
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LIGHT-SEARCH: REDUCING RETRIEVAL COST IN RAG
VIA CURRICULUM-BASED POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) is pivotal for modern Large Language
Models. However, its practical deployment is often hindered by prohibitive infer-
ence costs, encompassing both latency and financial overhead from retrieval calls.
Current reinforcement learning frameworks focus on improving search capability
by solely maximizing answer accuracy, which inadvertently encourages excessive
and costly search behavior. This overlooks the fundamental trade-off between
task performance and computational efficiency. To address this, we introduce
Light-Search, a systematic reinforcement learning framework that teaches models
to balance answer quality with search cost. We find that naively penalizing search
actions leads to unstable training and suboptimal policies. Therefore, Light-Search
employs a two-stage curriculum that first builds robust search capabilities before
introducing a cost-augmented reward function to cultivate efficiency. This learning
process is underpinned by a stabilized policy optimization algorithm, ensuring the
model can robustly learn a judicious policy on when to search. Experiments across
diverse question-answering benchmarks show that Light-Search drastically reduces
retrieval calls by up to 76.5% while maintaining performance competitive with
state-of-the-art models. By enabling a controllable balance between effectiveness
and efficiency, Light-Search provides a practical path toward building powerful yet
economical RAG systems.

1 INTRODUCTION

Model
Retrival

Llama3.1 8B Qwen2.5 7B

Llama3.1 70B Qwen2.5 72B

98.4% 96.7%

92.2% 88.1%

Figure 1: Breakdown of average in-
ference cost per query for RAG sys-
tems. Retrieval costs (orange) domi-
nate the cost compared to model in-
ference (blue), highlighting the need
for efficient retrieval strategies.

Large Language Models (LLMs) have demonstrated remark-
able capabilities in natural language understanding and gen-
eration (Achiam et al., 2023). However, their knowledge is
static, confined to the data they were trained on, leading to
factual inaccuracies (“hallucinations”) and an inability to ac-
cess real-time information. Retrieval-Augmented Generation
(RAG) has emerged as a powerful paradigm to mitigate these
limitations, dynamically retrieving relevant documents from
external knowledge sources to ground the generation process
(Fan et al., 2024; Lewis et al., 2020; Guu et al., 2020). This
approach has achieved state-of-the-art performance on a wide
array of knowledge-intensive tasks.

Despite its success, the practical deployment of RAG is
severely constrained by a critical factor: the inference cost
of the retrieval step. Each retrieval operation introduces sig-
nificant latency and incurs direct financial costs when using
commercial search APIs (Xu & Peng, 2025) as shown in Fig-
ure 1. In a real-world, high-throughput environment, these
costs accumulate rapidly, rendering many sophisticated RAG
systems economically and operationally infeasible.The key is
not just to make RAG effective, but to make it efficient.

A promising direction for optimizing this process is to make the retrieval decision adaptive. Re-
inforcement Learning (RL) presents a natural framework for this, modeling the LLM as an agent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

that learns a sequential policy on when to search for information versus when to generate an answer
directly (Jiang et al., 2023; Asai et al., 2024). However, prevailing RL-based approaches are myopic
in their formulation. They typically design reward functions that exclusively target the maximization
of final answer accuracy. This inadvertently trains the agent to adopt a “search-at-all-costs” strategy,
as more evidence often correlates with a higher chance of a correct answer. While this may improve
task capability, it fundamentally fails to address the underlying efficiency problem.

In this work, we argue that an effective RAG agent must learn to explicitly navigate the trade-
off between task performance and computational cost. To this end, we introduce Light-Search, a
systematic RL framework designed to train cost-aware RAG agents. A naive solution might involve
simply adding a fixed penalty for each search action to the reward function. However, our initial
investigations reveal that this approach is highly unstable, often leading to training collapse or
suboptimal “lazy” policies where the agent learns to avoid searching altogether.

To overcome this instability, Light-Search employs a carefully designed two-stage curriculum with
Two-Stage Advantage Shaping (TSAS). The first stage, a Capability-Building (Warm-up) phase,
focuses on developing search competence. Here, the advantage function is shaped to be cost-agnostic,
rewarding exploration and reasoning to build a robust understanding of how to effectively use
the retrieval tool. The second stage, an Efficiency-Cultivating (Annealing) phase, transitions the
objective to cost-awareness. It introduces a novel advantage function where a soft performance
gate, conditioned on the group-relative quality of the generated answer, dynamically modulates the
reward. For high-quality answers, the associated search behavior is rewarded, reinforcing effective
information seeking. Conversely, for low-quality answers, the search is penalized, discouraging
redundant retrieval. This entire curriculum is optimized using our Light-Search Group-Relative Policy
Optimization (LS-GRPO) algorithm, which robustly teaches the agent a judicious policy on when to
search.

We conduct extensive experiments on diverse question-answering benchmarks, from single-hop QA
(Kwiatkowski et al., 2019; Joshi et al., 2017) to complex multi-hop reasoning (Yang et al., 2018;
Ho et al., 2020). The results demonstrate that Light-Search achieves significant efficiency gains,
reducing retrieval calls by up to 76.5%. Crucially, this is achieved with a negligible impact on task
performance, maintaining accuracy competitive with state-of-the-art RAG models.

Our contributions are as follows:

• We identify and formalize a critical flaw in existing RL-based RAG frameworks: their
myopic focus on accuracy leads to inefficient, costly search policies unsuited for practical
deployment.

• We propose a systematic two-stage curriculum learning framework that decouples capability-
building from efficiency-tuning, proving essential for stable training.

• We design a novel adaptive policy optimization mechanism that synergizes a performance-
gated reward function with a stabilized group-based algorithm, enabling the model to
robustly learn a cost-efficient policy.

