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ABSTRACT

Humans communicate through both spoken and written language, often switching
between these modalities depending on their goals. The recent success of large
language models (LLMs) has driven researchers to understand the extent to which
these models align with human behavior and neural representations of language.
While prior work has shown similarities in how humans and LLMs form predic-
tions of written text, no work has investigated whether LLMs are representative
of human predictions of spoken language. We investigated the alignment between
LLMs and behavior of human participants (N=300) who predicted words within
a story presented as either spoken language or written text. We found that LLM
predictions were more similar to humans’ predictions of written text compared to
spoken language, though humans’ predictions of spoken language were the most
accurate. Then, by training encoding models to predict neural activity recorded
with fMRI to the same auditory story, we showed that models based on human
predictions of spoken language better aligned with observed brain activity during
listening compared to models based on LLM predictions. These findings suggest
that the structure of spoken language carries additional information relevant to
human behavior and neural representations.

1 INTRODUCTION

Language is a flexible medium of communication, where underlying symbolic structures retain their
meaning whether spoken or written (Rubin et al., 2000; Louwerse, 2011). Humans regularly switch
between these modalities (Chafe & Tannen, 1987; Rubin, 1987; Hulme & Snowling, 2014) and
represent these structures through a common neural code (Regev et al., 2013; Deniz et al., 2019).
Recently, large language models (LLMs) have provided researchers with tools to probe the func-
tions that underpin efficient processing and representation of language (Linzen & Baroni, 2021). A
number of studies have demonstrated similarities in LLM representations of language and human
neural representations of both spoken and written language (Schrimpf et al., 2021; Caucheteux &
King, 2022; Caucheteux et al., 2022; Tang et al., 2022; Heilbron et al., 2022; Toneva et al., 2022).
Importantly, the mechanisms by which LLMs process and predict language relate not only to human
neural representations, but also to human behavior. LLM surprisal — the uncertainty in predicting
an upcoming word — has been shown to predict a variety of human behaviors including reading
times (Hao et al., 2020; Wilcox et al., 2020; Shain et al., 2022), event segmentation (Kumar et al.,
2023; Michelmann et al., 2023), and next-word predictions of written text (Jacobs & McCarthy,
2020; Goldstein et al., 2022b). In light of these apparent similarities, it is critical to understand the
extent to which LLMs recapitulate human behavior and representations of language, particularly
when these models are used in downstream analyses of neural representations.

Recent interdisciplinary work has started to characterize how LLMs align with and diverge from
human behavior and neural representations (Momennejad, 2023; Sucholutsky et al., 2023). Many
differences between LLMs and human behavior have been reported, most often in tasks involving
higher-order cognitive processes such as social reasoning (Mahowald et al., 2023; Ullman, 2023)
and moral judgment (Jiang et al., 2022; Jin et al., 2022). Yet only a few studies have directly com-
pared how these models relate to human performance within the central task used for LLM training:
next-word prediction. While LLM next-word predictions often align with human predictions of
commonly occurring words (Goldstein et al., 2022a), this alignment deteriorates when predicting
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complex words (Jacobs & McCarthy, 2020) and when re-experiencing the same stimulus (Vaidya
et al., 2023). However, no research has examined whether LLM predictions of language are equally
aligned to humans’ predictions of both spoken and written language.

Here, we asked human participants to make next-word predictions during a real-world story pre-
sented as either spoken or written language. We leveraged these predictions to evaluate differences
in humans’ behavioral alignment to LLMs based on the modality of the stimulus. We found that
human predictions were more semantically similar to the ground-truth word than LLM predictions,
regardless of the modality of presentation, and this difference was exaggerated when LLMs had
high uncertainty in their predictions (i.e., high surprisal). We then used these predictions to as-
sess representational alignment — specifically, whether human predictions of spoken language are
more closely aligned to neural activity than LLM predictions of the same story. These behavioral
differences in next-word prediction were recapitulated in their alignment to neural representations,
such that human predictions of spoken language were more predictive of brain activity than words
predicted by LLMs.

