in general. The following table provides the
probability (over the choice of the dataset) that fine-tuning the model yields better results compared to
freezing:

With no augmentation and no dropout 87.5%
With augmentation and no dropout 62.5%
With augmentation and dropout 75.0%

Training Longer. The improvement in lw cannot be obtained by simply training longer even with learning
rate scheduling. Throughout our experiments (e.g. Tables 2), we also train the baseline longer to have the
same number of training steps in total as reinitialization methods. Despite that, reinitialization methods
improve performance considerably.
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Figure 7: The test accuracy is displayed for the baseline bl (x-axis) vs. lw (y-axis) with N = 1 on CIFAR10
(top) and CIFAR100 (bottom). Most of the experiments fall above the diagonal, which indicates that lw
succeeds in improving generalization.

F Experiments on CIFAR10 and CIFAR100 Datasets

To examine the impact of lw on larger datasets, we run several experiments with different hyperparamters
on CIFAR10 and CIFAR100. The hyperparameters we vary are the learning rate (either 0.003 or 0.01),
dropout rate (either 0 or 0.25), augmentation (with or without), and weight decay (either 1e-5 or 5e-4).
The results are summarized in Figure 7. Experiments in which training fails to progress (e.g. because the
learning rate is too large), were dropped. We also include experiments with Xavier initialization (Glorot &
Bengio, 2010) in the figure. Since the focus in this work is on the improvement in generalization on small
datasets, we only validate that lw can improve generalization compared to the baseline method bl. As
shown in Figure 7, lw improves generalization in most settings, particularly when generalization is a major
concern (e.g. the improvement is bigger when the baseline bl performs poorly).
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