• We provide comprehensive empirical validation across seven diverse QA benchmarks,
demonstrating that Light-Search drastically reduces retrieval costs while maintaining com-
petitive performance.

2 RELATED WORK

2.1 RETRIEVAL-AUGMENTED GENERATION

To mitigate the factual inaccuracies inherent in static Large Language Models (LLMs) and grant them
access to real-time information, the RAG paradigm was introduced (Lewis et al., 2020; Guu et al.,
2020). Early RAG systems employed a fixed ”retrieve-then-read” pipeline, where documents were
fetched once and then consumed by the generator (Izacard & Grave, 2021). However, it was soon
recognized that not all queries require retrieval, and complex questions often necessitate an iterative,
multi-step information-seeking process (Mallen et al., 2022). This insight spurred the development of
adaptive retrieval methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Initial progress towards adaptive retrieval was made via sophisticated prompt engineering, such
as Chain-of-Thought (Wei et al., 2022) and its derivatives, which manually structure the model’s
reasoning and search steps (Press et al., 2022; Yoran et al., 2023). To move beyond brittle, hand-
crafted prompts, the field turned to learned approaches. Supervised fine-tuning (SFT) was used to
train models on expert-annotated search trajectories. A prominent example is Self-RAG (Asai et al.,
2024), which introduces special ”reflection” tokens to teach a model to decide for itself whether to
retrieve information and how to ground its generation. Other works have focused on optimizing the
retriever for a given LLM (Shi et al., 2023) or even replacing retrieval with generation (Yu et al.,
2022). While these methods advanced RAG capabilities, they are fundamentally constrained by
their reliance on expensive and often limited demonstration data. In contrast, our framework utilizes
reinforcement learning to learn a dynamic retrieval policy, obviating the need for static rules or
expert-annotated trajectories.

2.2 LEARNING TO SEARCH WITH REINFORCEMENT LEARNING

RL provides a powerful framework for training LLMs as autonomous agents capable of learning
complex behaviors through trial and error (Hou et al., 2025). Recently, a surge of research has applied
RL to teach LLMs how to use tools, particularly web search, to solve complex problems. For instance,
Active RAG (Jiang et al., 2023) explored using RL to learn a policy that decides whether to perform
another retrieval during the generation process. After the release of OpenAI Deep Research (OpenAI,
2025), a series of works including Search-R1 (Jin et al., 2025), R1-Searcher (Song et al., 2025),
WebThinker (Li et al., 2025), and DeepResearcher (Zheng et al., 2025) have demonstrated that RL
can enable agents to discover sophisticated, multi-hop search and reasoning strategies that outperform
SFT-based methods on knowledge-intensive tasks (Xu & Peng, 2025).

However, a critical and unifying limitation of these capability-focused RL methods is that they are
designed almost exclusively to maximize final answer accuracy. In contrast, our work is the first to
systematically incorporate cost into the RL objective, training an agent to explicitly balance task
performance with search efficiency.

2.3 EFFICIENT LARGE LANGUAGE MODELS

Given the substantial computational demands of LLMs, a vibrant research area is dedicated to
improving their inference efficiency (Wan et al., 2023). These efforts primarily focus on reducing
the model’s intrinsic computational cost. Key techniques include model compression, such as
quantization (reducing numerical precision), pruning (removing redundant weights), and knowledge
distillation (training a smaller model to mimic a larger one) (Zhu et al., 2024; Xu et al., 2024).
Another major direction is the development of efficient architectures, most notably through novel
attention mechanisms that approximate the standard quadratic-complexity self-attention with more
scalable, linear-time alternatives (Sun et al., 2025b). The common goal of these methods is to lower
the latency, memory, and energy consumption of a single forward pass of the model.

Our work is orthogonal to these model-centric optimizations. While they reduce the computational
cost of a single forward pass, we focus on improving the strategic efficiency of an agent’s policy to
minimize the number of costly external actions (e.g., API calls).

3 METHODOLOGY: THE LIGHT-SEARCH FRAMEWORK

To train a cost-aware RAG agent, we propose Light-Search, a comprehensive training framework
built upon a Two-Stage Curriculum Learning strategy. This strategy is operationalized through two
primary components: 1) Two-Stage Advantage Shaping (TSAS), which defines the precise reward and
advantage structure for each curriculum stage, and 2) a policy optimization algorithm Light-Search
Group-Relative Policy Optimization (LS-GRPO), which we stabilize for the curriculum setting.

3.1 PROBLEM FORMULATION

We formulate the task of controlling a RAG agent as a finite-horizon Markov Decision Process
(MDP), defined by the following components:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

• State (st): The state at timestep t is a tuple st = (q, ht−1), where q is the initial user query
and ht−1 is the history of past actions and their corresponding observations.

• Action (at): At each step, the agent chooses an action from a discrete set A =
{SEARCH(QUERY), GENERATE(ANSWER)}.

• Policy (πθ): The agent’s policy πθ(at|st) is represented by an LLM with parameters θ.

• Trajectory (τ): A trajectory is a full sequence of states and actions, τ =
(s0, a0, . . . , sT , aT), generated by the policy.

• Reward and Advantage: At the end of a trajectory τ , the agent receives a scalar reward,
R(τ), which evaluates the quality of the final output. The fundamental goal is to learn a
policy πθ that maximizes the expected total reward, Eτ∼πθ

[R(τ)]. However, policy gradient
methods suffer from high variance when using raw rewards. To stabilize training, modern
algorithms learn from the advantage, A(τ), which measures how much better a trajectory’s
reward is than a baseline (e.g., the average reward). The policy is updated to favor actions
leading to positive advantage. The core of our contribution lies in how we shape this
advantage A(τ) through a curriculum.