Figure 1: (a) Human participants (N=300 total) predicted upcoming words within a real-world story,
presented as either spoken or written language (N=150 per modality). We compared human predic-
tions and prediction distributions to large language models (LLM) predictions of the same stimulus.
(b) Using an fMRI dataset of humans listening to the same story, we trained encoding models to
predict human neural responses to spoken language. We then evaluated whether representations
of human predictions of spoken language provided better predictions of neural activity than LLM-
predicted words by comparing the mean-squared error (MSE) of encoding model predictions.

2 MATERIALS AND METHODS

Throughout this work, we leveraged an open-source dataset (LeBel et al., 2023) of human par-
ticipants (N=8) that listened to real-world stories while undergoing functional magnetic resonance
imaging (fMRI). All participants listened to the same auditory stories (range: 7:10 – 16:53 min)
taken from The Moth podcast, and these stories were presented to participants across five sepa-
rate scan sessions. In addition, one story (wheretheressmoke) was repeated within each of the five
sessions for the purpose of model evaluation. We therefore used this story to evaluate differences
between human and LLM next-word predictions and the alignment of these predictions to human
brain responses.
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2.1 BEHAVIORAL EXPERIMENT

While prior work has shown similarities between LLM next-word predictions and humans’ next-
word predictions for written text, no studies have investigated human predictions of upcoming words
in an auditory stimulus. Given that spoken language carries extra-linguistic signals (i.e., prosody)
used to infer speakers’ intentions (Cole, 2015; Hellbernd & Sammler, 2016) and integrated within
neural representations (Koskinen et al., 2020; Khanna et al., 2024), it becomes particularly important
to directly compare human behavior across modalities. We therefore aimed to identify differences
in how humans perform next-word prediction in spoken versus written language, and whether these
behavioral differences drive divergence from language models (Fig. 1A).

2.1.1 PARTICIPANTS

Two groups of human participants were recruited for the study (N=300 total). The first group of par-
ticipants (spoken condition, N=150) listened to the story without seeing the transcript. The second
group of participants (written condition, N=150) viewed the story word-by-word without hearing the
audio track. Participants in both conditions provided responses to the same words, and the sampled
words were presented at the spoken rate to mitigate timing differences within the written condition.

2.1.2 LANGUAGE MODELS

We compared human responses to nine openly available LLM transformer models sourced from
the transformers library (Wolf et al., 2020). These LLMs covered both causal language (GPT2,
GPT2-XL, GPT-Neo-X, Bloom, Mistral, Llama2) and masked language (RoBERTa, Electra, XLM-
ProphetNet) training objectives. For each model, we extracted the top-1 and top-5 predictions for
each word in the stimulus provided the prior 100 words as context. Similar to previous studies (Gold-
stein et al., 2022b; Kumar et al., 2023), we also calculated the entropy of the prediction distribution
for each word as a measure of prediction uncertainty.

2.1.3 STIMULUS

We selected the repeated story (wheretheressmoke) as the main stimulus for the behavioral experi-
ment. This story was originally transcribed by the authors of the fMRI dataset, and words within the
story were automatically aligned to the audio using The Penn Phonetics Lab Forced Aligner (P2FA;
Yuan & Liberman (2008)). We adjusted this transcription in two ways to mitigate differences in
presentation between the spoken and written language condition. First, we added punctuation to
the transcription to ensure that the written text read similarly to how the original spoken version
sounded. Second, and most importantly, we manually adjusted the word alignment times to ensure
no overlap between subsequent words, removing any auditory cues that may advantage participants
in the spoken language condition.

2.1.4 SELECTING CANDIDATE PREDICTION WORDS

We focused on comparing human predictions of upcoming words at moments when LLMs either
succeeded or failed at performing the same task (next-word prediction). To this end, we imposed
a few constraints on the words presented to human participants. First, we focused our experiment
on content words (e.g., removing stop-words, named-entities, etc.) as these words are most often
subject to the contextual dependencies within stories.

Second, we selectively sampled these content words based on 1) the average continuous accuracy of
5-shot model predictions (see Metrics section) and 2) the entropy of these predictions. Specifically,
we identified an LLM representative of the population of tested LLMs — GPT2-XL — based on
the similarity of continuous accuracy and entropy (evaluated at content words) across models. We
then we divided words into four quadrants based on moments where GPT2-XL exhibited high/low
continuous accuracy and high/low entropy.

