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ABSTRACT

Retrieval-Augmented Generation (RAG) is pivotal for modern Large Language
Models. However, its practical deployment is often hindered by prohibitive infer-
ence costs, encompassing both latency and financial overhead from retrieval calls.
Current reinforcement learning frameworks focus on improving search capability
by solely maximizing answer accuracy, which inadvertently encourages excessive
and costly search behavior. This overlooks the fundamental trade-off between
task performance and computational efficiency. To address this, we introduce
Light-Search, a systematic reinforcement learning framework that teaches models
to balance answer quality with search cost. We find that naively penalizing search
actions leads to unstable training and suboptimal policies. Therefore, Light-Search
employs a two-stage curriculum that first builds robust search capabilities before
introducing a cost-augmented reward function to cultivate efficiency. This learning
process is underpinned by a stabilized policy optimization algorithm, ensuring the
model can robustly learn a judicious policy on when to search. Experiments across
diverse question-answering benchmarks show that Light-Search drastically reduces
retrieval calls by up to 76.5% while maintaining performance competitive with
state-of-the-art models. By enabling a controllable balance between effectiveness
and efficiency, Light-Search provides a practical path toward building powerful yet
economical RAG systems.

1 INTRODUCTION

Model
Retrival

Llama3.1 8B Qwen2.5 7B 

Llama3.1 70B Qwen2.5 72B 

98.4% 96.7% 

92.2% 88.1% 

Figure 1: Breakdown of average in-
ference cost per query for RAG sys-
tems. Retrieval costs (orange) domi-
nate the cost compared to model in-
ference (blue), highlighting the need
for efficient retrieval strategies.

Large Language Models (LLMs) have demonstrated remark-
able capabilities in natural language understanding and gen-
eration (Achiam et al., 2023). However, their knowledge is
static, confined to the data they were trained on, leading to
factual inaccuracies (“hallucinations”) and an inability to ac-
cess real-time information. Retrieval-Augmented Generation
(RAG) has emerged as a powerful paradigm to mitigate these
limitations, dynamically retrieving relevant documents from
external knowledge sources to ground the generation process
(Fan et al., 2024; Lewis et al., 2020; Guu et al., 2020). This
approach has achieved state-of-the-art performance on a wide
array of knowledge-intensive tasks.

Despite its success, the practical deployment of RAG is
severely constrained by a critical factor: the inference cost
of the retrieval step. Each retrieval operation introduces sig-
nificant latency and incurs direct financial costs when using
commercial search APIs (Xu & Peng, 2025) as shown in Fig-
ure 1. In a real-world, high-throughput environment, these
costs accumulate rapidly, rendering many sophisticated RAG
systems economically and operationally infeasible.The key is
not just to make RAG effective, but to make it efficient.

A promising direction for optimizing this process is to make the retrieval decision adaptive. Re-
inforcement Learning (RL) presents a natural framework for this, modeling the LLM as an agent
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that learns a sequential policy on when to search for information versus when to generate an answer
directly (Jiang et al., 2023; Asai et al., 2024). However, prevailing RL-based approaches are myopic
in their formulation. They typically design reward functions that exclusively target the maximization
of final answer accuracy. This inadvertently trains the agent to adopt a “search-at-all-costs” strategy,
as more evidence often correlates with a higher chance of a correct answer. While this may improve
task capability, it fundamentally fails to address the underlying efficiency problem.

In this work, we argue that an effective RAG agent must learn to explicitly navigate the trade-
off between task performance and computational cost. To this end, we introduce Light-Search, a
systematic RL framework designed to train cost-aware RAG agents. A naive solution might involve
simply adding a fixed penalty for each search action to the reward function. However, our initial
investigations reveal that this approach is highly unstable, often leading to training collapse or
suboptimal “lazy” policies where the agent learns to avoid searching altogether.

To overcome this instability, Light-Search employs a carefully designed two-stage curriculum with
Two-Stage Advantage Shaping (TSAS). The first stage, a Capability-Building (Warm-up) phase,
focuses on developing search competence. Here, the advantage function is shaped to be cost-agnostic,
rewarding exploration and reasoning to build a robust understanding of how to effectively use
the retrieval tool. The second stage, an Efficiency-Cultivating (Annealing) phase, transitions the
objective to cost-awareness. It introduces a novel advantage function where a soft performance
gate, conditioned on the group-relative quality of the generated answer, dynamically modulates the
reward. For high-quality answers, the associated search behavior is rewarded, reinforcing effective
information seeking. Conversely, for low-quality answers, the search is penalized, discouraging
redundant retrieval. This entire curriculum is optimized using our Light-Search Group-Relative Policy
Optimization (LS-GRPO) algorithm, which robustly teaches the agent a judicious policy on when to
search.

We conduct extensive experiments on diverse question-answering benchmarks, from single-hop QA
(Kwiatkowski et al., 2019; Joshi et al., 2017) to complex multi-hop reasoning (Yang et al., 2018;
Ho et al., 2020). The results demonstrate that Light-Search achieves significant efficiency gains,
reducing retrieval calls by up to 76.5%. Crucially, this is achieved with a negligible impact on task
performance, maintaining accuracy competitive with state-of-the-art RAG models.

Our contributions are as follows:

• We identify and formalize a critical flaw in existing RL-based RAG frameworks: their
myopic focus on accuracy leads to inefficient, costly search policies unsuited for practical
deployment.