A central challenge in training cost-aware agents is the cold start policy collapse problem. A naive
approach might use a single, composite objective from the outset, aiming to maximize a reward like
R(τ)− λ · C(τ), where C(τ) is the trajectory cost. However, for a weakly initialized agent that has
yet to acquire effective search skills, simultaneously maximizing R(τ) and minimizing C(τ) is noisy
and challenging; reward hacking often emerges, the gradient is soon dominated by the cost penalty,
and the agent collapses into a “lazy” policy that trivially maximizes its objective. This leads to a
suboptimal local minimum where the agent never acquires task-solving skills. To circumvent this, we
propose a two-stage curriculum that decouples capability acquisition from efficiency cultivation.

3.1.1 STAGE 1: CAPABILITY-BUILDING (WARM-UP)

The exclusive objective of this stage is to develop a competent agent. Conceptually, we aim to find
a ”capable policy,” πcapable, that maximizes a composite reward encouraging both task success and
exploration. This can be formally described as:

πcapable = argmax
πθ

Eτ∼πθ
[R1(τ)] (1)

where R1(τ) = R(τ) +Rint(τ). Here, R(τ) is the external task reward, and Rint(τ) is an intrinsic
reward function that encourages exploratory behaviors causally linked to success, such as using tools
and generating detailed reasoning. It is a function of the search count S(τ) and reasoning length
Tlen(τ).

3.1.2 STAGE 2: EFFICIENCY-CULTIVATING (ANNEALING)

This stage commences after the agent has developed a baseline competence. The objective shifts
to finding an ”efficient policy,” πefficient, that refines the strategies learned in Stage 1. This policy
should maximize task reward while penalizing cost only when it is not justified by performance. We
formalize this as:

πefficient = argmax
πθ

Eτ∼πθ
[R2(τ)] (2)

where R2(τ) = R(τ)− g(R(τ)) · C(τ). In this formulation, C(τ) is the trajectory cost (a function
of S(τ) and Tlen(τ)), and g(R(τ)) is a crucial performance gating function. This gate is designed
to be near-zero for failing trajectories (where R(τ) is low), thus ignoring their cost, but becomes
positive for successful trajectories, creating pressure to find more cost-effective solutions.

The transition between these two stages is triggered after a fixed number of training iterations, M1.
This curriculum design directly motivates our specific advantage shaping mechanism.

3.2 TWO-STAGE ADVANTAGE SHAPING (TSAS)

TSAS implements the conceptual goals of our curriculum by defining two different advantage
functions, Âi, one for each stage. Let’s denote the i-th trajectory in a batch of size G as (q,oi).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Stage 1: Capability-Building Advantage. In the first stage, the advantage function Âi,t for
trajectory i at timestep t is defined as:

Âi,t ≡ R(q,oi)−mean
{
R(q,oj)

}G

j=1
+ log

(
S(q,oi) + 1

)
+ α log

(
Tlen(q,oi)

)
(3)

This function combines the group-normalized task reward with intrinsic rewards for search (S)
and reasoning (Tlen), directly reflecting the goal of the capability-building stage. Specifically, this
advantage function combines the group-relative reward R(q,oi) with auxiliary rewards: S(q,oi)
counts the number of search operations performed, and Tlen(q,oi) measures the total length of
reasoning traces. The hyperparameter α controls the relative importance of reasoning depth, while ϵ
defines the clipping range for stable optimization.

Stage 2: Efficiency-Cultivating (Annealing) Advantage. In the second stage, the advantage
function is reformulated to implement the performance-gated efficiency objective:

Âi ≡ A+
i + σi · S+

i + σi · T+
i (4)

The components are defined as follows:

• A+
i : The group-normalized task reward, defined as R(q,oi)−meanR(q,oj)j = 1G.

• S+
i : A normalized reward for searching, calculated as the logarithm of the search count

minus the batch’s standard deviation of search counts: log(S(q,oi) + 1)− std ·.
• T+

i : A reward for reasoning length, given by the logarithm of the trajectory’s token length:
log(Tlen(q,oi) + 1).

• σi: The critical soft performance gate, sigmoid(A+
i)− 0.5. When a trajectory is successful

(A+
i > 0), σi is positive, preserving the intrinsic rewards from S+i and T+

i . When it fails
(A+

i < 0), σi becomes negative, effectively penalizing costly exploration that did not lead
to success.

3.3 A TWO-STAGE CURRICULUM FOR COST-AWARENESS

Figure 2: Evolution of the group-relative score
distribution during annealing: as training pro-
gresses (red to blue), the shape shifts from slightly
left-skewed to right-skewed while simultaneously
sharpening.

The key insight of this formulation is its dy-
namic, self-annealing nature. Early in training,
when score distributions are uniform, the mech-
anism promotes exploration by rewarding costly
actions in successful trajectories and penaliz-
ing them in failures. As the policy matures
and score distributions become skewed and the
penalties for the majority of low-scoring trajecto-
ries become the dominant signal. This naturally
transitions the training objective from balanc-
ing performance and cost toward prioritizing
efficiency, guiding the model to an optimal and
stable search behavior that evolves with its ca-
pabilities.

3.4 LS-GRPO

To optimize the policy πθ using the advantages
defined by TSAS, we employ a policy gradient algorithm based on GRPO (), which we refer to as
Light-Search Group-Relative Policy Optimization (LS-GRPO). The objective function for Stage 1 is:

JLS-GRPO(πθ) = Eq∼pQ, {oi}G
i=1∼πθold (·|q)

1

G

G∑
i=1

|oi|∑
t=1

{
min

[
ρi,tÂi,t, clip

(
ρi,t, 1−ϵ, 1+ϵ

)
Âi,t

]}
,

(5)

where q ∼ pQ represents queries sampled from the task distribution, {oi}Gi=1 denotes a group of G
responses generated by the reference policy πθold , Âi,t is the advantage from Eq. 3. The objective for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

𝑜4
𝑜3

q

𝑜1

𝑜2

𝑜3

𝑜4

𝑜5

𝑜3

𝑜5

𝑜2 𝑜1

Penalize Group

Reward Group

𝑜1

𝑜2

𝑜3

𝑜4

𝑜5

𝑜4
𝑜5

𝑜1

Penalize Group

Reward Group

𝑜2

0.008

0.01 0.01

0.007

-0.035

Annealing

Figure 3: Evolution of the Group Relative Score distribution for A+
i . q denotes the query; o1∼o5 are

the model-sampled group responses.