Following this procedure, we sampled words from each quadrant, preserving the native distribution
of words across quadrants while enforcing that the selected words were spaced apart by a minimum
of 10 words. This final constraint ensured that that human participants were able to experience the
story as naturally as possible without undue disruption (Vaidya et al., 2023). These words were then
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divided into three presentation orders for human participants, resulting in sampling approximately
13% of all words from the story and limiting interruptions for each participant to less than 5% of the
story.

2.1.5 METRICS

Accuracy Binary measures have been shown to provide a limited picture of LLM task perfor-
mance (Schaeffer et al., 2023). We therefore calculated two measures of accuracy: 1) binary accu-
racy of the top-1 prediction (exact match) and 2) continuous accuracy, defined as the cosine sim-
ilarity of the top-1 prediction and the ground-truth word. To avoid bias in computing continuous
accuracy using the LLM that provided the prediction, we used a word-embedding model to estimate
the semantic similarity of the predictions. We chose fasttext (Bojanowski et al., 2017) as the word
model given its ability to provide vectors for out-of-vocabulary words.

Predictability Past work has evaluated the ”predictability” of a word as the percentage of partic-
ipants that correctly identified the upcoming word (Goldstein et al., 2022b; Vaidya et al., 2023). We
also computed a ”continuous predictability” score, which we defined as the average semantic simi-
larity of human predictions to the ground-truth word. In line with prior work (Smith & Levy, 2013;
Jacobs & McCarthy, 2020), we related both forms of predictability to LLM-assigned probabilities
to the ground-truth word within log-odds space.

Confidence We assessed how LLMs and humans align in terms of the certainty of their pre-
dictions, regardless of prediction accuracy. We defined the ”confidence” of a prediction as the
probability assigned to the top-1 prediction by either humans or models. For both predictability
and confidence, we computed Kendall’s τ coefficient to assess monotonic correspondence between
LLM and human predictions of a given word.

Kullback-Leibler (KL) divergence We examined whether LLM prediction distributions faith-
fully represent prediction distributions generated from human behavior. While each LLM’s predic-
tion distribution is computed over all words in its vocabulary, human prediction distributions are
limited to the set of words predicted across all participants. To compare these distributions, at each
predicted word we limited the LLM prediction distribution to the unique words predicted by human
participants (in both conditions) and normalized the truncated distribution. We then calculated the
KL divergence between human distributions to spoken and written language and LLM distributions.

2.2 MODELING NEURAL ACTIVITY TO NATURAL LANGUAGE

2.2.1 NATURAL LANGUAGE STIMULI

All stories used within the fMRI study were transcribed by a single listener and and automatically
aligned to the audio using The Penn Phonetics Lab Forced Aligner (P2FA; (Yuan & Liberman,
2008)). Alignment times of each word and phoneme within the story were manually adjusted by the
original authors with Praat phonetic analysis software (Boersma, Paul, 2001).

2.2.2 DATA PREPROCESSING

We preprocessed the fMRI data using fmriprep 23.1.4 (Esteban et al., 2019), aligning all participants
anatomically to the MNI152 brain template. We then spatially smoothed the data using a 4mm
Gaussian kernel and performed confound regression to remove variance in signal not associated
with the stories. Lastly, we aligned the functional responses using hyperalignment (Haxby et al.,
2020) to mitigate idiosyncrasies in functional topography across participants.

2.2.3 STIMULUS REPRESENTATIONS

We modeled each story using four feature spaces: spectral, phoneme, semantic, and contextual
features. The spectral model used a 128-dimension mel-frequency spectrogram, previously shown to
be predictive of primary auditory cortex (Heelan et al., 2019; Boos et al., 2021). The phoneme model
was 39-dimensions, where each dimension was a phoneme in American English defined by the CMU
Pronouncing Dictionary represented as a one-hot-encoded vector. The semantic model represented
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Figure 2: (a) Binary accuracy and (b) continuous accuracy (cosine similarity) of next-word pre-
dictions compared to the ground-truth word. For continuous accuracy, predictions were divided
into categories based on GPT-XL continuous accuracy and entropy. In all cases, humans predicting
spoken language were the most accurate, and humans in both spoken and written conditions outper-
formed LLMs (human vs. LLM pairwise comparisons p < 0.001).

each word as a 300-dimension vector within word2vec (Mikolov et al., 2013) and captured semantic
relationships between words.