• We propose a systematic two-stage curriculum learning framework that decouples capability-
building from efficiency-tuning, proving essential for stable training.

• We design a novel adaptive policy optimization mechanism that synergizes a performance-
gated reward function with a stabilized group-based algorithm, enabling the model to
robustly learn a cost-efficient policy.

• We provide comprehensive empirical validation across seven diverse QA benchmarks,
demonstrating that Light-Search drastically reduces retrieval costs while maintaining com-
petitive performance.

2 RELATED WORK

2.1 RETRIEVAL-AUGMENTED GENERATION

To mitigate the factual inaccuracies inherent in static Large Language Models (LLMs) and grant them
access to real-time information, the RAG paradigm was introduced (Lewis et al., 2020; Guu et al.,
2020). Early RAG systems employed a fixed ”retrieve-then-read” pipeline, where documents were
fetched once and then consumed by the generator (Izacard & Grave, 2021). However, it was soon
recognized that not all queries require retrieval, and complex questions often necessitate an iterative,
multi-step information-seeking process (Mallen et al., 2022). This insight spurred the development of
adaptive retrieval methods.
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Initial progress towards adaptive retrieval was made via sophisticated prompt engineering, such
as Chain-of-Thought (Wei et al., 2022) and its derivatives, which manually structure the model’s
reasoning and search steps (Press et al., 2022; Yoran et al., 2023). To move beyond brittle, hand-
crafted prompts, the field turned to learned approaches. Supervised fine-tuning (SFT) was used to
train models on expert-annotated search trajectories. A prominent example is Self-RAG (Asai et al.,
2024), which introduces special ”reflection” tokens to teach a model to decide for itself whether to
retrieve information and how to ground its generation. Other works have focused on optimizing the
retriever for a given LLM (Shi et al., 2023) or even replacing retrieval with generation (Yu et al.,
2022). While these methods advanced RAG capabilities, they are fundamentally constrained by
their reliance on expensive and often limited demonstration data. In contrast, our framework utilizes
reinforcement learning to learn a dynamic retrieval policy, obviating the need for static rules or
expert-annotated trajectories.

2.2 LEARNING TO SEARCH WITH REINFORCEMENT LEARNING

RL provides a powerful framework for training LLMs as autonomous agents capable of learning
complex behaviors through trial and error (Hou et al., 2025). Recently, a surge of research has applied
RL to teach LLMs how to use tools, particularly web search, to solve complex problems. For instance,
Active RAG (Jiang et al., 2023) explored using RL to learn a policy that decides whether to perform
another retrieval during the generation process. After the release of OpenAI Deep Research (OpenAI,
2025), a series of works including Search-R1 (Jin et al., 2025), R1-Searcher (Song et al., 2025),
WebThinker (Li et al., 2025), and DeepResearcher (Zheng et al., 2025) have demonstrated that RL
can enable agents to discover sophisticated, multi-hop search and reasoning strategies that outperform
SFT-based methods on knowledge-intensive tasks (Xu & Peng, 2025).

However, a critical and unifying limitation of these capability-focused RL methods is that they are
designed almost exclusively to maximize final answer accuracy. In contrast, our work is the first to
systematically incorporate cost into the RL objective, training an agent to explicitly balance task
performance with search efficiency.

2.3 EFFICIENT LARGE LANGUAGE MODELS

Given the substantial computational demands of LLMs, a vibrant research area is dedicated to
improving their inference efficiency (Wan et al., 2023). These efforts primarily focus on reducing
the model’s intrinsic computational cost. Key techniques include model compression, such as
quantization (reducing numerical precision), pruning (removing redundant weights), and knowledge
distillation (training a smaller model to mimic a larger one) (Zhu et al., 2024; Xu et al., 2024).
Another major direction is the development of efficient architectures, most notably through novel
attention mechanisms that approximate the standard quadratic-complexity self-attention with more
scalable, linear-time alternatives (Sun et al., 2025b). The common goal of these methods is to lower
the latency, memory, and energy consumption of a single forward pass of the model.

Our work is orthogonal to these model-centric optimizations. While they reduce the computational
cost of a single forward pass, we focus on improving the strategic efficiency of an agent’s policy to
minimize the number of costly external actions (e.g., API calls).

3 METHODOLOGY: THE LIGHT-SEARCH FRAMEWORK

To train a cost-aware RAG agent, we propose Light-Search, a comprehensive training framework
built upon a Two-Stage Curriculum Learning strategy. This strategy is operationalized through two
primary components: 1) Two-Stage Advantage Shaping (TSAS), which defines the precise reward and
advantage structure for each curriculum stage, and 2) a policy optimization algorithm Light-Search
Group-Relative Policy Optimization (LS-GRPO), which we stabilize for the curriculum setting.

3.1 PROBLEM FORMULATION

We formulate the task of controlling a RAG agent as a finite-horizon Markov Decision Process
(MDP), defined by the following components:
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• State (st): The state at timestep t is a tuple st = (q, ht−1), where q is the initial user query
and ht−1 is the history of past actions and their corresponding observations.

• Action (at): At each step, the agent chooses an action from a discrete set A =
{SEARCH(QUERY), GENERATE(ANSWER)}.

• Policy (πθ): The agent’s policy πθ(at|st) is represented by an LLM with parameters θ.