Method
Single-Hop QA Averages

NQ TriviaQA PopQA Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD

Qwen-2.5-7B
Direct Answer-base 12.40 - - 21.80 - - 7.20 - - 13.80 -
Direct Answer-instruct 11.60 - - 35.60 - - 1.20 - - 16.13 -
CoT-base 21.40 - - 34.60 - - 13.00 - - 23.00 -
CoT-instruct 27.00 - - 45.20 - - 15.00 - - 29.07 -
RAG-base 20.60 0.68 0.81 31.60 0.67 0.79 22.20 0.52 0.67 24.80 0.62
RAG-instruct 20.20 0.07 0.25 28.20 0.11 0.32 22.20 0.03 0.18 23.53 0.07
ZeroSearch 41.60 0.89 0.61 57.80 0.92 0.62 50.40 0.84 0.48 49.93 0.88
Light-Search 44.40 0.94 0.41 64.00 0.83 0.52 59.20 0.82 0.42 55.87 0.86

Qwen-2.5-3B
Direct Answer-base 7.00 - - 14.40 - - 4.00 - - 8.47 -
Direct Answer-instruct 16.20 - - 26.60 - - 14.40 - - 19.07 -
CoT-base 9.00 - - 13.60 - - 6.00 - - 9.53 -
CoT-instruct 19.40 - - 35.60 - - 8.20 - - 21.07 -
RAG-base 10.40 0.50 0.63 16.20 0.57 0.69 11.40 0.59 0.67 12.67 0.55
RAG-instruct 16.20 0.18 0.41 28.20 0.24 0.46 25.60 0.36 0.49 23.33 0.26
ZeroSearch 44.60 0.51 0.50 64.60 0.21 0.41 64.60 0.30 0.46 57.93 0.34
Light-Search 48.00 0.23 0.43 65.80 0.02 0.15 66.20 0.00 0.00 60.00 0.08
LLaMA-3.2-3B
Direct Answer 27.40 - - 51.40 - - 23.80 - - 34.20 -
CoT 26.20 - - 44.40 - - 2.80 - - 24.47 -
RAG 28.80 0.78 0.74 45.60 0.68 0.68 35.80 0.62 0.54 36.73 0.69
ZeroSearch 38.20 0.89 0.32 55.60 0.85 0.35 57.20 0.90 0.30 50.33 0.88
Light-Search 47.80 1.04 0.21 67.00 1.02 0.19 73.20 1.01 0.11 62.67 1.02

Table 1: Main results for Single-Hop QA tasks using different LLMs as the backbone. The best
performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard Deviation.

Stage 2 uses the same structure, but substitutes Âi,t with the annealing advantage Âi from Eq. 4. and
ρi,t is the importance sampling ratio between the current and reference policies.

ρi,t =
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
(6)

The clipping term, controlled by ϵ, ensures stable training. This combination of a clear curriculum,
precisely shaped advantages, and a stable optimization algorithm is key to our framework.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Our framework is built upon the verl Sheng et al. (2024), which is optimized for distributed reinforce-
ment learning with large models. All experiments are conducted on a single node equipped with 8

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method
Multi-Hop QA Averages

HotpotQA 2Wiki Musique Bamboogle Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD Acc ST SD

Qwen-2.5-7B
Direct Answer-base 11.40 - - 14.20 - - 2.60 - - 6.94 - - 8.79 -
Direct Answer-instruct 16.40 - - 22.20 - - 4.80 - - 14.40 - - 14.45 -
CoT-base 14.80 - - 21.40 - - 6.80 - - 13.89 - - 14.22 -
CoT-instruct 21.00 - - 24.80 - - 8.00 - - 26.39 - - 20.05 -
RAG-base 23.00 0.76 0.88 19.40 0.92 0.96 8.00 0.85 0.91 18.06 0.81 0.95 17.12 0.84
RAG-instruct 17.40 0.28 0.51 19.20 0.63 0.80 7.40 0.26 0.55 26.39 0.07 0.25 17.60 0.31
ZeroSearch 32.80 1.20 0.77 32.20 1.49 0.93 19.00 1.30 0.80 44.00 1.18 0.74 32.00 1.29
Light-Search 34.00 1.10 0.60 41.00 1.39 0.69 21.00 1.25 0.66 36.00 1.27 0.69 33.00 1.25

Qwen-2.5-3B
Direct Answer-base 7.40 - - 8.40 - - 0.80 - - 4.17 - - 5.19 -
Direct Answer-instruct 17.00 - - 19.00 - - 4.20 - - 2.78 - - 10.75 -
CoT-base 6.40 - - 9.40 - - 1.00 - - 2.78 - - 4.90 -
CoT-instruct 15.60 - - 21.00 - - 4.80 - - 19.44 - - 15.21 -
RAG-base 7.80 0.68 0.74 9.80 0.68 0.78 1.20 0.65 0.78 5.56 0.64 0.63 6.09 0.66
RAG-instruct 16.60 0.50 0.65 21.80 0.68 0.73 8.00 0.54 0.69 11.11 0.44 0.62 14.38 0.54
ZeroSearch 37.80 0.26 0.45 34.20 0.93 0.36 18.20 0.89 0.32 22.22 0.00 0.00 28.11 0.52
Light-Search 37.40 0.51 0.50 37.20 0.00 0.00 18.40 0.26 0.44 16.00 0.00 0.00 27.25 0.19
LLaMA-3.2-3B
Direct Answer 19.60 - - 21.60 - - 4.00 - - 6.94 - - 13.04 -
CoT 16.00 - - 10.20 - - 5.80 - - 21.60 - - 13.40 -
RAG 18.60 0.95 0.82 14.80 1.18 0.87 7.20 0.95 0.86 19.44 0.81 0.70 15.01 0.97
ZeroSearch 22.20 0.87 0.33 23.00 0.87 0.34 9.20 0.91 0.29 18.06 0.86 0.35 18.12 0.88
Light-Search 33.20 1.07 0.25 34.80 1.04 0.21 15.20 1.11 0.31 21.60 1.02 0.15 26.20 1.06