The contextual model comprised N-dimensions of a given transformer model, where N is the prod-
uct of number of layers and the dimensionality of each layer. Importantly, this feature space cap-
tured contextual information of words beyond the purely semantic features. In line with the behav-
ioral experiment, we used GPT2-XL as our contextual model (48 layers each of 1280 dimensions).
This model has been commonly employed by other studies investigating LLM-brain relationships
(Tuckute et al., 2023; Zhou et al., 2023) and shown to exhibit the strongest relationship to human
representations of both spoken and written language language (Schrimpf et al., 2021).

We then adjusted this stimulus matrix to account for 1) differences in the frequency of stimulus
embeddings and fMRI data and 2) variation in the hemodynamic delay across voxels (Logothetis
et al., 2001; Gonzalez-Castillo et al., 2012). We first downsampled the stimulus matrix using a
3-lobe Lancosz filter to match the frequency of the fMRI data (Huth et al., 2016; LeBel et al.,
2023). Then, we concatenate four copies of this matrix (spaced up to four timepoints) to the original
stimulus embeddings to account for hemodynamic delays (Nishimoto et al., 2011).

2.2.4 TRAINING AND VALIDATING PREDICTIVE MODELS

We selected a total of 10 stories as training data, sampling two stories from each of the five fMRI
sessions to avoid biasing the model to a single session. Then, for each participant, we trained
voxel-wise encoding models (Huth et al., 2016) to predict a participant’s neural activity from the
feature-space representations of the same natural language stimulus described above. Encoding
models were formalized as a banded-ridge regression (Nunez-Elizalde et al., 2019) and fit using the
himalaya package (Dupré La Tour et al., 2022). Over the course of training, the model learned a
separate regularization parameter for each feature space (including the separate transformer layers)
using a leave-one-run-out cross-validation procedure (10 total folds).

To evaluate the predictive performance of the trained models, we averaged neural responses across
the five separate sessions of wheretheressmoke and correlated the predicted and true timeseries (Huth
et al., 2016). We then identified significantly predicted voxels through a block-wise permutation test.
Specifically, we established a null distribution (n=1000 permutations) for each voxel by randomly
shuffling the timeseries in blocks of 10 timepoints and recalculating the correlation with the pre-
dicted timeseries (LeBel et al., 2021; Jain et al., 2020).

2.2.5 EVALUATING DIFFERENCES BETWEEN HUMAN- AND MODEL-BASED PREDICTIONS

We compared whether human- or LLM-predicted words provided better predictions of neural re-
sponses. As the fMRI participants were presented with the stories auditorily, we focused our analysis
on comparing LLM predictions to human predictions of spoken language (Fig. 1B).
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Figure 3: (a) LLM prediction distributions better fit distributions generated by humans predicting
written text (t(472) = 2.39, p = 0.017). (b) LLM predictability levels and (c) confidence were more
representative of humans predicting written text compared to humans predicting spoken language.

Similar to extracting contextual embeddings of the ground-truth stimulus, we extracted representa-
tions of each human- or LLM-predicted word given the context of the prior 100 words. We then
used these embeddings to create two additional contextual feature spaces of 1) human predictions
and 2) LLM predictions. Critically, we still considered the whole story, and differences in these two
feature spaces are a direct result of differences in the predicted words.

We then investigated which of these two feature spaces — human- or LLM-predicted — better pre-
dicted brain activity. We specifically compared the absolute mean-squared error (MSE) predictions
at the specific timepoints when a word was predicted. At each of these timepoints, we contrasted the
MSE of the human- and LLM-predicted timeseries to determine which of the two representational
spaces better fit brain responses.