• Trajectory (τ ): A trajectory is a full sequence of states and actions, τ =
(s0, a0, . . . , sT , aT ), generated by the policy.

• Reward and Advantage: At the end of a trajectory τ , the agent receives a scalar reward,
R(τ), which evaluates the quality of the final output. The fundamental goal is to learn a
policy πθ that maximizes the expected total reward, Eτ∼πθ

[R(τ)]. However, policy gradient
methods suffer from high variance when using raw rewards. To stabilize training, modern
algorithms learn from the advantage, A(τ), which measures how much better a trajectory’s
reward is than a baseline (e.g., the average reward). The policy is updated to favor actions
leading to positive advantage. The core of our contribution lies in how we shape this
advantage A(τ) through a curriculum.

A central challenge in training cost-aware agents is the cold start policy collapse problem. A naive
approach might use a single, composite objective from the outset, aiming to maximize a reward like
R(τ)− λ · C(τ), where C(τ) is the trajectory cost. However, for a weakly initialized agent that has
yet to acquire effective search skills, simultaneously maximizing R(τ) and minimizing C(τ) is noisy
and challenging; reward hacking often emerges, the gradient is soon dominated by the cost penalty,
and the agent collapses into a “lazy” policy that trivially maximizes its objective. This leads to a
suboptimal local minimum where the agent never acquires task-solving skills. To circumvent this, we
propose a two-stage curriculum that decouples capability acquisition from efficiency cultivation.

3.1.1 STAGE 1: CAPABILITY-BUILDING (WARM-UP)

The exclusive objective of this stage is to develop a competent agent. Conceptually, we aim to find
a ”capable policy,” πcapable, that maximizes a composite reward encouraging both task success and
exploration. This can be formally described as:

πcapable = argmax
πθ

Eτ∼πθ
[R1(τ)] (1)

where R1(τ) = R(τ) +Rint(τ). Here, R(τ) is the external task reward, and Rint(τ) is an intrinsic
reward function that encourages exploratory behaviors causally linked to success, such as using tools
and generating detailed reasoning. It is a function of the search count S(τ) and reasoning length
Tlen(τ).

3.1.2 STAGE 2: EFFICIENCY-CULTIVATING (ANNEALING)

This stage commences after the agent has developed a baseline competence. The objective shifts
to finding an ”efficient policy,” πefficient, that refines the strategies learned in Stage 1. This policy
should maximize task reward while penalizing cost only when it is not justified by performance. We
formalize this as:

πefficient = argmax
πθ

Eτ∼πθ
[R2(τ)] (2)

where R2(τ) = R(τ)− g(R(τ)) · C(τ). In this formulation, C(τ) is the trajectory cost (a function
of S(τ) and Tlen(τ)), and g(R(τ)) is a crucial performance gating function. This gate is designed
to be near-zero for failing trajectories (where R(τ) is low), thus ignoring their cost, but becomes
positive for successful trajectories, creating pressure to find more cost-effective solutions.

The transition between these two stages is triggered after a fixed number of training iterations, M1.
This curriculum design directly motivates our specific advantage shaping mechanism.

3.2 TWO-STAGE ADVANTAGE SHAPING (TSAS)

TSAS implements the conceptual goals of our curriculum by defining two different advantage
functions, Âi, one for each stage. Let’s denote the i-th trajectory in a batch of size G as (q,oi).
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Stage 1: Capability-Building Advantage. In the first stage, the advantage function Âi,t for
trajectory i at timestep t is defined as:

Âi,t ≡ R(q,oi)−mean
{
R(q,oj)

}G

j=1
+ log

(
S(q,oi) + 1

)
+ α log

(
Tlen(q,oi)

)
(3)

This function combines the group-normalized task reward with intrinsic rewards for search (S)
and reasoning (Tlen), directly reflecting the goal of the capability-building stage. Specifically, this
advantage function combines the group-relative reward R(q,oi) with auxiliary rewards: S(q,oi)
counts the number of search operations performed, and Tlen(q,oi) measures the total length of
reasoning traces. The hyperparameter α controls the relative importance of reasoning depth, while ϵ
defines the clipping range for stable optimization.

Stage 2: Efficiency-Cultivating (Annealing) Advantage. In the second stage, the advantage
function is reformulated to implement the performance-gated efficiency objective:

Âi ≡ A+
i + σi · S+

i + σi · T+
i (4)

The components are defined as follows:

• A+
i : The group-normalized task reward, defined as R(q,oi)−meanR(q,oj)j = 1G.

• S+
i : A normalized reward for searching, calculated as the logarithm of the search count

minus the batch’s standard deviation of search counts: log(S(q,oi) + 1)− std ·.
• T+

i : A reward for reasoning length, given by the logarithm of the trajectory’s token length:
log(Tlen(q,oi) + 1).

• σi: The critical soft performance gate, sigmoid(A+
i )− 0.5. When a trajectory is successful

(A+
i > 0), σi is positive, preserving the intrinsic rewards from S+i and T+

i . When it fails
(A+

i < 0), σi becomes negative, effectively penalizing costly exploration that did not lead
to success.

3.3 A TWO-STAGE CURRICULUM FOR COST-AWARENESS

Figure 2: Evolution of the group-relative score
distribution during annealing: as training pro-
gresses (red to blue), the shape shifts from slightly
left-skewed to right-skewed while simultaneously
sharpening.