Table 2: Main results for Multi-Hop QA tasks using different LLMs as the backbone. The best
performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard Deviation.

Figure 4: RL fine-tuning dynamics of Light-Search and ZeroSearch. Solid lines are moving averages
over 15 steps.

NVIDIA A100 40GB GPUs. For complete hyperparameter configurations and other implementation
details, please refer to appendix B.

Datasets and Evaluation. Following the setting of ZeroSearch Sun et al. (2025a), we use the
ZeroSearch dataset for training our models. For evaluation, we assess performance on a diverse suite
of seven question-answering benchmarks, which are divided into two categories: single-hop and
multi-hop. A total of seven datasets are used (Kwiatkowski et al., 2019; Joshi et al., 2017; Mallen
et al., 2022; Yang et al., 2018; Ho et al., 2020; Trivedi et al., 2022; Press et al., 2022); the details
are reported in the appendix C.1. This allows us to measure both in-domain and out-of-domain
generalization. Across all benchmarks, the F1 score is used as the performance reward for each
answer during training. At the evaluation stage, Exact Match (EM) is used as the primary evaluation
metric. To assess search cost and the stability of search behavior, we introduce two additional metrics:
the number and standard deviation of searches (ST and SD).

Models and Baselines. To evaluate the robustness and generalizability of our findings, our exper-
iments utilize several backbone language models from two distinct model families and at varying

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Method TriviaQA HotpotQA Musique Average
Acc ST SD Acc ST SD Acc ST SD Avg. Acc Avg. ST

Light-Search (Full) 67.00 1.02 0.19 33.20 1.07 0.25 15.20 1.11 0.31 38.47 1.07
w/o Stage 2 (Annealing) 52.20 1.38 0.74 23.80 1.48 0.83 8.40 1.59 0.83 28.13 1.48
w/o Stage 1 (Warm-up) 61.80 1.22 0.51 30.60 1.28 0.53 12.60 1.37 0.59 35.00 1.29

Table 3: Ablation study on LS-GRPO using LLaMA-3.2-3B-Instruct. We evaluate the impact
of removing key training stages: the annealing stage (Stage 2) and the warm-up stage (Stage 1).
The results demonstrate that both stages are crucial for achieving optimal performance and search
efficiency. Acc: Accuracy (%), ST: Average Search Times per query, SD: Search Standard Deviation.

scales. Specifically, we employ models from the Qwen2.5 family Qwen et al. (2025) at both 3B and 7B
variants, and the LLaMA-3.2-3B model Dubey et al. (2024) from the LLaMA family. Our evaluation
includes a comprehensive set of baselines: Direct Answer, Chain-of-Thought (CoT) Wei et al. (2022),
standard Retrieval-Augmented Generation (RAG) Lewis et al. (2020), and ZeroSearch Sun et al.
(2025a). For prompt-based baselines (Direct Answer and CoT), we utilize Instruct models, as Base
models often struggle to follow specific task instructions. For the reinforcement learning-based
methods (ZeroSearch and our own), we evaluate with the Base model for qwen and the Instruct model
for llama to assess the generalizability of the approach across different model types.

4.2 RESULTS

4.2.1 OVERALL PERFORMANCE

The results in Table 1 and Table 2 show that Light-Search establishes a more favorable performance-
efficiency frontier. Specifically, it shows superior performance-cost trade-off, its generalizability, and
its enhanced policy stability.

Light-Search Establishing a Superior Performance-Efficiency Frontier. Light-Search establishes
a superior trade-off between performance and efficiency across both single- and multi-hop tasks. This
is demonstrated on Qwen models, where Light-Search often improves accuracy while simultaneously
reducing search cost; e.g., with Qwen-2.5-7B on single-hop tasks, it achieves higher accuracy
(55.87% vs. 49.93%) with fewer searches (0.86 vs. 0.88). The results with Llama-3.2-3B highlight
a more nuanced policy, where a marginal increase in search cost is traded for substantial accuracy
gains (+12.34 points on single-hop, +8.08 on multi-hop). This indicates that our curriculum fosters
a policy that optimizes for the marginal utility of each search, making strategic investments for
disproportionate performance returns rather than defaulting to a naive cost-minimization strategy.

Light-Search Generalizability Across Diverse Models and Task Complexities. The advantages
of Light-Search generalize across model architectures and scales. With Qwen-2.5-7B on single-hop
tasks, Light-Search achieves 55.87% accuracy with 0.86 searches, outperforming ZeroSearch, which
scores 49.93% with a slightly higher cost of 0.88. This demonstrates an instance of achieving higher
accuracy with lower computational overhead. The trend holds for the Qwen-2.5-3B model, where
Light-Search maintains a performance lead on single-hop tasks and is competitive on multi-hop tasks
while reducing search frequency by over 60% (0.19 vs. 0.52 Avg ST). This consistent behavior across
different models and task complexities validates the robustness of our training framework.