3 RESULTS

3.1 BEHAVIORAL RESULTS

3.1.1 COMPARING ACCURACY OF NEXT-WORD PREDICTIONS

We evaluated both the binary accuracy (exact match) and continuous accuracy (cosine similarity)
between the top-1 prediction of humans or LLMs and the ground-truth word. Across both stimulus
modalities (spoken or written), humans were more accurate than LLM predictions (Fig. 2A; all
p < 0.001). Interestingly, even when predictions were incorrect, human predictions were more
semantically similar to the ground-truth word than LLM predictions (Fig. 2B; all p < 0.001).
Furthermore, across both forms of accuracy, humans predicting spoken language were consistently
more accurate than both humans predicting written text and LLMs of spoken language consistently
exhibited higher accuracy than both humans predictions of written language.

We then divided human and LLM predictions into moments (words) when GPT2-XL exhibited high
versus low entropy in next-word predictions. The observed divide between human and LLM pre-
diction accuracy was recapitulated: humans were consistently more accurate than LLMs across all
accuracy-entropy quadrants of predicted words. Interestingly, this advantage for human predictions
of spoken language, but not written language, was emphasized when LLMs exhibited high entropy
predictions. These findings suggest that human predictions — particularly predictions of spoken lan-
guage – exhibit differences in next-word prediction accuracy from LLMs, especially when LLMs
are more uncertain.

3.1.2 ASSESSING BEHAVIORAL ALIGNMENT OF HUMAN AND LLM PREDICTIONS

Given that humans showed higher overall accuracy (regardless of modality) than LLMs, we next
aimed to understand whether the modality of presentation affected other indices of human behavioral
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Figure 4: (a) Average performance of encoding models across participants (unthresholded). (b)
Number of participants with significant encoding model predictions at each voxel (qFDR < 0.05).
(c) Human predictions of spoken language provided a better basis for predicting neural responses
than LLM-predicted words as indexed by the difference in absolute mean-squared error (MSE).

alignment with LLMs. To investigate this, we selected a representative LLM (GPT2-XL) based
on the fact that it had similar prediction accuracy and entropy to other tested models. We then
evaluated the extent to which this LLM’s prediction patterns aligned with humans’ 1) prediction
distributions and 2) predictability and confidence of these next-word predictions for spoken versus
written language.

We first examined whether LLM prediction distributions were well-representative of the distribution
of words predicted by human participants. While LLMs compute a probability distribution over all
words in their vocabulary, the distribution of human predictions is limited to the words predicted
across participants. To compare these distributions, we limited the LLM prediction distribution for
each predicted word to the set of unique words predicted by human participants and normalized the
trimmed distribution. We then calculated the Kullback-Leibler (KL) divergence between the LLM
and human prediction distributions. On average, the LLM distribution exhibited significantly lower
KL divergence when evaluated against the written-language distribution as compared to the spoken-
language distribution (Fig. 3A; t(472) = 2.39, p = 0.017), indicating that model prediction patterns
were more similar to humans in the written versus spoken modality.

We then compared the predictability and confidence scores assigned to the upcoming word for hu-
mans and LLMs. Across both binary and continuous predictability, humans predicting written text
aligned more closely with LLM predictability scores (Fig. 3B; binary: rτ = 0.45, p < 0.001; con-
tinuous: rτ = 0.41, p < 0.001) than humans predicting spoken language (binary: rτ = 0.39, p <
0.001; continuous: rτ = 0.38, p < 0.001). The same pattern of alignment was observed for the con-
fidence of the respective predictions. Regardless of accuracy, human showed a stronger correlation
to LLM confidence in their predictions of written text (Fig. 3C; rτ = 0.33, p < 0.001) compared to
predictions of spoken language (rτ = 0.27, p < 0.001). Together, these results show that the behav-
ioral alignment between LLMs and humans deteriorates when humans process and predict spoken
language.

3.2 PREDICTING NEURAL RESPONSES

Our final goal was to extend the behavioral findings to predictions of neural activity. To this end,
we trained an ensemble of encoding models to predict human brain responses to spoken language.
Given that the fMRI participants were presented with the stories as spoken language, we compared
LLMs to human predictions of spoken language only.