The key insight of this formulation is its dy-
namic, self-annealing nature. Early in training,
when score distributions are uniform, the mech-
anism promotes exploration by rewarding costly
actions in successful trajectories and penaliz-
ing them in failures. As the policy matures
and score distributions become skewed and the
penalties for the majority of low-scoring trajecto-
ries become the dominant signal. This naturally
transitions the training objective from balanc-
ing performance and cost toward prioritizing
efficiency, guiding the model to an optimal and
stable search behavior that evolves with its ca-
pabilities.

3.4 LS-GRPO

To optimize the policy πθ using the advantages
defined by TSAS, we employ a policy gradient algorithm based on GRPO (), which we refer to as
Light-Search Group-Relative Policy Optimization (LS-GRPO). The objective function for Stage 1 is:

JLS-GRPO(πθ) = Eq∼pQ, {oi}G
i=1∼πθold (·|q)

1

G

G∑
i=1

|oi|∑
t=1

{
min

[
ρi,tÂi,t, clip

(
ρi,t, 1−ϵ, 1+ϵ

)
Âi,t

]}
,

(5)

where q ∼ pQ represents queries sampled from the task distribution, {oi}Gi=1 denotes a group of G
responses generated by the reference policy πθold , Âi,t is the advantage from Eq. 3. The objective for
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Figure 3: Evolution of the Group Relative Score distribution for A+
i . q denotes the query; o1∼o5 are

the model-sampled group responses.

Method
Single-Hop QA Averages

NQ TriviaQA PopQA Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD

Qwen-2.5-7B
Direct Answer-base 12.40 - - 21.80 - - 7.20 - - 13.80 -
Direct Answer-instruct 11.60 - - 35.60 - - 1.20 - - 16.13 -
CoT-base 21.40 - - 34.60 - - 13.00 - - 23.00 -
CoT-instruct 27.00 - - 45.20 - - 15.00 - - 29.07 -
RAG-base 20.60 0.68 0.81 31.60 0.67 0.79 22.20 0.52 0.67 24.80 0.62
RAG-instruct 20.20 0.07 0.25 28.20 0.11 0.32 22.20 0.03 0.18 23.53 0.07
ZeroSearch 41.60 0.89 0.61 57.80 0.92 0.62 50.40 0.84 0.48 49.93 0.88
Light-Search 44.40 0.94 0.41 64.00 0.83 0.52 59.20 0.82 0.42 55.87 0.86

Qwen-2.5-3B
Direct Answer-base 7.00 - - 14.40 - - 4.00 - - 8.47 -
Direct Answer-instruct 16.20 - - 26.60 - - 14.40 - - 19.07 -
CoT-base 9.00 - - 13.60 - - 6.00 - - 9.53 -
CoT-instruct 19.40 - - 35.60 - - 8.20 - - 21.07 -
RAG-base 10.40 0.50 0.63 16.20 0.57 0.69 11.40 0.59 0.67 12.67 0.55
RAG-instruct 16.20 0.18 0.41 28.20 0.24 0.46 25.60 0.36 0.49 23.33 0.26
ZeroSearch 44.60 0.51 0.50 64.60 0.21 0.41 64.60 0.30 0.46 57.93 0.34
Light-Search 48.00 0.23 0.43 65.80 0.02 0.15 66.20 0.00 0.00 60.00 0.08
LLaMA-3.2-3B
Direct Answer 27.40 - - 51.40 - - 23.80 - - 34.20 -
CoT 26.20 - - 44.40 - - 2.80 - - 24.47 -
RAG 28.80 0.78 0.74 45.60 0.68 0.68 35.80 0.62 0.54 36.73 0.69
ZeroSearch 38.20 0.89 0.32 55.60 0.85 0.35 57.20 0.90 0.30 50.33 0.88
Light-Search 47.80 1.04 0.21 67.00 1.02 0.19 73.20 1.01 0.11 62.67 1.02

Table 1: Main results for Single-Hop QA tasks using different LLMs as the backbone. The best
performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard Deviation.

Stage 2 uses the same structure, but substitutes Âi,t with the annealing advantage Âi from Eq. 4. and
ρi,t is the importance sampling ratio between the current and reference policies.

ρi,t =
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
(6)

The clipping term, controlled by ϵ, ensures stable training. This combination of a clear curriculum,
precisely shaped advantages, and a stable optimization algorithm is key to our framework.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Our framework is built upon the verl Sheng et al. (2024), which is optimized for distributed reinforce-
ment learning with large models. All experiments are conducted on a single node equipped with 8

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method
Multi-Hop QA Averages

HotpotQA 2Wiki Musique Bamboogle Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD Acc ST SD

Qwen-2.5-7B
Direct Answer-base 11.40 - - 14.20 - - 2.60 - - 6.94 - - 8.79 -
Direct Answer-instruct 16.40 - - 22.20 - - 4.80 - - 14.40 - - 14.45 -
CoT-base 14.80 - - 21.40 - - 6.80 - - 13.89 - - 14.22 -
CoT-instruct 21.00 - - 24.80 - - 8.00 - - 26.39 - - 20.05 -
RAG-base 23.00 0.76 0.88 19.40 0.92 0.96 8.00 0.85 0.91 18.06 0.81 0.95 17.12 0.84
RAG-instruct 17.40 0.28 0.51 19.20 0.63 0.80 7.40 0.26 0.55 26.39 0.07 0.25 17.60 0.31
ZeroSearch 32.80 1.20 0.77 32.20 1.49 0.93 19.00 1.30 0.80 44.00 1.18 0.74 32.00 1.29
Light-Search 34.00 1.10 0.60 41.00 1.39 0.69 21.00 1.25 0.66 36.00 1.27 0.69 33.00 1.25