Light-Search Enhanced Policy Stability and Operational Reliability. Beyond aggregate effi-
ciency, Light-Search induces a more stable and reliable policy, which manifests in two ways. First, it
exhibits lower variance in its search behavior. As shown by the ”SD” metric, Light-Search consistently
reduces the search standard deviation; for Llama-3.2-3B, the SD is reduced to 0.17 from ZeroSearch’s
0.32. This indicates a more predictable agent that applies a consistent strategy to similar problems.

Meanwhile, Light-Search demonstrates superior operational reliability by mitigating the format
collapse issue observed in the baseline, where the agent’s outputs progressively degrade and fail to
adhere to the required action format. Our format reward design directly addresses this by explicitly
rewarding correctly formatted actions. As illustrated in Figure 4, this design leads to a more stable,
valid action ratio and smaller fluctuations in response length throughout training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Method
Single-Hop QA Averages

NQ TriviaQA PopQA Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD

LLaMA-3.2-3B-Instruct
ZeroSearch 38.20 0.89 0.32 55.60 0.85 0.35 57.20 0.90 0.30 50.33 0.88
ZeroSearch+ 47.20 1.07 0.33 63.80 1.04 0.29 72.40 1.00 0.17 61.13 1.04

Table 4: Supplemental study (Single-Hop QA) comparing our method with the original ZeroSearch.
The best performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard
Deviation.

Method
Multi-Hop QA Averages

HotpotQA 2Wiki Musique Bamboogle Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD Acc ST SD

LLaMA-3.2-3B-Instruct
ZeroSearch 22.20 0.87 0.33 23.00 0.87 0.34 9.20 0.91 0.29 18.10 0.86 0.35 18.13 0.88
ZeroSearch+ 29.40 1.11 0.41 23.80 1.19 0.50 14.80 1.10 0.38 26.40 1.06 0.26 23.60 1.12

Table 5: Supplemental study (Multi-Hop QA) comparing our method with the original ZeroSearch.
The best performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard
Deviation.

4.2.2 ABLATION STUDY

To investigate the necessity of our two-stage curriculum, we conducted an ablation study with the
results presented in Table 3. The experiments confirm that both stages are indispensable for achieving
optimal results. Removing the final annealing stage cripples accuracy (e.g., from 35.87 to 28.13)
and causes erratic, excessive searches. This occurs because the agent learns how to search but is
never taught when to do so efficiently, as it is never exposed to a cost-aware objective. Conversely,
omitting the initial warm-up stage also degrades performance by increasing search cost and variance.
The premature cost penalty stifles exploration, preventing the agent from developing a robust base
policy for subsequent optimization. Ultimately, the results demonstrate that the two stages are
complementary: the warm-up is essential for building a capable foundation, while the annealing stage
is critical for refining it into a cost-efficient policy.

4.2.3 COMPLEMENTARY STUDY

To investigate the generalizability and modularity of our two-stage curriculum, we conducted a
complementary study. In this experiment, we integrated our Stage 1 (Warm-up) into the existing
ZeroSearch framework, denoted as ZeroSearch+. The results, presented in Table 4 and Table 5,
show a significant performance improvement. ZeroSearch+ consistently outperforms the orig-
inal ZeroSearch across all tested single-hop and multi-hop datasets, with the average accuracy
increasing from 50.33 to 61.13 on single-hop tasks and from 18.13 to 23.60 on multi-hop tasks. This
demonstrates that our warm-up strategy is not only effective within our own framework but can also
serve as a transferable module to enhance other RL-based methods. Yet, lacking an explicit annealing
phase, ZeroSearch+ remains sub-optimal in search budget and stability.

5 CONCLUSION

In this work, we addressed the critical challenge of inference cost in RAG systems, where existing
reinforcement learning methods inadvertently promote inefficient, accuracy-at-all-costs search poli-
cies. We introduced Light-Search, a systematic framework that trains cost-aware agents by explicitly
balancing task performance with search efficiency. Extensive experiments demonstrate that Light-
Search drastically reduces retrieval calls across a diverse suite of question-answering benchmarks,
all while maintaining competitive task accuracy. By successfully navigating the trade-off between
effectiveness and efficiency, our work provides a practical and principled path toward developing
powerful, yet economically viable, LLM agents for real-world deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Our work presents a technical framework, Light-Search, aimed at improving the efficiency of
Retrieval-Augmented Generation (RAG) by reducing retrieval costs. The research is focused on the
algorithmic optimization of a model’s search policy. All experiments were conducted using publicly
available language models and standard academic benchmarks, with no use of private or sensitive
data. Our method optimizes the behavior of existing models and does not introduce new ethical
concerns beyond those inherent to the base language models themselves.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will release the complete source code for our Light-
Search framework, including scripts for training and evaluation, as well as all final model checkpoints.
Our implementation is based on the verl library and follows standard experimental setups. We
have provided comprehensive implementation details in Appendix B, including all hyperparameters,
model configurations, datasets, and the hardware environment. The main experiments reported in this
paper were conducted with a fixed random seed to facilitate direct replication of our findings.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining, pp.
6491–6501, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International Conference on Machine Learning, pp. 3929–3938.
PMLR, 2020.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Yuexiang Hou et al. Reinforcement learning for large language models: A survey. arXiv preprint
arXiv:2501.00001, 2025.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2021.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

Xiaohan Jin, Yongqi Mei, Tongxuan Zhou, Yifan Wang, Mengfei Liu, Jiawei Chen, Dayiheng Liu,
Haojie Pan, Bowen Li, Tianyu Yang, et al. Search-r1: Searching for better reasoning steps in test
time. arXiv preprint arXiv:2501.14438, 2025.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, SOSP
’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702297.
doi: 10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems,
volume 33, pp. 9459–9474, 2020.

Zhongxiang Li, Ming Zhang, and Shuai Chen. Webthinker: Learning to reason with web search.
arXiv preprint arXiv:2501.10555, 2025.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 7, 2022.