Before comparing human- and LLM-predicted words on how well they could predict brain activ-
ity, we first validated the quality of model fits by predicting brain activity to the validation story
(wheretheressmoke) using the ground-truth words. Across participants, LLM representations of the
ground-truth words were able to predict brain activity across a large amount of cortex (Fig. 4A;
unthresholded). While the voxel-wise significance of these predictions varied across participants,
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trained models consistently exhibited the best predictions of brain activity within areas related to
audition and language for the majority of participants (Fig. 4B; qFDR < 0.05).

We then evaluated whether human- or LLM-predicted words provide more accurate predictions of
brain activity. Accordingly, we created two separate contextual feature spaces containing either 1)
human- or 2) LLM-predicted words. Specifically, we embedded each word predicted by humans or
LLMs within the GPT2-XL representational space. We then used these feature spaces to generate
a predicted timeseries from the trained encoding models. We compared the absolute mean-squared
error (MSE) of predictions between the human- and LLM-predicted timeseries to understand which
feature space (human or LLM) provides a better basis for predicting human brain activity.

We found that words from human predictions of spoken language broadly exhibited less error in
predicting brain activity than words predicted by LLMs (Fig. 4C). This result provides a parallel to
the divergence observed in human behavior and suggests that human predictions of spoken language
are more representative of neural responses.

4 CONCLUSIONS

In this work, we compared human predictions of spoken and written language to predictions of large
language models (LLMs). We found that humans’ predictions of upcoming words diverged from
LLMs’ particularly when humans were asked to predict spoken language as compared with written
language. Furthermore, human predictions of spoken language better explained the neural represen-
tations of participants listening to the same auditory story in the fMRI scanner. These findings are
valuable in light of the many studies relating LLM surprisal and internal representations to human
behavior and brain representations, suggesting both behavior and representations are less aligned
than previously assumed. In particular, the behavioral and representational distinctions within the
auditory modality highlight the rich, multimodal nature of spoken language, where extra-linguistic
cues (i.e., prosody) may aid situational understanding to enable more accurate predictions. In future
work, we plan to extend the presented methodology to other stimuli and datasets. Taken together,
our results suggest that the modality by which humans perceive language alters the processing, rep-
resentation, and prediction of natural language.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-
of-the-art Natural Language Processing, July 2020. URL http://arxiv.org/abs/1910.
03771. arXiv:1910.03771 [cs].

Jiahong Yuan and Mark Liberman. Speaker identification on the SCOTUS cor-
pus. The Journal of the Acoustical Society of America, 123(5 Supplement):3878–
3878, May 2008. ISSN 0001-4966, 1520-8524. doi: 10.1121/1.2935783. URL
https://pubs.aip.org/jasa/article/123/5_Supplement/3878/603826/
Speaker-identification-on-the-SCOTUS-corpus.

Yuchen Zhou, Emmy Liu, Graham Neubig, and Leila Wehbe. Divergences between Language Mod-
els and Human Brains, November 2023. URL http://arxiv.org/abs/2311.09308.
arXiv:2311.09308 [cs, q-bio].

13

http://biorxiv.org/lookup/doi/10.1101/2022.09.29.509744
https://www.nature.com/articles/s43588-022-00354-6
https://www.nature.com/articles/s43588-022-00354-6
http://biorxiv.org/lookup/doi/10.1101/2023.04.16.537080
http://biorxiv.org/lookup/doi/10.1101/2023.04.16.537080
http://arxiv.org/abs/2302.08399
http://arxiv.org/abs/2310.06408
https://arxiv.org/abs/2006.01912
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://pubs.aip.org/jasa/article/123/5_Supplement/3878/603826/Speaker-identification-on-the-SCOTUS-corpus
https://pubs.aip.org/jasa/article/123/5_Supplement/3878/603826/Speaker-identification-on-the-SCOTUS-corpus
http://arxiv.org/abs/2311.09308

	Introduction
	Materials and Methods
	Behavioral Experiment
	Participants
	Language models
	Stimulus
	Selecting candidate prediction words
	Metrics

	Modeling neural activity to natural language
	Natural language stimuli
	Data preprocessing
	Stimulus representations
	Training and validating predictive models
	Evaluating differences between human- and model-based predictions


	Results
	Behavioral results
	Comparing accuracy of next-word predictions
	Assessing behavioral alignment of human and LLM predictions

	Predicting neural responses

	Conclusions