Qwen-2.5-3B
Direct Answer-base 7.40 - - 8.40 - - 0.80 - - 4.17 - - 5.19 -
Direct Answer-instruct 17.00 - - 19.00 - - 4.20 - - 2.78 - - 10.75 -
CoT-base 6.40 - - 9.40 - - 1.00 - - 2.78 - - 4.90 -
CoT-instruct 15.60 - - 21.00 - - 4.80 - - 19.44 - - 15.21 -
RAG-base 7.80 0.68 0.74 9.80 0.68 0.78 1.20 0.65 0.78 5.56 0.64 0.63 6.09 0.66
RAG-instruct 16.60 0.50 0.65 21.80 0.68 0.73 8.00 0.54 0.69 11.11 0.44 0.62 14.38 0.54
ZeroSearch 37.80 0.26 0.45 34.20 0.93 0.36 18.20 0.89 0.32 22.22 0.00 0.00 28.11 0.52
Light-Search 37.40 0.51 0.50 37.20 0.00 0.00 18.40 0.26 0.44 16.00 0.00 0.00 27.25 0.19
LLaMA-3.2-3B
Direct Answer 19.60 - - 21.60 - - 4.00 - - 6.94 - - 13.04 -
CoT 16.00 - - 10.20 - - 5.80 - - 21.60 - - 13.40 -
RAG 18.60 0.95 0.82 14.80 1.18 0.87 7.20 0.95 0.86 19.44 0.81 0.70 15.01 0.97
ZeroSearch 22.20 0.87 0.33 23.00 0.87 0.34 9.20 0.91 0.29 18.06 0.86 0.35 18.12 0.88
Light-Search 33.20 1.07 0.25 34.80 1.04 0.21 15.20 1.11 0.31 21.60 1.02 0.15 26.20 1.06

Table 2: Main results for Multi-Hop QA tasks using different LLMs as the backbone. The best
performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard Deviation.

Figure 4: RL fine-tuning dynamics of Light-Search and ZeroSearch. Solid lines are moving averages
over 15 steps.

NVIDIA A100 40GB GPUs. For complete hyperparameter configurations and other implementation
details, please refer to appendix B.

Datasets and Evaluation. Following the setting of ZeroSearch Sun et al. (2025a), we use the
ZeroSearch dataset for training our models. For evaluation, we assess performance on a diverse suite
of seven question-answering benchmarks, which are divided into two categories: single-hop and
multi-hop. A total of seven datasets are used (Kwiatkowski et al., 2019; Joshi et al., 2017; Mallen
et al., 2022; Yang et al., 2018; Ho et al., 2020; Trivedi et al., 2022; Press et al., 2022); the details
are reported in the appendix C.1. This allows us to measure both in-domain and out-of-domain
generalization. Across all benchmarks, the F1 score is used as the performance reward for each
answer during training. At the evaluation stage, Exact Match (EM) is used as the primary evaluation
metric. To assess search cost and the stability of search behavior, we introduce two additional metrics:
the number and standard deviation of searches (ST and SD).

Models and Baselines. To evaluate the robustness and generalizability of our findings, our exper-
iments utilize several backbone language models from two distinct model families and at varying
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Method TriviaQA HotpotQA Musique Average
Acc ST SD Acc ST SD Acc ST SD Avg. Acc Avg. ST

Light-Search (Full) 67.00 1.02 0.19 33.20 1.07 0.25 15.20 1.11 0.31 38.47 1.07
w/o Stage 2 (Annealing) 52.20 1.38 0.74 23.80 1.48 0.83 8.40 1.59 0.83 28.13 1.48
w/o Stage 1 (Warm-up) 61.80 1.22 0.51 30.60 1.28 0.53 12.60 1.37 0.59 35.00 1.29

Table 3: Ablation study on LS-GRPO using LLaMA-3.2-3B-Instruct. We evaluate the impact
of removing key training stages: the annealing stage (Stage 2) and the warm-up stage (Stage 1).
The results demonstrate that both stages are crucial for achieving optimal performance and search
efficiency. Acc: Accuracy (%), ST: Average Search Times per query, SD: Search Standard Deviation.

scales. Specifically, we employ models from the Qwen2.5 family Qwen et al. (2025) at both 3B and 7B
variants, and the LLaMA-3.2-3B model Dubey et al. (2024) from the LLaMA family. Our evaluation
includes a comprehensive set of baselines: Direct Answer, Chain-of-Thought (CoT) Wei et al. (2022),
standard Retrieval-Augmented Generation (RAG) Lewis et al. (2020), and ZeroSearch Sun et al.
(2025a). For prompt-based baselines (Direct Answer and CoT), we utilize Instruct models, as Base
models often struggle to follow specific task instructions. For the reinforcement learning-based
methods (ZeroSearch and our own), we evaluate with the Base model for qwen and the Instruct model
for llama to assess the generalizability of the approach across different model types.