OpenAI. Deep research system card — openai, 2025. URL https://openai.com/index/
deep-research-system-card/.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv preprint
arXiv:2301.12652, 2023.

Yuhang Song, Chen Wang, and Zihan Xu. R1-searcher: Leveraging reinforcement learning for
automated search in reasoning tasks. arXiv preprint arXiv:2501.14623, 2025.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
searching. arXiv preprint arXiv:2505.04588, 2025a.

Yutao Sun, Zhenyu Li, Yike Zhang, Tengyu Pan, Bowen Dong, Yuyi Guo, and Jianyong Wang. Effi-
cient attention mechanisms for large language models: A survey. arXiv preprint arXiv:2507.19595,
2025b.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

11

https://doi.org/10.1145/3600006.3613165
https://openai.com/index/deep-research-system-card/
https://openai.com/index/deep-research-system-card/
https://arxiv.org/abs/2412.15115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022.

Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies,
and applications. arXiv preprint arXiv:2506.12594, 2025.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Ori Yoran, Tomer Wolfson, Yoav Ziser, and Jonathan Berant. Answering questions by meta-reasoning
over multiple chains of thought. arXiv preprint arXiv:2304.13007, 2023.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong
context generators. arXiv preprint arXiv:2209.10063, 2022.

Xinyue Zheng, Lei Wang, and Yuting Zhang. Deepresearcher: Reasoning through long contexts with
reinforcement learning. arXiv preprint arXiv:2501.08889, 2025.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. Transactions of the Association for Computational Linguistics, 12:1556–1577,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A DECLARATION OF LLM USAGE

Throughout the preparation of this manuscript, large language models served only as linguistic aids.
They were invoked solely to (1) enhance sentence clarity and fluency, (2) correct grammar and adjust
style for better readability, and (3) propose alternative wordings that preserved the intended technical
meaning. LLMs played no role in study design, data gathering, algorithm creation, experimental
execution, or outcome interpretation. All methodological insights, implementation choices, and
scientific conclusions were developed independently by the authors, who affirm that no new ideas,
data, or claims were generated by these tools and that the intellectual substance of the work remains
exclusively their own.

B IMPLEMENTATION DETAILS

B.1 TRAINING INFRASTRUCTURE AND FRAMEWORK

We implement our Light-Search framework using the verl training infrastructure Sheng et al. (2024),
which provides efficient distributed training capabilities for reinforcement learning with large lan-
guage models. All experiments are conducted on a single node with 8 NVIDIA A100-SXM4-40GB
GPUs interconnected via NVLink. The compute node is equipped with dual AMD EPYC 7742 64-
Core Processors (256 CPU cores in total) and 512 MiB L3 cache, ensuring sufficient computational
resources for both model training and search simulation.

B.2 MODEL CONFIGURATION

We conduct experiments with multiple base models to validate the generalizability of our approach:

• Primary Models: Qwen2.5-3B (Base/Instruct) Yang et al. (2024), Qwen2.5-7B (Base/In-
struct), and Llama-3.2-3B-Instruct Dubey et al. (2024)

• Context Length: Maximum prompt length of 4,096 tokens and maximum response length
of 512 tokens

• Generation Settings: During rollout, we employ n = 5 parallel agents with temperature
T = 1.0 for diverse response generation

B.3 TWO-STAGE CURRICULUM TRAINING

B.3.1 STAGE 1: LEARNING TO SEARCH (WARM-UP)

In the first stage, we focus on developing the model’s search and reasoning capabilities:

• Training Steps: 150 steps.

• Reward Configuration: Set α = 0.01 for search and thinking length rewards (Equation 5)

B.3.2 STAGE 2: LEARNING WHEN NOT TO SEARCH (ANNEALING)

The annealing stage refines the model’s selective search behavior:

• Training Steps: 52 steps for efficiency optimization

• Dynamic Rewards: Sigmoid activation with performance-based adjustment (Equation 4)

B.4 OPTIMIZATION HYPERPARAMETERS

We employ the following optimization settings across both training stages:

• Learning Rate: 1× 10−6 with cosine decay schedule

• Warm-up: 95% of total steps for learning rate warm-up

• Batch Sizes: Training batch size of 12, validation batch size of 12

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

• PPO Configuration: Mini-batch size of 192, micro-batch size of 48
• KL Penalty: Coefficient β = 0.001 with low-variance KL loss formulation
• Memory Optimization: FSDP with parameter, gradient, and optimizer offloading enabled

B.5 SEARCH SIMULATION AND RETRIEVAL

B.5.1 TRAINING-TIME SEARCH SIMULATION

Following ZeroSearch Sun et al. (2025a), we employ a 14B parameter simulation LLM to generate
search results during training, eliminating dependency on external APIs:

• Simulation Model: A fine-tuned LLM (Simulation LLM google 14B V2) deployed
via vLLM Kwon et al. (2023)

• Deployment: Tensor parallelism across 2 GPUs with 90% GPU memory utilization
• Throughput: Maximum 1,024 sequences with optimized batching
• Document Generation: Controlled quality through prompt engineering with adjustable

noise injection

B.5.2 TEST-TIME REAL SEARCH

During evaluation, we use real Google Search API via SerpAPI for authentic retrieval:

• Search Engine: Google Search with top-5 results retrieval
• API Configuration: Rate-limited queries to avoid throttling
• Result Processing: Extract and concatenate relevant snippets up to 2,048 tokens

B.6 DATASET CONFIGURATION

We utilize the ZeroSearch dataset Sun et al. (2025a) organized as follows:

• Training Data: Questions from diverse QA benchmarks stored in Parquet format
• Validation Data: Held-out test split for monitoring training progress
• Data Loading: Shuffled training dataloader with drop last=True for consistent batch sizes
• Prompt Processing: Maximum prompt length of 4,096 tokens with truncation at word

boundaries

B.7 EVALUATION PROTOCOL

• Validation Frequency: Every 600 training steps
• Checkpoint Saving: Every 50 steps with best model selection based on validation perfor-

mance
• Evaluation Metrics: Accuracy, average search counts (ST), and search standard deviation

(SD)
• Reward Function: F1-score based verification for answer correctness

B.8 TRAINING INFRASTRUCTURE AND COMPUTATIONAL COST

• Hardware Configuration: All experiments were conducted on a single server node
equipped with eight NVIDIA A100 40GB GPUs. The workload was distributed as follows:

– Simulation Environment: 2 GPUs were dedicated to running the vLLM-based search
simulator.