4.2 RESULTS

4.2.1 OVERALL PERFORMANCE

The results in Table 1 and Table 2 show that Light-Search establishes a more favorable performance-
efficiency frontier. Specifically, it shows superior performance-cost trade-off, its generalizability, and
its enhanced policy stability.

Light-Search Establishing a Superior Performance-Efficiency Frontier. Light-Search establishes
a superior trade-off between performance and efficiency across both single- and multi-hop tasks. This
is demonstrated on Qwen models, where Light-Search often improves accuracy while simultaneously
reducing search cost; e.g., with Qwen-2.5-7B on single-hop tasks, it achieves higher accuracy
(55.87% vs. 49.93%) with fewer searches (0.86 vs. 0.88). The results with Llama-3.2-3B highlight
a more nuanced policy, where a marginal increase in search cost is traded for substantial accuracy
gains (+12.34 points on single-hop, +8.08 on multi-hop). This indicates that our curriculum fosters
a policy that optimizes for the marginal utility of each search, making strategic investments for
disproportionate performance returns rather than defaulting to a naive cost-minimization strategy.

Light-Search Generalizability Across Diverse Models and Task Complexities. The advantages
of Light-Search generalize across model architectures and scales. With Qwen-2.5-7B on single-hop
tasks, Light-Search achieves 55.87% accuracy with 0.86 searches, outperforming ZeroSearch, which
scores 49.93% with a slightly higher cost of 0.88. This demonstrates an instance of achieving higher
accuracy with lower computational overhead. The trend holds for the Qwen-2.5-3B model, where
Light-Search maintains a performance lead on single-hop tasks and is competitive on multi-hop tasks
while reducing search frequency by over 60% (0.19 vs. 0.52 Avg ST). This consistent behavior across
different models and task complexities validates the robustness of our training framework.

Light-Search Enhanced Policy Stability and Operational Reliability. Beyond aggregate effi-
ciency, Light-Search induces a more stable and reliable policy, which manifests in two ways. First, it
exhibits lower variance in its search behavior. As shown by the ”SD” metric, Light-Search consistently
reduces the search standard deviation; for Llama-3.2-3B, the SD is reduced to 0.17 from ZeroSearch’s
0.32. This indicates a more predictable agent that applies a consistent strategy to similar problems.

Meanwhile, Light-Search demonstrates superior operational reliability by mitigating the format
collapse issue observed in the baseline, where the agent’s outputs progressively degrade and fail to
adhere to the required action format. Our format reward design directly addresses this by explicitly
rewarding correctly formatted actions. As illustrated in Figure 4, this design leads to a more stable,
valid action ratio and smaller fluctuations in response length throughout training.
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Method
Single-Hop QA Averages

NQ TriviaQA PopQA Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD

LLaMA-3.2-3B-Instruct
ZeroSearch 38.20 0.89 0.32 55.60 0.85 0.35 57.20 0.90 0.30 50.33 0.88
ZeroSearch+ 47.20 1.07 0.33 63.80 1.04 0.29 72.40 1.00 0.17 61.13 1.04

Table 4: Supplemental study (Single-Hop QA) comparing our method with the original ZeroSearch.
The best performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard
Deviation.

Method
Multi-Hop QA Averages

HotpotQA 2Wiki Musique Bamboogle Avg Acc Avg ST
Acc ST SD Acc ST SD Acc ST SD Acc ST SD

LLaMA-3.2-3B-Instruct
ZeroSearch 22.20 0.87 0.33 23.00 0.87 0.34 9.20 0.91 0.29 18.10 0.86 0.35 18.13 0.88
ZeroSearch+ 29.40 1.11 0.41 23.80 1.19 0.50 14.80 1.10 0.38 26.40 1.06 0.26 23.60 1.12

Table 5: Supplemental study (Multi-Hop QA) comparing our method with the original ZeroSearch.
The best performance is set in bold. Acc: Accuracy (%), ST: Search Times, SD: Search Standard
Deviation.

4.2.2 ABLATION STUDY

To investigate the necessity of our two-stage curriculum, we conducted an ablation study with the
results presented in Table 3. The experiments confirm that both stages are indispensable for achieving
optimal results. Removing the final annealing stage cripples accuracy (e.g., from 35.87 to 28.13)
and causes erratic, excessive searches. This occurs because the agent learns how to search but is
never taught when to do so efficiently, as it is never exposed to a cost-aware objective. Conversely,
omitting the initial warm-up stage also degrades performance by increasing search cost and variance.
The premature cost penalty stifles exploration, preventing the agent from developing a robust base
policy for subsequent optimization. Ultimately, the results demonstrate that the two stages are
complementary: the warm-up is essential for building a capable foundation, while the annealing stage
is critical for refining it into a cost-efficient policy.

4.2.3 COMPLEMENTARY STUDY

To investigate the generalizability and modularity of our two-stage curriculum, we conducted a
complementary study. In this experiment, we integrated our Stage 1 (Warm-up) into the existing
ZeroSearch framework, denoted as ZeroSearch+. The results, presented in Table 4 and Table 5,
show a significant performance improvement. ZeroSearch+ consistently outperforms the orig-
inal ZeroSearch across all tested single-hop and multi-hop datasets, with the average accuracy
increasing from 50.33 to 61.13 on single-hop tasks and from 18.13 to 23.60 on multi-hop tasks. This
demonstrates that our warm-up strategy is not only effective within our own framework but can also
serve as a transferable module to enhance other RL-based methods. Yet, lacking an explicit annealing
phase, ZeroSearch+ remains sub-optimal in search budget and stability.

5 CONCLUSION

In this work, we addressed the critical challenge of inference cost in RAG systems, where existing
reinforcement learning methods inadvertently promote inefficient, accuracy-at-all-costs search poli-
cies. We introduced Light-Search, a systematic framework that trains cost-aware agents by explicitly
balancing task performance with search efficiency. Extensive experiments demonstrate that Light-
Search drastically reduces retrieval calls across a diverse suite of question-answering benchmarks,
all while maintaining competitive task accuracy. By successfully navigating the trade-off between
effectiveness and efficiency, our work provides a practical and principled path toward developing
powerful, yet economically viable, LLM agents for real-world deployment.
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ETHICS STATEMENT

Our work presents a technical framework, Light-Search, aimed at improving the efficiency of
Retrieval-Augmented Generation (RAG) by reducing retrieval costs. The research is focused on the
algorithmic optimization of a model’s search policy. All experiments were conducted using publicly
available language models and standard academic benchmarks, with no use of private or sensitive
data. Our method optimizes the behavior of existing models and does not introduce new ethical
concerns beyond those inherent to the base language models themselves.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will release the complete source code for our Light-
Search framework, including scripts for training and evaluation, as well as all final model checkpoints.
Our implementation is based on the verl library and follows standard experimental setups. We
have provided comprehensive implementation details in Appendix B, including all hyperparameters,
model configurations, datasets, and the hardware environment. The main experiments reported in this
paper were conducted with a fixed random seed to facilitate direct replication of our findings.
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A DECLARATION OF LLM USAGE

Throughout the preparation of this manuscript, large language models served only as linguistic aids.
They were invoked solely to (1) enhance sentence clarity and fluency, (2) correct grammar and adjust
style for better readability, and (3) propose alternative wordings that preserved the intended technical
meaning. LLMs played no role in study design, data gathering, algorithm creation, experimental
execution, or outcome interpretation. All methodological insights, implementation choices, and
scientific conclusions were developed independently by the authors, who affirm that no new ideas,
data, or claims were generated by these tools and that the intellectual substance of the work remains
exclusively their own.

B IMPLEMENTATION DETAILS

B.1 TRAINING INFRASTRUCTURE AND FRAMEWORK

We implement our Light-Search framework using the verl training infrastructure Sheng et al. (2024),
which provides efficient distributed training capabilities for reinforcement learning with large lan-
guage models. All experiments are conducted on a single node with 8 NVIDIA A100-SXM4-40GB
GPUs interconnected via NVLink. The compute node is equipped with dual AMD EPYC 7742 64-
Core Processors (256 CPU cores in total) and 512 MiB L3 cache, ensuring sufficient computational
resources for both model training and search simulation.

B.2 MODEL CONFIGURATION

We conduct experiments with multiple base models to validate the generalizability of our approach:

• Primary Models: Qwen2.5-3B (Base/Instruct) Yang et al. (2024), Qwen2.5-7B (Base/In-
struct), and Llama-3.2-3B-Instruct Dubey et al. (2024)

• Context Length: Maximum prompt length of 4,096 tokens and maximum response length
of 512 tokens

• Generation Settings: During rollout, we employ n = 5 parallel agents with temperature
T = 1.0 for diverse response generation

B.3 TWO-STAGE CURRICULUM TRAINING

B.3.1 STAGE 1: LEARNING TO SEARCH (WARM-UP)

In the first stage, we focus on developing the model’s search and reasoning capabilities:

• Training Steps: 150 steps.

• Reward Configuration: Set α = 0.01 for search and thinking length rewards (Equation 5)

B.3.2 STAGE 2: LEARNING WHEN NOT TO SEARCH (ANNEALING)

The annealing stage refines the model’s selective search behavior:

• Training Steps: 52 steps for efficiency optimization

• Dynamic Rewards: Sigmoid activation with performance-based adjustment (Equation 4)

B.4 OPTIMIZATION HYPERPARAMETERS

We employ the following optimization settings across both training stages:

• Learning Rate: 1× 10−6 with cosine decay schedule

• Warm-up: 95% of total steps for learning rate warm-up

• Batch Sizes: Training batch size of 12, validation batch size of 12
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• PPO Configuration: Mini-batch size of 192, micro-batch size of 48
• KL Penalty: Coefficient β = 0.001 with low-variance KL loss formulation
• Memory Optimization: FSDP with parameter, gradient, and optimizer offloading enabled

B.5 SEARCH SIMULATION AND RETRIEVAL

B.5.1 TRAINING-TIME SEARCH SIMULATION

Following ZeroSearch Sun et al. (2025a), we employ a 14B parameter simulation LLM to generate
search results during training, eliminating dependency on external APIs:

• Simulation Model: A fine-tuned LLM (Simulation LLM google 14B V2) deployed
via vLLM Kwon et al. (2023)

• Deployment: Tensor parallelism across 2 GPUs with 90% GPU memory utilization
• Throughput: Maximum 1,024 sequences with optimized batching
• Document Generation: Controlled quality through prompt engineering with adjustable

noise injection

B.5.2 TEST-TIME REAL SEARCH

During evaluation, we use real Google Search API via SerpAPI for authentic retrieval:

• Search Engine: Google Search with top-5 results retrieval
• API Configuration: Rate-limited queries to avoid throttling
• Result Processing: Extract and concatenate relevant snippets up to 2,048 tokens

B.6 DATASET CONFIGURATION

We utilize the ZeroSearch dataset Sun et al. (2025a) organized as follows:

• Training Data: Questions from diverse QA benchmarks stored in Parquet format
• Validation Data: Held-out test split for monitoring training progress
• Data Loading: Shuffled training dataloader with drop last=True for consistent batch sizes
• Prompt Processing: Maximum prompt length of 4,096 tokens with truncation at word

boundaries

B.7 EVALUATION PROTOCOL

• Validation Frequency: Every 600 training steps
• Checkpoint Saving: Every 50 steps with best model selection based on validation perfor-

mance
• Evaluation Metrics: Accuracy, average search counts (ST), and search standard deviation

(SD)
• Reward Function: F1-score based verification for answer correctness

B.8 TRAINING INFRASTRUCTURE AND COMPUTATIONAL COST

• Hardware Configuration: All experiments were conducted on a single server node
equipped with eight NVIDIA A100 40GB GPUs. The workload was distributed as follows:

– Simulation Environment: 2 GPUs were dedicated to running the vLLM-based search
simulator.

– Model Training: 6 GPUs were used for the main training loop.
• Memory Utilization:

– The two simulation GPUs each operated at approximately 90% memory capacity.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

– The six training GPUs each maintained an average memory utilization of approximately
90% throughout the training process.

• Training Duration: The full two-stage training required approximately 8 hours to complete.
– Stage 1 (Warmup): ˜4 hours (150 steps).
– Stage 2 (Annealing): ˜4 hours (100-150 steps).

• Total Computational Cost: The total compute for a complete training run is estimated at 64
GPU-hours, derived from (6 training GPUs × 8 hours) + (2 simulation GPUs × 8 hours).

B.9 REPRODUCIBILITY

To ensure reproducibility of our results:

• Random Seeds: Fixed random seed (42) for model initialization
• Code Release: Full training and evaluation code will be made available upon publication
• Model Checkpoints: Trained model weights for both Stage 1 and Stage 2 will be released
• Logging: Comprehensive tracking via Weights & Biases for all experiments
• Environment: Docker container with exact package versions provided

B.10 KEY IMPLEMENTATION DIFFERENCES FROM BASELINES

Our implementation differs from existing approaches in several crucial aspects:

• Reward Formulation: Unlike ZeroSearch which uses uniform search rewards, we employ
adaptive sigmoid-based rewards that dynamically adjust based on group performance

• Curriculum Design: Explicit two-stage training with different reward coefficients and noise
levels, rather than continuous annealing

• Search Variance Regularization: Novel component to promote behavioral consistency
across identical queries

• Thinking Action Counting: Count discrete thinking actions rather than total length to
preserve response diversity

C EXPERIMENT SETUP

C.1 BENCHMARKS

We evaluate our framework on a diverse set of question answering benchmarks to assess its search
and reasoning capabilities across varying complexity. The benchmarks are categorized as follows:

• Single-Hop Question Answering: These benchmarks require retrieving a single piece of
information to answer the question. We use:

– Natural Questions (NQ) Kwiatkowski et al. (2019): Questions posed by real users to
Google search.

– TriviaQA Joshi et al. (2017): A challenging dataset of trivia questions.
– PopQA Mallen et al. (2022): A dataset of popular questions about entities.

• Multi-Hop Question Answering: These benchmarks require finding and reasoning over
multiple pieces of information to construct the answer. We use:

– HotpotQA Yang et al. (2018): A standard benchmark for multi-hop reasoning.
– 2WikiMultiHopQA Ho et al. (2020): A more complex multi-hop dataset derived from

Wikipedia.
– Musique Trivedi et al. (2022): A dataset focusing on questions that require reasoning

over multiple paragraphs.
– Bamboogle Press et al. (2022): A dataset of challenging questions designed to be

difficult for standard search engines.
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For all benchmarks, we follow standard practice and use Exact Match (EM) as the primary evaluation
metric.

C.2 BASELINES

We compare Light-Search against a comprehensive set of baselines to evaluate its effectiveness and
efficiency.

• Direct Answer: This is a zero-shot baseline where the model is prompted to answer the
question directly without any explicit reasoning steps or external information. It measures
the model’s inherent knowledge.

• Chain-of-Thought (CoT) Wei et al. (2022): We prompt the model to generate a step-by-
step reasoning process before providing the final answer. This baseline tests the model’s
reasoning capabilities without external retrieval.

• Standard RAG Lewis et al. (2020): A standard retrieval-augmented generation setup.
For each question, we perform a one-time retrieval using a search engine and provide the
retrieved documents as context to the model for answer generation.

• ZeroSearch Sun et al. (2025a): A state-of-the-art RL-based framework for training RAG
models. It introduces a search simulator to avoid expensive real-time API calls during
training and uses a curriculum learning approach. Unlike our proposed Light-Search, its
reward mechanism does not explicitly optimize for search efficiency. This serves as our
primary RL baseline.
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