– Model Training: 6 GPUs were used for the main training loop.
• Memory Utilization:

– The two simulation GPUs each operated at approximately 90% memory capacity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

– The six training GPUs each maintained an average memory utilization of approximately
90% throughout the training process.

• Training Duration: The full two-stage training required approximately 8 hours to complete.
– Stage 1 (Warmup): ˜4 hours (150 steps).
– Stage 2 (Annealing): ˜4 hours (100-150 steps).

• Total Computational Cost: The total compute for a complete training run is estimated at 64
GPU-hours, derived from (6 training GPUs × 8 hours) + (2 simulation GPUs × 8 hours).

B.9 REPRODUCIBILITY

To ensure reproducibility of our results:

• Random Seeds: Fixed random seed (42) for model initialization
• Code Release: Full training and evaluation code will be made available upon publication
• Model Checkpoints: Trained model weights for both Stage 1 and Stage 2 will be released
• Logging: Comprehensive tracking via Weights & Biases for all experiments
• Environment: Docker container with exact package versions provided

B.10 KEY IMPLEMENTATION DIFFERENCES FROM BASELINES

Our implementation differs from existing approaches in several crucial aspects:

• Reward Formulation: Unlike ZeroSearch which uses uniform search rewards, we employ
adaptive sigmoid-based rewards that dynamically adjust based on group performance

• Curriculum Design: Explicit two-stage training with different reward coefficients and noise
levels, rather than continuous annealing

• Search Variance Regularization: Novel component to promote behavioral consistency
across identical queries

• Thinking Action Counting: Count discrete thinking actions rather than total length to
preserve response diversity

C EXPERIMENT SETUP

C.1 BENCHMARKS

We evaluate our framework on a diverse set of question answering benchmarks to assess its search
and reasoning capabilities across varying complexity. The benchmarks are categorized as follows:

• Single-Hop Question Answering: These benchmarks require retrieving a single piece of
information to answer the question. We use:

– Natural Questions (NQ) Kwiatkowski et al. (2019): Questions posed by real users to
Google search.

– TriviaQA Joshi et al. (2017): A challenging dataset of trivia questions.
– PopQA Mallen et al. (2022): A dataset of popular questions about entities.

• Multi-Hop Question Answering: These benchmarks require finding and reasoning over
multiple pieces of information to construct the answer. We use:

– HotpotQA Yang et al. (2018): A standard benchmark for multi-hop reasoning.
– 2WikiMultiHopQA Ho et al. (2020): A more complex multi-hop dataset derived from

Wikipedia.
– Musique Trivedi et al. (2022): A dataset focusing on questions that require reasoning

over multiple paragraphs.
– Bamboogle Press et al. (2022): A dataset of challenging questions designed to be

difficult for standard search engines.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

For all benchmarks, we follow standard practice and use Exact Match (EM) as the primary evaluation
metric.

C.2 BASELINES

We compare Light-Search against a comprehensive set of baselines to evaluate its effectiveness and
efficiency.

• Direct Answer: This is a zero-shot baseline where the model is prompted to answer the
question directly without any explicit reasoning steps or external information. It measures
the model’s inherent knowledge.

• Chain-of-Thought (CoT) Wei et al. (2022): We prompt the model to generate a step-by-
step reasoning process before providing the final answer. This baseline tests the model’s
reasoning capabilities without external retrieval.

• Standard RAG Lewis et al. (2020): A standard retrieval-augmented generation setup.
For each question, we perform a one-time retrieval using a search engine and provide the
retrieved documents as context to the model for answer generation.

• ZeroSearch Sun et al. (2025a): A state-of-the-art RL-based framework for training RAG
models. It introduces a search simulator to avoid expensive real-time API calls during
training and uses a curriculum learning approach. Unlike our proposed Light-Search, its
reward mechanism does not explicitly optimize for search efficiency. This serves as our
primary RL baseline.

16

	Introduction
	Related Work
	Retrieval-Augmented Generation
	Learning to Search with Reinforcement Learning
	Efficient Large Language Models

	Methodology: The Light-Search Framework
	Problem Formulation
	Stage 1: Capability-Building (Warm-up)
	Stage 2: Efficiency-Cultivating (Annealing)

	Two-Stage Advantage Shaping (TSAS)
	A Two-Stage Curriculum for Cost-Awareness
	LS-GRPO

	Experiment
	Experiment Setup
	Results
	Overall Performance
	Ablation Study
	Complementary Study

	Conclusion
	Declaration of LLM Usage
	Implementation Details
	Training Infrastructure and Framework
	Model Configuration
	Two-Stage Curriculum Training
	Stage 1: Learning to Search (Warm-up)
	Stage 2: Learning When Not to Search (Annealing)

	Optimization Hyperparameters
	Search Simulation and Retrieval
	Training-Time Search Simulation
	Test-Time Real Search

	Dataset Configuration
	Evaluation Protocol
	Training Infrastructure and Computational Cost
	Reproducibility
	Key Implementation Differences from Baselines

	Experiment Setup
	Benchmarks
	Baselines

